Under review as a conference paper at ICLR 2026

HoLD ONTO THAT THOUGHT: ASSESSING KV CACHE
COMPRESSION ON REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance on
long-context tasks, but are often bottlenecked by memory constraints. Namely,
the KV cache, which is used to significantly speed up attention computations,
grows linearly with context length. A suite of compression algorithms has been
introduced to alleviate cache growth by evicting unimportant tokens. However,
several popular strategies are targeted towards the prefill phase, i.e., processing
long prompt context, and their performance is rarely assessed on reasoning tasks
requiring long decoding. In particular, short but complex prompts, such as those in
benchmarks like GSM8K and MATHS00, often benefit from multi-step reasoning
and self-reflection, resulting in thinking sequences thousands of tokens long. In this
work, we benchmark the performance of several popular compression strategies on
long-reasoning tasks. For the non-reasoning Llama-3.1-8B-Instruct, we determine
that no singular strategy fits all, and that performance is heavily influenced by
dataset type. However, we discover that H20 and our decoding-enabled variant
of SnapKV are dominant strategies for reasoning models, indicating the utility of
heavy-hitter tracking for reasoning traces. We also find that eviction strategies
at low budgets can produce longer reasoning traces, revealing a tradeoff between
cache size and inference costs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance on complex NLP tasks
that require multi-step reasoning. Unlike summarization tasks (Bai et al.| 2023} |[Fabbri et al., 2021)
and keyword tracking tasks (Hsieh et al.| 2024), which scale task complexity with context length,
reasoning benchmarks challenge models to generate answers that are not clearly contained in the
prompt. Such tasks include reading comprehension (Dua et al.,[2019;[Yu et al., 2020)), commonsense
reasoning (Zellers et al.}2019; Talmor et al., [2018} |Geva et al.| 2021)), first-order logic (Han et al.|
2022; Kwon et al., 2025), and mathematical problem-solving (Cobbe et al., 2021)).

Reasoning benchmarks differ from long-context tasks in that they normally compel the LLM to
provide answers that are longer than the question itself. This can pose a serious resource problem
for the LLM, as past token key and value embeddings are maintained in memory to avoid redundant
attention calculations. This key-value (KV) cache grows linearly with sequence length, which
can result in memory blowup for older or single-GPU setups. Furthermore, specialized reasoning
models such as DeepSeek-R1 (Guo et al.,|2025) and the Llama-Nemotron series are known to output
excessively long reasoning traces (Cai et al., 2025; [Fatemi et al., 2025)) which outnumber the length
of the prompt itself by hundreds to thousands of tokens.

A defining characteristic of reasoning benchmarks is that LLM responses corresponding to their
queries often far exceed the length of the input question. This can pose a serious resource bottleneck:
past token key and value embeddings must be stored in VRAM to avoid redundant attention calcu-
lations. On resource-constrained systems, the resulting linear memory growth can quickly lead to
exhaustion. The problem is further amplified by reasoning-focused models such as the DeepSeek-R1
(Guo et al.|[2025)) and NVIDIA Llama-Nemotron series, which are known for producing exceptionally
verbose reasoning traces spanning thousands of tokens (Cai et al., [2025} [Fatemi et al., 2025).

To address the memory demands of long sequences, numerous KV cache compression methods have
been proposed. These techniques generally maintain a fixed KV cache size by selectively discarding
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tokens deemed “unimportant”. However, defining token importance” is non-trivial, and different
approaches rely on distinct heuristics: attention scores (Zhang et al.,|2023} |Liu et al.,|2023; |L1 et al.}
2024), cosine similarity (Liu et al.,|2024a; Han et al., | 2023), embedding norms (Devoto et al., [2024),
and head-specific token-type preferences (Ge et al.| 2023)). Despite this variety, most evaluations of
cache compression have focused on long-context benchmarks such as LongBench (Bai et al., 2023)
and RULER (Hsieh et al., 2024)), or on heterogeneous batteries like LM Eval Harness ((Gao et al.}
2024)), rather than tasks where the generation length, not the prompt, dominates memory usage.

