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ABSTRACT

Graph neural networks (GNN5s) excel in learning from network-like data but often
lack interpretability, making their application challenging in domains requiring
transparent decision-making. We propose the Kolmogorov—Arnold Network for
Graphs (KANG), a novel GNN model leveraging spline-based activation func-
tions on edges to enhance both accuracy and interpretability. Our experiments
on five benchmark datasets demonstrate that KANG outperforms state-of-the-art
GNN models in node classification, link prediction, and graph classification tasks.
In addition to the improved accuracy, KANG’s design inherently provides insights
into the model’s decision-making process, eliminating the need for post-hoc ex-
plainability techniques. This paper discusses the methodology, performance, and
interpretability of KANG, highlighting its potential for applications in domains
where interpretability is crucial.

1 INTRODUCTION

Neural networks and deep learning have clearly revolutionized countless fields, encompassing the
domains of image, text, audio, and medical data. The basic building block of neural network models
is the multilayer perceptron (MLP) (Haykin, 1998). Very recently, a promising alternative to MLPs
was proposed, namely the Kolmogorov—Arnold Network (KAN) (Liu et al., 2024). MLPs are proved
to be universal function approximators (Hornik et al., 1989), whereas KANs are inspired by the
Kolmogorov—Arnold representation theorem (Kolmogorov, 1956; 1957), which states that a smooth
multivariate function can be written as the finite sum of the composition of univariate functions; this
has a similar structure to a two-layer neural network.

The idea of Liu et al. (2024) is to generalize this two-level structure to more levels. This extension
allows the definition of a novel framework that proved increased accuracy and interpretability with
respect to standard MLPs. Indeed, lack of interpretability in neural networks is a major issue, which
limits its usage in domains in which interpretable results are crucial (e.g., medical and financial sce-
narios). To cope with this flaw, research focuses on the development of explainability techniques
that try to unveil what was learned by those models in terms of salient features (Burkart & Huber,
2021; Saleem et al., 2022). In the domain of neural networks, models specialized in learning from
graph-structure data have emerged. Graph neural networks (GNN5s) (Scarselli et al., 2008) are able
to leverage the connectivity structure of network-like data, learning representative topology-aware
embeddings. In literature, we find different architectures addressing different aspects and character-
istics of graph data. Graph convolutional networks (GCNs) (Kipf & Welling, 2017) extend the con-
cept of convolution to graph structures, aggregating information from each node’s neighbors using
spectral graph convolutions. GraphSAGE (Hamilton et al., 2017) is another GNN model that gen-
erates node embeddings by sampling and aggregating information from neighbor nodes. It is based
on an inductive learning procedure that allows embedding generation also for previously unseen
nodes. Graph attention networks (GATs) (Velickovic et al., 2018) incorporate attention mechanisms
into GNNs, allowing the model to focus on the most salient parts of a node’s neighborhood. An
additional GNN model is offered by GINs (graph isomorphism networks) (Xu et al., 2019). Such
models are designed to have an effective discriminative ability, theoretically proven to be as pow-
erful as the Weisfeiler—Lehman graph isomorphism test (Weisfeiler & Leman, 1968). GNNs have
also been extended to relational structures, with the introduction of relational graph convolutional
networks (RGCNs). They are designed to handle graphs with multiple types of edges and nodes
by incorporating relations explicitly into the model. Furthermore, variational graph autoencoders
(VGAE) (Kipf & Welling, 2016) aim to encode graph data into a latent space and then reconstruct
the graph from the generated embeddings.
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Similarly to classic multilayer perceptron models, GNNs are not immune to the interpretability
curse; to shed light on their predictions, several explainability methodologies have been developed.
Such methods explain GNN predictions in terms of importance subgraphs built of salient nodes,
edges, node features, connected subgraphs, or a combination of those elements. The pioneering
work in eXplainable Artificial Intelligence (XAI) for GNNs is GNNExplainer (Ying et al., 2019),
which determined explanations by generating important subgraphs using a mask on the adjacency
matrix able to maximize the mutual information between the prediction and the distribution of the
possible explanation subgraphs. GraphSVX (Duval & Malliaros, 2021) in another method, which
determines explanation in terms of important nodes and node features relying on the theoretical
background behind Shapley values (Shapley, 1953). It uses a decomposition technique relying on
a surrogate linear model for approximating Shapley values. A methodology targeting edges as a
means for determining explanation subgraphs is EdgeSHAPer (Mastropietro et al., 2022). It em-
ploys Monte Carlo sampling to approximate Shapley values determining salient edges forming rel-
evant subgraphs driving predictions. One additional XAI tool is SubgraphX (Yuan et al., 2021).
Also exploiting Shapley value approximation, it looks for explanations only in terms of connected
subgraphs by using a Monte Carlo Tree Search approach.

