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Abstract
Token merging has emerged as a new paradigm
that can accelerate the inference of Vision Trans-
formers (ViTs) without any retraining or finetun-
ing. To push the frontier of training-free accelera-
tion in ViTs, we improve token merging by adding
the perspectives of 1) activation outliers and 2) hi-
erarchical representations. Through a careful anal-
ysis of the attention behavior in ViTs, we charac-
terize a delayed onset of the convergent attention
phenomenon, which makes token merging unde-
sirable in the bottom blocks of ViTs. Moreover,
we augment token merging with a hierarchical
processing scheme to capture multi-scale redun-
dancy between visual tokens. Combining these
two insights, we build a unified inference frame-
work called DSM: Delayed Spatial Merging. We
extensively evaluate DSM on various ViT model
scales (Tiny to Huge) and tasks (ImageNet-1k and
transfer learning), achieving up to 1.8× FLOP
reduction and 1.6× throughput speedup at a neg-
ligible loss while being two orders of magnitude
faster than existing methods.

1. Introduction
Transformers (Vaswani et al., 2017) has become a general-
purpose backbone architecture that drove great progress in
language modeling (Devlin et al., 2019), speech recogni-
tion (Tian et al., 2020), to computer vision (Dosovitskiy
et al., 2020). Compared to Convolutional Neural Networks
(CNNs), Vision Transformers (ViTs) have minimal induc-
tive bias, benefiting from large-scale pretraining. Modern
self-supervised models such as MAE obtain up to 90.94%
top-1 accuracy on ImageNet-1k (Wortsman et al., 2022).

However, efficient deployment of ViTs remains a challenge
due to the large model size. A major line of work has fo-
cused on pruning task-irrelevant tokens with various impor-
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tance metrics such as token embeddings (Yin et al., 2022),
attention scores (Liang et al., 2022), and lightweight neural
network predictors (Rao et al., 2021). Recently, a newly
proposed token merging scheme enabled a training-free
approach to token reduction (Bolya et al., 2023). While
prior work can effectively accelerate ViT inference, using
these techniques in practice is still challenging. Previous
approaches train from scratch (Liang et al., 2022), fine-tune
with extra parameters (Rao et al., 2021), and optimize with
additional loss functions that increase the wall-clock train-
ing time (Yin et al., 2022). Such complexities introduce
extra computational budgets and engineering efforts that
prevent the easy adoption of techniques. Token merging
scheme can avoid this via the training-free mode (Bolya
et al., 2023), but it incurs nontrivial accuracy loss, which
ultimately necessitates training from scratch to achieve com-
petitive performance.

To push the frontier of training-free ViT acceleration via
token merging, we turn to recent findings of activation out-
liers in large Transformers (Darcet et al., 2023; Xiao et al.,
2023) as well as a principled hierarchical processing tech-
nique (Jarrett et al., 2009; Lee et al., 2009; Krizhevsky et al.,
2009). Augmented by our delayed and hierarchical merging
schemes, DSM yields a strong token merging technique that
is aware of both Transformer attention mechanics and multi-
scale redundancies. Our contributions are summarized:

• We find that the recently discovered high-norm token
outliers in ViTs (Darcet et al., 2023) are attributed to
the Attention Sink behavior in language models (Xiao
et al., 2023). By carefully studying the attention me-
chanics in ViTs, we identify an intriguing phenomenon
that we call delayed convergent attention.

• Motivated by the observation that 1) token merging
is undesirable in the bottom Transformer blocks and
2) hierarchical image processing captures multi-scale
interactions, we present a unified inference framework
called Delayed Spatial Merging (DSM).

• We extensively evaluate DSM on ViT and DeiT mod-
els of various scales (Tiny ∼ Huge) on ImageNet-1k
and transfer learning tasks. With no more than a 1%
drop in accuracy, our framework achieves 1.8× FLOP
reduction and 1.6× speedup on NVIDIA A6000 GPU.
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Figure 1. Connection between high-norm activation outliers and Attention Sinks on ViT-S. Left: Low-information background
tokens progressively collect most of the attention scores. Right: Such outlier tokens receive orders of magnitude higher attention values.
Critically, we observe the delay in which the outlier tokens begin to emerge, which inspires further investigation of the attention behavior.
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Figure 2. Illustration of Delayed Convergent Attention. The
first few attention blocks have decreasing similarity (computed
with Equation 2 on DeiT-S) and then it increases for the rest of the
network. It is desirable to merge tokens when they are becoming
similar (convergent), motivating the delayed merging scheme.

