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Abstract

We propose a new self-supervised domain adapta-
tion framework for contextual bandits, address-
ing both abrupt and gradual environment shifts.
Our method pretrains a compact representation
on unlabeled data, then integrates it into both clas-
sical (e.g., LinUCB, TS) and neural bandit algo-
rithms. Empirically, we show that our approach
dramatically reduces regret and speeds adapta-
tion across eight distinct domains, outperforming
standard non-adaptive baselines and simpler au-
toencoder methods in final performance.

1. Introduction

Contextual bandits drive personalized decisions in recom-
mendation (Li et al., 2010a), healthcare (Shortreed et al.,
2011), and robotics (Kober et al., 2013), repeatedly ob-
serving contexts, choosing actions, and receiving rewards.
While the standard goal is to minimize regret through adapta-
tion, real-world environments often shift, invalidating static
assumptions and degrading performance. Domain adapta-
tion addresses such shifts by leveraging knowledge from
earlier domains. Here, we propose self-supervised repre-
sentation learning to extract robust features from unlabeled
data, mitigating nonstationarity in contextual bandits.

Contributions. We develop a self-supervised domain
adaptation pipeline:

1. Offline pretraining: Learn a compressed embedding
via autoencoder or contrastive objectives on unlabeled
samples.

2. Online integration: Use the learned representation in
classical or neural bandit algorithms for a robust, low-
dimensional feature space.
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3. Multi-domain shifts: Evaluate abrupt and gradual
changes (Domains A—H), showing reduced regret and
improved final performance.

We compare baselines like NoRep, VanillaAE,
MaskedAE, and bandits like EpsGreedy, LinUCB, TS,
NeuralEG, and NeuralTsS. Our results demonstrate
faster adaptation, lower cumulative regret, and near-
Oracle outcomes.

2. Related Work

Contextual Bandits. Classic contextual bandits (Lang-
ford & Zhang, 2007; Li et al., 2010a) optimize decisions
given context features. Approaches such as LinUCB (Li
etal., 2010b) and ThompsonSampling (Chapelle & Li,
2011) have been widely applied to recommendation and per-
sonalization. Extensions include Neural Bandits (Riquelme
et al., 2018; Zhang et al., 2022) that replace linear reward
models with neural networks.

Nonstationary and Multi-Domain Bandits. To handle
changing data distributions, prior works propose s1iding
window or restart heuristics (Garivier & Moulines,
2011; Cheung & Mannor, 2019), or weighted regression
approaches (Lu et al., 2021), but these typically do not har-
ness explicit domain adaptation principles. Multi-domain
or multi-stage bandits (Bouneffouf et al., 2020) consider
a scenario with piecewise-constant transitions, but they of-
ten retrain from scratch. By contrast, our method transfers
knowledge via a common representation that is robust to
domain shifts.

Representation Learning for Bandits. Recent efforts
incorporate unsupervised or self-supervised features into
bandits to improve sample efficiency and handle distribu-
tion changes (Pascual & Agmon, 2020; Mitton et al., 2022).
For instance, Zhang et al. (2023b) examine identifiability
guarantees for causal disentanglement under soft interven-
tions, a perspective that can inform domain-invariant embed-
ding strategies in bandits. Moreover, Zhang et al. (2023a)
propose an active learning approach for intervention de-
sign in causal models, shedding light on structured pol-
icy updates relevant to multi-domain bandit scenarios. Ap-
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proaches may use aut oencoders to reduce dimensional-
ity or contrastive objectives (e.g., InfoNCE) to learn
domain-invariant embeddings. We specifically focus on
eight domains with abrupt or gradual transitions, extensively
comparing NoRep (baseline), VanillaAE, MaskedAE,
and Contrastive.

Abrupt vs. gradual domain shift. We define a shift as
abrupt when the total-variation distance between successive
context distributions crosses 0.30 in a single time step. A
shift is gradual when the same cumulative distance is ac-
crued over at least 50 steps. Unless otherwise noted, domain
shift acts only on the context distribution P(x); the condi-
tional reward model P(r | x,a) is kept fixed. We report
the average ATV for every benchmark in Appendix A.2
so readers can map quantitative severity to our qualitative
labels.