In this work, we extend the Kolmogorov—Arnold representation theorem to GNNs, introducing the
Kolmogorov—Arnold Network for Graphs (KANG). Our main contributions are as follows:

* Novel GNN Architecture: We propose KANG, a novel GNN model that employs spline-
based activation functions on graph edges. This design enhances the model’s flexibility and
interpretability while retaining the efficiency of message-passing mechanisms in GNNs.

* Enhanced Interpretability: KANG provides inherent interpretability by design, eliminat-
ing the need for external explainability techniques. This feature is crucial for applications
in domains requiring transparent decision-making processes.

* Performance Improvement: We demonstrate that KANG outperforms state-of-the-art
GNN models in node classification, link prediction, and graph classification tasks on bench-
mark datasets (Cora, PubMed, CiteSeer, MUTAG, and PROTEINS).

Recently, the integration of KANs with graph-structured data has attracted growing interest from
researchers (Kiamari et al., 2024; Bresson et al., 2024; Zhang & Zhang, 2024). Specifically, Kiamari
et al. (2024) proposed two KAN-based architectures: one where node embeddings are aggregated
before applying the learnable spline-based KAN layers, and another where the KAN layers are
applied prior to aggregation. They compared their models to GCNs using a reduced subset of the
Cora dataset features (200 out of 1433). Bresson et al. (2024) introduced two GNN variants utilizing
KAN layers for node representation updates: KAGIN (based on GIN) and KAGCN (based on GCN).
Additionally, Ahmed & Sifat (2024) applied a similar architecture to molecular data for protein-
ligand affinity prediction.

In the following sections, we detail the KANG! architecture and its components, present exper-
imental results to validate our approach, and discuss the interpretability of KANG. Our findings
suggest that KANG outperforms existing GNNs while providing interpretable outcomes.

2 METHODOLOGY

2.1 KOLMOGOROV-ARNOLD NETWORKS

This section details the construction and operation of our proposed KANG model. We begin by
revisiting the key elements of Kolmogorov-Arnold Networks (KANs), upon which KANG is built.
Kolmogorov—Arnold theorem states that a multivariate continuous function in a bounded domain
can be rewritten using a finite composition of continuous functions on one single variable and the
addition operation. Given x a vector of dimension n, f a function such that f : [0,1]" — R, itis

thus possible to write
2n—+1

f(x) = Z ?, (Z ¢q,p(xp)> ) (1

"For anonymization purposes the code of KANG is available here https://anonymous.4open.
science/r/KANGnn-2EOB/
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where ¢, : [0,1] — Rand ®, : R — R. Liu et al. (2024) extended Equation 1, representing a two-
layer KAN with 2n + 1 terms in the hidden layer, to larger depths and widths, parametrizing each
one-dimensional function as a B-spline curve. This kind of neural network has an activation function
on the edges instead of nodes; the latter simply perform a summation. From the implementation side,
KANSs activation functions ¢(z) are built as a sum of a basis function b(z) and the spline function
such that

o(x) = wp(z) + ws spline(z). (2)
The original KAN model uses
T
b(z) = sil = —— spli = B (x). 3
(z) = silu(x) Ate) spline(z) 27: ¢;Bi(x) (3)
At initialization, all activation functions are such that w, = 1 and spline(z) ~ 0, and wy, are

initialized using Xavier initialization.

2.2 KOLMOGOROV-ARNOLD GRAPH NEURAL NETWORK

Building upon the strengths of KANs, we introduce the Kolmogorov—Arnold Network for Graphs
(KANG), a novel GNN architecture (Figure 1) designed for processing graph-structured data.
KANG leverages the flexibility, accuracy, and interpretability of KANs while retaining the efficient
message passing mechanisms of GNNss.
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Figure 1: A simplified graphical representation of the KANG model is shown. X and A represent
the feature matrix of the nodes and the adjaciency matrix, respectively. The hidden layers consist
of KANG convolutional layers, where messages are propagated and then aggregated. The output
layer is a KAN linear layer. Each neuron has its own set of learnable splines. Although the figure
provides a simplified view of the splines, the actual learned splines, responsible for transforming
input values, can be visualized, as explained also in the original KAN paper (Appendix A.3). This
allows for a clearer interpretation of the nonlinear transformations that contribute to the model’s
final predictions.

