
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOLD ONTO THAT THOUGHT: ASSESSING KV CACHE
COMPRESSION ON REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance on
long-context tasks, but are often bottlenecked by memory constraints. Namely,
the KV cache, which is used to significantly speed up attention computations,
grows linearly with context length. A suite of compression algorithms has been
introduced to alleviate cache growth by evicting unimportant tokens. However,
several popular strategies are targeted towards the prefill phase, i.e., processing
long prompt context, and their performance is rarely assessed on reasoning tasks
requiring long decoding. In particular, short but complex prompts, such as those in
benchmarks like GSM8K and MATH500, often benefit from multi-step reasoning
and self-reflection, resulting in thinking sequences thousands of tokens long. In this
work, we benchmark the performance of several popular compression strategies on
long-reasoning tasks. For the non-reasoning Llama-3.1-8B-Instruct, we determine
that no singular strategy fits all, and that performance is heavily influenced by
dataset type. However, we discover that H2O and our decoding-enabled variant
of SnapKV are dominant strategies for reasoning models, indicating the utility of
heavy-hitter tracking for reasoning traces. We also find that eviction strategies
at low budgets can produce longer reasoning traces, revealing a tradeoff between
cache size and inference costs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance on complex NLP tasks
that require multi-step reasoning. Unlike summarization tasks (Bai et al., 2023; Fabbri et al., 2021)
and keyword tracking tasks (Hsieh et al., 2024), which scale task complexity with context length,
reasoning benchmarks challenge models to generate answers that are not clearly contained in the
prompt. Such tasks include reading comprehension (Dua et al., 2019; Yu et al., 2020), commonsense
reasoning (Zellers et al., 2019; Talmor et al., 2018; Geva et al., 2021), first-order logic (Han et al.,
2022; Kwon et al., 2025), and mathematical problem-solving (Cobbe et al., 2021).

Reasoning benchmarks differ from long-context tasks in that they normally compel the LLM to
provide answers that are longer than the question itself. This can pose a serious resource problem
for the LLM, as past token key and value embeddings are maintained in memory to avoid redundant
attention calculations. This key-value (KV) cache grows linearly with sequence length, which
can result in memory blowup for older or single-GPU setups. Furthermore, specialized reasoning
models such as DeepSeek-R1 (Guo et al., 2025) and the Llama-Nemotron series are known to output
excessively long reasoning traces (Cai et al., 2025; Fatemi et al., 2025) which outnumber the length
of the prompt itself by hundreds to thousands of tokens.

A defining characteristic of reasoning benchmarks is that LLM responses corresponding to their
queries often far exceed the length of the input question. This can pose a serious resource bottleneck:
past token key and value embeddings must be stored in VRAM to avoid redundant attention calcu-
lations. On resource-constrained systems, the resulting linear memory growth can quickly lead to
exhaustion. The problem is further amplified by reasoning-focused models such as the DeepSeek-R1
(Guo et al., 2025) and NVIDIA Llama-Nemotron series, which are known for producing exceptionally
verbose reasoning traces spanning thousands of tokens (Cai et al., 2025; Fatemi et al., 2025).

To address the memory demands of long sequences, numerous KV cache compression methods have
been proposed. These techniques generally maintain a fixed KV cache size by selectively discarding

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tokens deemed ”unimportant”. However, defining token importance” is non-trivial, and different
approaches rely on distinct heuristics: attention scores (Zhang et al., 2023; Liu et al., 2023; Li et al.,
2024), cosine similarity (Liu et al., 2024a; Han et al., 2023), embedding norms (Devoto et al., 2024),
and head-specific token-type preferences (Ge et al., 2023). Despite this variety, most evaluations of
cache compression have focused on long-context benchmarks such as LongBench (Bai et al., 2023)
and RULER (Hsieh et al., 2024), or on heterogeneous batteries like LM Eval Harness ((Gao et al.,
2024)), rather than tasks where the generation length, not the prompt, dominates memory usage.

