
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KOLMOGOROV–ARNOLD GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) excel in learning from network-like data but often
lack interpretability, making their application challenging in domains requiring
transparent decision-making. We propose the Kolmogorov–Arnold Network for
Graphs (KANG), a novel GNN model leveraging spline-based activation func-
tions on edges to enhance both accuracy and interpretability. Our experiments
on five benchmark datasets demonstrate that KANG outperforms state-of-the-art
GNN models in node classification, link prediction, and graph classification tasks.
In addition to the improved accuracy, KANG’s design inherently provides insights
into the model’s decision-making process, eliminating the need for post-hoc ex-
plainability techniques. This paper discusses the methodology, performance, and
interpretability of KANG, highlighting its potential for applications in domains
where interpretability is crucial.

1 INTRODUCTION

Neural networks and deep learning have clearly revolutionized countless fields, encompassing the
domains of image, text, audio, and medical data. The basic building block of neural network models
is the multilayer perceptron (MLP) (Haykin, 1998). Very recently, a promising alternative to MLPs
was proposed, namely the Kolmogorov–Arnold Network (KAN) (Liu et al., 2024). MLPs are proved
to be universal function approximators (Hornik et al., 1989), whereas KANs are inspired by the
Kolmogorov–Arnold representation theorem (Kolmogorov, 1956; 1957), which states that a smooth
multivariate function can be written as the finite sum of the composition of univariate functions; this
has a similar structure to a two-layer neural network.

The idea of Liu et al. (2024) is to generalize this two-level structure to more levels. This extension
allows the definition of a novel framework that proved increased accuracy and interpretability with
respect to standard MLPs. Indeed, lack of interpretability in neural networks is a major issue, which
limits its usage in domains in which interpretable results are crucial (e.g., medical and financial sce-
narios). To cope with this flaw, research focuses on the development of explainability techniques
that try to unveil what was learned by those models in terms of salient features (Burkart & Huber,
2021; Saleem et al., 2022). In the domain of neural networks, models specialized in learning from
graph-structure data have emerged. Graph neural networks (GNNs) (Scarselli et al., 2008) are able
to leverage the connectivity structure of network-like data, learning representative topology-aware
embeddings. In literature, we find different architectures addressing different aspects and character-
istics of graph data. Graph convolutional networks (GCNs) (Kipf & Welling, 2017) extend the con-
cept of convolution to graph structures, aggregating information from each node’s neighbors using
spectral graph convolutions. GraphSAGE (Hamilton et al., 2017) is another GNN model that gen-
erates node embeddings by sampling and aggregating information from neighbor nodes. It is based
on an inductive learning procedure that allows embedding generation also for previously unseen
nodes. Graph attention networks (GATs) (Velickovic et al., 2018) incorporate attention mechanisms
into GNNs, allowing the model to focus on the most salient parts of a node’s neighborhood. An
additional GNN model is offered by GINs (graph isomorphism networks) (Xu et al., 2019). Such
models are designed to have an effective discriminative ability, theoretically proven to be as pow-
erful as the Weisfeiler–Lehman graph isomorphism test (Weisfeiler & Leman, 1968). GNNs have
also been extended to relational structures, with the introduction of relational graph convolutional
networks (RGCNs). They are designed to handle graphs with multiple types of edges and nodes
by incorporating relations explicitly into the model. Furthermore, variational graph autoencoders
(VGAE) (Kipf & Welling, 2016) aim to encode graph data into a latent space and then reconstruct
the graph from the generated embeddings.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Similarly to classic multilayer perceptron models, GNNs are not immune to the interpretability
curse; to shed light on their predictions, several explainability methodologies have been developed.
Such methods explain GNN predictions in terms of importance subgraphs built of salient nodes,
edges, node features, connected subgraphs, or a combination of those elements. The pioneering
work in eXplainable Artificial Intelligence (XAI) for GNNs is GNNExplainer (Ying et al., 2019),
which determined explanations by generating important subgraphs using a mask on the adjacency
matrix able to maximize the mutual information between the prediction and the distribution of the
possible explanation subgraphs. GraphSVX (Duval & Malliaros, 2021) in another method, which
determines explanation in terms of important nodes and node features relying on the theoretical
background behind Shapley values (Shapley, 1953). It uses a decomposition technique relying on
a surrogate linear model for approximating Shapley values. A methodology targeting edges as a
means for determining explanation subgraphs is EdgeSHAPer (Mastropietro et al., 2022). It em-
ploys Monte Carlo sampling to approximate Shapley values determining salient edges forming rel-
evant subgraphs driving predictions. One additional XAI tool is SubgraphX (Yuan et al., 2021).
Also exploiting Shapley value approximation, it looks for explanations only in terms of connected
subgraphs by using a Monte Carlo Tree Search approach.

In this work, we extend the Kolmogorov–Arnold representation theorem to GNNs, introducing the
Kolmogorov–Arnold Network for Graphs (KANG). Our main contributions are as follows:

• Novel GNN Architecture: We propose KANG, a novel GNN model that employs spline-
based activation functions on graph edges. This design enhances the model’s flexibility and
interpretability while retaining the efficiency of message-passing mechanisms in GNNs.

• Enhanced Interpretability: KANG provides inherent interpretability by design, eliminat-
ing the need for external explainability techniques. This feature is crucial for applications
in domains requiring transparent decision-making processes.

