
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOLD ONTO THAT THOUGHT: ASSESSING KV CACHE
COMPRESSION ON REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance on
long-context tasks, but are often bottlenecked by memory constraints. Namely,
the KV cache, which is used to significantly speed up attention computations,
grows linearly with context length. A suite of compression algorithms has been
introduced to alleviate cache growth by evicting unimportant tokens. However,
several popular strategies are targeted towards the prefill phase, i.e., processing
long prompt context, and their performance is rarely assessed on reasoning tasks
requiring long decoding. In particular, short but complex prompts, such as those in
benchmarks like GSM8K and MATH500, often benefit from multi-step reasoning
and self-reflection, resulting in thinking sequences thousands of tokens long. In this
work, we benchmark the performance of several popular compression strategies on
long-reasoning tasks. For the non-reasoning Llama-3.1-8B-Instruct, we determine
that no singular strategy fits all, and that performance is heavily influenced by
dataset type. However, we discover that H2O and our decoding-enabled variant
of SnapKV are dominant strategies for reasoning models, indicating the utility of
heavy-hitter tracking for reasoning traces. We also find that eviction strategies
at low budgets can produce longer reasoning traces, revealing a tradeoff between
cache size and inference costs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance on complex NLP tasks
that require multi-step reasoning. Unlike summarization tasks (Bai et al., 2023; Fabbri et al., 2021)
and keyword tracking tasks (Hsieh et al., 2024), which scale task complexity with context length,
reasoning benchmarks challenge models to generate answers that are not clearly contained in the
prompt. Such tasks include reading comprehension (Dua et al., 2019; Yu et al., 2020), commonsense
reasoning (Zellers et al., 2019; Talmor et al., 2018; Geva et al., 2021), first-order logic (Han et al.,
2022; Kwon et al., 2025), and mathematical problem-solving (Cobbe et al., 2021).

Reasoning benchmarks differ from long-context tasks in that they normally compel the LLM to
provide answers that are longer than the question itself. This can pose a serious resource problem
for the LLM, as past token key and value embeddings are maintained in memory to avoid redundant
attention calculations. This key-value (KV) cache grows linearly with sequence length, which
can result in memory blowup for older or single-GPU setups. Furthermore, specialized reasoning
models such as DeepSeek-R1 (Guo et al., 2025) and the Llama-Nemotron series are known to output
excessively long reasoning traces (Cai et al., 2025; Fatemi et al., 2025) which outnumber the length
of the prompt itself by hundreds to thousands of tokens.

To address the memory demands of long sequences, numerous KV cache compression methods have
been proposed. These techniques generally maintain a fixed KV cache size by selectively discarding
tokens deemed ”unimportant”. However, defining token importance” is non-trivial, and different
approaches rely on distinct heuristics: attention scores (Zhang et al., 2023; Liu et al., 2023; Li et al.,
2024), cosine similarity (Liu et al., 2024a; Han et al., 2023), embedding norms (Devoto et al., 2024),
and head-specific token-type preferences (Ge et al., 2023). Despite this variety, most evaluations of
cache compression have focused on long-context benchmarks such as LongBench (Bai et al., 2023)
and RULER (Hsieh et al., 2024), or on heterogeneous batteries like LM Eval Harness ((Gao et al.,
2024)), rather than tasks where the generation length, not the prompt, dominates memory usage.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we conduct a comprehensive assessment of the major state-of-the-art KV cache
compression strategies across eight reasoning benchmarks: FOLIO (Han et al., 2022), DROP (Dua
et al., 2019), GSM8K (Cobbe et al., 2021), MATH-500 (Lightman et al., 2023), ReClor (Yu et al.,
2020), StrategyQA (Geva et al., 2021), CommonSenseQA (Talmor et al., 2018), and OpenBookQA
(Mihaylov et al., 2018). Together, these benchmarks span four critical reasoning categories: reading
comprehension, common sense, logical reasoning, and mathematical reasoning. We evaluate these
strategies on Llama-3.1-8B-Instruct as well as four reasoning models: Llama-3.1-Nemotron-Nano-
8B-v1, DeepSeek-R1-Distill-Llama-8B, and DeepSeek-R1-Distill-Qwen-7B/14B. By focusing on
long-generation rather than long-prompt scenarios, our study fills a notable gap in the existing
literature. Our primary contributions are threefold:

A comprehensive benchmark: We conduct a comprehensive evaluation of major KV cache compres-
sion strategies, including StreamingLLM, H2O (Zhang et al., 2023), a decoding-enabled SnapKV
(Li et al., 2024), R-KV (Cai et al., 2025), and KNorm (Devoto et al., 2024), across a suite of eight
benchmarks spanning mathematical, logical, and commonsense reasoning. We evaluate over several
realistic settings, cache, and max token budgets for a single-GPU system.
Renewed attention for attention-based compression: Our analysis reveals that classical attention-
based “heavy-hitter” strategies, which evict tokens based on accumulated attention scores, signifi-
cantly outperform other methods, even defeating full-cache reasoning occasionally. Namely, this
includes H2O and our novel and simple extension of SnapKV (prompt-only compression method) to
a decoding-enabled variant, SnapKV-Decoding. Both methods, especially SnapKV-D, win over all
budgets and datasets for reasoning models.
A library for analyzing decoding compression: We implement a fork of the NVIDIA kvpress1

library, which adds support for decoding phase compression for any kvpress method. We add support
for R-KV and H2O to the kvpress. Our goal is to provide an open-source playground for analyzing
end-to-end KV cache compression strategies.

2 PRELIMINARIES

In this section, we briefly review the concepts of large language models, LLM inference and autore-
gressive generation, the KV cache, and the chain-of-thought (CoT) reasoning.

Transformer Architectures and Autoregressive Generation. Modern Large Language Models
(LLMs) predominantly operate as autoregressive, decoder-only Transformers (Vaswani et al., 2017;
Radford et al., 2019; Achiam et al., 2023; Touvron et al., 2023). This architecture generates text
sequentially, producing one token at a time by conditioning on the entire preceding sequence of
tokens, which includes both the initial prompt and any previously generated output (Brown et al.,
2020). Importantly, the model’s ability to maintain coherent and contextually relevant generation over
time is crucial to its capabilities, especially in tasks requiring reasoning or narrative development
(Lee et al., 2024; Zhang et al., 2025).

Self-Attention Mechanism and the KV Cache Bottleneck. During generation, a query (q) vector
for the current token is attends to a series of Key (k) and Value (v) vectors corresponding to every token
in the preceding context. In this process, notably, for the generation of every new token, the entire
sequence of Key and Value vectors for all previous tokens should be accessed. To avoid recomputing
these K-V pairs at each step, they are stored in the Key-Value (KV) cache, the size of which
grows linearly with the sequence length (n), resulting in an O(n) memory complexity that creates a
significant bottleneck. Formally, for a sequence of n tokens, we denote the query cache Qh

l ∈ Rn×d,
key cache Kh

l ∈ Rn×d, and value cache V h
l ∈ Rn×d, where d is the embedding dimension, l is

the layer, and h denotes a head for multi-head attention layers (Vaswani et al., 2017). The dot-
product self-attention mechanism is defined as Ah

l (Q
h
l ,K

h
l , V

h
l) = softmax(Qh

l (K
h
l)

⊤/
√
d)V h

l . To
avoid linear scaling with sequence length, token eviction methods, the key focus of work, discard
embeddings of previous tokens which are no longer “important” to the current decoding step.

1https://github.com/NVIDIA/kvpress

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Objective. A common objective to study the quality of an importance heuristic is to minimize
the deviation between the outputs of a non-evicted and evicted attention layer. More specifically,
let K̄h

l and V̄ h
l , respectively, denote an evicted key and value cache. We may interpret these

caches as sparse matrices by dropping all but B rows (the budget) of Kh
l and V h

l . Attention is
typically followed by multiplication with an output projector WO ∈ Rd×p and passage through
a 2-layer MLP F(x) := x + W2relu(W1x), where W1,W2 are trained hidden weights. Let x =
Ah

l (Q
h
l ,K

h
l , V

h
l) and x̄ = Ah

l (Q
h
l ,K

h
l , V

h
l). The objective of any KV eviction algorithm is to

minimize E[||F(x) − F(x̄)||2], where randomness is with regards to the attention distribution.
Guarantees on this error are scarce in the eviction landscape, with the most prominent presented for
heavy-hitter Scissorhands approach in Liu et al. (2023), which asserts an upper bound that scales
with 1−B/N , where N is the sequence length and assumes a heavy-tailed distribution of attention
scores, which is frequently observed (Devoto et al., 2024; Liu et al., 2024a; 2023). However, many
popular eviction strategies, such as StreamingLLM, KNorm, and PyramidKV are based on empirical
observations as opposed to attention-tracking and thus are currently not guaranteed.

Chain-of-Thought and Multi-Step Reasoning. While many long-context applications involve
processing long prompts, a critical class of tasks requires long-form generation from short and
complex prompts. Prompting strategies such as Chain-of-Thought (CoT) encourage models to
externalize their reasoning process, generating intermediate “thinking” steps that can extend for
hundreds or thousands of tokens to solve a problem (Wei et al., 2022; Wang et al., 2022). Benchmarks
such as GSM8K (Cobbe et al., 2021) are representative of this domain, where the path to the correct
answer necessitates a lengthy, self-generated chain of reasoning.