2. Delayed Spatial Merging
Tracing Attention Sinks in ViTs. Recently, high-norm
activation outliers have been observed in ViTs, which act as
registers that pool global information (Darcet et al., 2023;
Bondarenko et al., 2023). We find inspiration from the At-
tention Sink behavior from language models (Xiao et al.,
2023) to trace the source of such outliers. As in Figure 1,
we first verify that the high-norm outlier tokens in ViTs are
related to the Attention Sink behavior. Although initialized
according to a nearly uniform distribution, attention scores
are progressively accumulated on only a few background
tokens, leading to orders of magnitude differences between
scores of the outlier sink tokens and the other token. Inter-
estingly, we observe that there is an initial delay before the
attention sinks begin to emerge. This naturally raises two
questions: Why does this delay exist, and how does it affect
token merging?

2.1. Delayed Merging

Vanilla Token Merging. Transformer block in a ViT con-
sists of a multi-head attention (MHA) layer and a Feedfor-
ward Network (FFN) layer. For the l-th transformer block
in a network of depth L, the forward pass is expressed as

X̄l = Xl +MHA(Xl),Xl+1 = X̄l + FFN(X̄l), (1)

where Xl ∈ RN×C is the input sequence with N to-
kens, each with an embedding size of C. Token merging
is applied within each transformer block between MHA
and FFN. Given a sequence of n tokens (MHA layer
output), denoted by X̄l = [x1, ..., xn], a weighted com-
plete bipartite graph comprising two sets of nodes (tokens):
A = [x1, x3, ..., xn−1] and B = [x2, x4, ..., xn] is con-
structed. An edge between token a ∈ A and token b ∈ B
captures the cosine similarity between embeddings of a and
b. A weighted bipartite graph matching algorithm is then
applied to identify the set of r ≤ n/2 edges that have the
maximum weighted sum. The tokens associated with each
of these r edges are merged using a channel-wise weighted
average. Finally, the two sets A and B are combined to yield
a truncated sequence of tokens with r fewer tokens.

Characterizing Convergent Attention. We now investi-
gate how the delay in Attention Sinks affects token similarity
distribution. Intuitively, an ideal scenario to conduct token
merging would be when tokens are most similar to each
other (i.e., avoid forced merging of tokens when they are
dissimilar.) To quantify the degree of similarity among to-
kens, we adopt the token similarity metric which has been
widely used in text generation (Zhang et al., 2019):

Sim =
1

n (n− 1)

∑
i̸=j

xT
i xj

||xi||2||xj ||2
, (2)

A higher Sim score indicates that the tokens in the layer
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Figure 3. Left: The original Token Merging (ToMe) by Bolya et al. is globally applied to all tokens for all L transformer blocks. Right:
Motivated by the principles of convergent attention and spatial awareness, our proposed Delayed Spatial Merging (DSM) augments ToMe
by not merging in the initial D blocks, locally merging for T blocks, then globally merging for the rest of the network.

have similar embeddings. Interestingly as in Figure 2, the
initial blocks have tokens become less similar during atten-
tion (divergent attention) while after a certain point in the
ViT (a phase change starting at block 2), tokens consistently
become more similar (convergent attention). As merging
tokens that are in the process of diversifying is counterpro-
ductive, we delay merging until token embeddings stabilize
to exhibit the convergent attention behavior.

2.2. Spatial Merging

Hierarchical image processing is a fundamental technique
that spans a wide range of computer vision modeling from
semantic segmentation (Long et al., 2015), object detec-
tion (Jarrett et al., 2009; Lin et al., 2017), to 3D rendering
via Neural Radiance Fields (Barron et al., 2021). We in-
troduce the principle of hierarchical representations to to-
ken merging for the first time. The intuition is to capture
multi-scale interactions between visual tokens such that the
similarity (feature redundancy) search process can be done
in finer granularity.