In this work, we conduct a comprehensive assessment of the major state-of-the-art KV cache
compression strategies across eight reasoning benchmarks: FOLIO (Han et al.,|2022)), DROP (Dua
et al., 2019), GSMS8K (Cobbe et al.,[2021), MATH-500 (Lightman et al.,|2023), ReClor (Yu et al.,
2020), StrategyQA (Geva et al.,[2021), CommonSenseQA (Talmor et al., | 2018])), and OpenBookQA
(Mihaylov et al.,|2018)). Together, these benchmarks span four critical reasoning categories: reading
comprehension, common sense, logical reasoning, and mathematical reasoning. We evaluate these
strategies on Llama-3.1-8B-Instruct as well as four reasoning models: Llama-3.1-Nemotron-Nano-
8B-v1, DeepSeek-R1-Distill-Llama-8B, and DeepSeek-R1-Distill-Qwen-7B/14B. By focusing on
long-generation rather than long-prompt scenarios, our study fills a notable gap in the existing
literature. Our primary contributions are threefold:

A comprehensive benchmark: We conduct a comprehensive evaluation of major KV cache compres-
sion strategies, including StreaminglLLM, H20 (Zhang et al., 2023), a decoding-enabled SnapKV
(L1 et al.} 2024)), R-KV (Cai et al.} 2025)), and KNorm (Devoto et al., 2024]), across a suite of eight
benchmarks spanning mathematical, logical, and commonsense reasoning. We evaluate over several
realistic settings, cache, and max token budgets for a single-GPU system.

Renewed attention for attention-based compression: Our analysis reveals that classical attention-
based “heavy-hitter” strategies, which evict tokens based on accumulated attention scores, signifi-
cantly outperform other methods, even defeating full-cache reasoning occasionally. Namely, this
includes H20 and our novel and simple extension of SnapKV (prompt-only compression method) to
a decoding-enabled variant, SnapKV-Decoding. Both methods, especially SnapKV-D, win over all
budgets and datasets for reasoning models.

A library for analyzing decoding compression: We implement a fork of the NVIDIA kvpres SEI
library, which adds support for decoding phase compression. The current kvpress is restricted
to prefill phase (prompt) compression, which is only suitable for non-reasoning models and long
prompt tasks such as LongBench and RULER. Furthermore, extend decoding-phase support for
all 25+ compression strategies present within kvpress, providing a open-source playground for
analyzing end-to-end KV cache compression strategies.

1.1 PRELIMINARIES

In this section, we briefly review the concepts of large language models, LLM inference and autore-
gressive generation, the KV cache, and the chain-of-thought (CoT) reasoning.

Transformer Architectures and Autoregressive Generation. Modern Large Language Models
(LLMs) predominantly operate as autoregressive, decoder-only Transformers (Vaswani et al., 2017}
Radford et al., 2019} |/Achiam et al.| 2023 [Touvron et al., 2023). This architecture generates text
sequentially, producing one token at a time by conditioning on the entire preceding sequence of
tokens, which includes both the initial prompt and any previously generated output (Brown et al.|
2020). Importantly, the model’s ability to maintain coherent and contextually relevant generation over
time is crucial to its capabilities, especially in tasks requiring reasoning or narrative development
(Lee et al.}2024; Zhang et al., [2025).

Self-Attention Mechanism and the KV Cache Bottleneck. During generation, a query (q) vector
for the current token is attends to a series of Key (k) and Value (v) vectors corresponding to every token
in the preceding context. In this process, notably, for the generation of every new token, the entire
sequence of Key and Value vectors for all previous tokens should be accessed. To avoid recomputing
these K-V pairs at each step, they are stored in the Key-Value (KV) cache, the size of which
grows linearly with the sequence length (n), resulting in an O(n) memory complexity that creates a
significant bottleneck. Formally, for a sequence of n tokens, we denote the query cache Q' € R™*4,