• Performance Improvement: We demonstrate that KANG outperforms state-of-the-art
GNN models in node classification, link prediction, and graph classification tasks on bench-
mark datasets (Cora, PubMed, CiteSeer, MUTAG, and PROTEINS).

Recently, the integration of KANs with graph-structured data has attracted growing interest from
researchers (Kiamari et al., 2024; Bresson et al., 2024; Zhang & Zhang, 2024). Specifically, Kiamari
et al. (2024) proposed two KAN-based architectures: one where node embeddings are aggregated
before applying the learnable spline-based KAN layers, and another where the KAN layers are
applied prior to aggregation. They compared their models to GCNs using a reduced subset of the
Cora dataset features (200 out of 1433). Bresson et al. (2024) introduced two GNN variants utilizing
KAN layers for node representation updates: KAGIN (based on GIN) and KAGCN (based on GCN).
Additionally, Ahmed & Sifat (2024) applied a similar architecture to molecular data for protein-
ligand affinity prediction.

In the following sections, we detail the KANG1 architecture and its components, present exper-
imental results to validate our approach, and discuss the interpretability of KANG. Our findings
suggest that KANG outperforms existing GNNs while providing interpretable outcomes.

2 METHODOLOGY

2.1 KOLMOGOROV–ARNOLD NETWORKS

This section details the construction and operation of our proposed KANG model. We begin by
revisiting the key elements of Kolmogorov-Arnold Networks (KANs), upon which KANG is built.
Kolmogorov–Arnold theorem states that a multivariate continuous function in a bounded domain
can be rewritten using a finite composition of continuous functions on one single variable and the
addition operation. Given x a vector of dimension n, f a function such that f : [0, 1]

n → R, it is
thus possible to write

f(x) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
, (1)

1For anonymization purposes the code of KANG is available here https://anonymous.4open.
science/r/KANGnn-2E0B/

2

https://anonymous.4open.science/r/KANGnn-2E0B/
https://anonymous.4open.science/r/KANGnn-2E0B/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where ϕq,p : [0, 1] → R and Φq : R → R. Liu et al. (2024) extended Equation 1, representing a two-
layer KAN with 2n + 1 terms in the hidden layer, to larger depths and widths, parametrizing each
one-dimensional function as a B-spline curve. This kind of neural network has an activation function
on the edges instead of nodes; the latter simply perform a summation. From the implementation side,
KANs activation functions ϕ(x) are built as a sum of a basis function b(x) and the spline function
such that

ϕ(x) = wb(x) + ws spline(x). (2)
The original KAN model uses

b(x) = silu(x) =
x

(1 + e−x)
, spline(x) =

∑
i

ciBi(x). (3)

At initialization, all activation functions are such that ws = 1 and spline(x) ≈ 0, and wb are
initialized using Xavier initialization.

2.2 KOLMOGOROV–ARNOLD GRAPH NEURAL NETWORK

Building upon the strengths of KANs, we introduce the Kolmogorov–Arnold Network for Graphs
(KANG), a novel GNN architecture (Figure 1) designed for processing graph-structured data.
KANG leverages the flexibility, accuracy, and interpretability of KANs while retaining the efficient
message passing mechanisms of GNNs.

𝐳!

𝐳"

𝐳#

𝐳$

𝐳%𝐳&

𝐳' 𝐳(

Input Graph Output Graph

𝐱!

𝐱"

𝐱#

𝐱$

𝐱%𝐱&

𝐱' 𝐱(

(𝐗,	𝐀) KANG(𝐗,	𝐀)

KANG Convolution KAN Linear

Figure 1: A simplified graphical representation of the KANG model is shown. X and A represent
the feature matrix of the nodes and the adjaciency matrix, respectively. The hidden layers consist
of KANG convolutional layers, where messages are propagated and then aggregated. The output
layer is a KAN linear layer. Each neuron has its own set of learnable splines. Although the figure
provides a simplified view of the splines, the actual learned splines, responsible for transforming
input values, can be visualized, as explained also in the original KAN paper (Appendix A.3). This
allows for a clearer interpretation of the nonlinear transformations that contribute to the model’s
final predictions.

2.2.1 KANG ARCHITECTURE

KANG employs learnable spline-based activation functions on the edges of the graph, allowing for
flexible nonlinear transformations of node features based on their connections. The architecture is
composed of multiple layers:

• KAN-based convolutional layer: Each layer efficiently handles the propagation and ag-
gregation of messages between nodes by applying a KAN-based transformation to the fea-
tures of each node, taking into account information from its neighbors.

• KAN-based linear layer: A final linear layer performs a linear transformation on the
aggregated node features, producing the final node representations.

The Xavier uniform initialization, also known as Glorot initialization, is a widely used method for
initializing the weights of neural networks. This technique aims to maintain the variance of the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

gradients approximately the same across all layers, thereby mitigating the vanishing and exploding
gradient problems. The weights are initialized by sampling from a uniform distribution in the range
[−r, r], with r =

√
6

nin+nout
, where nin and nout denote the number of input and output units in

the weight tensor, respectively (Glorot & Bengio, 2010). As suggested in the KAN paper, also in
KANG the basis function weights are initialized using the Xavier initialization, facilitating effective
training and optimization.

2.2.2 MATHEMATICAL FORMULATION OF KANG

In the next part of this section we will go through the basic mathematical formulation of the con-
stituent steps of KANG.