2.2.1 KANG ARCHITECTURE

KANG employs learnable spline-based activation functions on the edges of the graph, allowing for
flexible nonlinear transformations of node features based on their connections. The architecture is
composed of multiple layers:

* KAN-based convolutional layer: Each layer efficiently handles the propagation and ag-
gregation of messages between nodes by applying a KAN-based transformation to the fea-
tures of each node, taking into account information from its neighbors.

* KAN-based linear layer: A final linear layer performs a linear transformation on the
aggregated node features, producing the final node representations.

The Xavier uniform initialization, also known as Glorot initialization, is a widely used method for
initializing the weights of neural networks. This technique aims to maintain the variance of the
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gradients approximately the same across all layers, thereby mitigating the vanishing and exploding
gradient problems. The weights are initialized by sampling from a uniform distribution in the range

[—r, 7], withr =/ %ﬂt, where 7, and n,,; denote the number of input and output units in
the weight tensor, respectively (Glorot & Bengio, 2010). As suggested in the KAN paper, also in

KANG the basis function weights are initialized using the Xavier initialization, facilitating effective
training and optimization.

2.2.2 MATHEMATICAL FORMULATION OF KANG

In the next part of this section we will go through the basic mathematical formulation of the con-
stituent steps of KANG.

Message Passing: Each node ¢ in the graph has an initial feature vector x;. For each layer ! in
the KANG, the node representations are updated through message passing and aggregation. The
@
e

splineg? (chl;) )

message from a node j to its neighbors at layer [ is denoted as m

g’ = [splinel” (@)

Spline-Based Activation Function: The spline-based activation function ¢(*) at layer  used in
KANG is defined as

eV (x) = w”b(x) + wSPLINE® (x)

where b(-) is a basis function (e.g., SiLU), and SPLINE() (x) applies splineg) (+) to each element h
of vector x.

KANG Convolutional Layer: Each KANG layer [ combines these steps, resulting in the following
layer-wise update rule for node :

) _ (1-1) (. (-1)
x;’ = AGGR X ,
‘ jeN(i)(p ()

where AGGR is aggregation function (we consider average, sum, max) which combines the mes-
sages that node 7 receives from its neighbors?

Output Layer: After passing through multiple KANG convolutional layers, the final node repre-
sentations are obtained using a KAN-based linear layer:

z; = KANLinear(xEL))

where L is the number of layers and KANLinear is a KAN layer as defined by Liu et al. (2024),
which applies a final spline-based transformation.

2.2.3 OVERALL MODEL

The overall model can be summarized as:

1. Initialize spline weights with Xavier uniform initialization.
2. For each KANG layerl =1,..., L:

(a) Compute messages mgl) for each node.

(b) Aggregate messages az(l) for each neighboring node.
O]

(c) Update node representation x,;’ aggregating the spline-activated messages.

3. Apply a KAN-based linear layer to obtain the final node representation z;.

>Whereas the Kolmogorov—Arnold theorem suggests the use of summation as the aggregation function, we
extend the concept by considering more general aggregation approaches, similarly to classical GNNs.
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2.3 INTERPRETABILITY OF KANG

KANG allows for understanding its predictions without relying on external explainers, which may
need to be trained (e.g., GNNExplainer) or whose computations are expensive (e.g., Shapley value-
based explainers). KANG’s interpretability involves determining the influence of input features and
edge importance by analyzing the information flow across the graph.

2.3.1 FEATURE INFLUENCE

Motivated by previous studies (Baehrens et al., 2010; Simonyan et al., 2014; Hechtlinger, 2016;
Sundararajan et al., 2017), to compute the incluence of features in KANG, we leverage the interac-
tion between the gradients and the spline weights, capturing both feature sensitivity and nonlinear
transformations. Specifically, let x € RY %" represent the input features for N nodes, each with F'
features. Given a hidden layer, the first step involves calculating the gradient of the output prediction
with respect to each input feature, which gives us a matrix G € RV X where each element g; ;
reflects the sensitivity of the output for node 7 to its corresponding feature f.