'https://github.com/NVIDIA/kvpress
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key cache K* € R"*%, and value cache V;* € R™"*4, where d is the embedding dimension, [ is
the layer, and h denotes a head for multi-head attention layers (Vaswani et al., [2017). The dot-
product self-attention mechanism is defined as A (Q, K, V;*) = softmax(QI'(K") " /V/d)V}". To
avoid linear scaling with sequence length, roken eviction methods, the key focus of work, discard
embeddings of previous tokens which are no longer “important” to the current decoding step.
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Figure 1: Overview of the Transformer Decoder Architecture and the Inference Bottleneck.
(a) The standard Transformer decoder architecture (left) and the Multi-Head Attention (MHA)
mechanism (right). In MHA, Query vectors representing the current context attend to a sequence of
Key-Value (K-V) pairs from all previous tokens. Such K-V pairs form the basis of the KV cache.
(b) The two-phase inference process in autoregressive generation. During Prefilling, the tokens in
the input context are processed in parallel to populate the initial KV cache across all layers. During
Decoding, each new token is generated sequentially. This requires recomputing the entire set of the
preceding KV entries at each step, causing the lookup size to grow linearly with the sequence length.

Figure[l| (a) exhibits the @), K, and V' vectors along with the self-attention mechanism. Figure|1|(b)
demonstrate the decoding KV cache bottleneck on memory.

Chain-of-Thought and Multi-Step Reasoning. While many long-context applications involve
processing long prompts, a critical class of tasks requires long-form generation from short and
complex prompts. Prompting strategies such as Chain-of-Thought (CoT) encourage models to
externalize their reasoning process, generating intermediate “thinking” steps that can extend for
hundreds or thousands of tokens to solve a problem (Wei et al.,[2022; ' Wang et al.,|2022). Benchmarks
like GSM8K (Cobbe et al., 2021) are representative of this domain, where the path to the correct
answer necessitates a lengthy, self-generated chain of reasoning that stresses the models’ decoding-
phase memory limits.

2 RELATED WORK

2.1 KV CACHE COMPRESSION

KV cache compression is a rich field of study composed of strategies ranging from quantization
(Hooper et al., [2024; |Ashkboos et al.,[2024; Liu et al., [2024b)) to offloading methods that move the
entire cache to the CPU which is significantly less memory bound (Sun et al.,|2024;|Chen et al., |2024;
Tang et al., |2024). However, in this work, we are focused on strategies which maintain a constant
cache size, thus permitting arbitrary generation length.

2.1.1 TOKEN EVICTION

A primary line of research for mitigating the memory burden of the KV cache involves token eviction.
These methods aim to reduce the cache size by selectively removing or merging tokens deemed
less important. To achieve this, multiple approaches have been developed, including recency-based
approaches such as simple sliding window (Beltagy et al.||2020), importance-based methods that
retain “attention sinks” or heavy-hitter tokens from the prompt (Xiao et al., [2023} [Zhang et al.,
2023} [L1 et al.| 2024} [Liu et al., 2023)), dynamically adjustment of KV caches per layer for optimal
efficiency-utility balancing (Cai et al.,|2024), redundancy-aware techniques that merge semantically
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Figure 2: A Conceptual Comparison of Token Retention Strategies in Different KV Cache Compres-
sion Methods. Each row illustrates a method’s logic for retaining tokens (colored) versus evicting
them (gray) from the KV cache during a long sequence divided into a prefill and decoding phase.

similar states (Cai et al.| 2025). Figure [2] provides a conceptual comparison of the most important
approaches we cover in this work.

StreamingLLLM (Xiao et al. is based on the critical observation that in autoregressive models,
a small number of initial tokens act as ““attention sinks,” consistently receiving a large proportion
of attention scores regardless of their semantic relevance. StreaminglLLM’s strategy is therefore to
permanently cache the KV states of the first few (e.g., four) tokens, which serve as the attention
sinks, and combine them with a sliding window of the most recent tokens. H20 (Zhang et al, 2023)
dynamically identifies important or "heavy hitter” tokens based on their cumulative attention scores
received during generation. The H20 cache is composed of two parts: a budget for the most recent
tokens and a budget for the H2 tokens. SnapKV focuses primarily on compressing the
KV cache of the initial prompt during the prefill stage. SnapKV uses a small “observation window”
at the end of the prompt to predict importance. The attention scores from queries in this observation
window are aggregated to “vote” for important positions (heavy hitters) in the prefix. A distinct and
computationally efficient approach, which we refer to as the KNorm strategy (Devoto et al.} [2024),
bypasses the need for attention scores entirely. Specifically, the authors observe that tokens whose
key vectors have a low Lo norm consistently attract high attention scores from subsequent queries.