In this work, we conduct a comprehensive assessment of the major state-of-the-art KV cache
compression strategies across eight reasoning benchmarks: FOLIO (Han et al., 2022), DROP (Dua
et al., 2019), GSM8K (Cobbe et al., 2021), MATH-500 (Lightman et al., 2023), ReClor (Yu et al.,
2020), StrategyQA (Geva et al., 2021), CommonSenseQA (Talmor et al., 2018), and OpenBookQA
(Mihaylov et al., 2018). Together, these benchmarks span four critical reasoning categories: reading
comprehension, common sense, logical reasoning, and mathematical reasoning. We evaluate these
strategies on Llama-3.1-8B-Instruct as well as four reasoning models: Llama-3.1-Nemotron-Nano-
8B-v1, DeepSeek-R1-Distill-Llama-8B, and DeepSeek-R1-Distill-Qwen-7B/14B. By focusing on
long-generation rather than long-prompt scenarios, our study fills a notable gap in the existing
literature. Our primary contributions are threefold:

A comprehensive benchmark: We conduct a comprehensive evaluation of major KV cache compres-
sion strategies, including StreamingLLM, H2O (Zhang et al., 2023), a decoding-enabled SnapKV
(Li et al., 2024), R-KV (Cai et al., 2025), and KNorm (Devoto et al., 2024), across a suite of eight
benchmarks spanning mathematical, logical, and commonsense reasoning. We evaluate over several
realistic settings, cache, and max token budgets for a single-GPU system.
Renewed attention for attention-based compression: Our analysis reveals that classical attention-
based “heavy-hitter” strategies, which evict tokens based on accumulated attention scores, signifi-
cantly outperform other methods, even defeating full-cache reasoning occasionally. Namely, this
includes H2O and our novel and simple extension of SnapKV (prompt-only compression method) to
a decoding-enabled variant, SnapKV-Decoding. Both methods, especially SnapKV-D, win over all
budgets and datasets for reasoning models.
A library for analyzing decoding compression: We implement a fork of the NVIDIA kvpress1

library, which adds support for decoding phase compression. The current kvpress is restricted
to prefill phase (prompt) compression, which is only suitable for non-reasoning models and long
prompt tasks such as LongBench and RULER. Furthermore, extend decoding-phase support for
all 25+ compression strategies present within kvpress, providing a open-source playground for
analyzing end-to-end KV cache compression strategies.

1.1 PRELIMINARIES

In this section, we briefly review the concepts of large language models, LLM inference and autore-
gressive generation, the KV cache, and the chain-of-thought (CoT) reasoning.

Transformer Architectures and Autoregressive Generation. Modern Large Language Models
(LLMs) predominantly operate as autoregressive, decoder-only Transformers (Vaswani et al., 2017;
Radford et al., 2019; Achiam et al., 2023; Touvron et al., 2023). This architecture generates text
sequentially, producing one token at a time by conditioning on the entire preceding sequence of
tokens, which includes both the initial prompt and any previously generated output (Brown et al.,
2020). Importantly, the model’s ability to maintain coherent and contextually relevant generation over
time is crucial to its capabilities, especially in tasks requiring reasoning or narrative development
(Lee et al., 2024; Zhang et al., 2025).

Self-Attention Mechanism and the KV Cache Bottleneck. During generation, a query (q) vector
for the current token is attends to a series of Key (k) and Value (v) vectors corresponding to every token
in the preceding context. In this process, notably, for the generation of every new token, the entire
sequence of Key and Value vectors for all previous tokens should be accessed. To avoid recomputing
these K-V pairs at each step, they are stored in the Key-Value (KV) cache, the size of which
grows linearly with the sequence length (n), resulting in an O(n) memory complexity that creates a
significant bottleneck. Formally, for a sequence of n tokens, we denote the query cache Qh

l ∈ Rn×d,

1https://github.com/NVIDIA/kvpress

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

key cache Kh
l ∈ Rn×d, and value cache V h

l ∈ Rn×d, where d is the embedding dimension, l is
the layer, and h denotes a head for multi-head attention layers (Vaswani et al., 2017). The dot-
product self-attention mechanism is defined as Ah

l (Q
h
l ,K

h
l , V

h
l ) = softmax(Qh

l (K
h
l )

⊤/
√
d)V h

l . To
avoid linear scaling with sequence length, token eviction methods, the key focus of work, discard
embeddings of previous tokens which are no longer “important” to the current decoding step.

…
Q

u
er

ie
s

K
ey

s
V

al
u

es

…

Multi-Head Attention (MHA)

K
-V

 p
ai

rs

…
layer 1
layer 2

layer l

…

Prefilling Decoding

Growing KV lookup sizes for next token generation

(a) (b)

Figure 1: Overview of the Transformer Decoder Architecture and the Inference Bottleneck.
(a) The standard Transformer decoder architecture (left) and the Multi-Head Attention (MHA)
mechanism (right). In MHA, Query vectors representing the current context attend to a sequence of
Key-Value (K-V) pairs from all previous tokens. Such K-V pairs form the basis of the KV cache.
(b) The two-phase inference process in autoregressive generation. During Prefilling, the tokens in
the input context are processed in parallel to populate the initial KV cache across all layers. During
Decoding, each new token is generated sequentially. This requires recomputing the entire set of the
preceding KV entries at each step, causing the lookup size to grow linearly with the sequence length.