However, gradients alone do not provide a complete picture of how the features are processed by
KANG, and can fail to determine a correct measure of feature importance (Sundararajan et al.,
2017; Shrikumar et al., 2017). In our model, the spline function weights Sgpjine € R X5 where
H is the number of hidden units at the current hidden layer, F' is the input feature size, and B
is the number of spline basis coefficients, modulate the feature transformation along the edges in
a nonlinear fashion. These splines are critical because they allow KANG to adaptively adjust how
features are processed based on the local graph structure, capturing important nonlinear interactions.
We aggregate the spline weights by averaging over the B coefficients, resulting in a reduced matrix

SEéZan € RE*F which can then be interpreted as a set of adaptive nonlinear weights acting on each
feature across the hidden dimensions.

Next, to calculate the influence of feature f of node ¢ on neuron h at a given hidden layer [, we

multiply the corresponding gradient g; s by the mean spline weight S,SQM ».s- This product reflects
how a change in the input feature is transformed nonlinearly by the model’s internal structure. The

overall feature importance I( ) for node i al layer [ is computed by summing these contributions
across all H hidden units, producmg a scalar value:

H
0 _ l
I7, f - Z gzvf : Slgngan;hf

This methodology integrates both the sensitivity of the features and the local transformations mod-
eled by the splines, capturing the complex interactions between features that are fundamental to
KANG?’s nonlinear structure. By doing so, we account not only for the direction of the change in
prediction but also for the adaptive scaling that each feature undergoes along the graph edges.

2.3.2 EDGE IMPORTANCE

In KANG, edge importance captures how information flows between nodes, influencing predictions.
By focusing on edge importance, we capture the interaction between nodes as modulated by the
internal spline weights, which are central to the nonlinear transformations occurring along the edges.
For a given node i, the importance of an edge (7,7), where 5 € N (i) is a direct neighbor of 4, is
determined by analyzing how the features of node j are transformed and passed along the edge to
node <.

This approach is particularly insightful because the spline weights Sgpie play a crucial role in mod-
ulating the feature propagation along edges, allowing for adaptive nonlinear transformations of fea-
tures as they flow through the graph. This makes the spline weights crucial for interpreting edge
importance, as they capture complex feature interactions.

The spline weights in KANG serve a dual purpose: they not only determine how features are trans-
formed between nodes but also govern the overall influence of edges on the model’s prediction.
When computing the influence of features on a node’s prediction, the spline-modulated transfor-
mations provide insight into how individual features contribute to the target node. However, this
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feature influence is inherently tied to the edge through which the features propagate. By extending
this concept, we can derive the importance of an edge by aggregating the spline-modulated fea-
ture transformations and combining them with the feature activations. Essentially, edge importance
emerges as a natural extension of feature influence, encapsulating how the transformation of each
feature contributes to the overall prediction via the edge connecting two nodes.

Importances can be computed on a layer-by-layer basis. To determine the importance of an edge
(i,7) between a target node ¢ and a neighboring node j € N (i), for the convolutional layer I, we
first reduce the corresponding spline weights by averaging over the B spline coefficients, yielding

the reduced matrix S,‘,Qan. This matrix encapsulates the non-linear transformation applied at layer [
as features propagate along the edges. We then incorporate the feature activations a§l) € R¥ and

agl) € R, where H is the hidden dimension of layer [, representing the transformed feature vectors
for the neighbor j and the target node 7 respectively, after layer [ of KANG. These activations reflect
the local embeddings of the features post-convolution and are combined with the spline weights to
assess the importance of edge (¢, ).

0
0,5
modulated feature weights Sﬂfgan with the weights WO of the convolutional layer [, for which we
are computing the importance. This product is then multiplied by the signals ag-l) and agl)
over the hidden units H:

The edge importance, =; 4, for the edge (7, ;) at layer ! is computed by multiplying the spline-

, summed

H
(1 E ! !
:E; = mean(W® . 8W) <a§z,)i : agh)j)
h=1

This formulation directly links nonlinear feature propagation along an edge to node ¢’s prediction.
Since the spline weights remain static on the graph, they offer a consistent, interpretable frame-
work for understanding how features are propagated through the edges, which are the fundamental
pathways of information in a graph.

This approach to edge importance is highly beneficial because it breaks down the prediction process
into localized interactions, helping us understand which edges are most responsible for driving the
prediction. Unlike standard GNNs, where edges may simply aggregate features, KANG’s spline-
based transformations allow us to precisely identify how each edge modifies the feature representa-
tions in a nonlinear manner.

This section provided a comprehensive overview of the KANG architecture, its core components,
and its interpretability capabilities. The next sections will delve into the experimental results and
demonstrate the effectiveness of this new approach to GNNss.