2.2 BENCHMARKING REASONING

GSMSK (Grade School Math 8K) is a widely-used dataset of grade-school level math word problems
that require a sequence of elementary arithmetic operations to solve (Cobbe et al.| 2021). More
advanced challenges are drawn from the MATH-500 dataset (Lightman et al., 2023)), which contains
competition-level problems across algebra, geometry, and number theory. ReClor is
a reading comprehension dataset built from GMAT and LSAT logical reasoning questions. Similarly,
LogiQA provides multiple-choice questions from civil service exams that require a
deep understanding of logical puzzles and deductions. For evaluating capabilities in more formal
systems, the FOLIO dataset assesses natural language reasoning in the context of
First-Order Logic (FOL). Beyond formal and mathematical logic, a significant portion of research
focuses on commonsense reasoning. StrategyQA tests a model’s ability to infer
the implicit reasoning steps needed to answer a yes/no question by asking for the underlying strategy.
Another tested benchmarks is CommonsenseQA, which tests a model’s ability to reason with general
world knowledge. Finally, the integration of textual understanding with quantitative skills is measured
by benchmarks such as DROP 2019). This reading comprehension dataset is unique in
that answering its questions requires performing discrete operations like counting, sorting, or simple
arithmetic directly on the information presented in a context paragraph.
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Figure 3: Latency vs Budget. Average generation time per token (ms) versus KV-cache budget
for eviction strategies. KNorm and StreamingL.LM speed up markedly with larger budgets, H20
improves more modestly, while SnapKV-D is slow at small budgets.

3 EXPERIMENTS & ANALYSIS

3.1 SETUP

KV Compression Methods. We test H20, StreamingL.LLM, KNorm, our own decoding-variant of
SnapKV which we call SnapKV-D, and ShadowKYV (Sun et al.| |2024). We note that ShadowKV
uses the CPU to offload the cache and thus is not a true compression strategy. However, offloading
strategies represent an important class of compression methods; thus, we include them as a baseline.

Models. For our core experiments, we test the base, non-reasoning Llama-3.1-8B-Instruct and three
reasoning models: DeepSeek-R1-Distill-Qwen-7B, Nemotron-Nano-8B-v1 and DeepSeek-R1-Distill-
Llama-8B. For a larger model comparison, we use DeepSeek-R1-Distill-Qwen-14B.

Datasets. We divide our benchmark into 4 distinct groups: (1) Reading Comprehension: DROP,
ReClor; (2) Logical Reasoning: StrategyQA, FOLIO; (3) Commonsense Reasoning: OpenBookQA
(OBQA), CommonsenseQA (CSQA); (4) Math Reasoning: MATH-500, GSMS8K. For each dataset,
we randomly sample 100 questions for two different seeds.

Performance. For benchmarking the individual compression strategies, we use the NVIDIA kvpress
library, which natively provides most of the targeted algorithms. We provide each dataset to each
model over the cache budgets {128, 256, 384, 512}. Each model is allowed to generate a maximum
of 2048 new tokens via greedy decoding. This token limit is enforced to better simulate a resource-
constrained setting for inference, but also based on mean generation lengths reported in Table [3]
However, we do perform a max token ablation to study its effect on dominant method.

We use author-recommended hyperparameters for all methods. Accuracy benchmarks were performed
on an HPC cluster using an NVIDIA RTX A6000 48GB GPU. Latency benchmarks were performed
on an NVIDIA H100 PClIe 80GB GPU.

3.2 LATENCY EXPERIMENT

Although this benchmark is primarily concerned with accuracy, we assess the latency of our tested
methods in Figure[3|to gather a more complete picture of efficiency.