Figure 1 (a) exhibits the Q, K, and V vectors along with the self-attention mechanism. Figure 1 (b)
demonstrate the decoding KV cache bottleneck on memory.

Chain-of-Thought and Multi-Step Reasoning. While many long-context applications involve
processing long prompts, a critical class of tasks requires long-form generation from short and
complex prompts. Prompting strategies such as Chain-of-Thought (CoT) encourage models to
externalize their reasoning process, generating intermediate “thinking” steps that can extend for
hundreds or thousands of tokens to solve a problem (Wei et al., 2022; Wang et al., 2022). Benchmarks
like GSM8K (Cobbe et al., 2021) are representative of this domain, where the path to the correct
answer necessitates a lengthy, self-generated chain of reasoning that stresses the models’ decoding-
phase memory limits.

2 RELATED WORK

2.1 KV CACHE COMPRESSION

KV cache compression is a rich field of study composed of strategies ranging from quantization
(Hooper et al., 2024; Ashkboos et al., 2024; Liu et al., 2024b) to offloading methods that move the
entire cache to the CPU which is significantly less memory bound (Sun et al., 2024; Chen et al., 2024;
Tang et al., 2024). However, in this work, we are focused on strategies which maintain a constant
cache size, thus permitting arbitrary generation length.

2.1.1 TOKEN EVICTION

A primary line of research for mitigating the memory burden of the KV cache involves token eviction.
These methods aim to reduce the cache size by selectively removing or merging tokens deemed
less important. To achieve this, multiple approaches have been developed, including recency-based
approaches such as simple sliding window (Beltagy et al., 2020), importance-based methods that
retain ”attention sinks” or heavy-hitter tokens from the prompt (Xiao et al., 2023; Zhang et al.,
2023; Li et al., 2024; Liu et al., 2023), dynamically adjustment of KV caches per layer for optimal
efficiency-utility balancing (Cai et al., 2024), redundancy-aware techniques that merge semantically

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

H2O

SnapKV

StreamingLLM

L2-Norm

Recent tokensAttention sinks

Prompt Generation

Keeps

Attention sinks

Recent tokens (prompt/generation)

Important prefill tokens (static)

All generation tokens 

Dynamic Heavy-Hitters (prompt/generation)

Recent tokens (prompt/generation)

Low L2-norm tokens

Figure 2: A Conceptual Comparison of Token Retention Strategies in Different KV Cache Compres-
sion Methods. Each row illustrates a method’s logic for retaining tokens (colored) versus evicting
them (gray) from the KV cache during a long sequence divided into a prefill and decoding phase.

similar states (Cai et al., 2025). Figure 2 provides a conceptual comparison of the most important
approaches we cover in this work.

StreamingLLM (Xiao et al., 2023) is based on the critical observation that in autoregressive models,
a small number of initial tokens act as “attention sinks,” consistently receiving a large proportion
of attention scores regardless of their semantic relevance. StreamingLLM’s strategy is therefore to
permanently cache the KV states of the first few (e.g., four) tokens, which serve as the attention
sinks, and combine them with a sliding window of the most recent tokens. H2O (Zhang et al., 2023)
dynamically identifies important or ”heavy hitter” tokens based on their cumulative attention scores
received during generation. The H2O cache is composed of two parts: a budget for the most recent
tokens and a budget for the H2 tokens. SnapKV (Li et al., 2024) focuses primarily on compressing the
KV cache of the initial prompt during the prefill stage. SnapKV uses a small ”observation window”
at the end of the prompt to predict importance. The attention scores from queries in this observation
window are aggregated to “vote” for important positions (heavy hitters) in the prefix. A distinct and
computationally efficient approach, which we refer to as the KNorm strategy (Devoto et al., 2024),
bypasses the need for attention scores entirely. Specifically, the authors observe that tokens whose
key vectors have a low L2 norm consistently attract high attention scores from subsequent queries.