Evaluation metrics. We use two standard measures: (i)
Cumulative reward Zthl r¢, the total payoff over hori-
zon T' (larger is better); and (ii) Normalized cumulative
regret where 7} is the reward of an oracle that always pulls
the best arm in hindsight. The oracle operates with knowl-
edge of future rewards and therefore serves solely as an
optimistic ceiling. It is included to visualise remaining
headroom, not as a deployable baseline.

Masked and Contrastive Pretraining. Inspired by BERT
(Devlin et al., 2019) in NLP and MAE (He et al., 2022) in
vision, masked autoencoders reconstruct missing tokens or
patches. Contrastive methods (Chen et al., 2020) learn fea-
ture invariances via augmented pairs. Moreover, recent fair-
ness research (Kusner et al., 2017) illustrates the importance
of handling unobserved confounders in shifting settings, a
challenge mirrored in multi-domain bandits. Although these
ideas are prevalent in vision/language tasks, their use in
contextual bandits remains relatively understudied.

3. Methodology

In this section, we describe our overall domain adaptation
approach for contextual bandits, focusing on two key compo-
nents: (i) self-supervised representation learning (to embed
raw contexts into a lower-dimensional, domain-invariant
space) and (ii) adaptable bandit strategies (that learn to se-
lect arms given these representations). We assume a setting
where domain shifts occur over time—either abruptly or
gradually.

3.1. Problem Formulation

We consider a contextual bandit scenario with K arms,
where at each time step ¢ we observe a context vector X; €
R? and must choose an arm a; € {1,...,K}. We then

observe a reward r; drawn from an unknown function r; =
R(at, %) subject to noise.

In this paper, the context distribution (and corresponding
reward mapping) changes over multiple domains, labeled
A, B, C, etc. Domain transitions can be:

e Abrupt: the environment instantly shifts from domain
i to 7,

e Gradual: the environment slowly interpolates from
one distribution to another.

Our goal is to learn a policy m(x;) that selects high-reward
arms consistently, even when shifting between domains.

3.2. Self-Supervised Representation Learning

To help the bandit adapt across domains, we first learn an
embedding function

f:RY— R™

that maps raw contexts x; into a lower-dimensional repre-
sentation z; = f(x;). We train f offline (before the bandit
interaction) on unlabeled data from at least one domain
(here, Domain A). This pretraining step encourages domain-
invariant or robust features. We consider four approaches:

NoRep (No Representation). As a baseline, we use the
raw context x; directly; i.e., f is the identity map. This
helps quantify improvements due to representation learning.

VanillaAE (Autoencoder). A standard autoencoder com-
prises an encoder F(-) and a decoder D(-):

z=E(x), X= D(z).

We train it by minimizing the mean-squared error ||x — X||2,
thus encouraging E to learn a compact representation of x.
We retain only E(-) at test time for the bandit.

MaskedAE (Toy Masked Autoencoder). Inspired by
masked image/language modeling, we randomly zero out
features in x during training (with some ratio p) and task
the autoencoder to reconstruct the full context. This can
encourage robustness if domain changes selectively corrupt
or shift subsets of features.

Contrastive (Toy Contrastive Encoder). We apply a sim-
plified InfoNCE-like loss: each sample x is augmented ran-
domly twice, producing x;, x5 , and the encoder E(-) aims
to map them close in latent space while pushing away other
samples. This can foster domain-invariant embeddings if
augmentations approximate domain perturbations.

After training, we freeze F(-) and pass each new context x;
through it: z, = E(xy).
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Figure 1. Self-Supervised Domain Adaptation Pipeline for Robust Contextual Bandits. Left: In the offfine stage, unlabeled data from
Domain A trains an encoder F/, which is then frozen. Right: In the online stage, streaming domains (A, B, C, . ..) undergo abrupt or
gradual shifts. Each incoming context x. is embedded to z; via the frozen E, fed into a bandit policy, an arm is selected, reward observed,

and the policy is updated continually.

3.3. Bandit Algorithms

Given the embedding z;, a bandit algorithm selects an arm
at. We explore both classical (linear or tabular) and neural
strategies:

EpsilonGreedy (EpsGreedy). A simple policy that
chooses a random arm with probability €, and otherwise
selects the arm arg max, Q(a, z;), where () is an estimated
linear or tabular value function. We maintain a weight vector
w,, for each arm and update it via gradient steps.

