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ABSTRACT

In this paper, we consider the problem of leveraging textual descriptions to im-
prove generalization of control policies to new scenarios. Unlike prior work in
this space, we do not assume access to any form of prior knowledge connecting
text and state observations, and learn both symbol grounding and control policy
simultaneously. This is challenging due to a lack of concrete supervision, and in-
correct groundings can result in worse performance than policies that do not use
the text at all. We develop a new model, EMMA (Entity Mapper with Multi-modal
Attention) which uses a multi-modal entity-conditioned attention module that al-
lows for selective focus over relevant sentences in the manual for each entity in the
environment. EMMA is end-to-end differentiable and can learn a latent grounding
of entities and dynamics from text to observations using environment rewards as
the only source of supervision. To empirically test our model, we design a new
framework of 1320 games and collect text manuals with free-form natural lan-
guage via crowd-sourcing. We demonstrate that EMMA achieves successful zero-
shot generalization to unseen games with new dynamics, obtaining significantly
higher rewards compared to multiple baselines. The grounding acquired by EMMA
is also robust to noisy descriptions and linguistic variation.1

1 INTRODUCTION

Interactive game environments are useful for developing agents that learn grounded representations
of language for autonomous decision making (Golland et al., 2010; Andreas & Klein, 2015; Bah-
danau et al., 2018). The key objective in these learning setups is for the agent to utilize feedback
from the environment to acquire linguistic representations (e.g. word vectors) that are optimized for
the task. Figure 1 provides an example of such a setting, where the meaning of the word fleeing in
the context is to “move away”, which is captured by the movements of that particular entity (wizard).

Learning a useful grounding of concepts can also help agents navigate new environments with pre-
viously unseen entities or dynamics. Recent research has explored this approach by grounding
language descriptions to the transition and reward dynamics of an environment (Narasimhan et al.,
2018; Zhong et al., 2020). While these methods demonstrate successful transfer to new settings,
they require manual specification of some minimal grounding before the agent can learn (e.g. a
ground-truth mapping between individual entities and their textual symbols).

In this paper, we propose a model to learn an effective grounding for entities and dynamics without
requiring any prior mapping between text and state observations, using only scalar reward signals
from the environment. To achieve this, there are two key inferences for an agent to make — (1)
figure out which facts refer to which entities, and (2) understand what the facts mean to guide its
decision making. To this end, we develop a new model called EMMA (Entity Mapper with Multi-
modal Attention), which simultaneously learns to select relevant sentences in the manual for each
entity in the game as well as incorporate the corresponding text description into its control policy.
This is done using a multi-modal attention mechanism which uses entity representations as queries
to attend to specific tokens in the manual text. EMMA then generates a text-conditioned representation
which is processed further by a deep neural network to generate a policy. We train the entire model
in a multi-task fashion using reinforcement learning to maximize task returns.

1Code and data are available at https://www.dropbox.com/s/fnprjrfekbnxxru/code_data.zip?raw=1.
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Figure 1: Two games from our multitask domain Messenger where the agent must obtain the mes-
sage and delivers it to the goal (white dotted lines). The same entities may have different roles in
different games which are revealed by the text descriptions.

To empirically validate our approach, we develop a new multi-task framework containing 1320
games with varying dynamics, where the agent is provided with a text manual in English for each
individual game. The manuals contain descriptions of the entities and world dynamics obtained
through crowdsourced human writers. The games are designed such that two environments may be
identical except for the reward function and terminal states. This approach makes it imperative for
the agent to extract the correct information from the text in order to succeed on each game.

Our experiments demonstrate EMMA is able to outperform three types of baselines (language-
agnostic, attention-ablated, and Bayesian attention) with a win rate almost 40% higher on training
tasks. More importantly, the learned grounding helps our agent generalize well to previously un-
seen games without any further training (i.e. a zero-shot test), achieving up to a 79% win rate. Our
model is also robust to noise and linguistic variation in the manuals. For instance, when provided an
additional distractor description, EMMA still achieves a win-rate of 75% on unseen games.

2 RELATED WORK

Grounding for instruction following Grounding natural language to policies has been explored in
the context of instruction following in tasks like navigation (Chen & Mooney, 2011; Hermann et al.,
2017; Fried et al., 2018; Wang et al., 2019; Daniele et al., 2017; Misra et al., 2017; Janner et al.,
2018), games (Golland et al., 2010; Reckman et al., 2010; Andreas & Klein, 2015; Bahdanau et al.,
2018; Küttler et al., 2020) or robotic control (Walter et al., 2013; Hemachandra et al., 2014; Blukis
et al., 2019) (see Luketina et al. (2019) and Tellex et al. (2020) for more detailed surveys). Recent
work has explored several methods for enabling generalization in instruction following, including
environmental variations (Hill et al., 2020a), memory structures (Hill et al., 2020c) and pre-trained
language models (Hill et al., 2020b). In a slightly different setting, Co-Reyes et al. (2018) use
incremental guidance, where the text input is provided online, conditioned on the agent’s progress
in the environment. Andreas et al. (2017) developed an agent that can use sub-goal specifications to
deal with sparse rewards. Oh et al. (2017) use sub-task instructions and hierarchical reinforcement
learning to complete tasks with long action sequences.