2.2 BENCHMARKING REASONING

GSM8K (Grade School Math 8K) is a widely-used dataset of grade-school level math word problems
that require a sequence of elementary arithmetic operations to solve (Cobbe et al., 2021). More
advanced challenges are drawn from the MATH-500 dataset (Lightman et al., 2023), which contains
competition-level problems across algebra, geometry, and number theory. ReClor (Yu et al., 2020) is
a reading comprehension dataset built from GMAT and LSAT logical reasoning questions. Similarly,
LogiQA (Liu et al., 2020) provides multiple-choice questions from civil service exams that require a
deep understanding of logical puzzles and deductions. For evaluating capabilities in more formal
systems, the FOLIO (Han et al., 2022) dataset assesses natural language reasoning in the context of
First-Order Logic (FOL). Beyond formal and mathematical logic, a significant portion of research
focuses on commonsense reasoning. StrategyQA (Geva et al., 2021) tests a model’s ability to infer
the implicit reasoning steps needed to answer a yes/no question by asking for the underlying strategy.
Another tested benchmarks is CommonsenseQA, which tests a model’s ability to reason with general
world knowledge. Finally, the integration of textual understanding with quantitative skills is measured
by benchmarks such as DROP (Dua et al., 2019). This reading comprehension dataset is unique in
that answering its questions requires performing discrete operations like counting, sorting, or simple
arithmetic directly on the information presented in a context paragraph.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

128 256 384 512
0

0.1

0.2

0.3

0.4

0.5

Cache Budget
A

vg
.t

im
e

pe
rt

ok
en

(m
s)

h2o
knorm
snapkv

streaming llm

Figure 3: Latency vs Budget. Average generation time per token (ms) versus KV-cache budget
for eviction strategies. KNorm and StreamingLLM speed up markedly with larger budgets, H2O
improves more modestly, while SnapKV-D is slow at small budgets.

3 EXPERIMENTS & ANALYSIS

3.1 SETUP

KV Compression Methods. We test H2O, StreamingLLM, KNorm, our own decoding-variant of
SnapKV which we call SnapKV-D, and ShadowKV (Sun et al., 2024). We note that ShadowKV
uses the CPU to offload the cache and thus is not a true compression strategy. However, offloading
strategies represent an important class of compression methods; thus, we include them as a baseline.

Models. For our core experiments, we test the base, non-reasoning Llama-3.1-8B-Instruct and three
reasoning models: DeepSeek-R1-Distill-Qwen-7B, Nemotron-Nano-8B-v1 and DeepSeek-R1-Distill-
Llama-8B. For a larger model comparison, we use DeepSeek-R1-Distill-Qwen-14B.

Datasets. We divide our benchmark into 4 distinct groups: (1) Reading Comprehension: DROP,
ReClor; (2) Logical Reasoning: StrategyQA, FOLIO; (3) Commonsense Reasoning: OpenBookQA
(OBQA), CommonsenseQA (CSQA); (4) Math Reasoning: MATH-500, GSM8K. For each dataset,
we randomly sample 100 questions for two different seeds.

Performance. For benchmarking the individual compression strategies, we use the NVIDIA kvpress
library, which natively provides most of the targeted algorithms. We provide each dataset to each
model over the cache budgets {128, 256, 384, 512}. Each model is allowed to generate a maximum
of 2048 new tokens via greedy decoding. This token limit is enforced to better simulate a resource-
constrained setting for inference, but also based on mean generation lengths reported in Table 3.
However, we do perform a max token ablation to study its effect on dominant method.

We use author-recommended hyperparameters for all methods. Accuracy benchmarks were performed
on an HPC cluster using an NVIDIA RTX A6000 48GB GPU. Latency benchmarks were performed
on an NVIDIA H100 PCIe 80GB GPU.

3.2 LATENCY EXPERIMENT

Although this benchmark is primarily concerned with accuracy, we assess the latency of our tested
methods in Figure 3 to gather a more complete picture of efficiency.

3.3 MAX TOKEN ABLATION

As explained in setup, we chose a max token length of 2048 both because we find that the mean token
length over datasets is under this budget and to better assess performance in a compute-bound setting.
However, we study the effect of max token generation on method performance under a fixed budget
of 1024 for MATH500 for R1-Distill-Qwen7B. We find that performance improves significantly for
all methods initially, but then SnapKV-D overtakes all methods for all other max token limits.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Strategy versus Accuracy. Cache budgets = [128, 256, 384, 512]. Llama-3.1-8B-
Instruct=ML, Deepssek-R1-Distill-Qwen-7B=DQ,=DQ,-Nemotron-Nano-8B-v1==LN, DeepSeek-
R1-Distill-Llama-8B=DL.