Message Passing: Each node i in the graph has an initial feature vector xi. For each layer l in
the KANG, the node representations are updated through message passing and aggregation. The
message from a node j to its neighbors at layer l is denoted as m(l)

j .

m
(l)
j =

[
spline

(l)
1 (x

(l−1)
j,1 ) . . . spline

(l)
H (x

(l−1)
j,H )

]
Spline-Based Activation Function: The spline-based activation function φ(l) at layer l used in
KANG is defined as

φ(l)(x) = w
(l)
b b(x) + w(l)

s SPLINE(l)(x)

where b(·) is a basis function (e.g., SiLU), and SPLINE(l)(x) applies spline(l)h (·) to each element h
of vector x.

KANG Convolutional Layer: Each KANG layer l combines these steps, resulting in the following
layer-wise update rule for node i:

x
(l)
i = AGGR

j∈N (i)
φ(l−1)(x

(l−1)
j ),

where AGGR is aggregation function (we consider average, sum, max) which combines the mes-
sages that node i receives from its neighbors2

Output Layer: After passing through multiple KANG convolutional layers, the final node repre-
sentations are obtained using a KAN-based linear layer:

zi = KANLinear(x
(L)
i )

where L is the number of layers and KANLinear is a KAN layer as defined by Liu et al. (2024),
which applies a final spline-based transformation.

2.2.3 OVERALL MODEL

The overall model can be summarized as:

1. Initialize spline weights with Xavier uniform initialization.

2. For each KANG layer l = 1, . . . , L:

(a) Compute messages m(l)
j for each node.

(b) Aggregate messages a(l)i for each neighboring node.

(c) Update node representation x
(l)
i aggregating the spline-activated messages.

3. Apply a KAN-based linear layer to obtain the final node representation zi.

2Whereas the Kolmogorov–Arnold theorem suggests the use of summation as the aggregation function, we
extend the concept by considering more general aggregation approaches, similarly to classical GNNs.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.3 INTERPRETABILITY OF KANG

KANG allows for understanding its predictions without relying on external explainers, which may
need to be trained (e.g., GNNExplainer) or whose computations are expensive (e.g., Shapley value-
based explainers). KANG’s interpretability involves determining the influence of input features and
edge importance by analyzing the information flow across the graph.

2.3.1 FEATURE INFLUENCE

Motivated by previous studies (Baehrens et al., 2010; Simonyan et al., 2014; Hechtlinger, 2016;
Sundararajan et al., 2017), to compute the incluence of features in KANG, we leverage the interac-
tion between the gradients and the spline weights, capturing both feature sensitivity and nonlinear
transformations. Specifically, let x ∈ RN×F represent the input features for N nodes, each with F
features. Given a hidden layer, the first step involves calculating the gradient of the output prediction
with respect to each input feature, which gives us a matrix G ∈ RN×F , where each element gi,f
reflects the sensitivity of the output for node i to its corresponding feature f .

However, gradients alone do not provide a complete picture of how the features are processed by
KANG, and can fail to determine a correct measure of feature importance (Sundararajan et al.,
2017; Shrikumar et al., 2017). In our model, the spline function weights Sspline ∈ RH×F×B , where
H is the number of hidden units at the current hidden layer, F is the input feature size, and B
is the number of spline basis coefficients, modulate the feature transformation along the edges in
a nonlinear fashion. These splines are critical because they allow KANG to adaptively adjust how
features are processed based on the local graph structure, capturing important nonlinear interactions.
We aggregate the spline weights by averaging over the B coefficients, resulting in a reduced matrix
S
(l)
mean ∈ RH×F , which can then be interpreted as a set of adaptive nonlinear weights acting on each

feature across the hidden dimensions.

Next, to calculate the influence of feature f of node i on neuron h at a given hidden layer l, we
multiply the corresponding gradient gi,f by the mean spline weight S(l)

meanh,f . This product reflects
how a change in the input feature is transformed nonlinearly by the model’s internal structure. The
overall feature importance I(l)i,f for node i al layer l is computed by summing these contributions
across all H hidden units, producing a scalar value:

I(l)i,f =

H∑
h=1

gi,f · S(l)
meanh,f

This methodology integrates both the sensitivity of the features and the local transformations mod-
eled by the splines, capturing the complex interactions between features that are fundamental to
KANG’s nonlinear structure. By doing so, we account not only for the direction of the change in
prediction but also for the adaptive scaling that each feature undergoes along the graph edges.

2.3.2 EDGE IMPORTANCE

In KANG, edge importance captures how information flows between nodes, influencing predictions.
By focusing on edge importance, we capture the interaction between nodes as modulated by the
internal spline weights, which are central to the nonlinear transformations occurring along the edges.
For a given node i, the importance of an edge (i, j), where j ∈ N (i) is a direct neighbor of i, is
determined by analyzing how the features of node j are transformed and passed along the edge to
node i.

This approach is particularly insightful because the spline weights Sspline play a crucial role in mod-
ulating the feature propagation along edges, allowing for adaptive nonlinear transformations of fea-
tures as they flow through the graph. This makes the spline weights crucial for interpreting edge
importance, as they capture complex feature interactions.

