Under review as a conference paper at ICLR 2026

HoLD ONTO THAT THOUGHT: ASSESSING KV CACHE
COMPRESSION ON REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable performance on
long-context tasks, but are often bottlenecked by memory constraints. Namely,
the KV cache, which is used to significantly speed up attention computations,
grows linearly with context length. A suite of compression algorithms has been
introduced to alleviate cache growth by evicting unimportant tokens. However,
several popular strategies are targeted towards the prefill phase, i.e., processing
long prompt context, and their performance is rarely assessed on reasoning tasks
requiring long decoding. In particular, short but complex prompts, such as those in
benchmarks like GSM8K and MATHS00, often benefit from multi-step reasoning
and self-reflection, resulting in thinking sequences thousands of tokens long. In this
work, we benchmark the performance of several popular compression strategies on
long-reasoning tasks. For the non-reasoning Llama-3.1-8B-Instruct, we determine
that no singular strategy fits all, and that performance is heavily influenced by
dataset type. However, we discover that H20 and our decoding-enabled variant
of SnapKV are dominant strategies for reasoning models, indicating the utility of
heavy-hitter tracking for reasoning traces. We also find that eviction strategies
at low budgets can produce longer reasoning traces, revealing a tradeoff between
cache size and inference costs.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance on complex NLP tasks
that require multi-step reasoning. Unlike summarization tasks (Bai et al.| 2023} |[Fabbri et al., 2021)
and keyword tracking tasks (Hsieh et al.| 2024}, which scale task complexity with context length,
reasoning benchmarks challenge models to generate answers that are not clearly contained in the
prompt. Such tasks include reading comprehension (Dua et al.,[2019;[Yu et al., 2020)), commonsense
reasoning (Zellers et al.,[2019; Talmor et al., 2018} |Geva et al., 2021, first-order logic (Han et al.,
2022; Kwon et al., 2025), and mathematical problem-solving (Cobbe et al., 2021)).

Reasoning benchmarks differ from long-context tasks in that they normally compel the LLM to
provide answers that are longer than the question itself. This can pose a serious resource problem
for the LLM, as past token key and value embeddings are maintained in memory to avoid redundant
attention calculations. This key-value (KV) cache grows linearly with sequence length, which
can result in memory blowup for older or single-GPU setups. Furthermore, specialized reasoning
models such as DeepSeek-R1 (Guo et al.,|2025) and the Llama-Nemotron series are known to output
excessively long reasoning traces (Cai et al., 20255 [Fatemi et al., 2025)) which outnumber the length
of the prompt itself by hundreds to thousands of tokens.

To address the memory demands of long sequences, numerous KV cache compression methods have
been proposed. These techniques generally maintain a fixed KV cache size by selectively discarding
tokens deemed “unimportant”. However, defining token importance” is non-trivial, and different
approaches rely on distinct heuristics: attention scores (Zhang et al, 2023} [Liu et al., [2023} [Li et al.,
2024), cosine similarity (Liu et al.} 2024a; Han et al.|[2023)), embedding norms (Devoto et al., [2024),
and head-specific token-type preferences (Ge et al.,[2023). Despite this variety, most evaluations of
cache compression have focused on long-context benchmarks such as LongBench (Bai et al.,2023)
and RULER (Hsieh et al.,2024), or on heterogeneous batteries like LM Eval Harness ((Gao et al.,
2024))), rather than tasks where the generation length, not the prompt, dominates memory usage.

Under review as a conference paper at ICLR 2026

In this work, we conduct a comprehensive assessment of the major state-of-the-art KV cache
compression strategies across eight reasoning benchmarks: FOLIO (Han et al.,[2022), DROP (Dua
et al., 2019), GSMS8K (Cobbe et al.,[2021), MATH-500 (Lightman et al.,|2023), ReClor (Yu et al.,
2020), StrategyQA (Geva et al.|[2021), CommonSenseQA (Talmor et al.,[2018), and OpenBookQA
(Mihaylov et al.l 2018). Together, these benchmarks span four critical reasoning categories: reading
comprehension, common sense, logical reasoning, and mathematical reasoning. We evaluate these
strategies on Llama-3.1-8B-Instruct as well as four reasoning models: Llama-3.1-Nemotron-Nano-
8B-v1, DeepSeek-R1-Distill-Llama-8B, and DeepSeek-R1-Distill-Qwen-7B/14B. By focusing on
long-generation rather than long-prompt scenarios, our study fills a notable gap in the existing
literature. Our primary contributions are threefold:

A comprehensive benchmark: We conduct a comprehensive evaluation of major KV cache compres-
sion strategies, including Streamingl.LLM, H20 (Zhang et al.| 2023)), a decoding-enabled SnapKV
(L1 et al}2024), R-KV (Cai et al.,[2025)), and KNorm (Devoto et al.,[2024), across a suite of eight
benchmarks spanning mathematical, logical, and commonsense reasoning. We evaluate over several
realistic settings, cache, and max token budgets for a single-GPU system.

Renewed attention for attention-based compression: Our analysis reveals that classical attention-
based “heavy-hitter” strategies, which evict tokens based on accumulated attention scores, signifi-
cantly outperform other methods, even defeating full-cache reasoning occasionally. Namely, this
includes H20 and our novel and simple extension of SnapKV (prompt-only compression method) to
a decoding-enabled variant, SnapKV-Decoding. Both methods, especially SnapKV-D, win over all
budgets and datasets for reasoning models.