Benchmark
ML DQ LN DL

128 256 384 512 128 256 384 512 128 256 384 512 128 256 384 512
GSM8K full 0.88 0.70 0.64 0.70

shadowkv 0.32 0.47 0.44 0.51
h2o 0.63 0.77 0.82 0.83 0.21 0.44 0.51 0.52 0.22 0.45 0.52 0.57 0.37 0.53 0.62 0.61
knorm 0.07 0.53 0.73 0.82 0.00 0.00 0.08 0.15 0.01 0.02 0.09 0.18 0.00 0.09 0.19 0.28
snapkv 0.53 0.55 0.56 0.53 0.67 0.67 0.70 0.71 0.65 0.63 0.66 0.66 0.72 0.72 0.74 0.72
streaming llm 0.26 0.75 0.84 0.87 0.02 0.19 0.32 0.44 0.03 0.20 0.40 0.53 0.06 0.25 0.39 0.56
Math500 full 0.39 0.47 0.45 0.46

shadowkv 0.22 0.33 0.28 0.34
h2o 0.23 0.24 0.26 0.31 0.14 0.21 0.29 0.31 0.16 0.24 0.31 0.33 0.20 0.31 0.36 0.36
knorm 0.03 0.15 0.21 0.23 0.00 0.01 0.03 0.05 0.01 0.01 0.03 0.06 0.00 0.01 0.02 0.06
snapkv 0.20 0.21 0.19 0.20 0.38 0.36 0.36 0.32 0.41 0.44 0.45 0.43 0.42 0.44 0.41 0.41
streaming llm 0.07 0.20 0.27 0.24 0.03 0.12 0.19 0.26 0.02 0.13 0.22 0.34 0.03 0.09 0.21 0.29
CSQA full 0.77 0.67 0.51 0.75

shadowkv 0.20 0.20 0.20 0.20
h2o 0.67 0.70 0.73 0.76 0.44 0.61 0.60 0.64 0.47 0.49 0.52 0.51 0.48 0.72 0.73 0.73
knorm 0.41 0.72 0.73 0.73 0.05 0.13 0.30 0.42 0.36 0.40 0.44 0.46 0.05 0.28 0.54 0.66
snapkv 0.70 0.64 0.71 0.72 0.65 0.62 0.59 0.61 0.49 0.50 0.51 0.53 0.74 0.73 0.74 0.73
streaming llm 0.24 0.65 0.70 0.74 0.08 0.14 0.31 0.48 0.36 0.44 0.46 0.50 0.04 0.14 0.35 0.50
OBQA full 0.84 0.78 0.64 0.84

shadowkv 0.31 0.31 0.31 0.31
h2o 0.83 0.81 0.83 0.82 0.41 0.62 0.68 0.67 0.59 0.58 0.58 0.61 0.45 0.78 0.84 0.84
knorm 0.40 0.77 0.84 0.77 0.05 0.05 0.23 0.34 0.31 0.43 0.46 0.57 0.04 0.26 0.57 0.70
snapkv 0.73 0.77 0.72 0.76 0.71 0.75 0.68 0.76 0.68 0.63 0.66 0.66 0.82 0.83 0.83 0.81
streaming llm 0.17 0.70 0.80 0.80 0.03 0.12 0.29 0.36 0.35 0.46 0.50 0.61 0.06 0.16 0.34 0.53
ReClor full 0.60 0.45 0.48 0.51

shadowkv 0.27 0.27 0.27 0.27
h2o 0.32 0.56 0.60 0.58 0.01 0.04 0.18 0.28 0.20 0.22 0.35 0.40 0.03 0.08 0.23 0.38
knorm 0.01 0.19 0.46 0.59 0.00 0.00 0.01 0.01 0.01 0.03 0.07 0.07 0.00 0.00 0.02 0.10
snapkv 0.53 0.57 0.58 0.55 0.45 0.39 0.40 0.43 0.42 0.42 0.42 0.37 0.50 0.08 0.05 0.05
streaming llm 0.05 0.21 0.59 0.58 0.00 0.01 0.01 0.04 0.03 0.06 0.09 0.14 0.00 0.00 0.01 0.06
DROP full 0.15 0.16 0.11 0.14