3.3 MAX TOKEN ABLATION

As explained in setup, we chose a max token length of 2048 both because we find that the mean token
length over datasets is under this budget and to better assess performance in a compute-bound setting.
However, we study the effect of max token generation on method performance under a fixed budget
of 1024 for MATHS00 for R1-Distill-Qwen7B. We find that performance improves significantly for
all methods initially, but then SnapKV-D overtakes all methods for all other max token limits.
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Table 1: Strategy versus Accuracy. Cache budgets = [128, 256, 384, 512]. Llama-3.1-8B-
Instruct=ML, Deepssek-R1-Distill-Qwen-7B=DQ,=DQ,-Nemotron-Nano-8B-v1==LN, DeepSeek-
R1-Distill-Llama-8B=DL.

ML DQ LN

Benchmark 128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512
GSMSK | full 0.88 0.70 0.64 0.70
shadowkv 0.32 0.47 0.44 0.51
h2o 0.63 0.77 0.82 0.83 021 044 051 052 022 045 052 057 037 053 0.62 0.61
knorm 0.07 053 0.73 0.82 0.00 0.00 0.8 0.15 0.01 0.02 0.9 0.8 0.00 0.09 0.19 0.28
snapkv 0.53 0.55 0.56 0.53 0.67 0.67 0.70 0.71 0.65 0.63 0.66 0.66 0.72 0.72 0.74 0.72
streaming_1lm 026 0.75 0.84 0.87 0.02 0.19 032 044 003 020 0.40 0.3 0.06 025 039 0.56
Math500 | full 0.39 0.47 0.45 0.46
shadowkv 0.22 0.33 0.28 0.34
h2o 023 0.24 026 031 0.14 021 029 031 0.16 024 031 033 020 031 036 036
knorm 0.03 0.15 021 023 000 0.01 003 0.05 001 001 0.03 0.06 0.00 001 0.02 0.06
snapkv 020 021 0.19 020 038 0.36 0.36 032 041 044 045 043 042 0.44 041 0.41
streaming_1lm 0.07 020 027 024 003 0.2 0.19 026 002 0.13 022 034 0.03 0.09 021 0.29
CSQA |full 0.77 0.67 0.51 0.75
shadowkv 0.20 0.20 0.20 0.20
h2o0 0.67 0.70 0.73 0.76 0.44 0.61 0.60 0.64 047 049 0.52 0.51 048 072 073 0.73
knorm 041 072 073 0.73 005 0.13 030 042 036 040 0.44 046 0.05 028 0.54 0.66
snapkv 0.70 0.64 0.71 0.72 0.65 0.62 0.59 0.61 049 0.50 0.51 0.53 0.74 0.73 0.74 0.73
streaming_lIm 024 0.65 0.70 0.74 0.08 0.14 031 048 036 044 046 0.50 0.04 0.14 035 0.50
OBQA |full 0.84 0.78 0.64 0.84
shadowkv 0.31 0.31 0.31 0.31
h2o0 0.83 0.81 0.83 0.82 041 0.62 0.68 0.67 0.59 0.58 0.58 0.61 045 0.78 0.84 0.84
knorm 040 0.77 0.84 0.77 0.05 0.05 023 034 031 043 046 0.57 004 026 0.57 0.70
snapkv 0.73 0.77 072 0.76 0.71 0.75 0.68 0.76 0.68 0.63 0.66 0.66 0.82 0.83 0.83 0.81
streaming_llm 0.17 0.70 0.80 0.80 0.03 0.12 029 0.36 035 046 0.50 0.61 0.06 0.16 0.34 0.53
ReClor | full 0.60 0.45 0.48 0.51
shadowkv 0.27 0.27 0.27 0.27
h2o 032 056 0.60 058 0.01 0.04 0.18 028 020 022 035 040 0.03 0.08 023 0.38
knorm 0.01 0.19 046 0.59 0.00 0.00 0.01 0.01 001 0.03 0.07 0.07 0.00 0.0 0.02 0.10
snapkv 0.53 0.57 0.58 0.55 0.45 0.39 040 043 042 042 042 037 0.50 0.08 0.05 0.05
streaming_1lm 0.05 021 0.59 058 0.00 0.01 001 0.04 003 006 0.09 0.14 0.00 0.00 0.0l 0.06
DROP | full 0.15 0.16 0.11 0.14
shadowkv 0.28 0.14 0.11 0.09
h2o 0.12 0.14 0.17 0.17 004 0.07 0.10 0.10 0.05 0.06 0.10 0.9 0.06 0.07 0.10 0.11
knorm 0.01 0.08 0.13 0.13 000 0.01 001 0.03 001 001 0.02 0.03 0.00 001 001 0.5
snapkv 0.15 0.12 0.1 0.2 0.13 011 0.2 016 0.11 0.11 0.12 0.10 0.17 0.15 0.5 0.16