A library for analyzing decoding compression: We implement a fork of the NVIDIA kvpres sﬂ
library, which adds support for decoding phase compression for any kvpress method. We add support
for R-KV and H2O to the kvpress. Our goal is to provide an open-source playground for analyzing
end-to-end KV cache compression strategies.

2 PRELIMINARIES

In this section, we briefly review the concepts of large language models, LLM inference and autore-
gressive generation, the KV cache, and the chain-of-thought (CoT) reasoning.

Transformer Architectures and Autoregressive Generation. Modern Large Language Models
(LLMs) predominantly operate as autoregressive, decoder-only Transformers (Vaswani et al., 2017}
Radford et al., 2019} |/Achiam et al.| 2023} [Touvron et al., 2023). This architecture generates text
sequentially, producing one token at a time by conditioning on the entire preceding sequence of
tokens, which includes both the initial prompt and any previously generated output (Brown et al.,
2020). Importantly, the model’s ability to maintain coherent and contextually relevant generation over
time is crucial to its capabilities, especially in tasks requiring reasoning or narrative development
(Lee et al.}2024; Zhang et al., 2025).

Self-Attention Mechanism and the KV Cache Bottleneck. During generation, a query (q) vector
for the current token is attends to a series of Key (k) and Value (v) vectors corresponding to every token
in the preceding context. In this process, notably, for the generation of every new token, the entire
sequence of Key and Value vectors for all previous tokens should be accessed. To avoid recomputing
these K-V pairs at each step, they are stored in the Key-Value (KV) cache, the size of which
grows linearly with the sequence length (n), resulting in an O(n) memory complexity that creates a
significant bottleneck. Formally, for a sequence of n tokens, we denote the query cache Q' € R™*9,
key cache K lh € R™*% and value cache Vlh € R™*4 where d is the embedding dimension, [is
the layer, and h denotes a head for multi-head attention layers (Vaswani et al., |2017). The dot-
product self-attention mechanism is defined as A (QPF, K', V") = softmax(QP'(K}") " /v/d)V]". To
avoid linear scaling with sequence length, roken eviction methods, the key focus of work, discard
embeddings of previous tokens which are no longer “important” to the current decoding step.

'https://github.com/NVIDIA/kvpress

Under review as a conference paper at ICLR 2026

Objective. A common objective to study the quality of an importance heuristic is to minimize
the deviation between the outputs of a non-evicted and evicted attention layer. More specifically,
let K ;¢ and Vl , respectively, denote an evicted key and value cache. We may interpret these
caches as sparse matrices by dropping all but B rows (the budget) of K lh and Vlh. Attention is
typically followed by multiplication with an output projector W € R%*P and passage through
a 2-layer MLP F(z) := x« + Warelu(Wlxg where Wy, Wy are trained hidden weights. Let x =
ANQ), K] V") and 7 = A}Qp, K[, Vi"). The objective of any KV eviction algorithm is to
minimize E[||F(x) — ()||2], where randomness is with regards to the attention distribution.
Guarantees on this error are scarce in the eviction landscape, with the most prominent presented for
heavy-hitter Scissorhands approach in (2023), which asserts an upper bound that scales
with 1 — B/N, where N is the sequence length and assumes a heavy-tailed distribution of attention
scores, which is frequently observed (Devoto et al.| 2024} [Liu et al.| [2024a; 2023)). However, many
popular eviction strategies, such as StreamingL.LM, KNorm, and PyramidKV are based on empirical
observations as opposed to attention-tracking and thus are currently not guaranteed.

Chain-of-Thought and Multi-Step Reasoning. While many long-context applications involve
processing long prompts, a critical class of tasks requires long-form generation from short and
complex prompts. Prompting strategies such as Chain-of-Thought (CoT) encourage models to
externalize their reasoning process, generating intermediate “thinking” steps that can extend for
hundreds or thousands of tokens to solve a problem (Wei et al.}[2022;[Wang et al}, 2022)). Benchmarks
such as GSM8K (Cobbe et all, [2021)) are representative of this domain, where the path to the correct
answer necessitates a lengthy, self-generated chain of reasoning.

3 RELATED WORK

3.1 KV CACHE COMPRESSION

KV cache compression is a rich field of study composed of strategies ranging from quantization

(Hooper et al., 2024; [Ashkboos et al., 2024} [Liu et al.} 2024Db) to offloading methods that move the
entire cache to the CPU which is significantly less memory bound (Sun et al., 2024} [Chen et al., 2024}
2024). However, in this work, we are focused on strategies which maintain a constant
cache size, thus permitting arbitrary generation length.

3.1.1 TOKEN EVICTION

Recent tokens Keeps

1
! [Recent tokens (prompt/generation)

StreamingLLM :
. O] Attention sinks
i
| [All generation tokens

SnapkV i))
' B important prefill tokens (static)
i
i
L2-Norm ! B Low L2-norm tokens
I
i
20 | [Recent tokens (prompt/generation)

1
! B Dynamic Heavy-Hitters (prompt/generation)

i

Prompt Generation

Figure 1: A Conceptual Comparison of Token Retention Strategies in Different KV Cache Compres-
sion Methods. Each row illustrates a method’s logic for retaining tokens (colored) versus evicting
them (gray) from the KV cache during a long sequence divided into a prefill and decoding phase.