Neighboring pixels in an image having stronger semantic
relationships with each other; for example, a picture of an
animal has contiguous body parts where spatial proximity
correlates well with semantic similarity. Instead of globally
searching for similar tokens, we constrain the search space
to local windows. The input tokens can be represented as
a 2D grid with dimensions (H, W), which we partition into
four equally-sized windows with dimension w. To minimize
the complexity, we set initial window size to w = 7 in all of
our experiments as it nicely divides 14×14 grid of tokens
(224×224 resolution w/ common patch size of 16). When
the number of tokens is not divisible by w, we apply padding
in the bottom right to retain the 2D formation.

Rather than a static window size w, we progressively incre-
ment the window size in every block. This is based on the

intuition that positional similarity, as positional embeddings
are added right before block 0, is most relevant in the ear-
lier part of the network. Thus, we increment the windows
every block until it equivalently reduces to global merging
(where the window is as big as the remaining 2D grid of
tokens). Windows can be stacked to efficiently merge to-
kens in parallel. This is possible because token merging is
applied independently for each example in a batch, and the
window dimension can be fused into the batch dimension
B: (B, H, W) → (B, H/w, w, W/w, w) → (B * H/w * W/w,
w, w). Efficient kernel implementation of the window stack
operation is possible as demonstrated in (Liu et al., 2021).

2.3. Unified Inference Framework

As in Figure 3, DSM augments the vanilla token merging
technique with delayed merging and localized merging. For
a network with depth L, we delay for D blocks, apply lo-
calized merging for T blocks with a window size of w, and
execute global merging for the rest of the network. The only
hyperparameter we tune is r, which is the number of tokens
to reduce in a single token merging layer; we further discuss
hyperparameter settings in Section B.

Table 1. Comparison to Prior Work. Our framework provides
competitive performance while being two orders of magnitude
faster. E2E training time is measured in a single 8 GPU node.

Top-1 GFLOP Epochs E2E (hrs)

DeiT-S 79.8 4.6 0 0

DynamicViT (Rao et al., 2021) 79.3 2.9 30 44.8
SPViT (Kong et al., 2021) 79.3 2.6 60 –
A-ViT (Yin et al., 2022) 78.6 2.9 100 76.4
E-ViT (Liang et al., 2022) 79.1 2.6 300 154.4
ATS (Fayyaz et al., 2022) 79.7 2.9 30 –
ToMe (Bolya et al., 2023) 79.4 2.7 300 102.2

Spatial Merging (Ours) 79.3 2.8 0 0
DSM (Ours) 78.6 2.5 0 0
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Figure 4. Model Sweep. We apply our inference framework to several state-of-the-art ViT models in a training-free fashion. DSM’s
hyperparameters are fixed via network architecture, only varying parameter r to produce Top-1 Acc. vs. GFLOP curves on ImageNet-1k.

Oxford-IIIT Pet Flowers102 FGVC-Aircraft CIFAR-100

acc@1 GFLOP im/s acc@1 GFLOP im/s acc@1 GFLOP im/s acc@1 GFLOP im/s

Baseline 92.12 17.57 404.53 98.13 17.57 407.27 81.12 17.57 408.88 91.10 17.57 402.51

r = 4 92.04 16.10 384.51 98.19 16.10 384.54 80.98 16.10 388.25 90.96 16.10 383.1
r = 8 92.01 14.46 431.37 97.95 14.46 430.18 80.95 14.46 436.20 91.01 14.46 431.72
r = 12 91.74 13.27 468.78 97.69 13.27 466.17 81.07 13.27 471.10 90.90 13.27 469.10
r = 16 91.55 11.96 517.05 97.45 11.96 513.75 80.38 11.96 518.86 90.76 11.96 517.76
r = 20 91.32 10.16 612.50 97.14 10.16 609.61 80.20 10.16 612.11 90.25 10.16 613.92

Table 2. Transfer Learning. Fine-tuned ViT-B accelerated with DSM consistently achieves 1.5× speedup across various datasets.

3. Experiments
We conduct our experiments on ImageNet-1K (Russakovsky
et al., 2015) to evaluate the effectiveness of our method in
accelerating off-the-shelf ViTs on classification tasks. Both
DeiT (Touvron et al., 2021) and ViT models trained with
AugReg (Steiner et al., 2021) are used to test the gener-
alizability of our method across different backbones and
training methods. The computational cost is measured in
FLOP with the Torchprofiler1 library. Inference throughput
is measured on an Nvidia RTX A6000 GPU with a fixed
batch size of 32 averaged over 50 runs.