3 RELATED WORK

3.1 KV CACHE COMPRESSION

KV cache compression is a rich field of study composed of strategies ranging from quantization
(Hooper et al., 2024; Ashkboos et al., 2024; Liu et al., 2024b) to offloading methods that move the
entire cache to the CPU which is significantly less memory bound (Sun et al., 2024; Chen et al., 2024;
Tang et al., 2024). However, in this work, we are focused on strategies which maintain a constant
cache size, thus permitting arbitrary generation length.

3.1.1 TOKEN EVICTION

H2O

SnapKV

StreamingLLM

L2-Norm

Recent tokensAttention sinks

Prompt Generation

Keeps

Attention sinks

Recent tokens (prompt/generation)

Important prefill tokens (static)

All generation tokens

Dynamic Heavy-Hitters (prompt/generation)

Recent tokens (prompt/generation)

Low L2-norm tokens

Figure 1: A Conceptual Comparison of Token Retention Strategies in Different KV Cache Compres-
sion Methods. Each row illustrates a method’s logic for retaining tokens (colored) versus evicting
them (gray) from the KV cache during a long sequence divided into a prefill and decoding phase.

A primary line of research for mitigating the memory burden of the KV cache involves token eviction.
These methods aim to reduce the cache size by selectively removing or merging tokens deemed
less important. To achieve this, multiple approaches have been developed, including recency-based
approaches such as simple sliding window (Beltagy et al., 2020), importance-based methods that
retain ”attention sinks” or heavy-hitter tokens from the prompt (Xiao et al., 2023; Zhang et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2023; Li et al., 2024; Liu et al., 2023), dynamically adjustment of KV caches per layer for optimal
efficiency-utility balancing (Cai et al., 2024), redundancy-aware techniques that merge semantically
similar states (Cai et al., 2025). Figure 1 provides a conceptual comparison of the most important
approaches we cover in this work.

StreamingLLM’s (Xiao et al., 2023) strategy is to always maintain the KV states of the first few (e.g.,
four) tokens, which serve as the attention sinks, and combine them with a sliding window of the most
recent tokens (up to the available budget). H2O (Zhang et al., 2023) dynamically identifies important
or ”heavy hitter” tokens based on their cumulative attention scores received during generation. The
H2O cache is composed of two parts: a budget for the most recent tokens and a budget for the H2
tokens. SnapKV (Li et al., 2024) focuses primarily on compressing the KV cache of the initial
prompt during the prefill stage. SnapKV uses a small “observation window” at the end of the prompt
to predict importance. The attention scores from queries in this observation window are aggregated
to “vote” for important positions (heavy hitters) in the prefix. R-KV (Cai et al., 2025), designed for
reasoning trace compression, uses a combination of accumulated attention score and pair-wise key
cosine similarities to identify unimportant tokens. A distinct and computationally efficient approach,
which we refer to as the KNorm strategy (Devoto et al., 2024), bypasses the need for attention
scores entirely. Specifically, the authors observe that tokens whose key vectors have a low L2 norm
consistently attract high attention scores from subsequent queries.

3.2 BENCHMARKING REASONING

GSM8K (Grade School Math 8K) is a widely-used dataset of grade-school level math word problems
(Cobbe et al., 2021). More advanced challenges are drawn from the MATH-500 dataset (Lightman
et al., 2023), which contains competition-level problems across algebra, geometry, and number
theory. ReClor (Yu et al., 2020) is a reading comprehension dataset built from GMAT and LSAT
logical reasoning questions. Similarly, LogiQA (Liu et al., 2020) provides multiple-choice questions
from civil service exams that require a deep understanding of logical puzzles and deductions. For
evaluating capabilities in more formal systems, the FOLIO (Han et al., 2022) dataset assesses natural
language reasoning in the context of First-Order Logic (FOL). Beyond formal and mathematical
logic, a significant portion of research focuses on commonsense reasoning. StrategyQA (Geva et al.,
2021) tests a model’s ability to infer the implicit reasoning steps needed to answer a yes/no question
by asking for the underlying strategy. Another tested benchmarks is CommonsenseQA, which
tests a model’s ability to reason with general world knowledge. Finally, the integration of textual
understanding with quantitative skills is measured by benchmarks such as DROP (Dua et al., 2019).
This reading comprehension dataset is unique in that answering its questions requires performing
discrete operations like counting, sorting, or simple arithmetic directly on the information presented.

4 EXPERIMENTS & ANALYSIS

4.1 SETUP

KV Compression Methods. We test H2O, R-KV, StreamingLLM, KNorm, our own decoding-
variant of SnapKV which we call SnapKV-D, and ShadowKV (Sun et al., 2024). We note that
ShadowKV uses the CPU to offload the cache and thus is not a true compression strategy. However,
offloading strategies represent an important class of compression methods; thus, we include them as a
baseline. For SnapKV-D, we now allow the observation window to slide along the decoded sequence
at regular intervals (every window size w = 128) steps. This is detailed further in Appendix 10.
Further hyperparameter details are described in Appendix A.11.

Models. We test the base, non-reasoning Llama-3.1-8B-Instruct and three reasoning models:
DeepSeek-R1-Distill-Qwen-7B/14B, Nemotron-Nano-8B-v1 and DeepSeek-R1-Distill-Llama-8B.

Datasets. We divide our benchmark into 4 distinct groups: (1) Reading Comprehension: DROP,
ReClor; (2) Logical Reasoning: StrategyQA, FOLIO; (3) Commonsense Reasoning: OpenBookQA
(OBQA), CommonsenseQA (CSQA); (4) Math Reasoning: MATH-500, GSM8K. For each dataset,
we randomly sample 100 questions for two different seeds.

Performance. For benchmarking the individual compression strategies, we use the NVIDIA kvpress
library, which natively provides most of the targeted algorithms. We provide each dataset to each

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Llama-3.1-8B-Instruct. Varying compressions and budgets on a non-reasoning model.

Llama-3.1- GSM8K Math500 CSQA OBQA
8B-Instruct 128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512
Full 0.88 0.39 0.77 0.84
ShadowKV 0.32 0.22 0.20 0.31
H2O 0.63 0.77 0.82 0.83 0.30 0.33 0.33 0.36 0.74 0.76 0.77 0.77 0.83 0.86 0.86 0.86
Knorm 0.05 0.53 0.73 0.82 0.03 0.18 0.22 0.33 0.34 0.77 0.75 0.76 0.41 0.79 0.84 0.82
RKV 0.12 0.34 0.50 0.49 0.03 0.10 0.16 0.20 0.36 0.62 0.76 0.77 0.22 0.66 0.77 0.84
SnapKV 0.53 0.55 0.56 0.53 0.20 0.21 0.19 0.20 0.70 0.64 0.71 0.72 0.73 0.77 0.72 0.76
StreamingLLM 0.26 0.75 0.84 0.87 0.11 0.26 0.32 0.35 0.20 0.75 0.76 0.77 0.14 0.72 0.84 0.84

ReClor DROP StrategyQA FOLIO
128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512

Full 0.60 0.15 0.83 0.51
ShadowKV 0.27 0.28 0.68 0.33
H2O 0.32 0.56 0.60 0.58 0.12 0.14 0.17 0.17 0.81 0.87 0.88 0.89 0.22 0.43 0.41 0.43
Knorm 0.01 0.19 0.46 0.59 0.01 0.08 0.13 0.13 0.47 0.85 0.88 0.87 0.02 0.28 0.39 0.38
RKV 0.04 0.21 0.40 0.54 0.06 0.07 0.14 0.11 0.60 0.79 0.77 0.79 0.07 0.36 0.44 0.34
SnapKV 0.53 0.57 0.58 0.55 0.15 0.12 0.11 0.12 0.78 0.78 0.81 0.76 0.44 0.40 0.45 0.46
StreamingLLM 0.05 0.21 0.59 0.58 0.09 0.11 0.15 0.16 0.11 0.76 0.89 0.85 0.03 0.09 0.25 0.35

Table 2: Deepseek-R1-Distill-Qwen-7B. Performance using varying compressions and budgets.