A primary line of research for mitigating the memory burden of the KV cache involves token eviction.
These methods aim to reduce the cache size by selectively removing or merging tokens deemed
less important. To achieve this, multiple approaches have been developed, including recency-based
approaches such as simple sliding window (Beltagy et al.| [2020), importance-based methods that
retain “attention sinks” or heavy-hitter tokens from the prompt (Xiao et al), 2023} [Zhang et al

Under review as a conference paper at ICLR 2026

2023; [Li et al., 2024; Liu et al.,[2023), dynamically adjustment of KV caches per layer for optimal
efficiency-utility balancing (Cai et al.,|2024), redundancy-aware techniques that merge semantically
similar states (Cai et al., 2025). Figure I| provides a conceptual comparison of the most important
approaches we cover in this work.

StreamingLLLM’s (Xiao et al.,2023) strategy is to always maintain the KV states of the first few (e.g.,
four) tokens, which serve as the attention sinks, and combine them with a sliding window of the most
recent tokens (up to the available budget). H20 (Zhang et al.,|2023)) dynamically identifies important
or “heavy hitter” tokens based on their cumulative attention scores received during generation. The
H20 cache is composed of two parts: a budget for the most recent tokens and a budget for the H2
tokens. SnapKYV (Li et al.| [2024)) focuses primarily on compressing the KV cache of the initial
prompt during the prefill stage. SnapKV uses a small “observation window” at the end of the prompt
to predict importance. The attention scores from queries in this observation window are aggregated
to “vote” for important positions (heavy hitters) in the prefix. R-KV (Cai et al.,2025)), designed for
reasoning trace compression, uses a combination of accumulated attention score and pair-wise key
cosine similarities to identify unimportant tokens. A distinct and computationally efficient approach,
which we refer to as the KNorm strategy (Devoto et al., [2024)), bypasses the need for attention
scores entirely. Specifically, the authors observe that tokens whose key vectors have a low Ly norm
consistently attract high attention scores from subsequent queries.

3.2 BENCHMARKING REASONING

GSMSK (Grade School Math 8K) is a widely-used dataset of grade-school level math word problems
(Cobbe et al.,[2021)). More advanced challenges are drawn from the MATH-500 dataset (Lightman
et al.| 2023)), which contains competition-level problems across algebra, geometry, and number
theory. ReClor (Yu et al., 2020) is a reading comprehension dataset built from GMAT and LSAT
logical reasoning questions. Similarly, LogiQA (Liu et al.|[2020) provides multiple-choice questions
from civil service exams that require a deep understanding of logical puzzles and deductions. For
evaluating capabilities in more formal systems, the FOLIO (Han et al., [2022)) dataset assesses natural
language reasoning in the context of First-Order Logic (FOL). Beyond formal and mathematical
logic, a significant portion of research focuses on commonsense reasoning. StrategyQA (Geva et al.|
2021)) tests a model’s ability to infer the implicit reasoning steps needed to answer a yes/no question
by asking for the underlying strategy. Another tested benchmarks is CommonsenseQA, which
tests a model’s ability to reason with general world knowledge. Finally, the integration of textual
understanding with quantitative skills is measured by benchmarks such as DROP (Dua et al., 2019).
This reading comprehension dataset is unique in that answering its questions requires performing
discrete operations like counting, sorting, or simple arithmetic directly on the information presented.

4 EXPERIMENTS & ANALYSIS

4.1 SETUP

KV Compression Methods. We test H20, R-KV, StreaminglLLM, KNorm, our own decoding-
variant of SnapKV which we call SnapKV-D, and ShadowKYV (Sun et al.| [2024). We note that
ShadowKYV uses the CPU to offload the cache and thus is not a true compression strategy. However,
offloading strategies represent an important class of compression methods; thus, we include them as a
baseline. For SnapKV-D, we now allow the observation window to slide along the decoded sequence
at regular intervals (every window size w = 128) steps. This is detailed further in Appendix [T0]
Further hyperparameter details are described in Appendix

Models. We test the base, non-reasoning Llama-3.1-8B-Instruct and three reasoning models:
DeepSeek-R1-Distill-Qwen-7B/14B, Nemotron-Nano-8B-v1 and DeepSeek-R1-Distill-Llama-8B.

Datasets. We divide our benchmark into 4 distinct groups: (1) Reading Comprehension: DROP,
ReClor; (2) Logical Reasoning: StrategyQA, FOLIO; (3) Commonsense Reasoning: OpenBookQA
(OBQA), CommonsenseQA (CSQA); (4) Math Reasoning: MATH-500, GSMS8K. For each dataset,
we randomly sample 100 questions for two different seeds.

Performance. For benchmarking the individual compression strategies, we use the NVIDIA kvpress
library, which natively provides most of the targeted algorithms. We provide each dataset to each

Under review as a conference paper at ICLR 2026

Table 1: Llama-3.1-8B-Instruct. Varying compressions and budgets on a non-reasoning model.