The spline weights in KANG serve a dual purpose: they not only determine how features are trans-
formed between nodes but also govern the overall influence of edges on the model’s prediction.
When computing the influence of features on a node’s prediction, the spline-modulated transfor-
mations provide insight into how individual features contribute to the target node. However, this

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

feature influence is inherently tied to the edge through which the features propagate. By extending
this concept, we can derive the importance of an edge by aggregating the spline-modulated fea-
ture transformations and combining them with the feature activations. Essentially, edge importance
emerges as a natural extension of feature influence, encapsulating how the transformation of each
feature contributes to the overall prediction via the edge connecting two nodes.

Importances can be computed on a layer-by-layer basis. To determine the importance of an edge
(i, j) between a target node i and a neighboring node j ∈ N (i), for the convolutional layer l, we
first reduce the corresponding spline weights by averaging over the B spline coefficients, yielding
the reduced matrix S

(l)
mean. This matrix encapsulates the non-linear transformation applied at layer l

as features propagate along the edges. We then incorporate the feature activations a
(l)
j ∈ RH and

a
(l)
i ∈ RH , where H is the hidden dimension of layer l, representing the transformed feature vectors

for the neighbor j and the target node i respectively, after layer l of KANG. These activations reflect
the local embeddings of the features post-convolution and are combined with the spline weights to
assess the importance of edge (i, j).

The edge importance, Ξ(l)
i,j , for the edge (i, j) at layer l is computed by multiplying the spline-

modulated feature weights S(l)
mean with the weights W(l) of the convolutional layer l, for which we

are computing the importance. This product is then multiplied by the signals a(l)j and a
(l)
i , summed

over the hidden units H:

Ξ
(l)
i,j = mean(W(l) · S(l)

mean)

H∑
h=1

(
a
(l)
h,i · a

(l)
h,j

)
This formulation directly links nonlinear feature propagation along an edge to node i’s prediction.
Since the spline weights remain static on the graph, they offer a consistent, interpretable frame-
work for understanding how features are propagated through the edges, which are the fundamental
pathways of information in a graph.

This approach to edge importance is highly beneficial because it breaks down the prediction process
into localized interactions, helping us understand which edges are most responsible for driving the
prediction. Unlike standard GNNs, where edges may simply aggregate features, KANG’s spline-
based transformations allow us to precisely identify how each edge modifies the feature representa-
tions in a nonlinear manner.

This section provided a comprehensive overview of the KANG architecture, its core components,
and its interpretability capabilities. The next sections will delve into the experimental results and
demonstrate the effectiveness of this new approach to GNNs.

3 EXPERIMENTS

3.1 DATASETS

We evaluated KANG on node classification, graph classification, and link prediction tasks using
the benchmark datasets summarized in Appendix A.1. In the following section, we will discuss the
experimental setup and the results obtained by KANG in comparison to state-of-the-art methodolo-
gies.

3.2 KANG PERFORMANCES

We compared the performances of our proposed model against established GNN architectures,
namely GCN, GAT, using the GATv2 PyTorch Geometric implementation (Fey & Lenssen, 2019),
GraphSAGE, and GIN. KANG was able to outperform all the mentioned GNN models in all tasks
with all datasets, with the single exception of the link prediction with PubMed, in which GCN
performed better.

Each method is unique, and the hyperparameters chosen for training are as crucial as the imple-
mentation itself. To ensure a fair comparison, each model has been trained following the guidelines

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results in terms of average accuracy and standard deviation (%) on 10 runs (node and
graph classification) and average AUC-ROC (link prediction) on the test set obtained by KANG
and the compared architectures. Our framework delivers higher accuracy and ROC, being the top-
performing architecture.

Dataset GCN GAT GraphSAGE GIN KANG (Ours)

Node Classification
Cora 77.5±1.0 78.7±1.1 73.6±2.5 75.5±1.2 79.5±0.8
PubMed 77.9±1.0 78.8±1.3 75.1±1.2 77.7±1.5 80.7±0.9
CiteSeer 67.6±1.5 68.7±0.5 63.1±2.3 63.1±1.9 69.1±1.5
Link Prediction
Cora 87.0±8.9 89.8±0.6 82.0±6.8 75.0±1.1 90.4±0.5
PubMed 94.2±0.4 88.9±1.1 84.8±3.7 89.5±0.5 85.8±0.4
CiteSeer 81.2±3.3 82.0±4.4 77.9±1.4 83.4±1.8 84.7±0.6
Graph Classification
MUTAG 67.5±4.0 64.0±5.4 74.0±8.3 74.5±6.5 93.0±4.6
PROTEINS 71.3±2.4 71.0±2.3 71.4±2.5 72.4±1.2 73.7±3.0

and hyperparameters provided by their authors. For training KANG, we conducted hyperparameter
tuning to determine the best set of hyperparameter for each dataset and each task.

Hyperparameter tuning was conducted using a grid search over a broad range of potential values:
learning rate [0.01, 0.001, 0.005], weight decay [1e-4, 1e-5], hidden channels [8, 16, 32, 64], dropout
rate [0, 0.3, 0.6, 0.7], number of layers [1, 2, 3, 4], spline grid size [2, 3, 4, 8, 10, 20, 30], splines
degree [1, 2, 4, 8, 10, 15], aggregation function [add, mean, max], and L2-regularization [0.0001,
0.00001]. All GNN models were trained for a maximum of 600 epochs for the Node Classification
task, 700 epochs for Link Prediction, and 200 epochs for Graph Classification, with early stopping
applied based on validation loss (node and graph classification) and validation AUC-ROC (link
prediction). The optimal hyperparameters that we found for KANG are reported in Appendix A.2.