Deepseek-R1- GSM8K Math500 CSQA OBQA
Distill-Qwen-7B 128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512
Full 0.70 0.47 0.67 0.78
ShadowKV 0.47 0.33 0.20 0.31
H2O 0.21 0.44 0.51 0.52 0.14 0.21 0.29 0.31 0.44 0.61 0.60 0.64 0.42 0.64 0.69 0.67
Knorm 0.00 0.00 0.08 0.16 0.00 0.01 0.03 0.05 0.05 0.13 0.30 0.42 0.03 0.05 0.23 0.38
RKV 0.04 0.07 0.18 0.30 0.04 0.04 0.05 0.17 0.10 0.09 0.27 0.34 0.10 0.10 0.21 0.26
SnapKV 0.67 0.67 0.70 0.71 0.38 0.36 0.36 0.32 0.65 0.62 0.59 0.61 0.71 0.75 0.68 0.76
StreamingLLM 0.02 0.19 0.32 0.44 0.03 0.12 0.19 0.26 0.08 0.14 0.31 0.48 0.02 0.11 0.28 0.37

ReClor DROP StrategyQA FOLIO
128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512

Full 0.45 0.16 0.67 0.36
ShadowKV 0.27 0.14 0.60 0.33
H2O 0.01 0.04 0.18 0.28 0.04 0.07 0.10 0.10 0.33 0.64 0.74 0.72 0.03 0.21 0.23 0.23
Knorm 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.03 0.00 0.12 0.44 0.59 0.00 0.01 0.03 0.05
RKV 0.04 0.03 0.02 0.01 0.04 0.04 0.03 0.04 0.05 0.14 0.34 0.42 0.04 0.03 0.02 0.06
SnapKV 0.45 0.39 0.40 0.43 0.13 0.11 0.12 0.16 0.60 0.59 0.57 0.63 0.30 0.25 0.31 0.29
StreamingLLM 0.00 0.01 0.01 0.04 0.04 0.05 0.08 0.13 0.00 0.05 0.22 0.42 0.00 0.01 0.02 0.03

model over the cache budgets {128, 256, 384, 512}. Each model is allowed to generate a maximum
of 2048 new tokens via greedy decoding. This token limit is enforced to better simulate a resource-
constrained setting for inference and also based on mean generation lengths reported in Table 7.. We
use author-recommended hyperparameters for all methods. Accuracy benchmarks were performed
on an HPC cluster using an NVIDIA RTX A6000 48GB GPU.

4.2 LATENCY EXPERIMENT

Although this benchmark is primarily concerned with accuracy, we assess the latency of our tested
methods in Figure 2 and Table 5 to gather a more complete picture of efficiency. StreamingLLM and
KNorm do not compute accumulated attention scores thus they incur less overhead than H2O and
SnapKV-D. These results concurs with the computational overhead summarized in Table 13.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Nemotron-Nano-8B. Performance using varying compressions and budgets.

Nemotron- GSM8K Math500 CSQA OBQA
Nano-8B 128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512
Full 0.64 0.45 0.51 0.64
ShadowKV 0.44 0.28 0.20 0.31
H2O 0.22 0.45 0.52 0.57 0.16 0.24 0.31 0.33 0.47 0.49 0.52 0.51 0.59 0.59 0.58 0.62
Knorm 0.01 0.02 0.09 0.18 0.01 0.01 0.03 0.06 0.36 0.40 0.44 0.46 0.32 0.44 0.48 0.57
RKV 0.04 0.03 0.09 0.15 0.02 0.04 0.03 0.06 0.28 0.30 0.42 0.41 0.35 0.44 0.51 0.51
SnapKV 0.65 0.63 0.66 0.66 0.41 0.44 0.45 0.43 0.49 0.50 0.51 0.53 0.68 0.63 0.66 0.66
StreamingLLM 0.03 0.20 0.40 0.53 0.02 0.13 0.22 0.34 0.36 0.44 0.46 0.50 0.36 0.46 0.52 0.62

ReClor DROP StrategyQA FOLIO
128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512

Full 0.48 0.11 0.89 0.36
ShadowKV 0.27 0.11 0.65 0.33
H2O 0.20 0.22 0.35 0.40 0.05 0.06 0.10 0.09 0.76 0.84 0.85 0.83 0.22 0.36 0.35 0.37
Knorm 0.01 0.03 0.07 0.07 0.01 0.01 0.02 0.03 0.38 0.55 0.68 0.76 0.03 0.04 0.07 0.13
RKV 0.03 0.08 0.08 0.07 0.02 0.06 0.05 0.03 0.42 0.45 0.64 0.71 0.06 0.08 0.11 0.14
SnapKV 0.42 0.42 0.42 0.37 0.11 0.11 0.12 0.10 0.83 0.85 0.84 0.84 0.38 0.42 0.41 0.41
StreamingLLM 0.03 0.06 0.09 0.14 0.03 0.02 0.06 0.08 0.24 0.39 0.52 0.69 0.03 0.03 0.06 0.15

Table 4: DeepSeek-R1-Distill-Llama-8B. Performance using varying compressions and budgets.

DeepSeek-R1- GSM8K Math500 CSQA OBQA
Distill-Llama-8B 128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512
Full 0.70 0.46 0.75 0.84
ShadowKV 0.51 0.34 0.20 0.31
H2O 0.37 0.53 0.62 0.61 0.20 0.31 0.36 0.36 0.48 0.72 0.73 0.73 0.48 0.78 0.83 0.84
Knorm 0.00 0.09 0.19 0.28 0.00 0.01 0.02 0.06 0.05 0.28 0.54 0.66 0.03 0.27 0.57 0.70
RKV 0.05 0.04 0.14 0.17 0.03 0.05 0.02 0.02 0.07 0.11 0.16 0.35 0.07 0.07 0.19 0.32
SnapKV 0.72 0.72 0.74 0.72 0.42 0.44 0.41 0.41 0.74 0.73 0.74 0.73 0.82 0.83 0.83 0.81
StreamingLLM 0.06 0.25 0.39 0.56 0.03 0.09 0.21 0.29 0.04 0.14 0.35 0.50 0.07 0.15 0.32 0.52

ReClor DROP StrategyQA FOLIO
128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512

Full 0.51 0.14 0.74 0.47
ShadowKV 0.27 0.09 0.80 0.33
H2O 0.03 0.08 0.23 0.38 0.06 0.07 0.10 0.11 0.25 0.69 0.77 0.79 0.07 0.37 0.41 0.46
Knorm 0.00 0.00 0.02 0.10 0.00 0.01 0.01 0.05 0.06 0.36 0.57 0.70 0.00 0.03 0.11 0.21
RKV 0.04 0.03 0.03 0.11 0.03 0.03 0.05 0.07 0.08 0.35 0.50 0.63 0.03 0.08 0.13 0.26
SnapKV 0.52 0.53 0.56 0.51 0.17 0.15 0.15 0.16 0.68 0.66 0.64 0.68 0.46 0.45 0.49 0.46
StreamingLLM 0.00 0.00 0.01 0.06 0.02 0.02 0.09 0.13 0.03 0.11 0.36 0.56 0.00 0.01 0.04 0.09

4.3 MAX TOKEN ABLATION

As explained in setup, we chose a max token length of 2048 both because we find that the mean token
length over datasets is under this budget and to better assess performance in a compute-bound setting.
However, we study the effect of max token limit on performance under a fixed budget of 1024 for
MATH500 for R1-Distill-Qwen7B in Figure 7. We find that performance improves significantly for
all methods initially, but then SnapKV-D overtakes all methods for all other max token limits.

4.4 LARGE MODEL COMPARISON

We determine whether our observed trends hold for a larger reasoning model, R1-Distill-Qwen-14B
in Table 6. We examine the performance of all methods on the more challenging GSM8K and
MATH500. Unsurprisingly, base accuracies do improve, but more importantly, we observe that again,
the heavy-hitter methods H2O and SnapKV-D outperform their competitors by a significant margin
indicating that larger reasoning models still benefit from attention-based eviction.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

128 256 384 512
0

0.1

0.2

0.3

0.4

0.5

Cache Budget
A

vg
.t

im
e

pe
rt

ok
en

(m
s)

h2o
knorm
snapkv

streaming llm

Figure 2: Latency vs Budget. Average generation time per token (ms) versus KV-cache budget
for eviction strategies. KNorm and StreamingLLM speed up markedly with larger budgets, H2O
improves more modestly, while SnapKV-D is slow at small budgets.

Table 5: End-to-end token throughput (tokens/s) on GSM8K. 50 sample average is reported.

Method / Budget 128 256 384 512

Full 30.71 30.71 30.71 30.71
H2O 25.81 23.41 23.93 25.16
Knorm 27.38 28.07 28.35 27.56
R-KV 29.10 27.72 28.55 30.04
StreamingLLM 27.04 27.55 27.12 29.39
SnapKV 27.46 25.57 26.24 27.60

Table 6: R1-Distill-Qwen14B. Cache budgets = [128, 256, 384, 512]. We examine the performance
of various compression methods for a larger reasoning model. Winner per budget in bold.

Method GSM8K MATH500
128 256 384 512 128 256 384 512

full 0.81 0.47
shadowkv 0.53 0.38
h2o 0.33 0.56 0.62 0.64 0.20 0.27 0.31 0.31
knorm 0 0.02 0.08 0.21 0 0 0 0.02
rkv 0.02 0.05 0.16 0.30 0.00 0.00 0.03 0.09
snapkv 0.80 0.82 0.81 0.78 0.43 0.44 0.42 0.45
streaming llm 0.07 0.27 0.50 0.59 0.02 0.17 0.26 0.35

4.5 CACHE BUDGET VS OUTPUT LENGTH

We study the effects of cache budget on output generation lengths in Figure 4. Fascinatingly, lower
budgets are capable of triggering longer reasoning traces, revealing a hidden tradeoff between cache
budget and inference costs specifically for reasoning models. KNorm, arguably the lowest performing
strategy, tends to cause the greatest elongation of outputs. In Section A.2, we examine one such
non-terminating output that demonstrates repetitive, dead-end chain-of-thought.