Llama-3.1-
8B-Instruct
Full
ShadowKV
H20

Knorm

RKV

SnapKV
StreamingLLM

Full
ShadowKV
H20

Knorm

RKV

SnapKV
StreamingLLM

GSMSK
128 256 384 512
0.88
0.32
0.77 0.82
0.53 0.73
0.34 0.50
0.55 0.56
0.75 0.84
ReClor
256 384
0.60
0.27
0.56 0.60
0.19 0.46
0.21 0.40
0.57 0.58
0.21 0.59

0.63
0.05
0.12
0.53
0.26

0.83
0.82
0.49
0.53
0.87

128 512

0.32
0.01
0.04
0.53
0.05

0.58
0.59
0.54
0.55
0.58

Math500
128 256 384
0.39
0.22
0.33 0.33
0.18 0.22
0.10 0.16
0.21 0.19
0.26 0.32
DROP
256 384
0.15
0.28
0.14 0.17
0.08 0.13
0.07 0.14
0.12 0.11
0.11 0.15

0.30
0.03
0.03
0.20
0.11

128

0.12
0.01
0.06
0.15
0.09

512

0.36
0.33
0.20
0.20
0.35

512

0.17
0.13
0.11
0.12
0.16

CSQA
128 256 384
0.77
0.20
0.76 0.77
0.77 0.75
0.62 0.76
0.64 0.71
0.75 0.76
StrategyQA
128 256 384
0.83
0.68
0.87 0.88
0.85 0.88
0.79 0.77
0.78 0.81
0.76 0.89

512

0.74
0.34
0.36
0.70
0.20

0.77
0.76
0.77
0.72
0.77

512

0.81
0.47
0.60
0.78
0.11

0.89
0.87
0.79
0.76
0.85

128

0.83
0.41
0.22
0.73
0.14

128

0.22
0.02
0.07
0.44
0.03

OBQA
256 384 512
0.84
0.31
0.86 0.86
0.79 0.84
0.66 0.77
077 0.72
0.72 0.84
FOLIO
256 384
051
0.33
043 0.41
028 0.39
036 0.44
0.40 0.45
0.09 0.25

0.86
0.82
0.84
0.76
0.84

512

0.43
0.38
0.34
0.46
0.35

Table 2: Deepseek-R1-Distill-Qwen-7B. Performance using varying compressions and budgets.

Deepseek-R1-
Distill-Qwen-7B
Full

ShadowKV

H20

Knorm

RKV

SnapKV
StreamingLLM

Full
ShadowKV
H20

Knorm

RKV

SnapKV
StreamingL.LM

GSMSK
128 256 384
0.70
0.47
0.44 051
0.00 0.08
0.07 0.18
0.67 0.70
0.19 0.32
ReClor
256 384
0.45
0.27
0.04 0.18
0.00 0.01
0.03 0.02
0.39 0.40
0.01 0.01

512

0.21
0.00
0.04
0.67
0.02

0.52
0.16
0.30
0.71
0.44

128 512

0.01
0.00
0.04
0.45
0.00

0.28
0.01
0.01
0.43
0.04

Math500
256 384
0.47
0.33
0.21 0.29
0.01 0.03
0.04 0.05
0.36 0.36
0.12 0.19
DROP
256 384
0.16
0.14
0.07 0.10
0.01 0.01
0.04 0.03
0.11 0.12
0.05 0.08

128

0.14
0.00
0.04
0.38
0.03

128

0.04
0.00
0.04
0.13
0.04

512

0.31
0.05
0.17
0.32
0.26

512

0.10
0.03
0.04
0.16
0.13

CSQA
128 256 384 512
0.67
0.20
0.61 0.60
0.13 0.30
0.09 0.27
0.62 0.59
0.14 0.31
StrategyQA
128 256 384 512
0.67
0.60
0.64 0.74
0.12 0.44
0.14 034
0.59 0.57
0.05 0.22

0.44
0.05
0.10
0.65
0.08

0.64
0.42
0.34
0.61
0.48

0.33
0.00
0.05
0.60
0.00

0.72
0.59
0.42
0.63
0.42

128

0.42
0.03
0.10
0.71
0.02

128

0.03
0.00
0.04
0.30
0.00

OBQA
256 384 512
0.78
0.31
0.64 0.69
0.05 0.23
0.10 0.21
0.75 0.68
0.11 0.28
FOLIO
256 384
0.36
0.33
021 0.23
0.01 0.03
0.03 0.02
0.25 0.31
0.01 0.02

0.67
0.38
0.26
0.76
0.37

512

0.23
0.05
0.06
0.29
0.03

model over the cache budgets {128, 256, 384, 512}. Each model is allowed to generate a maximum
of 2048 new tokens via greedy decoding. This token limit is enforced to better simulate a resource-
constrained setting for inference and also based on mean generation lengths reported in Table[7]. We
use author-recommended hyperparameters for all methods. Accuracy benchmarks were performed
on an HPC cluster using an NVIDIA RTX A6000 48GB GPU.

4.2 LATENCY EXPERIMENT

Although this benchmark is primarily concerned with accuracy, we assess the latency of our tested
methods in Figure [2 and Table[5]to gather a more complete picture of efficiency. StreamingL.LM and
KNorm do not compute accumulated attention scores thus they incur less overhead than H20 and
SnapKV-D. These results concurs with the computational overhead summarized in Table

Under review as a conference paper at ICLR 2026

Table 3: Nemotron-Nano-8B. Performance using varying compressions and budgets.