shadowkv 0.28 0.14 0.11 0.09
h2o 0.12 0.14 0.17 0.17 0.04 0.07 0.10 0.10 0.05 0.06 0.10 0.09 0.06 0.07 0.10 0.11
knorm 0.01 0.08 0.13 0.13 0.00 0.01 0.01 0.03 0.01 0.01 0.02 0.03 0.00 0.01 0.01 0.05
snapkv 0.15 0.12 0.11 0.12 0.13 0.11 0.12 0.16 0.11 0.11 0.12 0.10 0.17 0.15 0.15 0.16
streaming llm 0.09 0.11 0.15 0.16 0.04 0.05 0.08 0.13 0.03 0.02 0.06 0.08 0.02 0.02 0.09 0.13
StrategyQA full 0.83 0.67 0.89 0.74

shadowkv 0.68 0.60 0.65 0.80
h2o 0.77 0.83 0.86 0.87 0.31 0.58 0.69 0.65 0.72 0.83 0.84 0.83 0.24 0.64 0.73 0.74
knorm 0.50 0.84 0.85 0.85 0.01 0.12 0.41 0.54 0.39 0.51 0.65 0.73 0.06 0.34 0.54 0.67
snapkv 0.78 0.78 0.81 0.76 0.60 0.59 0.57 0.63 0.83 0.85 0.84 0.84 0.68 0.66 0.64 0.68
streaming llm 0.14 0.74 0.87 0.81 0.01 0.06 0.23 0.41 0.24 0.40 0.50 0.68 0.03 0.13 0.37 0.53
FOLIO full 0.51 0.36 0.36 0.47

shadowkv 0.33 0.33 0.33 0.33
h2o 0.22 0.43 0.41 0.43 0.03 0.21 0.23 0.23 0.22 0.36 0.35 0.37 0.07 0.37 0.41 0.46
knorm 0.02 0.28 0.39 0.38 0.00 0.01 0.03 0.05 0.03 0.04 0.07 0.13 0.00 0.03 0.11 0.21
snapkv 0.44 0.40 0.45 0.46 0.30 0.25 0.31 0.29 0.38 0.42 0.41 0.41 0.46 0.45 0.49 0.46
streaming llm 0.03 0.09 0.25 0.35 0.00 0.01 0.02 0.03 0.03 0.03 0.06 0.15 0.00 0.01 0.04 0.09

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: R1-Distill-Qwen14B. Cache budgets = [128, 256, 384, 512]. We examine the performance
of various compression methods for a larger reasoning model. Winner per budget in bold.

Method GSM8K MATH500
128 256 384 512 128 256 384 512

full 0.81 0.47
shadowkv 0.53 0.38
h2o 0.33 0.56 0.62 0.64 0.2 0.27 0.31 0.31
knorm 0 0.02 0.08 0.21 0 0 0 0.02
snapkv 0.80 0.82 0.81 0.78 0.43 0.44 0.42 0.45
streaming llm 0.07 0.27 0.5 0.59 0.02 0.17 0.26 0.35

2048 5096 10192
Max New Tokens

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Max Token Ablation for R1-Qwen-7b on Math500
snapkv
knorm
streaming_llm
h2o

3.4 LARGE MODEL COMPARISON

We determine whether our observed trends hold for a larger reasoning model, R1-Distill-Qwen-14B.
We examine the performance of all methods on the more challenging GSM8K and MATH500.
Unsurprisingly, base accuracies do improve, but more importantly, we observe that again, the heavy-
hitter methods H2O and SnapKV-D outperform their competitors by a significant margin indicating
that larger reasoning models still benefit from attention-based eviction.

3.5 EFFECTS OF CACHE BUDGET ON OUTPUT LENGTH

In this section, we display the mean number of output tokens in Figure 4 for all tested models
and strategies on GSM8K, a dataset with grade-school math questions which requires multi-step
reasoning. As we can see, it is possible for models with small budgets to eventually generate longer
answers than the full cache itself. At lower budgets, the removal of critical tokens can result in longer,
less coherent reasoning traces. We demonstrate this phenomenon in Section A.2.

3.6 CACHE BUDGET VS OUTPUT LENGTH

We study the effects of cache budget on output generation lengths in Figure 4. Fascinatingly, lower
budgets are capable of triggering longer reasoning traces, revealing a hidden tradeoff between cache
budget and inference costs specifically for reasoning models. KNorm, arguably the lowest performing
strategy, tends to cause the greatest elongation of outputs. In Section A.2, we examine one such
non-terminating output that demonstrates repetitive, dead-end chain-of-thought.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Budget vs Output Length. We observe that several compression methods, especially at
lower budgets, ultimate produce longer outputs than the base full cache model.

(a) Total attention loss for H2O. (b) Total attention loss for KNorm.