streaming_1lm 0.09 0.11 0.15 0.16 0.04 0.05 0.08 0.13 0.03 0.02 0.06 0.08 0.02 0.02 0.09 0.13

StrategyQA | full 0.83 0.67 0.89 0.74

shadowkv 0.68 0.60 0.65 0.80

h2o0 0.77 0.83 0.86 0.87 0.31 0.58 0.69 0.65 0.72 0.83 0.84 0.83 0.24 0.64 0.73 0.74

knorm 0.50 0.84 0.85 0.85 0.01 0.12 041 0.54 0.39 0.51 0.65 0.73 0.06 034 0.54 0.67

snapkv 0.78 0.78 0.81 0.76 0.60 0.59 0.57 0.63 0.83 0.85 0.84 0.84 0.68 0.66 0.64 0.68

streaming_1lm 0.14 0.74 0.87 0.81 0.01 0.06 0.23 041 024 040 050 0.68 0.03 0.13 0.37 0.53
FOLIO | full 0.51 0.36 0.36 0.47

shadowkv 0.33 0.33 0.33 0.33

h2o 0.22 043 041 043 0.03 021 0.23 023 022 036 035 0.37 0.07 037 041 0.46

knorm 0.02 0.28 0.39 0.38 0.00 0.01 0.03 0.05 0.03 0.04 0.07 0.13 0.00 0.03 0.11 0.21

snapkv 044 040 045 046 030 0.25 0.31 0.29 0.38 042 041 041 046 045 049 0.46

streaming_llm 0.03 0.09 025 035 0.00 0.01 0.02 0.03 0.03 0.03 0.06 0.15 0.00 0.01 0.04 0.09
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Table 2: R1-Distill-Qwen14B. Cache budgets = [128, 256, 384, 512]. We examine the performance
of various compression methods for a larger reasoning model. Winner per budget in bold.

Method 128 256 384 512 | 128 256 384 512
| full | 0.81 0.47

shadowkv 0.53 0.38

2o 033 056 062 064] 02 027 031 031
knorm 0 002 008 021] 0 0 0 002
snapkv 0.80 0.82 0.81 0.78|0.43 0.44 042 045
streaming 1lm | 0.07 027 0.5 059|002 0.17 026 0.35
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3.4 LARGE MODEL COMPARISON

We determine whether our observed trends hold for a larger reasoning model, R1-Distill-Qwen-14B.
We examine the performance of all methods on the more challenging GSM8K and MATHS500.
Unsurprisingly, base accuracies do improve, but more importantly, we observe that again, the heavy-
hitter methods H20 and SnapKV-D outperform their competitors by a significant margin indicating
that larger reasoning models still benefit from attention-based eviction.

3.5 EFFECTS OF CACHE BUDGET ON OUTPUT LENGTH

In this section, we display the mean number of output tokens in Figure [ for all tested models
and strategies on GSMS8K, a dataset with grade-school math questions which requires multi-step
reasoning. As we can see, it is possible for models with small budgets to eventually generate longer
answers than the full cache itself. At lower budgets, the removal of critical tokens can result in longer,
less coherent reasoning traces. We demonstrate this phenomenon in Section [A.2]

3.6 CACHE BUDGET VS OUTPUT LENGTH

We study the effects of cache budget on output generation lengths in Figure [d Fascinatingly, lower
budgets are capable of triggering longer reasoning traces, revealing a hidden tradeoff between cache
budget and inference costs specifically for reasoning models. KNorm, arguably the lowest performing
strategy, tends to cause the greatest elongation of outputs. In Section[A.2] we examine one such
non-terminating output that demonstrates repetitive, dead-end chain-of-thought.
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Figure 4: Budget vs Output Length. We observe that several compression methods, especially at
lower budgets, ultimate produce longer outputs than the base full cache model.
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(a) Total attention loss for H20. (b) Total attention loss for KNorm.
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Figure 5: Attention Loss Heatmaps. We visualize attention loss at every compression step for a question in
GSMSK. The attention loss over each head is summed up over every layer. We observe that higher performance
correlates with less attention loss.