Nemotron- GSMS8K Math500 CSQA OBQA
Nano-8B 128 256 384 512 | 128 256 384 512 | 128 256 384 512 | 128 256 384 512

Full 0.64 0.45 0.51 0.64

ShadowKV 0.44 0.28 0.20 0.31
H20 022 045 0.52 0.57|0.16 0.24 0.31 033|047 049 0.52 0.51|0.59 0.59 0.58 0.62
Knorm 0.01 0.02 0.09 0.18]0.01 0.01 0.03 0.06|0.36 0.40 0.44 0.46|0.32 0.44 0.48 0.57
RKV 0.04 0.03 0.09 0.15]0.02 0.04 0.03 0.06|0.28 0.30 042 0.41]035 0.44 0.51 0.51
SnapKV 0.65 0.63 0.66 0.66|0.41 0.44 045 043|049 0.50 0.51 0.53|0.68 0.63 0.66 0.66
StreamingLLM | 0.03 0.20 0.40 0.53|0.02 0.13 0.22 0.34|0.36 0.44 0.46 0.50|0.36 0.46 0.52 0.62

ReClor DROP StrategyQA FOLIO
128 256 384 512|128 256 384 512|128 256 384 512|128 256 384 512

Full 0.48 0.11 0.89 0.36

ShadowKV 0.27 0.11 0.65 0.33
H20 0.20 0.22 0.35 0.40|0.05 0.06 0.10 0.09|0.76 0.84 0.85 0.83|0.22 0.36 0.35 0.37
Knorm 0.01 0.03 0.07 0.07|0.01 0.01 0.02 0.03]|0.38 0.55 0.68 0.76 |0.03 0.04 0.07 0.13
RKV 0.03 0.08 0.08 0.07|0.02 0.06 0.05 0.03|042 045 0.64 0.71|0.06 0.08 0.11 0.14
SnapKV 042 042 042 037]0.11 0.11 0.12 0.10 | 0.83 0.85 0.84 0.84 | 0.38 0.42 0.41 0.41
StreamingLLM | 0.03 0.06 0.09 0.14|0.03 0.02 0.06 0.08 | 0.24 0.39 0.52 0.69|0.03 0.03 0.06 0.15

Table 4: DeepSeek-R1-Distill-Llama-8B. Performance using varying compressions and budgets.

DeepSeek-R1- GSMSK Math500 CSQA OBQA
Distill-Llama-8B | 128 256 384 512 | 128 256 384 512 | 128 256 384 512 | 128 256 384 512

Full 0.70 0.46 0.75 0.84

ShadowKV 0.51 0.34 0.20 0.31
H20 0.37 0.53 0.62 0.61|0.20 031 0.36 0.36|0.48 0.72 0.73 0.73|0.48 0.78 0.83 0.84
Knorm 0.00 0.09 0.19 0.28|0.00 0.01 0.02 0.06|0.05 0.28 0.54 0.66|0.03 0.27 0.57 0.70
RKV 0.05 0.04 0.14 0.17]0.03 0.05 0.02 0.02|0.07 0.11 0.16 0.35|0.07 0.07 0.19 0.32
SnapKV 0.72 0.72 0.74 0.72|0.42 0.44 041 0.41|0.74 0.73 0.74 0.73|0.82 0.83 0.83 0.81
StreamingLLM 0.06 0.25 0.39 0.56]0.03 0.09 0.21 0.29]0.04 0.14 0.35 0.50|0.07 0.15 0.32 0.52

ReClor DROP StrategyQA FOLIO
128 256 384 512|128 256 384 512 | 128 256 384 512 | 128 256 384 512

Full 0.51 0.14 0.74 0.47

ShadowKV 0.27 0.09 0.80 0.33
H20 0.03 0.08 0.23 0.38]0.06 0.07 0.10 0.11|0.25 0.69 0.77 0.79|0.07 0.37 0.41 0.46
Knorm 0.00 0.00 0.02 0.10]|0.00 0.01 0.01 0.05|0.06 0.36 0.57 0.70|0.00 0.03 0.11 0.21
RKV 0.04 0.03 0.03 0.11]0.03 0.03 0.05 0.07]0.08 0.35 0.50 0.63]0.03 0.08 0.13 0.26
SnapKV 0.52 0.53 0.56 0.51]0.17 0.15 0.15 0.16 | 0.68 0.66 0.64 0.68|0.46 0.45 0.49 0.46
StreamingLLM | 0.00 0.00 0.01 0.06|0.02 0.02 0.09 0.13|0.03 0.11 0.36 0.56|0.00 0.01 0.04 0.09

4.3 MAX TOKEN ABLATION

As explained in setup, we chose a max token length of 2048 both because we find that the mean token
length over datasets is under this budget and to better assess performance in a compute-bound setting.
However, we study the effect of max token limit on performance under a fixed budget of 1024 for
MATHS500 for R1-Distill-Qwen7B in Figure[/| We find that performance improves significantly for
all methods initially, but then SnapKV-D overtakes all methods for all other max token limits.

4.4 LARGE MODEL COMPARISON

We determine whether our observed trends hold for a larger reasoning model, R1-Distill-Qwen-14B
in Table [f] We examine the performance of all methods on the more challenging GSM8K and
MATHS500. Unsurprisingly, base accuracies do improve, but more importantly, we observe that again,
the heavy-hitter methods H20 and SnapKV-D outperform their competitors by a significant margin
indicating that larger reasoning models still benefit from attention-based eviction.

Under review as a conference paper at ICLR 2026

—— h2o

—— knorm
—=— snapkv
—o— streaming_llm

Avg. time per token (ms)

0
128 256 384 512
Cache Budget

Figure 2: Latency vs Budget. Average generation time per token (ms) versus KV-cache budget
for eviction strategies. KNorm and StreamingL.LM speed up markedly with larger budgets, H20
improves more modestly, while SnapKV-D is slow at small budgets.

Table 5: End-to-end token throughput (tokens/s) on GSM8K. 50 sample average is reported.

Method / Budget 128 256 384 512

Full 30.71 30.71 30.71 30.71
H20 25.81 2341 2393 2516
Knorm 27.38 28.07 2835 27.56
R-KV 29.10 27.72 2855 30.04
StreamingLLM 27.04 2755 27.12 29.39
SnapKV 2746 2557 2624 27.60

Table 6: R1-Distill-Qwen14B. Cache budgets = [128, 256, 384, 512]. We examine the performance
of various compression methods for a larger reasoning model. Winner per budget in bold.