(c) Total attention loss for SnapKV-D.
(d) Total attention loss for
StreamingLLM.

Figure 5: Attention Loss Heatmaps. We visualize attention loss at every compression step for a question in
GSM8K. The attention loss over each head is summed up over every layer. We observe that higher performance
correlates with less attention loss.

3.7 ATTENTION AS AN INDICATOR OF PERFORMANCE

All eviction methods tested propose to capture important tokens via ad-hoc strategies either explicitly
or implicitly relating to attention: H2O examines at accumulated attention across the entire sequence,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

SnapKV examines attention with regards to an observation window, KNorm uses small key norms as
a proxy for high-attention, StreamingLLM retains recent tokens and the sink (initial) to effectively
approximate the attention distribution. We examine how much attention is actually lost through
these various compression methods. For this study, we compare the absolute difference between the
attention scores of each head pre- and post-eviction for GSM8K, which we refer to as attention loss
following other recent literature (Liu et al., 2024a; Devoto et al., 2024). The trend is striking: in order
of least to most attention loss: SnapKV-D, H2O, StreamingLLM, and KNorm. This correlates with
performance.

3.8 ABLATION RESULTS

In this section, we review the high-level performance trends of our selected KV cache compression
strategies.

Attention is the most versatile estimator for reasoning models. SnapKV-D and H2O are the most
dominant, significantly outcompeting nearly all compression strategies across all budget constraints
and datasets for our reasoning models. These methods rely on accumulated attention scores to
determine the most important tokens to retain. (i.e., “heavy hitters”). While both maintain a recency
window, H2O is focused on heavy hitters with regard to the current token, while SnapKV (and
consequently, SnapKV-D) finds heavy hitters with respect to an observation window at the end of the
current sequence. The latter approach is more effective, routinely defeating H2O. The utility of the
observation window was previously known to work well for prompt compression, but not for long
decoding phases. We find that this trend generalizes for model size, max token settings, and budgets.

No singular strategy is dominant for the non-reasoning Llama-3.1-8B-Instruct. For models that
do not produce reasoning traces, the optimal choice of strategy is dataset-dependent. For example,
while StreamingLLM excels at GSM8K, it is less effective on all other task types. While SnapKV-D
and H2O are capable of winning 2/4 settings for several datasets, other methods, such as R-KV and
KNorm, can convincingly defeat them over the remaining budgets.

Eviction lags full cache performance for reasoning models. According to Table 1, all compression
strategies can defeat the full cache performance of Llama-3.1-8B-Instruct on at least one setting
(with H2O and SnapKV-D frequently achieving this). However, for reasoning models, this trend
only holds true for SnapKV-D. While H2O is still second best compared to other strategies, it
significantly lags full cache performance on nearly every dataset. As noted in Figure 4, H2O results
in significantly longer reasoning traces than SnapKV-D, which occasionally do not terminate. It
is possible that allowing a less restrictive constraint on the maximum number of new tokens can
alleviate this performance drop, though this would result in longer inference.

Cache compression can cost more computation. Interestingly, according to Figure 4, eviction
strategies can result in more “talkative” reasoning models, generating noticeably longer sequences
compared to the full cache setting, while this does not occur for Llama-3.1-8B-Instruct. In Section
A.2, we show this phenomenon at work, where KNorm results in long circular babble for Deepseek-
R1-Distill-Llama-8B that never produces an answer. This is problematic for resource-constrained
settings: while cache eviction can reduce peak memory usage, it can result in significantly longer
auto-regression. At lower budgets, eviction occurs more frequently over shorter stretches of context,
resulting in the eviction of critical reasoning tokens, which can result in longer reasoning.

4 CONCLUSION

In this work, we comprehensively assessed the performance of several popular KV cache compression
strategies on reasoning tasks for the non-reasoning Llama-3.1-8B-Instruct and several popular
reasoning models. For the non-reasoning model, we find that no singular method is dominant.
However, for reasoning models, we demonstrate that attention-based eviction methods such as H2O
and SnapKV-D perform extraordinarily well on a variety of reasoning tasks, even occasionally
exceeding full cache performance. Furthermore, this generalizes to a larger model, R1-Distill-Qwen-
14B. We also discovered that it is possible, especially at lower budgets, for compression strategies
to produce longer reasoning traces, thus revealing an under-considered tradeoff between memory
and inference costs. For future work, even larger models should be assessed, along with larger cache
budgets, to fully assess the limits of the cache compression/performance tradeoff.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 ETHICS STATEMENT