3 EXPERIMENTS

3.1 DATASETS

We evaluated KANG on node classification, graph classification, and link prediction tasks using
the benchmark datasets summarized in Appendix A.1. In the following section, we will discuss the
experimental setup and the results obtained by KANG in comparison to state-of-the-art methodolo-
gies.

3.2 KANG PERFORMANCES

We compared the performances of our proposed model against established GNN architectures,
namely GCN, GAT, using the GATv2 PyTorch Geometric implementation (Fey & Lenssen, 2019),
GraphSAGE, and GIN. KANG was able to outperform all the mentioned GNN models in all tasks
with all datasets, with the single exception of the link prediction with PubMed, in which GCN
performed better.

Each method is unique, and the hyperparameters chosen for training are as crucial as the imple-
mentation itself. To ensure a fair comparison, each model has been trained following the guidelines
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Table 1: Results in terms of average accuracy and standard deviation (%) on 10 runs (node and
graph classification) and average AUC-ROC (link prediction) on the test set obtained by KANG
and the compared architectures. Our framework delivers higher accuracy and ROC, being the top-
performing architecture.

Dataset GCN GAT GraphSAGE GIN KANG (Ours)
Node Classification

Cora 77.5+1.0 78.7£1.1 73.6+2.5 75.5+1.2 79.5+0.8
PubMed 779+1.0 78.8+1.3 75.1£1.2 77.7+1.5 80.7+0.9
CiteSeer 67.6+1.5 68.7+0.5 63.14+2.3 63.1+1.9 69.1+1.5
Link Prediction

Cora 87.0+8.9 89.8+0.6 82.01+6.8 75.0£1.1 90.4+0.5
PubMed 94.2+0.4 88.9+1.1 84.8+3.7 89.54+0.5 85.8+0.4
CiteSeer 81.2+3.3 82.0+4.4 779+1.4 83.4+1.8 84.7+0.6
Graph Classification

MUTAG 67.5+4.0 64.0+5.4 74.0+8.3 74.5+6.5 93.0+4.6
PROTEINS 71.3+2.4 71.04£2.3 71.442.5 72.4+1.2 73.7+£3.0

and hyperparameters provided by their authors. For training KANG, we conducted hyperparameter
tuning to determine the best set of hyperparameter for each dataset and each task.

Hyperparameter tuning was conducted using a grid search over a broad range of potential values:
learning rate [0.01, 0.001, 0.005], weight decay [1e-4, 1e-5], hidden channels [8, 16, 32, 64], dropout
rate [0, 0.3, 0.6, 0.7], number of layers [1, 2, 3, 4], spline grid size [2, 3, 4, 8, 10, 20, 30], splines
degree [1, 2, 4, 8, 10, 15], aggregation function [add, mean, max], and L2-regularization [0.0001,
0.00001]. All GNN models were trained for a maximum of 600 epochs for the Node Classification
task, 700 epochs for Link Prediction, and 200 epochs for Graph Classification, with early stopping
applied based on validation loss (node and graph classification) and validation AUC-ROC (link
prediction). The optimal hyperparameters that we found for KANG are reported in Appendix A.2.

We report in Table 1 summarized results obtained by averaging over 10 runs the test accuray (or
AUC-ROC for link prediction) of the models that achieved the highest validation accuracy during
training over each run. For each run, to achieve unbiased outcomes, we randomly split the datasets
utilizing 80% as training set, 10% as validation set, and the remaning 10% as test set.

Performance metrics alone do not fully capture a model’s capabilities; it is equally important to
evaluate its scalability to larger datasets. To assess how the models perform as graph sizes increase,
we compared them on synthetically generated datasets under consistent conditions, ensuring all
architectures had the same number of layers and hidden units, leading to comparable numbers of
trainable parameters. The graphs varied in size (1000, 5000, 10,000, and 20,000 nodes) and edge
density (with probabilities of 0.05, 0.25, and 0.5 for edge creation). Although KANG provides
inherent interpretability (Section 2.3), this advantage comes with a slight increase in computational
cost due to the additional parameters and weights introduced by the splines. As a result, the models
were evaluated in two scenarios: 1) where only the training time is considered and 2) where all
models were trained alongside an explainer, specifically GNNExplainer. KANG does not need an
additional explainer, as it provides direct interpretability. The results of the study can be found in
Appendix A.4, where we show that KANG can scale efficiently to large graphs.