Method 128 256 384 512 | 128 256 384 512
| full | 0.81 047

shadowkv 0.53 0.38

2o 033 056 062 064|020 027 031 031
knorm 0 002 008 021] 0 0 0 002
kv 0.02 005 0.16 030]0.00 0.00 0.03 0.09
snapkv 0.80 0.82 0.81 0.78|0.43 0.44 042 045
streaming_llm | 0.07 0.27 0.50 0.59 | 0.02 0.17 0.26 0.35

4.5 CACHE BUDGET VS OUTPUT LENGTH

We study the effects of cache budget on output generation lengths in Figure[d] Fascinatingly, lower
budgets are capable of triggering longer reasoning traces, revealing a hidden tradeoff between cache
budget and inference costs specifically for reasoning models. KNorm, arguably the lowest performing
strategy, tends to cause the greatest elongation of outputs. In Section we examine one such
non-terminating output that demonstrates repetitive, dead-end chain-of-thought.

4.6 ATTENTION AS AN INDICATOR OF PERFORMANCE

All eviction methods tested propose to capture important tokens via ad-hoc strategies either explicitly
or implicitly relating to attention: H20 examines at accumulated attention across the entire sequence,
SnapKV examines attention with regards to an observation window, KNorm uses small key norms as
a proxy for high-attention, StreamingLLLLM retains recent tokens and the sink (initial) to effectively
approximate the attention distribution. We examine how much attention is actually lost through
these various compression methods. For this study, we compare the absolute difference between the
attention scores of each head pre- and post-eviction for GSM8K, which we refer to as attention loss
following other recent literature (Liu et al.,|2024a; |Devoto et al.,2024). The trend is striking: in order

Under review as a conference paper at ICLR 2026

Total Attention Loss Heatmap by Layer and Head (h2o) Total Attention Loss Heatmap by Layer and Head (knorm)
- » ———
» -
——
i —_—

(a) Total attention loss for H20. (b) Total attention loss for KNorm.

Total Attention Loss Heatmap by Layer and Head (streaming_lim)

Total Attention Loss Heatmap by Layer and Head (snapkv)
° -
. -
. w0
»
B
0
. | . |.
o i 2 3
o 1) 3 head_ide

head idx (d) Total attention loss for
(c) Total attention loss for SnapKV-D. StreamingL.LM.
Figure 3: Attention Loss Heatmaps. We visualize attention loss at every compression step for a question in
GSMBK. The attention loss over each head is summed up over every layer. We observe that higher performance
correlates with less attention loss.

layer_idx

26 24 2220 18 16 14 12 10 8 6 4 2

of least to most attention loss: SnapKV-D, H20, StreamingLLLM, and KNorm. This correlates with
average performance reported in Tables 2-4.

Mean Output Tokens vs Cache Budget for Nvidia--Llama-3.1-Nemotron-Nano-88-v1 Mean Output Tokens vs Cache Budget for deepseek-ai-DeepSeek-R1-Distill-Llama-88
2000 - 2000
1800
1800 O e e T
1600 - R
N ~e
& 1400 ¢
£ £ 1600
e g .
£ 1200 ~
3
£ 1000 1400 e
800 7
e —— 120
T — 1200
600 e o~ KNorm
- o~ RKV
T SnapKV-D
400 . ~e- Streaming LLM
128 256 384 512 128 256 384 si2
Cache Budget Cache Budget
Mean Output Tokens vs Cache Budget for deepseek-ai--DeepSeek-R1-Distill-Qwen-78 Mean Output Tokens vs Cache Budget for meta-llama-Meta-Llama-3.1-8B-Instruct
2000 b R 2000 L
.
1900 1800 — = ——y
1800
. , 1600 ..
& 1m0 H ~
g 1400
& 1600 s N
2 H S
1200 TEem——
1500 ————
~---e
1400 1000
1300
800
128 236 384 ER 128 256 ED siz
Cache Budget Cache Budget

Figure 4: Budget vs Output Length. We observe that several compression methods, especially at lower budgets,
ultimate produce longer outputs than the base full cache model.

Under review as a conference paper at ICLR 2026

4.7 ABLATION ANALYSIS & HIGH-LEVEL TRENDS

Attention is the most versatile estimator for reasoning models. SnapKV-D and H20 are the most
dominant, significantly outcompeting nearly all compression strategies across all budget constraints
and datasets for our reasoning models. These methods rely on accumulated attention scores to
determine the most important tokens to retain. (i.e., “heavy hitters””). While both maintain a recency
window, H20 is focused on heavy hitters with regard to the current token, while SnapKV (and
consequently, SnapKV-D) finds heavy hitters with respect to an observation window at the end of the
current sequence. The latter approach is more effective, routinely defeating H2O. The observation
window was previously known to work well for prompt compression, but not for long decoding.

To further verify the utility of heavy-hitters for reasoning, in Appendix we track how many
critical keywords for reasoning in GSM8K questions are present in the cache for each method, across
models and budgets. Table[§]demonstrates that SnapK'V-D and H2O retain critical tokens at a higher
rate than other methods. Since they are exclusively focused on extracting heavy-hitters, this implies
that critical keywords display high accumulated attention throughout reasoning. Figure 5] shows that
the density of keywords in decoded context is much higher for uncompressed reasoning models versus
non-reasoning models, thus their maintenance in the cache is ostensibly crucial for computation.