We report in Table 1 summarized results obtained by averaging over 10 runs the test accuray (or
AUC-ROC for link prediction) of the models that achieved the highest validation accuracy during
training over each run. For each run, to achieve unbiased outcomes, we randomly split the datasets
utilizing 80% as training set, 10% as validation set, and the remaning 10% as test set.

Performance metrics alone do not fully capture a model’s capabilities; it is equally important to
evaluate its scalability to larger datasets. To assess how the models perform as graph sizes increase,
we compared them on synthetically generated datasets under consistent conditions, ensuring all
architectures had the same number of layers and hidden units, leading to comparable numbers of
trainable parameters. The graphs varied in size (1000, 5000, 10,000, and 20,000 nodes) and edge
density (with probabilities of 0.05, 0.25, and 0.5 for edge creation). Although KANG provides
inherent interpretability (Section 2.3), this advantage comes with a slight increase in computational
cost due to the additional parameters and weights introduced by the splines. As a result, the models
were evaluated in two scenarios: 1) where only the training time is considered and 2) where all
models were trained alongside an explainer, specifically GNNExplainer. KANG does not need an
additional explainer, as it provides direct interpretability. The results of the study can be found in
Appendix A.4, where we show that KANG can scale efficiently to large graphs.

3.3 INTERPRETABILITY

The added value of KANG lies not only in its higher accuracy but also in its inherent interpretability.
As pointed out in Section 2.3, the interpretability of KANG is two-fold: it provides 1) a means for
node feature influence and 2) a measure for edge importance, accounting for the information flow
throughout the graph. As a representative example, we determined the most influencing features for
a node in the Cora dataset, computed as shows in Section 2.3.1. This information can be used to
understand the most important features for a particular node’s prediction, crtitical in scenarios not
suitable for black-box predictions (medicine, life sciences, and finance among others). We evaluated

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the most influent features obtained in terms of Fidelity (FID+) and Infidelity (FID−) of prediction
accuracy (Yuan et al., 2022), adapted for node classification.

The Fidelity metric is defined as

FID+ =
1

N

N∑
i=1

(
1 (ŷi = yi)− 1

(
ŷ1−mi
i = yi

))
where ŷi is the predicted label for node i using the original graph with all the features and yi is its
correct class, ŷ1−mi

i is the predicted label for node i using the graph with the mi most important
features removed, 1(·, ·) is an indicator function and N is the number of nodes for which the metric
is computed. Analogously, the Infidelity metric is defined as

FID− =
1

N

N∑
i=1

(1 (ŷi = yi)− 1 (ŷmi
i = yi))

where ŷmi
i is predicted lable for node i when only the mi most important features retained. A good

method should achieve high Fidelity and low Infidelity values. Table 2 shows the results considering
different cutoffs for the top k features.

Table 2: Feature influence analysis on the Cora dataset. The table presents the FID+ and FID−

scores for various top-k feature cutoffs, computed on the correctly predicted samples from the test
set. FID+ and FID− values are stable across different cutoffs.

Top k FID+ FID−

10% 0.31 0.84
20% 0.31 0.85
30% 0.31 0.85

We notice how the removal of features for a single node leads to marginal changes in the prediction,
identied by low FID+ and high FID− scores, indicating that the behavior of GNNs is not solely
dependent on node featues, but the overall structure and topology of the graph plays a crucial role.
Indeed, the prediction of a node havily relies on the messages passed by its neighbors and not only
on its own features.

After analyzing feature influence, it is also possible to interpret KANG to understand the importance
of the edges in the graph. As shown in Section 2.3.2, is it possible to determine the importance of
the information flowing on the egdes of the graph, in order to analyze the messages passed to a
target node and determine the most influent neighbors impacting on the its prediction. We show a
representative example on the Cora dataset in Figure 2, comparing the results against GNNExplainer.

In KANG, the values (which have been normalized for comparison) genuinely represent the net-
work message, meaning they are the actual values used in making the prediction. In contrast, GN-
NExplainer provides importance scores that are calculated post hoc on a subgraph optimized to
maximize mutual information. We notice that both stategies prioritized similar edges. In particual,
node with ID 2176 appears to be carrying the most important message for the target node 4 in both
methodologies. Analogously, node 1761 is the least important neighbor (also beloning to a different
class). This highlights that KANG interpretability is consistent with the explainability provided
by GNNExplainer, validating the usage of the network messages as a means for edge importance.
The added value brought by KANG is that it does not need an addtional explainer to be trained or
used, thereby saving computation time and avoiding possible approximations introduced by such
methodologies (Rudin, 2019).

Indeed, spline-based activation functions, which are central to KAN and consequently KANG, are
inherently more interpretable compared to traditional neural network activation functions. Tradi-
tional GNNs use fixed, nonlinear activation functions like ReLU or Sigmoid, which can make it chal-
lenging to understand the decision boundaries or the transformations applied to the input features.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1.
00

0.98

0.95

0.8
9

0.00

2176

1761

4

1256

1016
2175

(a) Direct interpretation of KANG.

0.10

0.28

0.
00

0.05

1.00

4

1016

1256

1761

2175

2176

(b) Output of GNNExplainer applied to KANG.