As in Table 1, our DSM achieves competitive performance
while being two orders of magnitude faster than existing
approaches thanks to the training-free approach. For exam-
ple, E-ViT (Liang et al., 2022) takes around 154 single GPU
hours for one run. Since it requires running the method
for each target speedup, the cost of deploying to various
resource constraints can become quickly intractable.

In Figure 4, we apply our framework to ViT-[S, B, L] off-

1https://github.com/zhijian-liu/torchprofile

the-shelf with 224px and patch size 16. For each model, we
benchmark DSM against ToMe. We vary r to construct two
Pareto curves that compare Top-1 accuracy to #MACs and
throughput. Note, we sweep with higher r values with the
DSM to match the computational load of ToMe.

We can see that our framework consistently gives better re-
sults than ToMe, especially for smaller models. Remarkably,
we can save 45% and 42% of the FLOP within a 1% loss for
ViT-S and ViT-B, respectively. Relative to vanilla ToMe, it
can improve the accuracy by more than 1%. Yet, the success
of DSM inversely scales with model size, showing a negli-
gible gain for ViT-L. Compared to the success of DSM in
saving FLOP, the throughput gains are relatively marginal.
We think this is because the additional data movements,
such as sorting, padding, and modifying tensor dimensions,
cause a nontrivial overhead. Interestingly, this overhead is
less obvious for larger models, as the DSM curve shifts to
the right with better trade-off margins. With larger models
that executes heavy loads of matrix multiplications, comput-
ing becomes a bottleneck rather than data movement. This
makes the memory I/O overhead from localized marging
less evident for larger models.
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A. Related Work
A.1. Efficient Transformers

Notable progress has been made to reduce the high compu-
tational cost of neural networks and enable efficient deploy-
ment to resource-constrained environments. At the algorith-
mic level, methods such as model quantization (Shen et al.,
2020; Kim et al., 2021; Xiao et al., 2022), model pruning
(Han et al., 2015; Voita et al., 2019; Kurtic et al., 2022),
and knowledge distillation (Hinton et al., 2015; Beyer et al.,
2022) have gained popularity. Orthogonal to weight prun-
ing, token compression (Yin et al., 2022; Rao et al., 2021;
Liang et al., 2022) has shown that transformer inputs can be
dynamically pruned at inference time. In this paper, we fo-
cus on adaptive token compression techniques, where token
reduction decisions are conditioned on the input image.

A.2. Token Compression

Token Pruning accelerates the inference of ViT models
by discarding less important tokens. Various prior work
studies have worked on identifying such token redundancies.
DynamicViT (Rao et al., 2021), for example, trains a token
importance predictor using the Gumbel-Softmax distribu-
tion. A-ViT (Yin et al., 2022) learns about the importance
of tokens by introducing a loss function that penalizes un-
pruned tokens. E-ViT (Liang et al., 2022) uses attention
scores from the [CLS] token as the importance heuristic.
Although these methods are effective post-deployment, they
require costly retraining from scratch or finetuning from a
model checkpoint. In contrast, our work focuses on com-
pletely bypassing such usability barriers (Table 3).

Token Merging combines tokens instead of pruning them.
Prior works have attempted to fuse unimportant tokens into
a single token using custom heuristics (Kong et al., 2022) or
learnable MLP projections such as the TokenLearner (Ryoo
et al., 2021). Token pooling has also been proposed as a
downsampling method via merging (Marin et al., 2021);
however, its iterative k-means-based method is slow and
incompatible with the off-the-shelf models. ToMe (Bolya
et al., 2023), which was recently introduced as a token merg-
ing module utilizing a bipartite graph matching algorithm,
achieves comparable accuracy to token pruning without
any retraining. Our work makes a case for token merging
as a preferred building block for training-free acceleration
and makes improvements to push the pareto frontier of the
accuracy-efficiency trade-off.

A.3. Token Outliers

To improve the token merging technique, we tackle it from
the perspective of a recently observed token outlier problem,
which occurs in large transformer models for both vision and
language tasks. Token outliers were popularized in activa-
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Table 3. Comparison of different token compression techniques.
Our Delayed Spatial Merging (DSM) framework fully embraces
training-free acceleration.