4.6 ATTENTION AS AN INDICATOR OF PERFORMANCE

All eviction methods tested propose to capture important tokens via ad-hoc strategies either explicitly
or implicitly relating to attention: H2O examines at accumulated attention across the entire sequence,
SnapKV examines attention with regards to an observation window, KNorm uses small key norms as
a proxy for high-attention, StreamingLLM retains recent tokens and the sink (initial) to effectively
approximate the attention distribution. We examine how much attention is actually lost through
these various compression methods. For this study, we compare the absolute difference between the
attention scores of each head pre- and post-eviction for GSM8K, which we refer to as attention loss
following other recent literature (Liu et al., 2024a; Devoto et al., 2024). The trend is striking: in order

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Total attention loss for H2O. (b) Total attention loss for KNorm.

(c) Total attention loss for SnapKV-D.
(d) Total attention loss for
StreamingLLM.

Figure 3: Attention Loss Heatmaps. We visualize attention loss at every compression step for a question in
GSM8K. The attention loss over each head is summed up over every layer. We observe that higher performance
correlates with less attention loss.

of least to most attention loss: SnapKV-D, H2O, StreamingLLM, and KNorm. This correlates with
average performance reported in Tables 2-4.

Figure 4: Budget vs Output Length. We observe that several compression methods, especially at lower budgets,
ultimate produce longer outputs than the base full cache model.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.7 ABLATION ANALYSIS & HIGH-LEVEL TRENDS

Attention is the most versatile estimator for reasoning models. SnapKV-D and H2O are the most
dominant, significantly outcompeting nearly all compression strategies across all budget constraints
and datasets for our reasoning models. These methods rely on accumulated attention scores to
determine the most important tokens to retain. (i.e., “heavy hitters”). While both maintain a recency
window, H2O is focused on heavy hitters with regard to the current token, while SnapKV (and
consequently, SnapKV-D) finds heavy hitters with respect to an observation window at the end of the
current sequence. The latter approach is more effective, routinely defeating H2O. The observation
window was previously known to work well for prompt compression, but not for long decoding.

To further verify the utility of heavy-hitters for reasoning, in Appendix A.4, we track how many
critical keywords for reasoning in GSM8K questions are present in the cache for each method, across
models and budgets. Table 8 demonstrates that SnapKV-D and H2O retain critical tokens at a higher
rate than other methods. Since they are exclusively focused on extracting heavy-hitters, this implies
that critical keywords display high accumulated attention throughout reasoning. Figure 5 shows that
the density of keywords in decoded context is much higher for uncompressed reasoning models versus
non-reasoning models, thus their maintenance in the cache is ostensibly crucial for computation.

No singular strategy is dominant for the non-reasoning Llama-3.1-8B-Instruct. For models that do
not produce reasoning traces, the optimal choice of strategy is dataset-dependent. For example, while
StreamingLLM excels at GSM8K, it is less effective on all other task types. While SnapKV-D and
H2O are capable of winning most settings for several datasets, other methods, such as KNorm and
StreamingLLM, can win. According to Figure 5, keywords occur at a lower density in non-reasoning
outputs, thus their maintenance might be less critical compared to reasoning outputs.

Eviction lags full cache performance for reasoning models. According to Table 1, all compression
strategies can defeat the full cache performance of Llama-3.1-8B-Instruct on at least one setting (with
H2O and SnapKV-D frequently achieving this). However, for reasoning models, this trend only holds
true for SnapKV-D. While H2O is still second best compared to other strategies, it significantly lags
full cache performance on nearly every dataset. As noted in Figure 4, H2O results in significantly
longer reasoning traces than SnapKV-D, which occasionally do not terminate.

Cache compression can cost more computation. Interestingly, according to Figure 4, eviction
strategies can result in more “talkative” reasoning models, generating noticeably longer sequences
compared to the full cache setting, while this does not occur for Llama-3.1-8B-Instruct. In Section A.2,
we show this phenomenon at work, where KNorm results in long circular babble for Deepseek-R1-
Distill-Llama-8B that never produces an answer. At lower budgets, eviction occurs more frequently,
resulting in a higher likelihood of critical token eviction, resulting in longer reasoning.

Practical Guidance. Although heavy-hitter methods dominate, selection of other methods may still
prove appropriate. We summarize key selection rules. (1) Regardless of method, avoid a micro-budget.
Performance stabilizes rapidly and very small budgets can counterintuitively increase the length of
the output. (2) For large budgets, B > 1024, StreamingLLM is superior with smaller max token
limits according to Figure 7. For any other budget and max token limit, SnapKV-D and H2O are
preferable. (3) Use a larger window size for SnapKV-D. This decreases the frequency of eviction
and, consequently, computational overhead with minimal performance differences (Table 10). (4) For
reasoning models, accumulated attention scores are a high-quality token importance metric, therefore,
lead with heavy-hitter methods for compression.

5 CONCLUSION

In this work, we comprehensively assessed the performance of several popular KV cache compression
strategies on reasoning tasks. For a non-reasoning model, we find that no singular method is dominant.
However, for reasoning models, we demonstrate that attention-based eviction methods such as H2O
and SnapKV-D perform extraordinarily well on a variety of reasoning tasks, even occasionally
exceeding full cache performance. Furthermore, this generalizes to a larger model, R1-Distill-Qwen-
14B. We also discover that it is possible, especially at lower budgets, for compression strategies to
produce longer reasoning traces, thus revealing an under-considered tradeoff between memory and
inference costs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

We do not anticipate any notable negative societal impacts stemming from this results discussed
in this work. However, we do note that KV cache compression is capable of altering outputs and
thus must be exercised with care in sensitive domains to ensure that content is not produced which
significantly deviates from uncompressed models.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne Xiong,
Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-
Wen Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free
reasoning models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l 2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Alexander R Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. Summeval: Re-evaluating summarization evaluation. Transactions of the
Association for Computational Linguistics, 9:391–409, 2021.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning. arXiv preprint arXiv:2504.05185, 2025.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

10

https://zenodo.org/records/12608602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao Sun,
Tianzhu Ye, Li Dong, et al. Seerattention-r: Sparse attention adaptation for long reasoning. arXiv
preprint arXiv:2506.08889, 2025.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346–361, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869,
2023.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Yejin Kwon, Daeun Moon, Youngje Oh, and Hyunsoo Yoon. Logicqa: Logical anomaly detection
with vision language model generated questions. arXiv preprint arXiv:2503.20252, 2025.

Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang,
Sejin Kim, and Sundong Kim. Reasoning abilities of large language models: In-depth analysis on
the abstraction and reasoning corpus. ACM Transactions on Intelligent Systems and Technology,
2024.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Minghui Liu, Tahseen Rabbani, Tony O’Halloran, Ananth Sankaralingam, Mary-Anne Hartley,
Furong Huang, Cornelia Fermüller, and Yiannis Aloimonos. Hashevict: A pre-attention kv cache
eviction strategy using locality-sensitive hashing. arXiv preprint arXiv:2412.16187, 2024a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. Reclor: A reading comprehension dataset
requiring logical reasoning. arXiv preprint arXiv:2002.04326, 2020.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
Yuxing Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and
natively trainable sparse attention. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 23078–23097, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. Ratt: A
thought structure for coherent and correct llm reasoning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 26733–26741, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 GENERATION LENGTHS

In Table 7, we report the mean generation lengths for all methods across and models on MATH-500,
the dataset which elicits the longest responses. To keep these tables concise, we averaged output
lengths over all budgets.

Table 7: Mean output tokens generated by different models under various strategies for Math500.

Strategy Model Mean Output Tokens
full Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1616.275
full deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1727.18
full deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1728.84

h2o Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1753.4075
h2o deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1763.805
h2o deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1767.7275

knorm Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1987.80875
knorm deepseek-ai--DeepSeek-R1-Distill-Llama-8B 2001.07625
knorm deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1967.4575

snapkv Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1667.895
snapkv deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1790.165
snapkv deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1794.0275

streaming llm Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1375.70375
streaming llm deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1655.0375
streaming llm deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1698.25625

A.2 A VERBOSE, WRONG ANSWER

Below, we present a verbose, incorrect answer generated for Deepseek-R1-Distill-Llama-8B via
KNorm on a budget of 256 tokens.

Define:

- Let a be the value of a small button (SB).
- Then, 1 SS = a
- 1 large button (LB) is worth 3 small buttons, so LB = 3a
- Alternatively, 1 LB = 3a
- 1 LS can be converted to 1 LB or 3 SS, so 1 LS = 1 LB or 3*(1a)? Wait,

small stickers themselves are worth 1a.

Hold on, perhaps clarifying units.

Wait, sorry, the problem states:

"Lorraine has ... stickers and large buttons..."

Wait, maybe it’s better to model it with equations.

Let me denote:

- Value of 1 small sticker = x
- Then, 1 medium sticker would be higher, but in our case, 1 large

sticker (LS) is worth either 1 large button (LB) or 3 small buttons (
SB).

But we don’t know whether a small button is same as a small sticker? Let’
s see.