3.7 ATTENTION AS AN INDICATOR OF PERFORMANCE

All eviction methods tested propose to capture important tokens via ad-hoc strategies either explicitly
or implicitly relating to attention: H20 examines at accumulated attention across the entire sequence,
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SnapKV examines attention with regards to an observation window, KNorm uses small key norms as
a proxy for high-attention, StreamingLLLLM retains recent tokens and the sink (initial) to effectively
approximate the attention distribution. We examine how much attention is actually lost through
these various compression methods. For this study, we compare the absolute difference between the
attention scores of each head pre- and post-eviction for GSM8K, which we refer to as attention loss
following other recent literature (Liu et al.,|2024a; |Devoto et al., 2024). The trend is striking: in order
of least to most attention loss: SnapKV-D, H20, StreamingL.LM, and KNorm. This correlates with
performance.

3.8 ABLATION RESULTS

In this section, we review the high-level performance trends of our selected KV cache compression
strategies.

Attention is the most versatile estimator for reasoning models. SnapKV-D and H20 are the most
dominant, significantly outcompeting nearly all compression strategies across all budget constraints
and datasets for our reasoning models. These methods rely on accumulated attention scores to
determine the most important tokens to retain. (i.e., “heavy hitters”). While both maintain a recency
window, H20 is focused on heavy hitters with regard to the current token, while SnapKV (and
consequently, SnapKV-D) finds heavy hitters with respect to an observation window at the end of the
current sequence. The latter approach is more effective, routinely defeating H20. The utility of the
observation window was previously known to work well for prompt compression, but not for long
decoding phases. We find that this trend generalizes for model size, max token settings, and budgets.

No singular strategy is dominant for the non-reasoning Llama-3.1-8B-Instruct. For models that
do not produce reasoning traces, the optimal choice of strategy is dataset-dependent. For example,
while Streamingl.LM excels at GSMSK, it is less effective on all other task types. While SnapKV-D
and H20O are capable of winning 2/4 settings for several datasets, other methods, such as R-KV and
KNorm, can convincingly defeat them over the remaining budgets.

Eviction lags full cache performance for reasoning models. According to Table|[l} all compression
strategies can defeat the full cache performance of Llama-3.1-8B-Instruct on at least one setting
(with H20 and SnapKV-D frequently achieving this). However, for reasoning models, this trend
only holds true for SnapKV-D. While H2O is still second best compared to other strategies, it
significantly lags full cache performance on nearly every dataset. As noted in Figure ] H20O results
in significantly longer reasoning traces than SnapKV-D, which occasionally do not terminate. It
is possible that allowing a less restrictive constraint on the maximum number of new tokens can
alleviate this performance drop, though this would result in longer inference.

Cache compression can cost more computation. Interestingly, according to Figure [] eviction
strategies can result in more “talkative” reasoning models, generating noticeably longer sequences
compared to the full cache setting, while this does not occur for Llama-3.1-8B-Instruct. In Section
we show this phenomenon at work, where KNorm results in long circular babble for Deepseek-
R1-Distill-Llama-8B that never produces an answer. This is problematic for resource-constrained
settings: while cache eviction can reduce peak memory usage, it can result in significantly longer
auto-regression. At lower budgets, eviction occurs more frequently over shorter stretches of context,
resulting in the eviction of critical reasoning tokens, which can result in longer reasoning.