3.3 INTERPRETABILITY

The added value of KANG lies not only in its higher accuracy but also in its inherent interpretability.
As pointed out in Section 2.3, the interpretability of KANG is two-fold: it provides 1) a means for
node feature influence and 2) a measure for edge importance, accounting for the information flow
throughout the graph. As a representative example, we determined the most influencing features for
a node in the Cora dataset, computed as shows in Section 2.3.1. This information can be used to
understand the most important features for a particular node’s prediction, crtitical in scenarios not
suitable for black-box predictions (medicine, life sciences, and finance among others). We evaluated
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the most influent features obtained in terms of Fidelity (FID™) and Infidelity (FID™) of prediction
accuracy (Yuan et al., 2022), adapted for node classification.

The Fidelity metric is defined as

N
1 o
FID* = NZ (L(gi=wi)—1 (yzl =)
=1

where y; is the predicted label for node 7 using the original graph with all the features and y; is its
correct class, g)il_"” is the predicted label for node i using the graph with the m,; most important
features removed, 1(-, -) is an indicator function and N is the number of nodes for which the metric

is computed. Analogously, the Infidelity metric is defined as

1
N

3

N
FID™ = (L (9 = i) = LG = i)
=1

where ;" is predicted lable for node ¢ when only the m; most important features retained. A good
method should achieve high Fidelity and low Infidelity values. Table 2 shows the results considering
different cutoffs for the top & features.

Table 2: Feature influence analysis on the Cora dataset. The table presents the FID* and FID~
scores for various top-k feature cutoffs, computed on the correctly predicted samples from the test
set. FIDT and FID™ values are stable across different cutoffs.

Topk FID* FID™

10% 0.31 0.84
20% 031 0.85
30% 031  0.85

We notice how the removal of features for a single node leads to marginal changes in the prediction,
identied by low FID™ and high FID™~ scores, indicating that the behavior of GNN is not solely
dependent on node featues, but the overall structure and topology of the graph plays a crucial role.
Indeed, the prediction of a node havily relies on the messages passed by its neighbors and not only
on its own features.

After analyzing feature influence, it is also possible to interpret KANG to understand the importance
of the edges in the graph. As shown in Section 2.3.2, is it possible to determine the importance of
the information flowing on the egdes of the graph, in order to analyze the messages passed to a
target node and determine the most influent neighbors impacting on the its prediction. We show a
representative example on the Cora dataset in Figure 2, comparing the results against GNNExplainer.

In KANG, the values (which have been normalized for comparison) genuinely represent the net-
work message, meaning they are the actual values used in making the prediction. In contrast, GN-
NExplainer provides importance scores that are calculated post hoc on a subgraph optimized to
maximize mutual information. We notice that both stategies prioritized similar edges. In particual,
node with ID 2176 appears to be carrying the most important message for the target node 4 in both
methodologies. Analogously, node 1761 is the least important neighbor (also beloning to a different
class). This highlights that KANG interpretability is consistent with the explainability provided
by GNNExplainer, validating the usage of the network messages as a means for edge importance.
The added value brought by KANG is that it does not need an addtional explainer to be trained or
used, thereby saving computation time and avoiding possible approximations introduced by such
methodologies (Rudin, 2019).

Indeed, spline-based activation functions, which are central to KAN and consequently KANG, are
inherently more interpretable compared to traditional neural network activation functions. Tradi-
tional GNNs use fixed, nonlinear activation functions like ReLU or Sigmoid, which can make it chal-
lenging to understand the decision boundaries or the transformations applied to the input features.
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(a) Direct interpretation of KANG. (b) Output of GNNExplainer applied to KANG.
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Figure 2: Interpretability vs. explainability. Comparison of the direct interpretation of KANG (Fig-
ure 2a) and GNNExplainer applied to KANG (Figure 2b), trained on the Cora dataset for node
classificaiton task. The explaination focuses on the node with ID 4. In Figure 2a, the output of the
direct interpretation of the gradients and the weights of the splines of the neurons in the last convo-
lutional layer (just before the KAN-based linear layer used for classification) is plotted. In Figure
2b, the edge mask returned by GNNExplainer is shown. The scores are normalized for visualization
and comparison purposes. Additional examples can be found in Appendix A.5.

In contrast, spline functions are defined as piecewise polynomials which can be easily visualized
and understood. The smooth and continuous nature of splines allows for a clear representation of
how inputs are mapped to outputs. By examining the spline functions, one can see exactly how each
input feature contributes to the final prediction and consequently how messages flowing throughout
the graph influence the final output. This transparency makes it possible to trace the influence of
individual features and edges, and understand the model’s decision-making process.