The problem says:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 8: Strategy vs. Critical Token Retention Rate. Cache budgets (MB) = [128, 256, 384, 512]. Models:
Llama-3.1-8B-Instruct (ML), DeepSeek-R1-Distill-Qwen-7B (DQ), Nemotron-Nano-8B-v1 (LN), DeepSeek-
R1-Distill-Llama-8B (DL).

Benchmark
ML DQ LN DL

128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512
GSM8K full 77.84 77.46% 81.62% 75.59%

h2o 68.11% 68.11% 69.19% 70.27% 72.30% 72.30% 73.24% 74.18% 68.11% 68.11% 69.19% 70.27% 71.61% 71.61% 72.30% 72.30%
knorm 68.11% 68.11% 69.19% 69.73% 67.60% 67.60% 68.72% 69.27% 65.48% 65.48% 66.67% 67.26% 68.11% 68.11% 69.19% 69.73%
SnapKV 68.11% 68.11% 68.65% 69.73% 72.30% 72.30% 73.24% 74.18% 68.11% 68.11% 69.19% 70.27% 68.11% 68.11% 69.19% 70.27%
streaming llm 67.03% 67.03% 67.57% 69.73% 71.36% 71.36% 72.30% 73.24% 67.03% 67.03% 68.11% 69.19% 67.03% 67.03% 68.11% 69.19%

- A large button is worth three small stickers. So 1 LB = 3 SS.

So, 1 SS = 1/3 LB.

Or, alternatively, 1 LB = 3 SS.

So, yeah, 1 LB = 3 SS.

On the flip side, 1 LS can be either 1 LB or 3 SS.

But note that 1 LB is equal to 3 SS.

So, the question becomes:

Traders use sticker-based currencies.

Given that, let me

A.3 LLM USAGE

We used LLMs to stylize tables and figures. We also used LLMs to polish grammar but not to produce
any writing itself.

A.4 RETENTION OF CRITICAL TOKENS

To understand why reasoning oriented models such as DeepSeek-R1-Distill-Qwen-7B and DeepSeek-
R1-Distill-Llama-8B exhibit different performance patterns, we evaluate GSM8K questions and
measure how well critical tokens (e.g., names, quantities, and key entities) are retained in the KV
cache at the final decoding step. Table 8 reports the critical token retention rate, defined as the
fraction of critical tokens that remain available in the cache at the end of generation. Figure 5 further
visualizes a randomly selected GSM8K example, highlighting which critical tokens persist in the
cache and how they appear in the model’s final answer. From both the quantitative results and the
visualization, we observe that reasoning models consistently retain a larger proportion of critical
tokens than standard instruction tuned baselines. In particular, reasoning models tend to preserve task
relevant concepts such as minutes, day, and similar numerical or semantic anchors, suggesting that
they rely more directly on these tokens throughout the multistep reasoning process.

We find that reasoning-trained models consistently retain a larger proportion of critical tokens
compared with standard instruction-tuned models. Both the numerical metrics and qualitative
visualizations indicate that reasoning models rely more heavily on these critical tokens throughout the
problem-solving process. In the example visualization, the reasoning model generates more critical
tokens in its final answer, which helps explain why heavy-hitter or attention-based token-retention
strategies are particularly effective for reasoning models: critical tokens tend to persistently exhibit
high-attention throughout decoding.

This observation directly supports our main conclusion that accumulated attention is the most effective
importance heuristic for reasoning eviction. Since RL-distilled reasoning models naturally focus on
preserving critical tokens, methods such as H2O and SnapKV-D yield larger performance gains by
ensuring those tokens remain in the KV cache. In contrast, non-reasoning models do not exhibit this

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Okay, so I need to figure out how many minutes Kim slept on her

bed that day . Let me start by understanding all the information

given.

Firstly, normally Kim goes to sleep at 10 p.m. (which is 2 2 :00)

and wakes up at 6 a.m. next morning (which would be 6 :00). So

let's calculate her usual total sleeping time first before

considering to day 's anomaly because sometimes it helps have

some context.

From 10 p.m. to midnight is 2 hours, which is 1 2 0 minutes.

Then from midnight to 6 a.m. is another 6 hours, which is 3 6 0

minutes.

So altogether, normal sleeping duration is 1 2 0 + 3 6 0 = 480

minutes each night.

But one day , something different happened. On this particular

day :

- She went to sleep as usual? Or maybe not... Wait, no the

problem says "that day " meaning only that specific instance

where we're analyzing what happened differently.

Wait let me read again carefully:

"She installed a camera ... Kim usually goes to sleep at 10 p.m.,

but that day , she found herself waking up 5 minutes earlier than

usual." Hmm...

DeepSeek-Distill-Qwen-7B

\## Step 1: Determine normal bedtime and wake-up time

Normal bedtime for Kim is 10 p.m., and normal wake-up time is 6

a.m.

\## Step 2 : Calculate total number of minutes slept normally per

night

There are 8 hours between 10 p.m. and 6 a.m. Since there are 6 0

minutes in an hour, this means that under normal circumstances,

Kim sleeps for (8 * 6 0) = 480 minutes every night.

\## Step 3: Find out how early Kim went to sleep that particular

evening.

Since Kim fell asleep while sleepwalking from 2:15 to 2:38 AM but

actually started waking up 5 minutes before regular wake-up time,

we need to determine what time it would be if she had gone to bed

at the normal time instead of falling asleep during the middle of

the night.

\## Step 4: Convert wake-up times into just minutes past midnight

For calculation purposes, let's convert all relevant times into

minutes since midnight:

- Normal wake-up time is 6 a.m., which equals 3 6 0 minutes past

midnight (since 1 2 am = 0).

- Sleep period due to being awake early: From 2:15 A.M. till 2:38

A.M. is (2 3 *6 0)+ 15 =1 38 9+ 15 =1404 minutes past midnight

Meta-Llama3-8B-Instruct

Figure 5: A generated answer by DeepSeek-R1-Distill-Qwen-7B and Meta-Llama3-8B-Instruct. Critical
tokens rendered in blue and red boxes respectively. Reasoning models outputs contain a higher density of critical
tokens. Prompt: Kim sleepwalks, to monitor her sleeping hours, she installs a camera in her room. Kim usually
goes to sleep at 10 p.m. and wakes up at 6 a.m. She is a sleepwalker. One day, after reviewing the cameras,
she finds that she woke up that day and was sleepwalking from 2:15 to 2:38 am. Also, that day she woke up 5
minutes earlier than usual to go to the bathroom. How many minutes did she sleep on her bed that day?

strong reliance on critical tokens, so no single cache-retention strategy is universally optimal across
model types.

A.5 MEMORY PERFORMANCE ANALYSIS

In this section, we report the peak memory usage between methods.

Table 9: Peak allocated GPU memory (GB) by press and cache budget on GSM8K.

press 128 256 384 512

Full 14.88 14.88 14.88 14.88
H2O 14.81 14.81 14.82 14.83
KNorm 14.79 14.80 14.81 14.83
R-KV 14.80 14.81 14.83 14.84
StreamingLLM 14.79 14.80 14.81 14.83

A.6 WINDOW SIZE

SnapKV-D using a sliding window of fixed size w to determine critical tokens. In particular, after the
budget is filled to capacity, every w decoding steps, SnapKV-D measures the attention scores of all
current tokens in the cache against the w most recent tokens (the aggregation is described in (Li et al.,
2024)). Those with the lowest scores are dropped to meet the budget again.

In our core experiments, we set w = 128, which is recommended by both the authors and the kvpress
library. We perform an ablation size over window size in Table 10 The effects are only noticeable
at lower budgets, where smaller window size forces more frequent re-assessment of critical tokens
in the cache, thus maintaining tokens more relevant to incoming context. However, this costs more
overhead: if the total decoded output is length N , we are performing N/w applications of SnapKV-D.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 10: Model Performance across Cache Budgets and Window Sizes for SnapKV

Cache Budget
Model Window Size 128 256 384 512

deepseek-ai/DeepSeek-R1-Distill-Llama-8B

16 0.71 0.69 0.80 0.69
32 0.74 0.71 0.73 0.73
64 0.72 0.72 0.74 0.72
128 0.72 0.69 0.75 0.70

Nvidia/Llama-3.1-Nemotron-Nano-8B-v1

16 0.71 0.69 0.66 0.66
32 0.71 0.66 0.68 0.67
64 0.65 0.63 0.66 0.66
128 0.72 0.73 0.72 0.67

deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

16 0.74 0.68 0.65 0.67
32 0.69 0.71 0.68 0.68
64 0.67 0.67 0.70 0.71
128 0.66 0.65 0.70 0.72

Our results illustrate that for larger budgets, wider window sizes should be used since this both
improves accuracy and reduces computation.

A.7 PYRAMIDKV ANALYSIS

PyramidKV is a dynamic KV-cache compression method that is built around the idea of pyramidal
information funneling: in early Transformer layers, attention is spread broadly over many tokens,
while in deeper layers it becomes concentrated on a small subset of salient tokens. Under a fixed
overall KV budget, PyramidKV therefore allocates larger cache sizes to lower layers and progressively
smaller caches to higher layers, forming a pyramid-shaped retention profile across depth. Within
each layer, it uses attention patterns to decide which keys and values to keep (e.g., tokens that are
strongly attended to by query/instruction tokens are preferentially retained), so that the cache focuses
on the most informative context while still substantially reducing memory usage.