In all these works, the text conveys the goal to the agent (e.g. ‘move forward five steps’), thereby
encouraging a direct connection between the instruction and the control policy. This tight coupling
means that any grounding learned by the agent is likely to be tailored to the types of tasks seen in
training, making generalization to a new distribution of dynamics or tasks challenging. In extreme
cases, the agent may even function without acquiring an appropriate grounding between language
and observations (Hu et al., 2019). In our setup, we assume that the text only provides high-level
guidance without directly describing the correct actions for every game state.

Language grounding by reading manuals A different line of work has explored the use of lan-
guage as an auxiliary source of knowledge through text manuals. These manuals provide useful
descriptions of the entities in the world and their dynamics (e.g. how they move or interact with
other entities) that are optional for the agent to make use of and do not directly reveal the actions
it has to take. Branavan et al. (2012) developed an agent to play the game of Civilization more
effectively by reading the game manual. They make use of dependency parses and predicate la-
beling to construct feature-based representations of the text, which are then used to construct the
action-value function used by the agent. Our method does not require such feature construction.
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Narasimhan et al. (2018) and Zhong et al. (2020) used text descriptions of game dynamics to learn
policies that generalize to new environments, without requiring feature engineering. However, these
works assume some form of initial grounding provided to the agent (e.g. a mapping between object
IDs and their descriptions, or the use of entity names in text as state observations). In contrast, our
model figures out even this fundamental mapping between entity IDs in observation space and their
symbols in text entirely through interaction with the environment.

3 FRAMEWORK

Our objective is to demonstrate grounding of environment dynamics and entities in a multi-task
setup in order to drive generalization to unseen environments. Here and throughout, we refer to an
entity as an object represented as a symbol in the observation that the agent may interact with.

Environment We model decision making in each environment as a Partially-Observable Markov
Decision Process (POMDP) with the 8-tuple (S,A,O, P,R,E,Z,M). S and O are the set of all
states and observations respectively where each o ∈ O contains entities from the set of entities E.
At each step t, the agent takes some action at ∈ A. P (st+1|st, at) is the transition distribution over
all possible next states st+1 conditioned on the current state st and action at. R(st, at, st+1) is a
function that provides the agent with a reward rt ∈ R for action at and transition from st to st+1.
Z is a set of text descriptions, with each z ∈ Z providing information about an entity e ∈ E. M
is the map ze 7→ e which identifies the entity that each description describes. M , P , and R are not
available to the agent. Note that there might not be a one-to-one mapping between Z and entities in
the current state observation.

Reinforcement Learning (RL) The objective of the agent is to find a policy π : O → A to maxi-
mize its cumulative reward in an episode. If π is parameterized by θ, standard deep RL approaches
optimize θ to maximize the expected reward of following πθ. In our setup, we want the agent to
learn a policy πθ(a|o, Z) that conditions its behavior on the provided text. However, in contrast to
previous work (Narasimhan et al., 2018; Zhong et al., 2020), M is not available to our agent and
must be learned through interaction.

4 MODEL

To learn a latent mapping between text symbols and entities, we develop a new model, EMMA (En-
tity Mapper with Multi-modal Attention), which employs a soft-attention mechanism over the text
descriptions. At a high level, for each entity description, EMMA first generates key and value vectors
from their respective token embeddings obtained using a pretrained language model. Each entity
attends to the descriptors via a symbol embedding that acts as the attention query. Then, instead of
representing each entity with its embedding, we use the resulting attention-scaled values as a proxy
for the entity. This approach helps our model learn a control policy that focuses on entity roles (e.g.
enemy, goal) while using the entities’ identity (e.g. queen, mage) to selectively read the text. We
describe each component of EMMA below and in Figure 2.

Text encoder Our input consists of a h×w grid observation o ∈ O with a set of entity descriptions
Z. We encode each description z ∈ Z using a BERT-base model whose parameters are fixed
throughout training (Devlin et al., 2018; Wolf et al., 2019). For a description z, let t1, ..., tn be its
token embeddings generated by our encoder. We obtain key and value vectors kz, vz:

kz =

n∑
i=1

αiWkti + bk, α = softmax
(
(uk · tj)nj=1

)
(1)

vz =

n∑
i=1

βiWvti + bv, β = softmax
(
(uv · tj)nj=1

)
(2)

The key and value vectors are simply linear combinations of Wkti + bk and Wvti + bv with weights
α, β respectively, whereWk,Wv are matrices which transform each token to d dimensions and bk, bv
are biases. The weights α, β are obtained by taking the softmax over the dot products (uk · tj)nj=1
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Figure 2: Schematic of our model EMMA, which creates a representation for entities using multi-
modal attention over the observations and text manual. Mechanisms for the key, query, and value
are shaded in blue, green, and red respectively.

and (uv · tj)nj=1 respectively. These weights imbue our model with the ability to focus on relevant
tokens. All of Wk, bk, uk,Wv, bv, uv are learned parameters.

Entity representation generator To get a representation for each non-avatar (non-player) entity
e, we embed its symbol into a query vector qe of dimension d to attend to the descriptions z ∈ Z
with their respective key and value vectors kz, vz . We use scaled dot-product attention (Vaswani
et al., 2017) and denote the resulting representation for the entity e as xe:

xe =

m∑
i=1

γivzi γ = softmax

((qe · kzj√
d

)m
j=1

)
(3)

where m = |Z| is the number of descriptions in the manual. This mechanism allows EMMA to
accomplish two forms of language grounding: the key and query select relevant descriptions for
each object by matching entities to names (e.g. mage), and the value extracts information relevant
to the entities’ behaviors in the world (e.g. enemy, chasing).