LinUCB (LinUCB). A confidence-bound approach that
models the reward as r; ~ wgzt. For each arm a, it keeps
A, =1, b, = 0 and updates:

A, A, + ztzz—, b, <+ b, + r1z;.

The policy selects

ay = argmax(@t;rzt + a\/z:Aglzt),
a
where 6, = A 'b, and « is an exploration parameter.

ThompsonSampling (TS). A Bayesian approach that
samples a parameter vector 6, from the posterior of each
arm a at every step, then selects a; = arg max, 0, z;. We
update the posterior using the linear model assumption
T = HIZt + €.

Neural EpsilonGreedy (NeuralEG) and Neural TS
(NeuralTs). We also test neural versions where the re-
ward predictor is a small neural network g, (-) for each
arm (or a shared network with multiple outputs). For
NeuralEG, we do e-greedy on g,(z:). For NeuralTs,
we approximate parameter uncertainty with dropout or
added noise in the network weights, sampling from it each
step to pick the arm.

3.4. Handling Domain Shifts

Our experiment iterates through domains A, B, C, ..., H
in succession (either abruptly switching or gradually inter-
polating the distribution). The bandit algorithm does not
know when or how these changes occur but must continu-
ally adapt. The learned embedding E(-) from Domain A
aims to capture robust features, reducing the complexity of
adaptation in later domains.

Offline-to-Online Pipeline. Our pipeline thus consists of:

1. Self-Supervised Pretraining: Collect unlabeled sam-
ples {x} from Domain A; train E(:) (VanillaAE,
MaskedAE, or Contrastive) or use the identity
map (NoRep).

2. Online Bandit: Fort = 1,...,T, observe x; from
some domain, compute z; = FE(x;), choose a;, ob-
serve reward 7, and update the bandit parameters (e.g.,
W,, Ay, by, or neural network weights).

3. Domain Transitions: At certain time steps, the en-
vironment distribution changes from domain ¢ to j
(abrupt) or gradually interpolates. The agent automati-
cally continues receiving (x¢, ;) tuples and must adapt
without explicit domain labels.

Implementation Details. We use an embedding dimen-
sion m < d (often m = 4 or m = 16). In MaskedAE,
the mask ratio is around 30%; for Contrastive, we ap-
ply random noise augmentations. We tune hyperparame-
ters for each bandit (e.g., ¢ = 0.1, @ = 2.0 for LinUCB,
small neural networks of size 64 units for NeuralEG or
NeuralTS). We maintain a small buffer of past steps for
online updates in neural bandits, performing a few gradient
steps per observation.



Learning to Adapt: Self-Supervised Representations for Robust Contextual Bandits

The next section (§4) describes how these methods are evalu-
ated under multiple domain shifts, comparing both classical
and neural bandits with each representation scheme.

4. Experiments

We evaluate our self-supervised domain adaptation on eight
domains (A-H), each with distinct context distributions and
reward parameters. These domains include abrupt shifts
(C—D, G— H) and gradual transitions (D —E, E = F),
forcing bandit policies to adapt under evolving condi-
tions. We compare several bandit strategies (EpsGreedy,
LinUCB, TS, NeuralEG, NeuralTS, Random) with
four representations (NoRep, VanillaAE, MaskedAE,
Contrastive).

We run multiple seeds and track: (i) Cumulative Reward,
(ii) Cumulative Regret, (iii) Per-step (Incremental) Reward,
(iv) Time to a% of Oracle, (v) AURC, and (vi) Final-Domain
Reward. This section focuses on Cumulative Reward/Regret,
while the Appendix covers the remaining metrics.

4.1. Experimental Setup

Domains and Contexts. Domains evolve from i.i.d. Gaus-
sians (A) through mean/variance shifts (B, C) to hybrid
draws (H), requiring frequent policy updates to handle do-
main changes.

Self-Supervised Pretraining. We collect unlabeled data
from Domain A to train VanillaAE, MaskedAE, or
Contrastive; NoRep uses raw contexts directly.

Metrics.

Evaluation metrics. We report two standard quantities. (i)
Cumulative reward ZZ;I ry: total payoff over the horizon
(higher = better). (ii) Normalized cumulative regret

T
1
Z(TZ — rt),
t=1

where 77 is the reward of an oracle that always pulls the
best arm in hindsight. The oracle knows future outcomes
and therefore serves only as an optimistic ceiling—useful
for visualising headroom but not deployable in practice. We
measure Cumulative Reward & Regret (Figures 2 and 3).
The Appendix details Time to 80% of Oracle (Figure 4),
AURC (Figure 5), and final-domain performance (Figure 6).