Budget

Dataset Model 128 256 384 512

GSM8K
gsm8k DeepSeek-R1-Distill-Llama-8B 0.01 0.01 0.10 0.22
gsm8k DeepSeek-R1-Distill-Qwen-7B 0.00 0.03 0.09 0.25
gsm8k Meta-Llama-3.1-8B-Instruct 0.03 0.38 0.72 0.79
gsm8k Llama-3.1-Nemotron-Nano-8B-v1 0.01 0.01 0.03 0.20

MATH500
math500 DeepSeek-R1-Distill-Llama-8B 0.00 0.00 0.00 0.00
math500 DeepSeek-R1-Distill-Qwen-7B 0.00 0.01 0.01 0.06
math500 Meta-Llama-3.1-8B-Instruct 0.01 0.05 0.16 0.25
math500 Llama-3.1-Nemotron-Nano-8B-v1 0.02 0.02 0.04 0.04

Table 11: Test accuracy on the GSM8K and MATH500 test sets for each model and KV-cache budget. Budgets
(128, 256, 384, 512) index the maximum KV-cache size in tokens, and each cell reports the corresponding
accuracy at that budget.

A.8 COMPARISON WITH A SPARSE ATTENTION METHOD

Although our main benchmark evaluates KV Cache pressing methods, we extend our study to compare
these results with other architectural categories, such as sparse attention methods. Such methods
(Gao et al., 2025; Yuan et al., 2025) train their architectures to enforce sparse attention computations
by learning to identify and cluster critical tokens. This is in contrast to eviction methods which are
generally training-free. Furthermore, these methods are not memory-bound and host the full KV
cache.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We perform a comparative evaluation of sparse decoding modeling with SeerAttention using the
SeerAttention-Decode-R1-Distill-Qwen-14B model and present results in Table 12.
This analysis is performed on the GSM8K benchmark using a randomly sampled subset of 100
questions. We can see that SnapKV-D and SeerAttention are close in performance with SnapKV-D
as slightly better. Further note that SeerAttention must maintain the full cache which scales with
sequence length, while SnapKV-D maintains a fixed size cache.

Table 12: SeerAttention-R1-Distill-Qwen14B. Cache budgets = [128, 256, 384, 512]. We examine the
performance of SeerAttention together with H2O and SnapKV-D. Winner per budget in bold.

Method GSM8K
128 256 384 512

H2O 0.33 0.56 0.62 0.64
SnapKV-D 0.80 0.82 0.81 0.78
SeerAttention 0.66 0.80 0.82 0.70

A.9 COMPUTATIONAL OVERHEAD

In this section, we describe the asymptotic computational overhead of each method. More specifically,
in Table 13, we report the computational complexity of cache eviction throughout the decoded
sequence. Once the cache is evicted down to the budget B, the attention calculation is Od(1) (since
there are only B tokens of dimension d to compute attention over). Thus, we are interested in
comparing the complexity of evaluating token importance itself.

Any method relying on accumulated attention scores (H2O & SnapKV-D) incurs a greater cost.
StreamingLLM and KNorm are comparatively cheap; the former just keeps a few sink tokens and
recent context, while the latter simply evicts the token with the largest key norm. These latencies are
reflected accordingly in Figure2.

Table 13: Decoding computational overhead of importance estimation for our tested KV cache compression
methods. B is the cache budget, N is the decoded sequence length, and d the key dimension. For simplicity, we
are assuming that the budget is filled after pre-fill and that each attention layer is single-head.

Method Overhead Approach

StreamingLLM O(1) Maintain sink token + recent tokens.
H2O O(NBd) Next token in, token in cache with lowest average accumulated attention

score is out.
SnapKV-D O(N

w
Bd) Keep the next window of w tokens, evict tokens in the cache with low

accumulated attention score against the window.
R-KV O(N

w
B2d) Measures token redundancy (key cache self-product) and accumulated

attention scores against the query every w steps.
Knorm O(N) Evicts the token in the cache with the largest ℓ2 norm.

A.10 THE TRANSFORMER DECODER ARCHITECTURE AND INFERENCE

We visualize decoder-only inference and the role of the cache. Figure 6 (a) exhibits the Q, K, and V
vectors along with the self-attention mechanism. Figure 6 (b) demonstrate the decoding KV cache
bottleneck on memory.

A.11 HYPERPARAMETER DETAILS

In this section, we describe the hyperparameter details for all eviction methods. We tend towards the
default hyper-parameters set by KVPress, which are typically author-recommend selections.

H2O: H2 tokens kept

PyramidKV: window size 64, kernel size 5, β = 20

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

…

Q
u

er
ie

s
K

ey
s

V
al

u
es

…

Multi-Head Attention (MHA)

K
-V

 p
ai

rs

…
layer 1
layer 2

layer l

…

Prefilling Decoding

Growing KV lookup sizes for next token generation

(a) (b)

Figure 6: Overview of the Transformer Decoder Architecture and the Inference Bottleneck. (a) The
standard Transformer decoder architecture (left) and the Multi-Head Attention (MHA) mechanism (right). In
MHA, Query vectors representing the current context attend to a sequence of Key-Value (K-V) pairs from
all previous tokens. Such K-V pairs form the basis of the KV cache. (b) The two-phase inference process in
autoregressive generation. During Prefilling, the tokens in the input context are processed in parallel to populate
the initial KV cache across all layers. During Decoding, each new token is generated sequentially. This requires
recomputing the entire set of the preceding KV entries at each step, causing the lookup size to grow linearly
with the sequence length.

StreamingLLM: Sink retention, first 4 tokens.

SnapKV-D: Observation window size 128.

KNorm: k = 2

R-KV: window size 8, buffer interval 128, kernel size 5.

A.12 MAX TOKEN ABLATION

We study the effects of max token limit on performance under a fixed budget of 1024 tokens. Results
are presented in Figure 7.

2048 5096 10192
Max New Tokens

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Max Token Ablation for R1-Qwen-7b on Math500
snapkv
knorm
streaming_llm
h2o

Figure 7: Performance versus max tokens permitted. Fixed budget of 1024.

A.13 CONFIDENCE INTERVALS

For each configuration (model, dataset, cache budget, method), we estimate uncertainty by computing
a binomial confidence interval over correctness across runs, as shown in Table 14. Specifically, we
evaluate 3 independent seeds, each on 100 questions, and treat the resulting 300 binary outcomes
(correct/incorrect) as Bernoulli trials with unknown success probability. The sample accuracy for
that configuration is the proportion of correct answers over these 300 trials, and we then compute
a 95% Wilson score confidence interval for this underlying accuracy parameter (using the normal

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

approximation with z = 1.96. The table cells in this appendix report only these Wilson intervals
[L,U], omitting the point estimates, which are shown separately in the main results Tables 1-4.

Table 14: Confidence intervals across cache budgets (Continuous)

Budget 128 256 384 512 128 256 384 512

Llama-3.1-8B-Instruct
Method GSM8K Math500

Full [0.838, 0.912] [0.337, 0.446]
ShadowKV [0.270, 0.375] [0.177, 0.270]
H2O [0.574, 0.683] [0.719, 0.814] [0.773, 0.859] [0.783, 0.868] [0.251, 0.354] [0.279, 0.385] [0.279, 0.385] [0.308, 0.416]
Knorm [0.031, 0.081] [0.473, 0.586] [0.677, 0.777] [0.773, 0.859] [0.016, 0.056] [0.141, 0.227] [0.177, 0.270] [0.279, 0.385]
RKV [0.088, 0.162] [0.289, 0.395] [0.444, 0.556] [0.434, 0.546] [0.016, 0.056] [0.071, 0.139] [0.123, 0.206] [0.159, 0.249]
SnapKV [0.473, 0.586] [0.493, 0.605] [0.503, 0.615] [0.473, 0.586] [0.159, 0.249] [0.168, 0.260] [0.150, 0.238] [0.159, 0.249]
StreamingLLM [0.214, 0.312] [0.698, 0.796] [0.794, 0.877] [0.827, 0.903] [0.079, 0.150] [0.214, 0.312] [0.270, 0.375] [0.298, 0.406]

Method CSQA OBQA

Full [0.719, 0.814] [0.794, 0.877]
ShadowKV [0.159, 0.249] [0.260, 0.364]
H2O [0.688, 0.786] [0.709, 0.805] [0.719, 0.814] [0.719, 0.814] [0.783, 0.868] [0.816, 0.895] [0.816, 0.895] [0.816, 0.895]
Knorm [0.289, 0.395] [0.719, 0.814] [0.698, 0.796] [0.709, 0.805] [0.356, 0.466] [0.740, 0.832] [0.794, 0.877] [0.773, 0.859]
RKV [0.308, 0.416] [0.564, 0.673] [0.709, 0.805] [0.719, 0.814] [0.177, 0.270] [0.605, 0.711] [0.719, 0.814] [0.794, 0.877]
SnapKV [0.646, 0.749] [0.584, 0.692] [0.656, 0.758] [0.667, 0.768] [0.677, 0.777] [0.719, 0.814] [0.667, 0.768] [0.709, 0.805]
StreamingLLM [0.159, 0.249] [0.698, 0.796] [0.709, 0.805] [0.719, 0.814] [0.105, 0.184] [0.667, 0.768] [0.794, 0.877] [0.794, 0.877]