Figure 2: Interpretability vs. explainability. Comparison of the direct interpretation of KANG (Fig-
ure 2a) and GNNExplainer applied to KANG (Figure 2b), trained on the Cora dataset for node
classificaiton task. The explaination focuses on the node with ID 4. In Figure 2a, the output of the
direct interpretation of the gradients and the weights of the splines of the neurons in the last convo-
lutional layer (just before the KAN-based linear layer used for classification) is plotted. In Figure
2b, the edge mask returned by GNNExplainer is shown. The scores are normalized for visualization
and comparison purposes. Additional examples can be found in Appendix A.5.

In contrast, spline functions are defined as piecewise polynomials which can be easily visualized
and understood. The smooth and continuous nature of splines allows for a clear representation of
how inputs are mapped to outputs. By examining the spline functions, one can see exactly how each
input feature contributes to the final prediction and consequently how messages flowing throughout
the graph influence the final output. This transparency makes it possible to trace the influence of
individual features and edges, and understand the model’s decision-making process.

4 CONCLUSIONS

In this paper, we propose KANG, a novel GNN architecture inspired by the Kolmogorov–Arnold
theorem and based on the recently introduced KAN model. The added value of KANG is two-fold.
First, it is more accurate than established state-of-the-art GNNs in node and graph classification
and link prediction tasks. Second, thanks to the usage of splines and simple aggregation functions,
KANG models are more interpretable. While KANG provides significant advancements in terms
of interpretability, this is only a preliminary step. Future work should focus on enhancing the inter-
pretability capabilities and exploring their application to even more complex graph structures, and
compare the outcomes with state-of-art explainability strategies. Moreover, we showed that KANG
can scale to large graphs.

We want highlight that KANG is not fully interpretable in every scenario, particularly in deeper
networks where some information may be lost. However, KANG provides significantly greater
transparency than other models by offering direct interpretability from the model itself, without
relying on external explainability methods.

Looking forward, several research directions could further enhance KANG’s performance and ap-
plicability. First, optimizing computational efficiency is essential, particularly by reducing memory
usage and improving training and inference speed through techniques such as more efficient spline
implementations, approximation methods, and parallelization. Second, incorporating edge features
is a priority for extending KANG’s capabilities. Developing methods to integrate edge information
into the spline-based message passing and aggregation process could significantly improve predic-
tive power.

Furthermore, applying KANG to real-world problems—such as biomedical research, where inter-
pretability is crucial, or financial analytics, where it can aid in regulatory compliance—could demon-
strate its practical utility and further validate the results with the aid of domain experts. Finally,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

hybrid models combining KANG with advanced GNN architectures, such as attention mechanisms
or variational techniques, may further boost performance while preserving interpretability.

By addressing these limitations and pursuing these research directions, KANG can be further ex-
tended into a more robust and versatile tool for graph machine learning applications.

REFERENCES

Tashin Ahmed and Md Habibur Rahman Sifat. GraphKAN: Graph kolmogorov arnold network for
small molecule-protein interaction predictions. In ICML’24 Workshop ML for Life and Material
Science: From Theory to Industry Applications, 2024.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Müller. How to explain individual classification decisions. The Journal of Machine Learn-
ing Research, 11:1803–1831, 2010.

Roman Bresson, Giannis Nikolentzos, George Panagopoulos, Michail Chatzianastasis, Jun Pang,
and Michalis Vazirgiannis. KAGNNs: Kolmogorov–Arnold networks meet graph learning. arXiv
preprint arXiv:2406.18380, 2024.

Nadia Burkart and Marco F Huber. A survey on the explainability of supervised machine learning.
Journal of Artificial Intelligence Research, 70:245–317, 2021.

Alexandre Duval and Fragkiskos D Malliaros. GraphSVX: Shapley value explanations for graph
neural networks. In Machine Learning and Knowledge Discovery in Databases. Research Track:
European Conference, ECML PKDD 2021, Proceedings, Part II 21, pp. 302–318. Springer, 2021.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems, 30, 2017.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.

Yotam Hechtlinger. Interpretation of prediction models using the input gradient. CoRR,
abs/1611.07634, 2016. URL http://arxiv.org/abs/1611.07634.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Mehrdad Kiamari, Mohammad Kiamari, and Bhaskar Krishnamachari. GKAN: Graph kolmogorov-
arnold networks. arXiv preprint arXiv:2406.06470, 2024.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016.
URL http://arxiv.org/abs/1611.07308.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Conference
Track Proceedings, 2017.

A.N. Kolmogorov. On the representation of functions of several variables as a superposition of
functions of a smaller number of variables. Dokl. Akad. Nauk, 108(2), 1956.

Andrey Nikolaevich Kolmogorov. On the representation of continuous functions of several variables
in the form of superpositions of continuous functions of one variable and addition. In Reports of
the Academy of Sciences, volume 114, pp. 953–956. Russian Academy of Sciences, 1957.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. KAN: Kolmogorov–arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

10

http://arxiv.org/abs/1611.07634
http://arxiv.org/abs/1611.07308


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andrea Mastropietro, Giuseppe Pasculli, Christian Feldmann, Raquel Rodrı́guez-Pérez, and Jürgen
Bajorath. EdgeSHAPer: bond-centric Shapley value-based explanation method for graph neural
networks. iScience, 25(10):105043, 2022.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Rabia Saleem, Bo Yuan, Fatih Kurugollu, Ashiq Anjum, and Lu Liu. Explaining deep neural net-
works: A survey on the global interpretation methods. Neurocomputing, 513:165–180, 2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker (eds.),
Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, 1953.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp. 3145–
3153. PMlR, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
visualising image classification models and saliency maps. In Yoshua Bengio and Yann LeCun
(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Workshop Track
Proceedings, 2014.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Conference Track Proceedings, 2018.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, 2019.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
generating explanations for graph neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE transactions on pattern analysis and machine intelligence, 45(5):
5782–5799, 2022.