For each entity e in the observation, we place its representation xe into a tensor X ∈ Rh×w×d at the
same coordinates as the entity position in the observation o to maintain full spatial information. The
representation for the avatar (player entity) is simply a learned embedding of dimension d.

Action Module To provide temporal information, we concatenate the outputs of the representation
generator from the three most recent states to obtain a tensor X ′ ∈ Rh×w×3d. To get a distribution
over the next actions π(a|o, Z), we run a 2D convolution on X ′ over the h,w dimensions. The
flattened feature maps are passed through a fully-connected feed-forward network terminating in a
softmax over the possible actions.

y = Flatten
(
Conv2D(X ′)

)
π(a|o, Z) = softmax

(
FFN(y)

)
(4)

In contrast to previous approaches that use global observation features to read the manual (Zhong
et al., 2020), we build a text-conditioned representation for each entity (xe). One advantage is that
xe can directly replace the entity embeddings typically used to embed the state observation in most
models. This means EMMA’s action module can easily be swapped with existing models, such as
txt2pi (Zhong et al., 2020) while still being completely end-to-end differentiable. Further details
about EMMA and its design can be found in Appendix D.

5 EXPERIMENTAL SETUP

5.1 TASK

Motivation and Design We require a domain in which grounding the text descriptions Z to dy-
namics and learning the mapping M for all the entities in E is necessary to obtain a good reward.
Moreover, there must be enough environments to induce the mapping M .
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With these requirements in mind, we devise a new multi-task domain Messenger using the Py-VGDL
framework (Schaul, 2013). In Messenger, each entity can take on one of three roles: a dangerous
enemy, a secret message, and a crucial goal. The player’s objective is to bring the message to the
goal while avoiding the enemy. If the player encounters the enemy at any point in the game, or the
goal without first obtaining the message, it loses the game and obtains a reward of −1. Rewards
of 0.5 and 1 are provided for obtaining and delivering the message to the goal respectively. Each
of the enemy, message, and goal roles may be filled by one of twelve different entities, and each is
assigned a stationary, chasing, or fleeing movement type to provide varying dynamics. Each set of
entity-role assignments (henceforth referred to as a game) is initialized on a 10× 10 grid. The agent
can navigate via up, down, left, right, and stay actions and interacts with another entity when both
occupy the same cell. Some game examples are presented in Figure 1.

Figure 3: Entities and
their subdivision into hu-
man, nature and fantasy
sub-worlds. Each K3

subgraph is a combina-
tion of entities that may
appear during training.

The same set of entities with the same movements may be assigned dif-
ferent roles. Thus, two environments may have identical observations
but differ in the reward function R (which is not available to the agent)
and the text manual Z (which is available). Thus, our agent must learn
to extract information from Z to succeed consistently.

Grounding Entities via Interaction In previous work (Zhong et al.,
2020), every combination of entities is possibly observed during train-
ing. Thus, for an entity e, its symbol in the observation (e.g. K) is the
only one that always appears together with its text symbol (e.g. queen).
This co-occurrence provides a strong inherent bias towards the correct
grounding without needing to act in the environment. We denote these
games in which each entity can appear with every other entity as multi-
combination (MC) games.

The MC assumption may not always be realistic in practice — some
entities are very unlikely to appear together (e.g. airplane, thief, sword)
while others may co-occur exclusively with each other (e.g. mage, orb,
sword). We denote games in which the same three entities always appear
together as single-combination (SC) games.

For SC games, any text symbol in the manual (e.g. mage, enemy, the,
etc.) co-occurs the same number of times with all entities present, pro-
viding the agent no information about M . Thus, the agent must ground
these entities entirely via interaction. That is, the agent must align the behavior of the entities with
its grounding of enemy, message, goal. For example, if the agent has the message, interacts with
entity e and obtains a reward of 1, it must infer from the description “The mage is the goal” that e
must be a mage (assuming it has grounded goal correctly).

We divide the entities in Messenger into human, nature and fantasy sub-worlds (Fig. 3) and exclude
from training any games in which entities from different sub-world appear together. In particular,
the nature and fantasy subworlds form SC games and the human subworld forms the MC games.

- the flying machine remains still, and is also the
note of upmost secrecy.
- the airplane is coming in your direction. that
airplane is the pivitol target.
- the winged creature escaping from you is the vi-
tal target.
- the fleeing plan is a critical target.

Table 1: Example descriptions for Messen-
ger. Note the use of synonyms, multiple sen-
tences per description, typos (plane, plan)
and the need to disambiguate similar words
(flying machine, winged creature).

Text Descriptions Unlike previous work on lan-
guage grounding in grid environments (Zhong et al.,
2020; Chevalier-Boisvert et al., 2019), we do not use
templated or rule-generated text. We collected 3,881
unique free-form entity descriptions in English via
Amazon Mechanical Turk (Buhrmester et al., 2016)
by asking workers to paraphrase prompt sentences.