Method ReClor DROP

Full [0.544, 0.654] [0.114, 0.195]
ShadowKV [0.223, 0.323] [0.232, 0.333]
H2O [0.270, 0.375] [0.503, 0.615] [0.544, 0.654] [0.523, 0.634] [0.088, 0.162] [0.105, 0.184] [0.132, 0.217] [0.132, 0.217]
Knorm [0.003, 0.029] [0.150, 0.238] [0.404, 0.517] [0.534, 0.644] [0.003, 0.029] [0.054, 0.116] [0.097, 0.173] [0.097, 0.173]
RKV [0.023, 0.069] [0.168, 0.260] [0.346, 0.456] [0.483, 0.596] [0.038, 0.093] [0.046, 0.105] [0.105, 0.184] [0.079, 0.150]
SnapKV [0.473, 0.586] [0.513, 0.625] [0.523, 0.634] [0.493, 0.605] [0.114, 0.195] [0.088, 0.162] [0.079, 0.150] [0.088, 0.162]
StreamingLLM [0.031, 0.081] [0.168, 0.260] [0.534, 0.644] [0.523, 0.634] [0.063, 0.128] [0.079, 0.150] [0.114, 0.195] [0.123, 0.206]

Method StrategyQA FOLIO

Full [0.783, 0.868] [0.454, 0.566]
ShadowKV [0.625, 0.730] [0.279, 0.385]
H2O [0.762, 0.850] [0.827, 0.903] [0.838, 0.912] [0.850, 0.921] [0.177, 0.270] [0.375, 0.487] [0.356, 0.466] [0.375, 0.487]
Knorm [0.414, 0.527] [0.805, 0.886] [0.838, 0.912] [0.827, 0.903] [0.009, 0.043] [0.232, 0.333] [0.337, 0.446] [0.327, 0.436]
RKV [0.544, 0.654] [0.740, 0.832] [0.719, 0.814] [0.740, 0.832] [0.046, 0.105] [0.308, 0.416] [0.385, 0.497] [0.289, 0.395]
SnapKV [0.730, 0.823] [0.730, 0.823] [0.762, 0.850] [0.709, 0.805] [0.385, 0.497] [0.346, 0.456] [0.395, 0.507] [0.404, 0.517]
StreamingLLM [0.079, 0.150] [0.709, 0.805] [0.850, 0.921] [0.805, 0.886] [0.016, 0.056] [0.063, 0.128] [0.204, 0.302] [0.298, 0.406]

Deepseek-R1-Distill-Qwen-7B
Method GSM8K Math500

Full [0.646, 0.749] [0.414, 0.527]
ShadowKV [0.414, 0.527] [0.279, 0.385]
H2O [0.168, 0.260] [0.385, 0.497] [0.454, 0.566] [0.464, 0.576] [0.105, 0.184] [0.168, 0.260] [0.242, 0.344] [0.260, 0.364]
Knorm [0.000, 0.013] [0.000, 0.013] [0.054, 0.116] [0.123, 0.206] [0.000, 0.013] [0.003, 0.029] [0.016, 0.056] [0.031, 0.081]
RKV [0.023, 0.069] [0.046, 0.105] [0.141, 0.227] [0.251, 0.354] [0.023, 0.069] [0.023, 0.069] [0.031, 0.081] [0.132, 0.217]
SnapKV [0.615, 0.721] [0.615, 0.721] [0.646, 0.749] [0.656, 0.758] [0.327, 0.436] [0.308, 0.416] [0.308, 0.416] [0.270, 0.375]
StreamingLLM [0.009, 0.043] [0.150, 0.238] [0.270, 0.375] [0.385, 0.497] [0.016, 0.056] [0.088, 0.162] [0.150, 0.238] [0.214, 0.312]

Method CSQA OBQA

Full [0.615, 0.721] [0.730, 0.823]
ShadowKV [0.159, 0.249] [0.260, 0.364]
H2O [0.385, 0.497] [0.554, 0.663] [0.544, 0.654] [0.584, 0.692] [0.366, 0.477] [0.584, 0.692] [0.636, 0.740] [0.615, 0.721]
Knorm [0.031, 0.081] [0.097, 0.173] [0.251, 0.354] [0.366, 0.477] [0.016, 0.056] [0.031, 0.081] [0.186, 0.281] [0.327, 0.436]
RKV [0.071, 0.139] [0.063, 0.128] [0.223, 0.323] [0.289, 0.395] [0.071, 0.139] [0.071, 0.139] [0.168, 0.260] [0.214, 0.312]
SnapKV [0.594, 0.702] [0.564, 0.673] [0.534, 0.644] [0.554, 0.663] [0.656, 0.758] [0.698, 0.796] [0.625, 0.730] [0.709, 0.805]
StreamingLLM [0.054, 0.116] [0.105, 0.184] [0.260, 0.364] [0.424, 0.536] [0.009, 0.043] [0.079, 0.150] [0.232, 0.333] [0.317, 0.426]

Method ReClor DROP

Full [0.395, 0.507] [0.123, 0.206]
ShadowKV [0.223, 0.323] [0.105, 0.184]
H2O [0.003, 0.029] [0.023, 0.069] [0.141, 0.227] [0.232, 0.333] [0.023, 0.069] [0.046, 0.105] [0.071, 0.139] [0.071, 0.139]
Knorm [0.000, 0.013] [0.000, 0.013] [0.003, 0.029] [0.003, 0.029] [0.000, 0.013] [0.003, 0.029] [0.003, 0.029] [0.016, 0.056]
RKV [0.023, 0.069] [0.016, 0.056] [0.009, 0.043] [0.003, 0.029] [0.023, 0.069] [0.023, 0.069] [0.016, 0.056] [0.023, 0.069]
SnapKV [0.395, 0.507] [0.337, 0.446] [0.346, 0.456] [0.375, 0.487] [0.097, 0.173] [0.079, 0.150] [0.088, 0.162] [0.123, 0.206]
StreamingLLM [0.000, 0.013] [0.003, 0.029] [0.003, 0.029] [0.023, 0.069] [0.023, 0.069] [0.031, 0.081] [0.054, 0.116] [0.097, 0.173]

Continued on next page...

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 14: Confidence intervals (continued)...

Budget 128 256 384 512 128 256 384 512

Method StrategyQA FOLIO

Full [0.615, 0.721] [0.308, 0.416]
ShadowKV [0.544, 0.654] [0.279, 0.385]
H2O [0.279, 0.385] [0.584, 0.692] [0.688, 0.786] [0.667, 0.768] [0.016, 0.056] [0.168, 0.260] [0.186, 0.281] [0.186, 0.281]
Knorm [0.000, 0.013] [0.088, 0.162] [0.385, 0.497] [0.534, 0.644] [0.000, 0.013] [0.003, 0.029] [0.016, 0.056] [0.031, 0.081]
RKV [0.031, 0.081] [0.105, 0.184] [0.289, 0.395] [0.366, 0.477] [0.023, 0.069] [0.016, 0.056] [0.009, 0.043] [0.038, 0.093]
SnapKV [0.544, 0.654] [0.534, 0.644] [0.513, 0.625] [0.574, 0.683] [0.251, 0.354] [0.204, 0.302] [0.260, 0.364] [0.242, 0.344]
StreamingLLM [0.000, 0.013] [0.031, 0.081] [0.177, 0.270] [0.366, 0.477] [0.000, 0.013] [0.003, 0.029] [0.009, 0.043] [0.016, 0.056]

Nemotron-Nano-8B
Method GSM8K Math500

Full [0.584, 0.692] [0.395, 0.507]
ShadowKV [0.385, 0.497] [0.232, 0.333]
H2O [0.177, 0.270] [0.395, 0.507] [0.464, 0.576] [0.513, 0.625] [0.123, 0.206] [0.195, 0.291] [0.260, 0.364] [0.279, 0.385]
Knorm [0.003, 0.029] [0.009, 0.043] [0.063, 0.128] [0.141, 0.227] [0.003, 0.029] [0.003, 0.029] [0.016, 0.056] [0.038, 0.093]
RKV [0.023, 0.069] [0.016, 0.056] [0.063, 0.128] [0.114, 0.195] [0.009, 0.043] [0.023, 0.069] [0.016, 0.056] [0.038, 0.093]
SnapKV [0.594, 0.702] [0.574, 0.683] [0.605, 0.711] [0.605, 0.711] [0.356, 0.466] [0.385, 0.497] [0.395, 0.507] [0.375, 0.487]
StreamingLLM [0.016, 0.056] [0.159, 0.249] [0.346, 0.456] [0.473, 0.586] [0.009, 0.043] [0.097, 0.173] [0.177, 0.270] [0.289, 0.395]