4 CONCLUSIONS

In this paper, we propose KANG, a novel GNN architecture inspired by the Kolmogorov—Arnold
theorem and based on the recently introduced KAN model. The added value of KANG is two-fold.
First, it is more accurate than established state-of-the-art GNNs in node and graph classification
and link prediction tasks. Second, thanks to the usage of splines and simple aggregation functions,
KANG models are more interpretable. While KANG provides significant advancements in terms
of interpretability, this is only a preliminary step. Future work should focus on enhancing the inter-
pretability capabilities and exploring their application to even more complex graph structures, and
compare the outcomes with state-of-art explainability strategies. Moreover, we showed that KANG
can scale to large graphs.

We want highlight that KANG is not fully interpretable in every scenario, particularly in deeper
networks where some information may be lost. However, KANG provides significantly greater
transparency than other models by offering direct interpretability from the model itself, without
relying on external explainability methods.

Looking forward, several research directions could further enhance KANG’s performance and ap-
plicability. First, optimizing computational efficiency is essential, particularly by reducing memory
usage and improving training and inference speed through techniques such as more efficient spline
implementations, approximation methods, and parallelization. Second, incorporating edge features
is a priority for extending KANG’s capabilities. Developing methods to integrate edge information
into the spline-based message passing and aggregation process could significantly improve predic-
tive power.

Furthermore, applying KANG to real-world problems—such as biomedical research, where inter-
pretability is crucial, or financial analytics, where it can aid in regulatory compliance—could demon-
strate its practical utility and further validate the results with the aid of domain experts. Finally,
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hybrid models combining KANG with advanced GNN architectures, such as attention mechanisms
or variational techniques, may further boost performance while preserving interpretability.

By addressing these limitations and pursuing these research directions, KANG can be further ex-
tended into a more robust and versatile tool for graph machine learning applications.
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A APPENDIX

A.1 DATASET DETAILS

Table 3 provides a summary of the benchmark datasets used in our experiments. The datasets were
split into training, validation, and test sets with proportions of 80%, 10%, and 10%, respectively.
The node classification and link prediction datasets include Cora, PubMed, and CiteSeer, while the
graph classification datasets consist of MUTAG and PROTEINS.
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Table 3: Summary of benchmark datasets. Datasets were split in train, validation, and test sets with
proportions of 80%, 10%, and 10%, respectively.

Node Classification and Link Prediction

Dataset #nodes  #edges #features  #classes

Cora 2,708 10,556 1,433 7

PubMed 3,327 9,104 3,703 6

CiteSeer 19,717 88,648 500 3

Graph Classification
#graphs #nodes  #edges  #features #classes

MUTAG 188 ~17.9 ~39.6 7 2
PROTEINS 1,113 ~39.1 ~145.6 3 2

A.2 HYPERPARAMETERS

Table 4 presents the hyperparameters used for the various GNN models across the three main tasks:
Node Classification, Link Prediction, and Graph Classification. The table includes the learning rate,
weight decay, hidden units for each model, and the spline aggregation function used for KANG,
along with dataset-specific variations for KANG.

Table 4: Summary of hyperparameters used to train the compared GNNs across the tasks of Node
Classification (NC), Link Prediction (LP), and Graph Classification (GC).

Task  Dataset GNN  Hidden Units Learning Rate Weight Decay  Aggr. Fun.

NC - GCN 32 0.01 Se-4 -
- GAT 64 0.005 6e-4 -
- SAGE 512 0.01 0 -
- GIN 32 0.01 0 -
Cora KANG 32 0.001 le-4 Mean
PubMed KANG 24 0.001 le-4 Max
CiteSeer KANG 64 0.001 le-4 Mean
LP - GCN 32 0.01 Se-4 -
- GAT 64 0.005 6e-4 -
- SAGE 128 0.01 le-4 -
- GIN 32 0.01 0 -
Cora KANG 64 0.001 6e-4 Mean
PubMed KANG 32 0.001 le-4 Mean
CiteSeer KANG 64 0.001 le-4 Add
GC - GCN 32 0.01 Se-4 -
- GAT 64 0.005 6e-4 -
- SAGE 512 0.02 0 -
- GIN 32 0.01 0 -
- KANG 32 0.01 le-4 Add

A.3 SPLINES VISUALIZATION

In the KANG architecture is it possible to visualize the splines learned during training. The spline
weights from the last layer are extracted and plotted (Figure 3) based on the grid coordinates defined
within the model. This allowed us to observe how the non-linear transformations learned by the
model act on the input data before producing the final prediction. Visualizing the splines in the
last layer provides useful insight into how the features are transformed before being mapped to the
output space, offering clear understanding of how the model arrives at its predictions.