To increase the diversity of responses, the prompts
were themselves produced from 82 crowdsourced
templates When constructing the prompts, we in-
tentionally inject multiple synonyms for each entity.
Workers often further paraphrased these synonyms,
resulting in multiple ways to describe the same en-
tity (e.g. airplane, jet, flying machine, aircraft, airliner etc.). Learning to map these different text
symbols to the same entity is another unique challenge in Messenger.
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Each training manual consists of a set of three descriptions, one for each enemy, message, and goal
entities. In total there are over 1.3× 109 possible manuals each with an average length of 30 words.
The total vocabulary size of the free-form descriptions is 1,016. Besides lower-casing the worker
responses, we do not do any preprocessing. Example descriptions can be found in Table 1. Further
details regarding data collection can be found in appendix A.

Train-Evaluation Split Each entity is trained on two out of three possible roles, with the third
role reserved for validation and testing. This forces models to make compositional entity-role gen-
eralizations for every entity to succeed on the evaluation games. In total we have 44 training, 32
validation, and 32 test games. We train on 2,557 of the text descriptions and reserve 652 each for
validation and testing respectively.

Comparison with Previous Environments The primary focus of our work is on robust ground-
ing of entities with rich language, a variety of entity synonyms, in an interactive setting without
any priors or co-occurrence biases to help induce this grounding. To this end, Messenger features
numerous challenges not found in prior work.

In Narasimhan et al. (2018), an oracle is used to concatenate the text representation to its corre-
sponding entity representation. Access to such an oracle is a strong assumption in the wild and
eliminates the need to ground the entities altogether.

In RTFM (Zhong et al., 2020), the observation is a grid of text which shares a set of symbols with
the manual and both manual and observations are embedded into the same space. A key challenge
unique to Messenger is learning to map between the observation and manual when they are embed-
ded into different spaces. Furthermore, in RTFM all combinations of entities appear during training,
which as we explained earlier, provides an additional signal that may simplify the grounding prob-
lem.

RTFM uses a small number rule-based templates to construct each manual, and each entity is re-
ferred to in a single way (e.g. goblin is always goblin). In contrast, Messenger features thousands of
completely free-form descriptions and each entity may be referenced in multiple ways. For a more
detailed comparison of RTFM and Messenger, including why we do not simply extend RTFM can
be found in Appendix B.1.

5.2 BASELINES

1) Mean-Bag of Sentences (Mean-BOS) This is a variant of EMMA (our model) with the attention
mechanism ablated. We average the value vectors obtained from equation 2 for each descriptor to
obtain v̄ which is used by the action module.

v̄ =
1

|Z|
∑
z∈Z

vz y = Flatten
(
Conv2D(Emb(o))

)
π(a|o, Z) = softmax

(
FFN([y; v̄])

)
(5)

Figure 4: G-ID model

2) Game ID-Conditioned (G-ID) To assess the importance of lan-
guage in our setup, we test a model with no language understanding on
Messenger. We provide an auxillary vector I of integer IDs that reveals
the mapping between entity symbols and roles (Fig. 4). These integers
are embedded and concatenated to form the vector vI which is used by
the action module to generate a distribution over the next actions:

y = Flatten
(
Conv2D(Emb(o))

)
π(a|o, Z) = softmax

(
FFN([y; vI ])

) (6)

3) Bayesian Attention Module (BAM) This baseline uses a hard-attention mechanism with a
naive Bayes classifier trained to learn M . This approach is similar to a word alignment model used
in machine translation approaches such as the IBM Model 1 (Brown et al., 1993). Specifically, for
some set of observed entities E′ ⊆ E in the current environment:

BAM(z, E′) = arg max
e∈E′

P (e|z) P (z|e) =
∏
t∈z

P (t|e) P (t|e) =
C(t, e)∑
t′ C(t′, e)

(7)
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where t ∈ z are tokens in z, t′ is any token in the manual vocabulary and C refers to co-occurence
counts. We use Bayes’ rule to flip the conditional. We let xe = vz from equation 2 for the z that
maps to e. If two descriptions map to the same entity, we take the one with higher P (e|z), and
if an entity receives no assignment we represent it with a learned default embedding Emb(e). We
pretrain BAM on 1.5× 106 episodes.

4) Oracle-Map (O-Map) To get a sense of the upper-bound on EMMA’s performance, we consider
a model that has access to the descriptor to entity mapM , similar to Narasimhan et al. (2018). Thus,
it is identical to EMMA except that the representation for each entity xe is obtained as in equation 8.

xe =
∑
z∈Z

1[M(z) = e]vz (8)

5.3 TRAINING AND EVALUATION

Curriculum Learning the entity groundings directly on Messenger is too difficult for the models
we consider. Our initial experiments revealed that EMMA could not learn an entity grounding
efficiently in this setting (Figure 5 (middle)). Thus, we introduce a two-stage curriculum to train
our models (Bengio et al., 2009). In stage 1 (S1), all entities begin two steps from the agent and are
immovable. The agent either begins with or without the message and must interact with the correct
entity. It is provided a reward of 1 if it does so, and −1 otherwise. Models are first pretrained on
S1, and all model parameters are transferred to stage 2 (S2), where entities are mobile and the agent
always begins without the message. In each training game there is one chasing, one fleeing and one
immovable entity. On both S1 and S2 we train our models in a multi-task fashion by sampling a
random game and appropriate manual at the start of each episode.