Pretrain Finetune Training-free

DynamicViT (Rao et al., 2021) ✗ ✓ ✗
SPViT (Kong et al., 2021) ✗ ✗ ✗
A-ViT (Yin et al., 2022) ✗ ✓ ✗
E-ViT (Liang et al., 2022) ✓ ✓ ✗
ATS (Fayyaz et al., 2022) ✗ ✗ ✗

ToMe (Bolya et al., 2023) ✓ ✗ ✓†

DSM (Ours) ✗ ✗ ✓

† susceptible to accuracy degradation.

tion quantization research, where certain tokens or channels
have much higher activation magnitude than others (Xiao
et al., 2022; Dettmers et al., 2022; Lin et al., 2023; Heo
et al., 2023). Similarly, both supervised and unsupervised
ViTs have identified token outliers (Bondarenko et al., 2023;
Darcet et al., 2023), where they are characterized as low-
information background tokens that pool global information
(similar to the function of the [CLS] token).

The cause of token outliers can be traced back to the Soft-
max function in attention, where the attention must sum
up to one (Miller, 2023; Xiao et al., 2023). When the at-
tention head does not want to update the residual stream,
the head executes a “no-op” by attending heavily to a low-
information token (Bondarenko et al., 2023). In this work,
we confirm that the “attention sinks” caused by the Softmax
function are present–a fact that is subsequently used as a
foundation to explore the unique attention behavior in ViTs.

A.4. Training-Free Acceleration

For ViTs, most of the models used in classification tasks
are small (or tiny) variants in the ViT and DeiT model fami-
lies. Prior training-based token reduction techniques have
experimented with a focus on small models due to the high
training cost of larger models (Rao et al., 2021; Liang et al.,
2022). When considering the training and hyperparameter
tuning costs, the total computations can become unwieldy
for many researchers and practitioners (Steiner et al., 2021).
Motivated by the fact that the highest-performing models
are too expensive to compress, we propose a training-free
framework for compressing large ViTs. We take the
method’s speed as an equally important figure of merit as
the final model performance and constrain our solution to
be training-free. Our work addresses the following question:
How do we compress ViTs without expensive training to
realize high-accuracy inference models?

B. Detailed Methodology
DSM Hyperparameters. We fix the delay parameter D
to be the transition point where the convergent attention

behavior begins to emerge. That is, for a DeiT-S model with
a depth of 12, we choose D = 2 as the convergent attention
appears in the second block (ref. Figure 2. We visualize
additional networks in Figure 8 and Figure 9, where the
1/6th point of the network is generally the point at which the
attention behavior switches from divergent to convergent.

The localized merging parameter T can be fixed as a func-
tion of the window size w and the reduction rate r. This
is because localized merging with progressively increas-
ing window size naturally degenerates into global merging.
With gradual token merging, the sequence length becomes
smaller than the window size itself. Thus, increasing the
window size yields a partial localized merging that smoothly
transitions to global merging.

C. More Experiments
C.1. The Case for Merging

Before delving into our DSM evaluation, we first make a
more fundamental case that token merging is the right build-
ing block over token pruning for training-free ViT acceler-
ation. Off-the-shelf ViT models are commonly pretrained
with a dense token distribution (no token dropping). Thus, a
trained model “expects” to see not only task-relevant tokens
but also less relevant ones like background tokens. Less in-
formative tokens can also function as regularization, which
makes it risky to assume that less important tokens can be re-
moved without degrading the prediction performance. Thus,
token pruning may not be the optimal design choice for the
training-free setting.

Heuristics Ablation for Vanilla Token Compression. As
in Table 4, we empirically support the case for token merg-
ing by comparing pruning to merging with various impor-
tance criteria. For pruning, the lowest L2 norm is dropped;
for merging, the highest cosine similarity score is merged.
We observe that the output of attention block X is a surpris-
ingly good heuristic for pruning, but it lags merging options
by 2%. The K embedding criteria yield the highest perfor-
mance for merging. It best represents the tokens, even more
than X , which has a larger embedding size per token. This
may be due to of overparameterized embeddings, where
having more channels can result in noise. Since K has less
number of channels through the multi-head attention, its
compact representation can resolve this problem.