Method CSQA OBQA

Full [0.454, 0.566] [0.584, 0.692]
ShadowKV [0.159, 0.249] [0.260, 0.364]
H2O [0.414, 0.527] [0.434, 0.546] [0.464, 0.576] [0.454, 0.566] [0.534, 0.644] [0.534, 0.644] [0.523, 0.634] [0.564, 0.673]
Knorm [0.308, 0.416] [0.346, 0.456] [0.385, 0.497] [0.404, 0.517] [0.270, 0.375] [0.385, 0.497] [0.424, 0.536] [0.513, 0.625]
RKV [0.232, 0.333] [0.251, 0.354] [0.366, 0.477] [0.356, 0.466] [0.298, 0.406] [0.385, 0.497] [0.454, 0.566] [0.454, 0.566]
SnapKV [0.434, 0.546] [0.444, 0.556] [0.454, 0.566] [0.473, 0.586] [0.625, 0.730] [0.574, 0.683] [0.605, 0.711] [0.605, 0.711]
StreamingLLM [0.308, 0.416] [0.385, 0.497] [0.404, 0.517] [0.444, 0.556] [0.308, 0.416] [0.404, 0.517] [0.464, 0.576] [0.564, 0.673]

Method ReClor DROP

Full [0.424, 0.536] [0.079, 0.150]
ShadowKV [0.223, 0.323] [0.079, 0.150]
H2O [0.159, 0.249] [0.177, 0.270] [0.298, 0.406] [0.346, 0.456] [0.031, 0.081] [0.038, 0.093] [0.071, 0.139] [0.063, 0.128]
Knorm [0.003, 0.029] [0.016, 0.056] [0.046, 0.105] [0.046, 0.105] [0.003, 0.029] [0.003, 0.029] [0.009, 0.043] [0.016, 0.056]
RKV [0.016, 0.056] [0.054, 0.116] [0.054, 0.116] [0.046, 0.105] [0.009, 0.043] [0.038, 0.093] [0.031, 0.081] [0.016, 0.056]
SnapKV [0.366, 0.477] [0.366, 0.477] [0.366, 0.477] [0.317, 0.426] [0.079, 0.150] [0.079, 0.150] [0.088, 0.162] [0.071, 0.139]
StreamingLLM [0.016, 0.056] [0.038, 0.093] [0.063, 0.128] [0.105, 0.184] [0.016, 0.056] [0.009, 0.043] [0.038, 0.093] [0.054, 0.116]

Method StrategyQA FOLIO

Full [0.850, 0.921] [0.308, 0.416]
ShadowKV [0.594, 0.702] [0.279, 0.385]
H2O [0.709, 0.805] [0.794, 0.877] [0.805, 0.886] [0.783, 0.868] [0.177, 0.270] [0.308, 0.416] [0.298, 0.406] [0.317, 0.426]
Knorm [0.327, 0.436] [0.493, 0.605] [0.625, 0.730] [0.709, 0.805] [0.016, 0.056] [0.023, 0.069] [0.046, 0.105] [0.097, 0.173]
RKV [0.366, 0.477] [0.395, 0.507] [0.584, 0.692] [0.656, 0.758] [0.038, 0.093] [0.054, 0.116] [0.079, 0.150] [0.105, 0.184]
SnapKV [0.783, 0.868] [0.805, 0.886] [0.794, 0.877] [0.794, 0.877] [0.327, 0.436] [0.366, 0.477] [0.356, 0.466] [0.356, 0.466]
StreamingLLM [0.195, 0.291] [0.337, 0.446] [0.464, 0.576] [0.636, 0.740] [0.016, 0.056] [0.016, 0.056] [0.038, 0.093] [0.114, 0.195]

DeepSeek-R1-Distill-Llama-8B
Method GSM8K Math500

Full [0.646, 0.749] [0.404, 0.517]
ShadowKV [0.454, 0.566] [0.289, 0.395]
H2O [0.317, 0.426] [0.473, 0.586] [0.564, 0.673] [0.554, 0.663] [0.159, 0.249] [0.260, 0.364] [0.308, 0.416] [0.308, 0.416]
Knorm [0.000, 0.013] [0.063, 0.128] [0.150, 0.238] [0.232, 0.333] [0.000, 0.013] [0.003, 0.029] [0.009, 0.043] [0.038, 0.093]
RKV [0.031, 0.081] [0.023, 0.069] [0.105, 0.184] [0.132, 0.217] [0.016, 0.056] [0.031, 0.081] [0.009, 0.043] [0.009, 0.043]
SnapKV [0.667, 0.768] [0.667, 0.768] [0.688, 0.786] [0.667, 0.768] [0.366, 0.477] [0.385, 0.497] [0.356, 0.466] [0.356, 0.466]
StreamingLLM [0.038, 0.093] [0.204, 0.302] [0.337, 0.446] [0.503, 0.615] [0.016, 0.056] [0.063, 0.128] [0.168, 0.260] [0.242, 0.344]

Method CSQA OBQA

Full [0.698, 0.796] [0.794, 0.877]
ShadowKV [0.159, 0.249] [0.260, 0.364]
H2O [0.424, 0.536] [0.667, 0.768] [0.677, 0.777] [0.677, 0.777] [0.424, 0.536] [0.730, 0.823] [0.783, 0.868] [0.794, 0.877]
Knorm [0.031, 0.081] [0.232, 0.333] [0.483, 0.596] [0.605, 0.711] [0.016, 0.056] [0.223, 0.323] [0.513, 0.625] [0.646, 0.749]
RKV [0.046, 0.105] [0.079, 0.150] [0.123, 0.206] [0.298, 0.406] [0.046, 0.105] [0.046, 0.105] [0.150, 0.238] [0.270, 0.375]
SnapKV [0.688, 0.786] [0.677, 0.777] [0.688, 0.786] [0.677, 0.777] [0.773, 0.859] [0.783, 0.868] [0.783, 0.868] [0.762, 0.850]
StreamingLLM [0.023, 0.069] [0.105, 0.184] [0.298, 0.406] [0.444, 0.556] [0.046, 0.105] [0.114, 0.195] [0.270, 0.375] [0.464, 0.576]

Method ReClor DROP

Full [0.454, 0.566] [0.105, 0.184]
ShadowKV [0.223, 0.323] [0.063, 0.128]

Continued on next page...

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 14: Confidence intervals (continued)...

Budget 128 256 384 512 128 256 384 512

H2O [0.016, 0.056] [0.054, 0.116] [0.186, 0.281] [0.327, 0.436] [0.038, 0.093] [0.046, 0.105] [0.071, 0.139] [0.079, 0.150]
Knorm [0.000, 0.013] [0.000, 0.013] [0.009, 0.043] [0.071, 0.139] [0.000, 0.013] [0.003, 0.029] [0.003, 0.029] [0.031, 0.081]
RKV [0.023, 0.069] [0.016, 0.056] [0.016, 0.056] [0.079, 0.150] [0.016, 0.056] [0.016, 0.056] [0.031, 0.081] [0.046, 0.105]
SnapKV [0.444, 0.556] [0.054, 0.116] [0.031, 0.081] [0.031, 0.081] [0.132, 0.217] [0.114, 0.195] [0.114, 0.195] [0.123, 0.206]
StreamingLLM [0.000, 0.013] [0.000, 0.013] [0.003, 0.029] [0.038, 0.093] [0.009, 0.043] [0.009, 0.043] [0.063, 0.128] [0.097, 0.173]

Method StrategyQA FOLIO

Full [0.688, 0.786] [0.414, 0.527]
ShadowKV [0.751, 0.841] [0.279, 0.385]
H2O [0.204, 0.302] [0.636, 0.740] [0.719, 0.814] [0.740, 0.832] [0.046, 0.105] [0.317, 0.426] [0.356, 0.466] [0.404, 0.517]
Knorm [0.038, 0.093] [0.308, 0.416] [0.513, 0.625] [0.646, 0.749] [0.000, 0.013] [0.016, 0.056] [0.079, 0.150] [0.168, 0.260]
RKV [0.054, 0.116] [0.298, 0.406] [0.444, 0.556] [0.574, 0.683] [0.016, 0.056] [0.054, 0.116] [0.097, 0.173] [0.214, 0.312]
SnapKV [0.625, 0.730] [0.605, 0.711] [0.584, 0.692] [0.625, 0.730] [0.404, 0.517] [0.395, 0.507] [0.434, 0.546] [0.404, 0.517]
StreamingLLM [0.016, 0.056] [0.079, 0.150] [0.308, 0.416] [0.503, 0.615] [0.000, 0.013] [0.003, 0.029] [0.023, 0.069] [0.063, 0.128]

21

	Introduction
	Preliminaries
	Related Work
	KV Cache Compression
	Token Eviction

	Benchmarking Reasoning

	Experiments & Analysis
	Setup
	Latency Experiment
	Max Token Ablation
	Large Model Comparison
	Cache Budget vs Output Length
	Attention as an indicator of Performance
	Ablation Analysis & High-Level Trends

	Conclusion
	Ethics Statement
	Appendix
	Generation Lengths
	A Verbose, Wrong Answer
	LLM Usage
	Retention of Critical Tokens
	Memory Performance Analysis
	Window Size
	PyramidKV Analysis
	Comparison with a Sparse Attention Method
	Computational Overhead
	The Transformer Decoder Architecture and Inference
	Hyperparameter Details
	Max Token Ablation
	Confidence Intervals