12
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Figure 3: Visualization of the splines for the seven output neurons in the KANG model trained on
the Cora dataset. Each output neuron has an associated matrix of spline weights with dimensions
D x G, where D is the output dimension of the previous layer and GG corresponds to the grid co-
ordinates. The rows of this matrix, which correspond to the contributions of each neuron in the
previous layer, are summed to produce a vector of size G. This vector represents the aggregated
spline weights that modulate the transformations applied by the neurons of the previous layer, pro-
viding insight into how features are combined in the final output, and can also be used to plot the
corresponding splines.

A.4 SCALABILITY STUDY

All the times reported represent the averages obtained from five training runs. Figures 4, 5, and
6 show how the models scale with increasing graph densities, with edge existence probabilities of
0.05, 0.25, and 0.5, respectively. In Figures 5b and 6b, excluding KANG, the times also account for
the overhead of training GNNEXxplainer for the same number of epochs. The average epoch time for
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GNNExplainer is then added to the average epoch time for each model. All scalability experiments
were conducted on a g5.xlarge AWS instance.

We notice how KANG scales very well with increasing graph sizes and densities, with training
times remaining relatively constant. In contrast, GAT’s training times increase significantly with

graph size and density, making it impractical to train on graphs with 20,000 nodes and a density of
0.5.

—e— GCN
GATV2
—e— GraphSAGE

——GIN
—e— KANG

Time (seconds)

| = -

0 5k 10k 15k 20k

Number of Nodes

(a) Training Times

18 —e— GCN
GATV2
—e— GraphSAGE
16 ——GIN
—o— KANG

Time (seconds)

s
e —

0 5k 10k 15k 20k

Number of Nodes

(b) Training and Explainability Times
Figure 4: The average training time per epoch is presented as a function of graph size, with the edge

density fixed at 0.05. These times were obtained by averaging five training runs for each model and
graph size.

Figure 7 illustrate how the models’ inference times vary with different graph sizes and densities and
Figure 8 shows the VRAM utulized by each model.

A.5 MORE INTERPRETABILITY EXAMPLES

In this section, we compare the interpretability provided by KANG to the post-hoc explainability of-
fered by GNNExplainer. Figure 9 illustrates the edge importance values generated by both methods

14
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Figure 5: Average epoch times for graphs with density 0.25.

for two target nodes (IDs 1761 and 1901) from the Cora dataset. The objective is to demonstrate how
KANG’s inherent interpretability, which directly computes edge importance using spline-based ac-
tivations, aligns with the explainability produced by GNNExplainer. This comparison validates that
the messages passed through the graph in KANG accurately represent the model’s decision-making
process without requiring additional post-hoc explainability methods.
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Figure 6: Average epoch times for graphs with density 0.5. In Figure 6b are reported also the times

for training GNNExplainer. For this graph density, GAT was unable to complete training on a graph
with 20,000 nodes using an NVIDIA A10 with 24GB of VRAM.
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Figure 7: Average inference times are shown in Figures 7a, 7b, and 7c, corresponding to graph

densities of 0.05, 0.25, and 0.5, respectively. For the density of 0.5, we could not test the inference
time of GAT as we were unable to complete its training on the available hardware.
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Figure 8: Maximum GPU memory utilization for each graph size and density is shown in Figures
8a, 8b, and 8c, corresponding to graph densities of 0.05, 0.25, and 0.5, respectively.
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(a) Direct interpretation of KANG. (b) Output of GNNExplainer applied to KANG.

I

(c) Direct interpretation of KANG. (d) Output of GNNEXxplainer applied to KANG.

Figure 9: Interpretability vs. explainability. Figures 9a and 9c show the direct edge importance
interpretation of KANG, illustrating the contribution of each neighboring node to the target node
(1761 and 1901, respectively). The values represent the normalized edge importances derived from
KANG?’s spline-based activations. Figures 9b and 9d depict the results from GNNExplainer applied
to KANG, where edge importances are computed post-hoc. In both cases, KANG’s direct interpre-
tation aligns closely with GNNExplainer, validating the model’s inherent interpretability.
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