Heuristics Ablation for DSM. We ablate the best similarity
heuristic for our framework. As shown in Table 5, K is
the best choice. Random selection has the worst accuracy
while choosing any other heuristic leads to a worst accuracy-
throughput trade-off.
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Table 4. Prune vs. Merge comparison using ViT-L with r = 7.
Merging retains accuracy more effectively in training-free settings.
X is inside the attention block.

PRUNE MERGE

FEATURES ACC IM/S ACC IM/S

RANDOM 2.96 131.3 61.89 136.5
X 81.58 129.1 83.41 125.7
K 71.86 130.7 83.51 132.7
Q 73.65 130.3 83.25 131.3
V 78.9 130.3 83.44 132.3

Table 5. Design Choices. When DSM is applied to ViT-L with
r = 18, the K embeddings yield the best accuracy-throughput
trade-off.

RANDOM X K Q V

ACC 59.6 82.7 82.9 82.4 82.6
IM/S 589.1 552.2 591.5 589.2 589.5

Figure 5. Sharpness-minimized Models trained with the SAM
optimizer on ViT-B are more friendly to compression. It allows
1.6× throughput gain with the help of delayed merging (denoted
as D).

C.2. Main results

We also evaluate the efficacy of DSM against training-based
acceleration in various vision architectures that are not
transformer-based. CNNs are known to be more parameter-
efficient due to the weight-sharing nature of convolutions
and smaller peak memory (since it does not use quadratic
self-attention). As in Table 6, we observe that DeiT-S w/
DSM performs comparably in the accuracy-compute trade-
off with much more expensive methodologies such as Effi-
cientNet via Neural Architecture Search (Tan & Le, 2019).

Moreover, we conduct additional experiments for both larger
(ViT-H) and smaller (DeiT-Ti) models. Table 7 compares
DSM against ToMe using ViT-H and DeiT-T, respectively.

Figure 6. Effect of localized merging on throughput and accuracy.
We observe that higher use of localized merging leads to less
throughput due to the additional data movements. Yet, there is
a general sweet spot for L = 3, which is the default setting we
found using the increasing window technique.

Table 6. Comparison to convolution-based vision architectures.
Model Top-1 Speedup (↑)

DeiT-S 79.8 1×
EfficientNet-B2 (Tan & Le, 2019) 80.1 1.33×
EfficientNet-B3 (Tan & Le, 2019) 81.6 0.78×
ResNet-152 (He et al., 2016) 78.3 0.56×
RegNetY-4GF (Radosavovic et al., 2020) 80.0 1.23×
DeiT-S w/ DSM (r16) 79.6 1.5×
DeiT-S w/ DSM (r18) 79.4 1.6×

Table 7. Comparison of ViT-H and DeiT-T @ ImageNet-1k

V
IT

-H

∆ ACCURACY(%) THROUGHPUT (IMAGE/SEC) # MACS (G)

TOME -0.2 50.18 145.84
DSM -0.2 56.90 129.64

TOME -0.6 64.01 113.90
DSM -0.6 72.60 101.79

TOME -0.8 70.38 103.36
DSM -0.8 79.30 92.59

D
E

IT
-T

TOME -0.1 2457 1.18
DSM -0.1 2722 1.09

TOME -0.5 3020 0.93
DSM -0.5 3257 0.86

TOME -2.0 3881 0.69
DSM -2.0 4001 0.71

D. More Visualizations
In Figure 7, we show the input tokens belonging to the
final merged token. We use r = 24 for ToMe and r = 28
with D = 4 and w = 8 for our framework. Note that the
parameters are different since the resolution is higher. To
match the final token count, we do not merge the last block
in our framework. We see that in the second image, the face
of the Maltese is contiguously merged into a single token
for us, while ToMe separates out the nose. The same is true
for the body of a Huskey in the first photo and the people in
the center of the third photo, where our framework tends to
merge more contiguous tokens.
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Original

ToMe

Ours

Figure 7. Qualitative comparison of DSM to ToMe using a ViT-L384 model. Merged tokens share the same border and filling color. DSM
merges more contiguous patches that are semantically similar, leading to more interpretable outcomes that retain the original features.
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Figure 8. Delayed convergent attention phenomena is observed for various pretrained visual transformers. Attention block consistently
makes the tokens more similar after a certain threshold layer, which is around 1/6th of the network.
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Figure 9. Outlier tokens observed in different ViT architectures.
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Figure 10. Local merging with window partitioning is illustrated with a visual input.
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