All models are end-to-end differentiable and we train them using proximal policy optimization
(PPO) (Schulman et al., 2017) and the Adam optimizer (Kingma & Ba, 2014) with a constant learn-
ing rate of 5× 10−5. Additional details can be found in Appendix C.

Evaluation On S1 test games, the entities start in the same locations as the training games and are
also immovable. Thus, a model can apply the same policy used during training provided it can infer
the (unseen) entity-role assignments, effectively testing the state estimation capabilities of models.

On S2 test games, we introduce new combinations of object movements to test adaptation to new
dynamics. Specifically, compared to training there are two chasing entities during testing instead of
one. We also consider a simpler state estimation test (S2-SE) where entity movements are identical
to those seen during training. Environment details can be found in Appendix B.

6 RESULTS

6.1 MULTI-TASK PERFORMANCE

G-ID Mean-BOS BAM EMMA O-Map
S1-All 89± 3.8 90± 7.2 84± 1.3 88± 2.3 97± 0.8
S1-MC 90± 5.5 91± 6.5 97± 0.9 88± 2.4 97± 0.3
S1-SC 89± 3.7 90± 6.8 51± 1.6 87± 1.6 96± 0.6
S2-All 3.6± 0.6 2.1± 0.5 69± 1.1 95± 0.4 96± 0.8
S2-MC 3.4± 0.7 2.9± 1.4 85± 0.9 96± 0.2 96± 0.4
S2-SC 3.9± 1.5 2.4± 0.6 22± 4.8 95± 0.5 94± 0.4

Table 2: Win rates on training games. All denotes
overall win rates, MC and SC denote multi and single-
combination respectively.

Figures 5 (left and middle) show re-
wards for both train and validation
games as a function of training steps.
The advantage of textual understand-
ing is clear; on both S1 and S2, EMMA
and the O-Map baseline converge to
good policies much faster than the other
baselines. However, EMMA trained directly on S2 with pretraining on S1 (EMMA-(no curriculum),
Fig. 5) indicate that fitting directly onto S2 remains a challenge.

Table 2 details win rates on the training games, with a breakdown over single (SC) and multi com-
bination (MC) games. We observe that the naive Bayes classifier can assign over 99% of training
descriptors correctly on MC games. However, on SC games that require interactive entity ground-
ing, win rates are up to 60% lower. Our model (EMMA) can consistently win on both multi and
single combination games, demonstrating EMMA’s ability to ground entities using interaction and
reward signals alone, without co-occurrences statistics between entity and text symbols to guide its
grounding.
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Figure 5: Average episodic rewards on S1 (left) and S2 (middle) on training (solid line) and valida-
tion (dotted line) games, as a function of training steps (x-axis). Reward is a combination of both
single and multi-combination games. EMMA-(no curriculum) denotes EMMA trained directly on S2.
We evaluate transfer performance of EMMA on games with novel entities and reward mechanics not
found in Messenger (right). Our model trained on Messenger (transfer) learns the new games much
faster than a model trained from scratch (scratch). All results are averaged over three seeds and
shaded area indicates standard deviation.

6.2 GENERALIZATION

G-ID Mean-BOS BAM EMMA O-Map
S1 18± 8.2 6.7± 2.8 66± 1.5 85± 1.4 97± 0.3
S2 15± 1.1 16± 1.4 39± 3.8 79± 1.9 82± 1.7
S2-SE 3.5± 0.1 1.7± 0.7 47± 3.8 90± 1.8 93± 0.4

Table 3: Win rates on test games over three seeds. S1, S2
denotes stage one and stage two respectively. SE denotes
state-estimation. EMMA can generalize to unseen games and
almost matches the O-Map model on S2.

New Entities To assess EMMA’s
ability at picking up novel game me-
chanics which are not specified in the
provided text, we introduce two new
stationary collectibles into Messen-
ger — a trap and gold which provide
additional rewards of −1 and 1 respectively. We finetune EMMA on the 32 validation games with
these new entities. The model learns to collect the gold and avoid the trap while accomplishing
the original objectives in Messenger (Figure 5 (right)). Compared to training from scratch, EMMA
pretrained on the original Messenger games is able to achieve a much higher reward in this modified
setting in the same amount of steps, exceeding the previous maximum reward of 1.5 in 1×106 steps.

BAM EMMA
Append 34± 0.2 75± 1.7
Delete 20± 1.1 36± 1.8
Synonyms 11± 0.5 72± 3.1

Table 4: Win rates on S2 test
games over three seeds for Append,
Delete and Synonym cases.

Test games Results on test games are presented in Table 3.
Both the G-ID and Mean-BOS baselines fail to generalize in
all cases. The G-ID baseline has complete access to distin-
guishing information between games that is necessary to suc-
ceed. However it overfits to the entity-role assignments it has
seen during training, resulting in poor test performance. BAM
demonstrates some ability to generalize to test games, but per-
formance on games with single-combination entities are con-
siderably lower, bringing the average down.

In contrast, EMMA can win 85% and 79% of test games on S1 and S2 respectively, almost match-
ing the performance of the O-Map model. It also performs the best on the S2-SE test games. By
extracting information from the relevant descriptor for each entity, EMMA is able to drastically sim-
plify each task — it simply needs to learn a policy for how to interact with enemy, messenger and
goal archetypes instead of memorizing a policy for each entity. This facilitates knowledge sharing
between games, and generalization to unseen games.