We do not anticipate any notable negative societal impacts stemming from this results discussed
in this work. However, we do note that KV cache compression is capable of altering outputs and
thus must be exercised with care in sensitive domains to ensure that content is not produced which
significantly deviates from uncompressed models.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne Xiong,
Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-
Wen Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free
reasoning models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l 2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Alexander R Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. Summeval: Re-evaluating summarization evaluation. Transactions of the
Association for Computational Linguistics, 9:391–409, 2021.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning. arXiv preprint arXiv:2504.05185, 2025.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

10

https://zenodo.org/records/12608602


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346–361, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869,
2023.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Yejin Kwon, Daeun Moon, Youngje Oh, and Hyunsoo Yoon. Logicqa: Logical anomaly detection
with vision language model generated questions. arXiv preprint arXiv:2503.20252, 2025.

Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang,
Sejin Kim, and Sundong Kim. Reasoning abilities of large language models: In-depth analysis on
the abstraction and reasoning corpus. ACM Transactions on Intelligent Systems and Technology,
2024.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Minghui Liu, Tahseen Rabbani, Tony O’Halloran, Ananth Sankaralingam, Mary-Anne Hartley,
Furong Huang, Cornelia Fermüller, and Yiannis Aloimonos. Hashevict: A pre-attention kv cache
eviction strategy using locality-sensitive hashing. arXiv preprint arXiv:2412.16187, 2024a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. Reclor: A reading comprehension dataset
requiring logical reasoning. arXiv preprint arXiv:2002.04326, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. Ratt: A
thought structure for coherent and correct llm reasoning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 26733–26741, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 GENERATION LENGTHS

In Table 3, we report the mean generation lengths for all methods across and models on MATH-500,
the dataset which elicits the longest responses. To keep these tables concise, we averaged output
lengths over all budgets.

Table 3: Mean output tokens generated by different models under various strategies for Math500.

Strategy Model Mean Output Tokens
full Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1616.275
full deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1727.18
full deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1728.84

h2o Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1753.4075
h2o deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1763.805
h2o deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1767.7275

knorm Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1987.80875
knorm deepseek-ai--DeepSeek-R1-Distill-Llama-8B 2001.07625
knorm deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1967.4575

snapkv Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1667.895
snapkv deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1790.165
snapkv deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1794.0275

streaming llm Nvidia--Llama-3.1-Nemotron-Nano-8B-v1 1375.70375
streaming llm deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1655.0375
streaming llm deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1698.25625

A.2 A VERBOSE, WRONG ANSWER

Below, we present a verbose, incorrect answer generated for Deepseek-R1-Distill-Llama-8B via
KNorm on a budget of 256 tokens.

Define:

- Let a be the value of a small button (SB).
- Then, 1 SS = a
- 1 large button (LB) is worth 3 small buttons, so LB = 3a
- Alternatively, 1 LB = 3a
- 1 LS can be converted to 1 LB or 3 SS, so 1 LS = 1 LB or 3*(1a)? Wait,

small stickers themselves are worth 1a.

Hold on, perhaps clarifying units.

Wait, sorry, the problem states:

"Lorraine has ... stickers and large buttons..."

Wait, maybe it’s better to model it with equations.

Let me denote:

- Value of 1 small sticker = x
- Then, 1 medium sticker would be higher, but in our case, 1 large

sticker (LS) is worth either 1 large button (LB) or 3 small buttons (
SB).

But we don’t know whether a small button is same as a small sticker? Let’
s see.

The problem says:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

- A large button is worth three small stickers. So 1 LB = 3 SS.

So, 1 SS = 1/3 LB.

Or, alternatively, 1 LB = 3 SS.

So, yeah, 1 LB = 3 SS.

On the flip side, 1 LS can be either 1 LB or 3 SS.

But note that 1 LB is equal to 3 SS.

So, the question becomes:

Traders use sticker-based currencies.

Given that, let me

A.3 LLM USAGE

We used LLMs to stylize tables and figures. We also used LLMs to polish grammar but not to produce
any writing itself.

14


	Introduction
	Preliminaries

	Related Work
	KV Cache Compression
	Token Eviction

	Benchmarking Reasoning

	Experiments & Analysis
	Setup
	Latency Experiment
	Max Token Ablation
	Large Model Comparison
	Effects of Cache Budget on Output Length
	Cache Budget vs Output Length
	Attention as an indicator of Performance
	Ablation Results

	Conclusion
	Ethics Statement
	Appendix
	Generation Lengths
	A Verbose, Wrong Answer
	LLM Usage