No singular strategy is dominant for the non-reasoning Llama-3.1-8B-Instruct. For models that do
not produce reasoning traces, the optimal choice of strategy is dataset-dependent. For example, while
StreamingLLLM excels at GSMSK, it is less effective on all other task types. While SnapKV-D and
H20 are capable of winning most settings for several datasets, other methods, such as KNorm and
StreamingLLM, can win. According to Figure[5] keywords occur at a lower density in non-reasoning
outputs, thus their maintenance might be less critical compared to reasoning outputs.

Eviction lags full cache performance for reasoning models. According to Table 1, all compression
strategies can defeat the full cache performance of Llama-3.1-8B-Instruct on at least one setting (with
H20 and SnapKV-D frequently achieving this). However, for reasoning models, this trend only holds
true for SnapKV-D. While H2O is still second best compared to other strategies, it significantly lags
full cache performance on nearly every dataset. As noted in Figure [H2O results in significantly
longer reasoning traces than SnapKV-D, which occasionally do not terminate.

Cache compression can cost more computation. Interestingly, according to Figure [] eviction
strategies can result in more “talkative” reasoning models, generating noticeably longer sequences
compared to the full cache setting, while this does not occur for Llama-3.1-8B-Instruct. In Section[A.2]
we show this phenomenon at work, where KNorm results in long circular babble for Deepseek-R1-
Distill-Llama-8B that never produces an answer. At lower budgets, eviction occurs more frequently,
resulting in a higher likelihood of critical token eviction, resulting in longer reasoning.

Practical Guidance. Although heavy-hitter methods dominate, selection of other methods may still
prove appropriate. We summarize key selection rules. (1) Regardless of method, avoid a micro-budget.
Performance stabilizes rapidly and very small budgets can counterintuitively increase the length of
the output. (2) For large budgets, B > 1024, StreamingLLLM is superior with smaller max token
limits according to Figure[/| For any other budget and max token limit, SnapK'V-D and H20O are
preferable. (3) Use a larger window size for SnapKV-D. This decreases the frequency of eviction
and, consequently, computational overhead with minimal performance differences (Table[I0). (4) For
reasoning models, accumulated attention scores are a high-quality token importance metric, therefore,
lead with heavy-hitter methods for compression.

5 CONCLUSION

In this work, we comprehensively assessed the performance of several popular KV cache compression
strategies on reasoning tasks. For a non-reasoning model, we find that no singular method is dominant.
However, for reasoning models, we demonstrate that attention-based eviction methods such as H20
and SnapKV-D perform extraordinarily well on a variety of reasoning tasks, even occasionally
exceeding full cache performance. Furthermore, this generalizes to a larger model, R1-Distill-Qwen-
14B. We also discover that it is possible, especially at lower budgets, for compression strategies to
produce longer reasoning traces, thus revealing an under-considered tradeoff between memory and
inference costs.

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

We do not anticipate any notable negative societal impacts stemming from this results discussed
in this work. However, we do note that KV cache compression is capable of altering outputs and
thus must be exercised with care in sensitive domains to ensure that content is not produced which
significantly deviates from uncompressed models.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213-100240, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne Xiong,
Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-
Wen Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free
reasoning models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective [_2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Alexander R Fabbri, Wojciech Krysciniski, Bryan McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. Summeval: Re-evaluating summarization evaluation. Transactions of the
Association for Computational Linguistics, 9:391-409, 2021.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning. arXiv preprint arXiv:2504.05185, 2025.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

10

https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao Sun,
Tianzhu Ye, Li Dong, et al. Seerattention-r: Sparse attention adaptation for long reasoning. arXiv
preprint arXiv:2506.08889, 2025.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346-361, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869,
2023.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Yejin Kwon, Daeun Moon, Youngje Oh, and Hyunsoo Yoon. Logicqa: Logical anomaly detection
with vision language model generated questions. arXiv preprint arXiv:2503.20252, 2025.

Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang,
Sejin Kim, and Sundong Kim. Reasoning abilities of large language models: In-depth analysis on
the abstraction and reasoning corpus. ACM Transactions on Intelligent Systems and Technology,
2024.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: LIm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947-22970, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Minghui Liu, Tahseen Rabbani, Tony O’Halloran, Ananth Sankaralingam, Mary-Anne Hartley,
Furong Huang, Cornelia Fermiiller, and Yiannis Aloimonos. Hashevict: A pre-attention kv cache
eviction strategy using locality-sensitive hashing. arXiv preprint arXiv:2412.16187, 2024a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342-52364, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

11

Under review as a conference paper at ICLR 2026

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context 1lm
inference. arXiv preprint arXiv:2410.21465, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. Reclor: A reading comprehension dataset
requiring logical reasoning. arXiv preprint arXiv:2002.04326, 2020.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
Yuxing Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and
natively trainable sparse attention. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 23078-23097, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. Ratt: A
thought structure for coherent and correct llm reasoning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 26733-26741, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o0: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661-34710, 2023.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 GENERATION LENGTHS

In Table[7] we report the mean generation lengths for all methods across and models on MATH-500,
the dataset which elicits the longest responses. To keep these tables concise, we averaged output
lengths over all budgets.

Table 7: Mean output tokens generated by different models under various strategies for Math500.