6.3 ROBUSTNESS

Test-Time We first assess the robustness of trained BAM and EMMA models against text manual
variations on S2 test games in table 4. We test each model’s ability to: (1) handle an extra descriptor
for an entity not found in the game (Append), (2) reason about the role of objects without a descriptor
by deleting a sentence from the input at random (Delete) and (3) generalize to unseen synonyms
(Synonyms). For the last case, we use (unseen) templated descriptions filled in with entity synonyms
not seen during training.
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Both models can retain their performance when presented with an extraneous description, and suffer
considerably when a description is deleted. A key difference, however, is in our model’s ability to
generalize to unseen entity synonyms. EMMA wins almost 72% of games compared to 11% by the
BAM model in this setting.

Train Test
S1-Neu 92± 1.0 88± 0.7
S2-Neu 95± 0.4 75± 4.0
S1-Neg 87± 3.8 67± 29
S2-Neg 88± 8.8 58± 28

Table 5: Percent win rates on train
and test games for EMMA on the
negation (Neg) and neutral (Neu)
training cases on stage one (S1)
and stage two (S2).

Train-Time We test the ability to learn entity groundings
with added neutral entities and negated descriptions (Table 5).

Neutral entities. At the start of each episode, we randomly
select one of five neutral entities and insert it into the obser-
vation. The neutral entities are not described by the text, do
not interact with the agent and provide no reward signal. The
neutral entities are distinct from the objects in figure 3.

Negation. On each training episode with probability 0.25 we
select one description, negate it, and change the role. (e.g.
the mage is an enemy becomes the mage is not the message).
This case forces the model to consider the roles of the other two entities to deduce the role of the
entity with the negated description. While EMMA can ground entities and performs well with neutral
entities, it sometimes fails to ground the entities correctly with negated descriptions, affecting its
performance on test games.

6.4 ANALYSIS OF GROUNDING

Figure 6: Attention weights for EMMA
computed from equation 3. Each row
shows the attention weights for one en-
tity over 12 randomly selected descrip-
tors, each of which describe a separate
entity indicated by the column label.

We visualize the attention weights for EMMA in Figure 6.
Our model is always trained on a set of three descriptors,
but to assess the overall latent mapping learned by our
model, we evaluate the attention weights over 12 descrip-
tions, one for every entity. EMMA is able to place most
weight for entity e onto its descriptor ze. In particular,
EMMA learns a grounding for dog, bird, fish, mage, sword
and orb — entities for which co-occurrence statistics pro-
vide no meaningful alignment information, demonstrat-
ing that our model can learn groundings for these entities
via interaction alone. This also hints that the acquired
grounding can enable EMMA to comfortably scale up to
environments containing larger sets of entities.

7 CONCLUSION

In this paper, we develop a new model, EMMA (Entity Mapper with Multi-modal Attention) to lever-
age textual descriptions for generalization of control policies to new environments. Unlike prior
work, we do not assume access to any form of prior knowledge connecting text and state obser-
vations, and learn both symbol grounding and control policy simultaneously. EMMA employs a
multi-modal entity-conditioned attention module and learns a latent grounding of entities and dy-
namics using only environment rewards. Our empirical results on a newly developed multi-task
game framework with crowdsourced text manuals demonstrate that EMMA shows strong generaliza-
tion performance and robust grounding of entities. We hope that these results can lead to further
research in enabling generalization for RL using natural language.

Applications and Future Work Studying entity grounding in interactive settings (with humans
or other agents) will be important for agents that act in the world and automatically learn new con-
cepts. While EMMA generalizes well to unseen games, its performance when additional reasoning is
required (negation, deleted descriptions) is lower and warrants further study. Furthermore, training
EMMA directly on Messenger without a curriculum results in very poor performance. This demon-
strates that learning stable entity groundings on Messenger remains a difficult problem with long
trajectories and sparse rewards (training directly on S2) and when additional reasoning is required
(negation). We leave this to future work.
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A TEXT MANUAL

Example Input
- The bird that is coming near you is the dangerous enemy.
- The secret message is in the thief’s hand as he evades you.
- The immovable object is the mage who holds a goal that is crucial.

Enemy Descriptions
Adjectives: dangerous, deadly, lethal
Role: enemy, opponent, adversary

Message Descriptions
Adjectives: restricted, classified, secret
Role: message, memo, report

Goal Descriptions
Adjectives: crucial, vital, essential
Role: goal, target, aim

Table 6: Example template descriptions. Each underlined word in the example input indicate blanks
that may be swapped in the template. Each template takes a word for the object being described
(bird, thief, mage), its role (enemy, message, goal) and an adjective (dangerous, secret, crucial).

To collect the text manual, we first crowdsource 82 templates (with 2,214 possible descriptions af-
ter filling in the blanks). Each Amazon Mechanical Turk worker is asked to paraphrase a prompt
sentence while preserving words in boldface (which become the blanks in our templates). We have
three blanks per template, one each for the entity, role and an adjective. For each role (enemy, mes-
sage, goal) we have three role words and three adjectives that are synonymous (Table 6). Each entity
is also described in three synonymous ways. Thus, every entity-role assignment can be described
in 27 different ways on the same template. Raw templates are filtered for duplicates, converted to
lowercase, and corrected for typos to prevent confusion on downstream collection tasks.