Fan Zhang and Xin Zhang. GraphKAN: Enhancing feature extraction with graph kolmogorov arnold
networks. arXiv preprint arXiv:2406.13597, 2024.

A APPENDIX

A.1 DATASET DETAILS

Table 3 provides a summary of the benchmark datasets used in our experiments. The datasets were
split into training, validation, and test sets with proportions of 80%, 10%, and 10%, respectively.
The node classification and link prediction datasets include Cora, PubMed, and CiteSeer, while the
graph classification datasets consist of MUTAG and PROTEINS.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Table 3: Summary of benchmark datasets. Datasets were split in train, validation, and test sets with
proportions of 80%, 10%, and 10%, respectively.

Node Classification and Link Prediction

Dataset #nodes #edges #features #classes

Cora 2,708 10,556 1,433 7
PubMed 3,327 9,104 3,703 6
CiteSeer 19,717 88,648 500 3

Graph Classification

#graphs #nodes #edges #features #classes

MUTAG 188 ∼17.9 ∼39.6 7 2
PROTEINS 1,113 ∼39.1 ∼145.6 3 2

A.2 HYPERPARAMETERS

Table 4 presents the hyperparameters used for the various GNN models across the three main tasks:
Node Classification, Link Prediction, and Graph Classification. The table includes the learning rate,
weight decay, hidden units for each model, and the spline aggregation function used for KANG,
along with dataset-specific variations for KANG.

Table 4: Summary of hyperparameters used to train the compared GNNs across the tasks of Node
Classification (NC), Link Prediction (LP), and Graph Classification (GC).

Task Dataset GNN Hidden Units Learning Rate Weight Decay Aggr. Fun.

NC - GCN 32 0.01 5e-4 -
- GAT 64 0.005 6e-4 -
- SAGE 512 0.01 0 -
- GIN 32 0.01 0 -

Cora KANG 32 0.001 1e-4 Mean
PubMed KANG 24 0.001 1e-4 Max
CiteSeer KANG 64 0.001 1e-4 Mean

LP - GCN 32 0.01 5e-4 -
- GAT 64 0.005 6e-4 -
- SAGE 128 0.01 1e-4 -
- GIN 32 0.01 0 -

Cora KANG 64 0.001 6e-4 Mean
PubMed KANG 32 0.001 1e-4 Mean
CiteSeer KANG 64 0.001 1e-4 Add

GC - GCN 32 0.01 5e-4 -
- GAT 64 0.005 6e-4 -
- SAGE 512 0.02 0 -
- GIN 32 0.01 0 -
- KANG 32 0.01 1e-4 Add

A.3 SPLINES VISUALIZATION

In the KANG architecture is it possible to visualize the splines learned during training. The spline
weights from the last layer are extracted and plotted (Figure 3) based on the grid coordinates defined
within the model. This allowed us to observe how the non-linear transformations learned by the
model act on the input data before producing the final prediction. Visualizing the splines in the
last layer provides useful insight into how the features are transformed before being mapped to the
output space, offering clear understanding of how the model arrives at its predictions.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

−1 −0.5 0 0.5 1

0

0.05

0.1

0.15

0.2

0.25

0.3

Parameter t

S
pl

in
e 

V
al

ue

(a) Class 0

−1 −0.5 0 0.5 1

0

0.5

1

1.5

Parameter t

S
pl

in
e 

V
al

ue

(b) Class 1

−1 −0.5 0 0.5 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Parameter t

S
pl

in
e 

V
al

ue

(c) Class 2

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Parameter t

S
pl

in
e 

V
al

ue
(d) Class 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Parameter t

S
pl

in
e 

V
al

ue

(e) Class 4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

Parameter t

S
pl

in
e 

V
al

ue

(f) Class 5

−1 −0.5 0 0.5 1

0

0.5

1

1.5

Parameter t

S
pl

in
e 

V
al

ue

(g) Class 6

Figure 3: Visualization of the splines for the seven output neurons in the KANG model trained on
the Cora dataset. Each output neuron has an associated matrix of spline weights with dimensions
D × G, where D is the output dimension of the previous layer and G corresponds to the grid co-
ordinates. The rows of this matrix, which correspond to the contributions of each neuron in the
previous layer, are summed to produce a vector of size G. This vector represents the aggregated
spline weights that modulate the transformations applied by the neurons of the previous layer, pro-
viding insight into how features are combined in the final output, and can also be used to plot the
corresponding splines.

A.4 SCALABILITY STUDY

All the times reported represent the averages obtained from five training runs. Figures 4, 5, and
6 show how the models scale with increasing graph densities, with edge existence probabilities of
0.05, 0.25, and 0.5, respectively. In Figures 5b and 6b, excluding KANG, the times also account for
the overhead of training GNNExplainer for the same number of epochs. The average epoch time for

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

GNNExplainer is then added to the average epoch time for each model. All scalability experiments
were conducted on a g5.xlarge AWS instance.

We notice how KANG scales very well with increasing graph sizes and densities, with training
times remaining relatively constant. In contrast, GAT’s training times increase significantly with
graph size and density, making it impractical to train on graphs with 20,000 nodes and a density of
0.5.