4 CONCLUSION

In this work, we comprehensively assessed the performance of several popular KV cache compression
strategies on reasoning tasks for the non-reasoning Llama-3.1-8B-Instruct and several popular
reasoning models. For the non-reasoning model, we find that no singular method is dominant.
However, for reasoning models, we demonstrate that attention-based eviction methods such as H20
and SnapKV-D perform extraordinarily well on a variety of reasoning tasks, even occasionally
exceeding full cache performance. Furthermore, this generalizes to a larger model, R1-Distill-Qwen-
14B. We also discovered that it is possible, especially at lower budgets, for compression strategies
to produce longer reasoning traces, thus revealing an under-considered tradeoff between memory
and inference costs. For future work, even larger models should be assessed, along with larger cache
budgets, to fully assess the limits of the cache compression/performance tradeoff.
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5 ETHICS STATEMENT

We do not anticipate any notable negative societal impacts stemming from this results discussed
in this work. However, we do note that KV cache compression is capable of altering outputs and
thus must be exercised with care in sensitive domains to ensure that content is not produced which
significantly deviates from uncompressed models.
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A APPENDIX

A.1 GENERATION LENGTHS

In Table[3] we report the mean generation lengths for all methods across and models on MATH-500,
the dataset which elicits the longest responses. To keep these tables concise, we averaged output
lengths over all budgets.

Table 3: Mean output tokens generated by different models under various strategies for Math500.

Strategy Model Mean Output Tokens
full Nvidia--Llama-3.1-Nemotron-Nano-8B-v1l 1616.275
full deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1727.18
full deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1728.84
h2o Nvidia--Llama-3.l-Nemotron-Nano-8B-vl 1753.4075
h2o deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1763.805
h2o0 deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1767.7275
knorm Nvidia--Llama-3.1l-Nemotron-Nano-8B-vl 1987.80875
knorm deepseek-ai--DeepSeek-R1-Distill-Llama-8B 2001.07625
knorm deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1967.4575
snapkv Nvidia--Llama-3.1-Nemotron-Nano-8B-vl 1667.895
snapkv deepseek-ai--DeepSeek-R1-Distill-Llama—-8B 1790.165
snapkv deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1794.0275
streaming_llm Nvidia--Llama-3.1l-Nemotron-Nano-8B-vl 1375.70375
streaming llm deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1655.0375
streaming_llm deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1698.25625

A.2 A VERBOSE, WRONG ANSWER

Below, we present a verbose, incorrect answer generated for Deepseek-R1-Distill-Llama-8B via
KNorm on a budget of 256 tokens.

Define:

— Let a be the value of a small button (SB).

- Then, 1 SS = a

- 1 large button (LB) is worth 3 small buttons, so LB = 3a

- Alternatively, 1 LB = 3a

- 1 LS can be converted to 1 LB or 3 SS, so 1 LS = 1 LB or 3x(la)? Wait,
small stickers themselves are worth la.

Hold on, perhaps clarifying units.

Wait, sorry, the problem states:

"Lorraine has ... stickers and large buttons..."

Wait, maybe it’s better to model it with equations.

Let me denote:

- Value of 1 small sticker = x

— Then, 1 medium sticker would be higher, but in our case, 1 large
sticker (LS) is worth either 1 large button (LB) or 3 small buttons (
SB) .

But we don’t know whether a small button is same as a small sticker? Let’
s see.

The problem says:
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- A large button is worth three small stickers. So 1 LB = 3 SS.
So, 1 SS = 1/3 LB.

Or, alternatively, 1 LB = 3 SS.

So, yeah, 1 LB = 3 SS.

On the flip side, 1 LS can be either 1 LB or 3 SS.

But note that 1 LB is equal to 3 SS.

So, the question becomes:

Traders use sticker-based currencies.

Given that, let me

A.3 LLM USAGE

We used LLMs to stylize tables and figures. We also used LLMs to polish grammar but not to produce
any writing itself.

14




	Introduction
	Preliminaries

	Related Work
	KV Cache Compression
	Token Eviction

	Benchmarking Reasoning

	Experiments & Analysis
	Setup
	Latency Experiment
	Max Token Ablation
	Large Model Comparison
	Effects of Cache Budget on Output Length
	Cache Budget vs Output Length
	Attention as an indicator of Performance
	Ablation Results

	Conclusion
	Ethics Statement
	Appendix
	Generation Lengths
	A Verbose, Wrong Answer
	LLM Usage