To collect the free form text for a specific entity-role assignment, we first sample a random template
and fill each blank with one of the three possible synonyms. The filled template becomes the prompt
that is shown to the worker. Aside from lower-casing the free-form descriptions, we do no further
pre-processing.

On all tasks (template and free-form) we provide an example prompt (which is distinct from the one
provided) and examples to provide additional task clarity. For each prompt, we obtain two distinct
paraphrased sentences to promote response diversity. To ensure fluency in all responses, we limited
workers to those located in the United States with at least 10,000 completed HITs and an acceptance
rate of ≥ 99%. On all data collection tasks, we limit a single worker to a maximum of 36 responses
to ensure worker diversity. In total, 297 workers participated in the data collection process.

B ENVIRONMENT DETAILS

Details about Messenger can be found in table 7. On stage 1 (S1), the three entities start randomly
in three out of four possible locations, two cells away from the avatar. The agent always begins in
the center of the grid. It starts without the message with probability 0.8 and begin with the message
otherwise. When the avatar obtains the message, we capture this information by changing the avatar
symbol in the observation. On S1, we limit each episode to four steps and provide a reward of −1 if
the agent does not complete the objective within this limit.
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Objects bird, dog, fish, scientist, queen, thief, airplane, robot, ship, mage,
sword, orb

Roles enemy, message, goal
Movements chasing, fleeing, immovable
Total games P (12, 3) = 1320
Total variants 1320× 3! = 7920
Initial States/variant 24

Table 7: Basic information about our domain Messenger. Each game features 3 out of 12 possible
non-player entities, each assigned a role of enemy, message or goal. Each training game has 3!
variants corresponding to the assignment of chaser, fleeing and immovable movement types to each
entity.

On stage 2 (S2), the avatar and entities are shuffled between four possible starting locations at the
start of each episode. On S2, the mobile entities (fleeing, chasing) move at half the speed of the
agent. On S2, we limit each episode to 64 steps and like in S1, we provide a reward of −1 if the
agent does not complete the objective within this limit.

Since there are only 4 single-combination (SC) training games and 40 multi-combination (MC)
training games, we sample the games non-uniformly at the start of each episode to ensure that there
is enough interaction with SC entities to induce an entity grounding. On both S1 and S2, we sample
an SC game with probability 0.25 and an MC game otherwise. Not all descriptions have movement
type information (e.g. “chasing”). We also collect unknown type descriptions with no movement
type information. During training, each description is independently an unknown type description
with probability 0.15

Negation We procedurally generate the negated text by negating existential words (e.g. “is an en-
emy” becomes “is not an enemy”). We manually negate those descriptions not captured by the rules.
During both training and evaluation, we provide a complete text manual without any negated de-
scription with 0.75 probability, and randomly select a description in the manual to negate otherwise.
When we negate an entity description ze to z′e, we also change the role (“...is an enemy” becomes
“...is not a goal”, for example). Thus the information present in the manual has not changed, but the
agent must look at the remaining two descriptions to deduce the role of e with description z′e.

Transfer Learning We test transfer by introducing two new entities – a trap and a gold which
provide rewards of −1 and 1 respectively. Both collectables are randomly shuffled between two
possible starting locations at the start of each episode and do not move. We train the models in this
new setting in a multi-task fashion on the 32 validation games. After the agent encounters either the
trap or gold, the collected item disappears. Neither item terminates the episode and the agent can
still win or lose the current episode regardless of whether it has picked up the gold or trap.

B.1 COMPARISON WITH RTFM

The main novelty of our work (both the Messenger environment and our model) is in specifically
tackling the issue of entity grounding without any prior knowledge. To do this, Messenger in contrast
to RTFM (1) does not have any signal connecting entities to text symbols, (2) features much richer
language, and (3) requires interaction in the environment to ground entities to text. We describe
these in more detail:

1. RTFM’s observation space consists of a grid of text which shares a set of symbols with
the text manual. Thus, both the text in the manual and the observation are embedded into
the same space (e.g. using the same word vectors), essentially providing models with the
entity grounding upfront. In contrast, our environment has a separate set of symbols for the
entities with no relation to the text in our manual. Thus, the entities and text are embedded
into different spaces, and learning to map between these two spaces is the key challenge in
our environment that has not been explored before.

2. RTFM features only 32 total rule-based templates for the text, and each entity can only
be referred to in a single way (goblin is always goblin). In contrast, we crowdsourced
thousands of completely free-form descriptions in two rounds using Amazon Mechanical
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Turk. After obtaining the seed templates from the first round, we intentionally inject mul-
tiple synonyms for each entity to construct each prompt for the second round. Workers
often further paraphrased these synonyms, resulting in 5, 6 or often more ways to describe
the same entity (e.g. airplane, jet, flying machine, aircraft, airliner etc.). The need to
map these different text symbols to the same entity further complicates the entity ground-
ing problem in our case and more closely mirrors the challenges of grounding entities in
the real world. We believe Messenger provides a much closer approximation to “natural”
language compared to RTFM.

3. RTFM features all possible combinations of entities during training, which as we explained
in Sec. 5.1 provides an additional signal that may simplify the grounding problem.

4. Furthermore, each entity in RTFM only moves in a single way, whereas in Messenger,
each entity may have different dynamics such as fleeing, chasing, and immovable entities
(and this is also described in the text). This also allows us to test our model’s ability to
generalize to unseen dynamics with unseen entity movement combinations, whereas in
RTFM the evaluation on unseen games is essentially state-estimation.