0 5k 10k 15k 20k

0

2

4

6

8

10
GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(a) Training Times

0 5k 10k 15k 20k

0

2

4

6

8

10

12

14

16

18
GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(b) Training and Explainability Times

Figure 4: The average training time per epoch is presented as a function of graph size, with the edge
density fixed at 0.05. These times were obtained by averaging five training runs for each model and
graph size.

Figure 7 illustrate how the models’ inference times vary with different graph sizes and densities and
Figure 8 shows the VRAM utulized by each model.

A.5 MORE INTERPRETABILITY EXAMPLES

In this section, we compare the interpretability provided by KANG to the post-hoc explainability of-
fered by GNNExplainer. Figure 9 illustrates the edge importance values generated by both methods

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 5k 10k 15k 20k

0

10

20

30

40

50

GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(a) Training Times

0 5k 10k 15k 20k

0

20

40

60

80

GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(b) Training and Explainability Times

Figure 5: Average epoch times for graphs with density 0.25.

for two target nodes (IDs 1761 and 1901) from the Cora dataset. The objective is to demonstrate how
KANG’s inherent interpretability, which directly computes edge importance using spline-based ac-
tivations, aligns with the explainability produced by GNNExplainer. This comparison validates that
the messages passed through the graph in KANG accurately represent the model’s decision-making
process without requiring additional post-hoc explainability methods.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 5k 10k 15k 20k

0

5

10

15

20

25

30

35

GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(a) Training Times

0 5k 10k 15k 20k

0

10

20

30

40

50

60

70

80

90

GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(b) Training and Explainability Times

Figure 6: Average epoch times for graphs with density 0.5. In Figure 6b are reported also the times
for training GNNExplainer. For this graph density, GAT was unable to complete training on a graph
with 20,000 nodes using an NVIDIA A10 with 24GB of VRAM.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 5k 10k 15k 20k

0

0.005

0.01

0.015

0.02

0.025
GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(a) Graph Density 0.05

0 5k 10k 15k 20k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(b) Graph Density 0.25

0 5k 10k 15k 20k

0

0.05

0.1

0.15

GCN

GATv2

GraphSAGE

GIN

KANG

Number of Nodes

T
im

e
 (

s
e
c
o
n
d
s
)

(c) Graph Density 0.5

Figure 7: Average inference times are shown in Figures 7a, 7b, and 7c, corresponding to graph
densities of 0.05, 0.25, and 0.5, respectively. For the density of 0.5, we could not test the inference
time of GAT as we were unable to complete its training on the available hardware.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 5k 10k 15k 20k

0

500

1000

1500

2000

2500

3000

3500

4000

GCN

GATv2

GraphSAGE

GIN

KANG

Max Allocated GPU Memory during Training

Number of Nodes

M
a
x
 M

e
m

o
r
y
 (

M
B

)

(a) Graph

0 5k 10k 15k 20k

0

2k

4k

6k

8k

10k

12k

14k

16k
GCN

GATv2

GraphSAGE

GIN

KANG

Max Allocated GPU Memory during Training

Number of Nodes

M
a
x
 M

e
m

o
r
y
 (

M
B

)

(b) Graph Density 0.25

0 5k 10k 15k 20k

0

5k

10k

15k

GCN

GATv2

GraphSAGE

GIN

KANG

Max Allocated GPU Memory during Training

Number of Nodes

M
a
x
 M

e
m

o
r
y
 (

M
B

)

(c) Graph Density 0.5

Figure 8: Maximum GPU memory utilization for each graph size and density is shown in Figures
8a, 8b, and 8c, corresponding to graph densities of 0.05, 0.25, and 0.5, respectively.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1.00

0.88

0.78

0.6
3

0.
05

0.04

0.00

1761

4

1256
1358

1205

1721

2175

223

(a) Direct interpretation of KANG.

0.
01

0.59

0.80

0.00

1.0
0

0.98
0.02

1761

4

223

1205

1256
1358

1721

2175

(b) Output of GNNExplainer applied to KANG.

1.00

0.93

0.88

0.86

0.80

0.00
1954

1901

645

119

2284

1549

2286

(c) Direct interpretation of KANG.

0.00

0.57

0.36

0.50

0.
81

1.
00

1901

1267

119

1549

1954

2284

2286

(d) Output of GNNExplainer applied to KANG.

Figure 9: Interpretability vs. explainability. Figures 9a and 9c show the direct edge importance
interpretation of KANG, illustrating the contribution of each neighboring node to the target node
(1761 and 1901, respectively). The values represent the normalized edge importances derived from
KANG’s spline-based activations. Figures 9b and 9d depict the results from GNNExplainer applied
to KANG, where edge importances are computed post-hoc. In both cases, KANG’s direct interpre-
tation aligns closely with GNNExplainer, validating the model’s inherent interpretability.

19


	Introduction
	Methodology
	Kolmogorov–Arnold Networks
	Kolmogorov–Arnold Graph Neural Network
	KANG Architecture
	Mathematical Formulation of KANG
	Overall Model

	Interpretability of KANG
	Feature Influence
	Edge Importance


	Experiments
	Datasets
	KANG Performances
	Interpretability

	Conclusions
	Appendix
	Dataset Details
	Hyperparameters
	Splines Visualization
	Scalability Study
	More Interpretability Examples