=l

4.2. Results and Discussion

Performance Summary. Contrastive and
VanillaAE outperform NoRep, with EpsGreedy-
Contrastive leading in reward and regret. NeuralTS$S
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Figure 2. Cumulative Reward across eight domains.
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Figure 3. Cumulative Regret across eight domains.

achieves high returns but with higher variance. Additional
metrics confirm faster adaptation in these setups.

Key Insights. (1) Representations improve adaptation. (2)
Contrastive and VanillaAE are most effective. (3)
Neural methods need careful tuning for early performance.

5. Conclusion

We introduced a self-supervised domain adaptation frame-
work for contextual bandits, combining offline repre-
sentation learning with online adaptation. Pretraining
compact embeddings (e.g., VanillaAE, MaskedAE,
Contrastive) on unlabeled data improves adaptation
to domain shifts, leading to faster learning and higher
rewards. Experiments across eight domains show that
representation-based bandits outperform NoRep by reduc-
ing regret and boosting final performance. Future work will
explore continual learning and domain-aware contrastive
augmentations.
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Table 1. Summary of key metrics across evaluated bandit algorithms and representation methods. time_to_80pct_oracle: the average
number of steps required for each algorithm to reach 80% of the cumulative reward achieved by the Oracle (lower values indicate faster
learning). AURC (Area Under Regret Curve): the cumulative sum of regrets across all steps, reflecting how closely the algorithm
performs compared to the ideal choice at every step (lower is better). Final-Domain Incremental Reward: average reward per step
obtained specifically in the last evaluated domain ("H”), highlighting how effectively each algorithm adapts to complex distributional
shifts (higher is better). All values are averaged over multiple random seeds to ensure robustness; values shown are truncated for brevity.

Method time_to_80pct AURC Final-Domain Reward
EPSGREEDY-CONTRASTIVE 1.75 3109.70 7.03
EPSGREEDY-MASKEDAE 8.33 7402.35 2.23
EPSGREEDY-NOREP 28.20 7915.18 2.20
EPSGREEDY-VANILLAAE 0.33 6231.32 2.35
LINUCB-CONTRASTIVE 0.00 4187.24 6.79
LINUCB-MASKEDAE 388.00 6285.64 -0.56
LINUCB-NOREP 257.28 5272.62 -0.37
LINUCB-VANILLAAE 0.00 6259.54 1.23
NEURALEG-CONTRASTIVE 0.25 5366.07 5.77
NEURALEG-MASKEDAE 1.00 5225.75 4.47
NEURALEG-NOREP 0.66 4367.52 491
NEURALEG-VANILLAAE -1.00 5116.90 4.74
NEURALTS-CONTRASTIVE 0.00 4788.22 5.63
NEURALTS-MASKEDAE 0.33 3951.62 5.67
NEURALTS-NOREP 3.00 3557.09 6.50
NEURALTS-VANILLAAE 0.50 4169.20 6.12
ORACLE-NOREP 9.00 119.14 8.46
RANDOM-CONTRASTIVE 0.00 8258.82 2.23
RANDOM-MASKEDAE 0.00 8258.82 2.23
RANDOM-NOREP 0.00 8258.82 2.23
RANDOM-VANILLAAE 0.00 8258.82 2.23
TS-CONTRASTIVE 0.00 4110.29 5.93
TS-MASKEDAE 298.75 5896.91 -0.26
TS-NOREP 704.60 5005.87 0.74
TS-VANILLAAE -1.00 6764.66 0.76

A. Additional Figures and Tables

In this appendix, we provide the remaining plots (outlined in §4) for completeness:

As discussed in the main text, these metrics reinforce the conclusion that integrating self-supervised representations
(especially Contrastive or VanillaAE) provides (i) faster adaptation to shifting distributions, (ii) reduced total regret,
and (iii) strong final-domain performance close to that of the Oracle.
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Time to 80% of Oracle

Figure 5. Area Under Regret Curve (AURC).
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Final-Domain Incremental Reward
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Figure 6. Final-Domain Incremental Reward. Higher bars indicate better long-horizon performance in Domain H