Messenger is quite similar to RTFM and shares several aspects (e.g. grid-world with different entities
and goals). That said, there are numerous reasons why we were not able to adapt the original RTFM
environment to meet our requirements. We enumerate them here:

1. The dynamics in RTFM make entity grounding (the primary focus of our work) difficult.
Messenger requires much simpler reasoning than RTFM, and it is already too difficult to
ground entities directly in Messenger without a curriculum. RTFM sidesteps the issue by
providing this grounding beforehand.

2. Obtaining enough crowdsourced descriptions is hard with RTFM because of the more com-
plicated dynamics. In RTFM, there are monsters, weapons, elements, modifiers, teams,
variable goals and different weaknesses between entity types that need to be specified. Col-
lecting enough descriptions that are entirely human written would be challenging. (RTFM
sidesteps this issue by using templates to generate their text manual). In contrast, there are
only entities, 3 roles, and a fixed goal in Messenger, making the text-collection task much
more tractable.

3. The entities in our Messenger environment are carefully chosen to make entity grounding
harder. In RTFM, each entity is referred to in a single way, and it is not clear how to refer to
them in multiple ways (e.g. there are not too many other ways to say goblin). In contrast,
we specifically chose a set of entities that allowed for multiple ways of description, and
actively encouraged this during data collection.

4. The combination of entities that appear during training in Messenger is carefully designed.
This is so that we can introduce single-combination games and the associated grounding
challenges that come with it.

5. We have different movement types for each entity. These different movements are referred
to in our text manual and significantly increase the richness and variety of descriptions we
collected, and also allow us to test generalization to unseen movement combinations. In
RTFM, the entity movements are the same and fixed for all entities.

6. Each entity’s attribute is referenced in the observation in RTFM, e.g. the grid has entries
such as fire goblin. We could add to the cell an extra symbol for fire, but this further
obfuscates the entity grounding problem we are focusing on, because we would also need
to obtain a grounding for all the attributes such as fire.

C IMPLEMENTATION DETAILS

For all experiments we use d = 256. When multiple entities E′ overlap in the observation, we fill
the overlapping cell with the average of the entity representations 1

|E′|
∑
e∈E′ xe. The convolutional

layer consists of 2 × 2 kernels with stride 1 and 64 feature maps. The FFN in the action module
is fully-connected with 3 layers and width of 128. To give the Mean-BOS and G-ID baselines the
ability to handle the additional conditioning information, we introduce an additional layer of width
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512 at the front of the FFN for those baselines only. Between each layer, we use leaky ReLU as the
activation function. All models were trained for a maximum of 3×106 episodes on S1 and 36 hours
on S2. All experiments were conducted on a single Nvidia RTX2080 GPU.

D MODEL DESIGN

The weights uk and uv were introduced to make sure that the token embeddings for filler words such
as the, and, or do not drown out the words relevant to the task when we take the average in equations
1 and 2. Qualitatively, we observe that uk learns to focus on tokens informative for identifying the
entity (e.g. mage, sword) while uv learns to focus on tokens that help identify the entities’ roles (e.g.
enemy, message).

We also found that using a pretrained language model was critical for success due to the large
number of ways to refer to a single entity (e.g. airplane, jet, flying machine, aircraft, airliner etc.).

D.1 MODEL VARIATIONS

We consider a variation to EMMA. Instead of obtaining token weights α, β in equations 1 and 2
by taking a softmax over the token-embedding and vector products uk · t and uv · t, we consider
independently scaling each token using a sigmoid function. Specifically, we will obtain key and
value vectors kz and vz using:

kz =

n∑
i=1

σ(uk · ti)∑n
i=1 σ(uk · ti)

Wkti + bk (9)

vz =

n∑
i=1

σ(uv · ti)∑n
i=1 σ(uv · ti)

Wvti + bv (10)

where σ is the sigmoid function, and all other details are identical to EMMA. We call this model
EMMA-σ. We notice that both EMMA and EMMA-σ are able to obtain good training and validation
performance, whith EMMA-σ obtaining higher rewards on S2. However, on S1, EMMA is able to
obtain a higher validation reward faster (Fig. 7). Moreover, EMMA can learn robust groundings
even with neutral entities, while EMMA-σ often overfits to a spurious grounding with neutral entities
(Fig. 8). Although the independent scaling in EMMA-σ allows the model to consider more tokens
simultaneously, the softmax selection of EMMA facilitates more focused selection of relevant tokens,
and this may help prevent overfitting.
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Figure 7: Average episodic rewards on S1 (left) and S2 (right) on training (solid line) and validation
(dotted line) games, as a function of training steps (x-axis) for both EMMA and EMMA-σ. Both models
are able to perform well, however, EMMA is able to obtain a good validation reward faster. All results
are averaged over three seeds and shaded area indicates standard deviation.

Figure 8: Average episodic rewards on S1 games with negation (left) and neutral entities (right)
on training (solid line) and validation (dotted line) games, as a function of training steps (x-axis)
for both EMMA and EMMA-σ. Both models struggle on negation, but EMMA is able to perform well
with neutral entities. All results are averaged over three seeds and shaded area indicates standard
deviation.
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