Strategy Model Mean Output Tokens
full Nvidia--Llama-3.1-Nemotron-Nano-8B-v1l 1616.275
full deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1727.18
full deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1728.84
h2o Nvidia--Llama-3.l-Nemotron-Nano-8B-vl 1753.4075
h2o deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1763.805
h2o0 deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1767.7275
knorm Nvidia--Llama-3.1l-Nemotron-Nano-8B-vl 1987.80875
knorm deepseek-ai--DeepSeek-R1-Distill-Llama-8B 2001.07625
knorm deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1967.4575
snapkv Nvidia--Llama-3.1-Nemotron-Nano-8B-vl 1667.895
snapkv deepseek-ai--DeepSeek-R1-Distill-Llama—-8B 1790.165
snapkv deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1794.0275
streaming_llm Nvidia--Llama-3.1l-Nemotron-Nano-8B-vl 1375.70375
streaming llm deepseek-ai--DeepSeek-R1-Distill-Llama-8B 1655.0375
streaming_llm deepseek-ai--DeepSeek-R1-Distill-Qwen-7B 1698.25625

A.2 A VERBOSE, WRONG ANSWER

Below, we present a verbose, incorrect answer generated for Deepseek-R1-Distill-Llama-8B via
KNorm on a budget of 256 tokens.

Define:

— Let a be the value of a small button (SB).

- Then, 1 SS = a

- 1 large button (LB) is worth 3 small buttons, so LB = 3a

- Alternatively, 1 LB = 3a

- 1 LS can be converted to 1 LB or 3 SS, so 1 LS = 1 LB or 3x(la)? Wait,
small stickers themselves are worth la.

Hold on, perhaps clarifying units.

Wait, sorry, the problem states:

"Lorraine has ... stickers and large buttons..."

Wait, maybe it’s better to model it with equations.

Let me denote:

- Value of 1 small sticker = x

— Then, 1 medium sticker would be higher, but in our case, 1 large
sticker (LS) is worth either 1 large button (LB) or 3 small buttons (
SB) .

But we don’t know whether a small button is same as a small sticker? Let’
s see.

The problem says:

13

Under review as a conference paper at ICLR 2026

Table 8: Strategy vs. Critical Token Retention Rate. Cache budgets (MB) = [128, 256, 384, 512]. Models:
Llama-3.1-8B-Instruct (ML), DeepSeek-R1-Distill-Qwen-7B (DQ), Nemotron-Nano-8B-v1 (LN), DeepSeek-
R1-Distill-Llama-8B (DL).

S
128 25 384 512 128 256 384 512 128 256 384 512 | 128 256 384 512

77.84 77.46% 81.62% 75.59%

h2o 68.11% 68.11% 69.19% 7027% 7230% 7230% 7324% 74.18% 68.11% 68.11% 69.19% 7027% TL61% 71.61% 7230% 72.30%

knorm 68.11% 68.11% 69.19% 69.73% 67.60% 67.60% 68.72% 69.27% 65.48% 65.48% 66.67% 67.26% 68.11% 68.11% 69.19% 69.73%

SnapKV 68.11% 68.11% 68.65% 69.713% 7230% 72.30% 7324% 74.18% 6811% 68.11% 69.19% 7027% 68.11% 68.11% 69.19% 70.27%

streamingllm 67.03% 67.03% 67.57% 69.73% 71.36% 71.36% 72.30% 73.24% 67.03% 67.03% 68.11% 69.19% 67.03% 67.03% 68.11% 69.19%

- A large button is worth three small stickers. So 1 LB = 3 SS.
So, 1 SS = 1/3 LB.

Or, alternatively, 1 LB = 3 SS.

So, yeah, 1 LB = 3 SS.

On the flip side, 1 LS can be either 1 LB or 3 SS.

But note that 1 LB is equal to 3 SS.

So, the question becomes:

Traders use sticker-based currencies.

Given that, let me

A.3 LLM USAGE

We used LLMs to stylize tables and figures. We also used LLMs to polish grammar but not to produce
any writing itself.

A.4 RETENTION OF CRITICAL TOKENS

To understand why reasoning oriented models such as DeepSeek-R1-Distill-Qwen-7B and DeepSeek-
R1-Distill-Llama-8B exhibit different performance patterns, we evaluate GSM8K questions and
measure how well critical tokens (e.g., names, quantities, and key entities) are retained in the KV
cache at the final decoding step. Table [§] reports the critical token retention rate, defined as the
fraction of critical tokens that remain available in the cache at the end of generation. Figure [5]further
visualizes a randomly selected GSM8K example, highlighting which critical tokens persist in the
cache and how they appear in the model’s final answer. From both the quantitative results and the
visualization, we observe that reasoning models consistently retain a larger proportion of critical
tokens than standard instruction tuned baselines. In particular, reasoning models tend to preserve task
relevant concepts such as minutes, day, and similar numerical or semantic anchors, suggesting that
they rely more directly on these tokens throughout the multistep reasoning process.

We find that reasoning-trained models consistently retain a larger proportion of critical tokens
compared with standard instruction-tuned models. Both the numerical metrics and qualitative
visualizations indicate that reasoning models rely more heavily on these critical tokens throughout the
problem-solving process. In the example visualization, the reasoning model generates more critical
tokens in its final answer, which helps explain why heavy-hitter or attention-based token-retention
strategies are particularly effective for reasoning models: critical tokens tend to persistently exhibit
high-attention throughout decoding.

This observation directly supports our main conclusion that accumulated attention is the most effective
importance heuristic for reasoning eviction. Since RL-distilled reasoning models naturally focus on
preserving critical tokens, methods such as H20 and SnapKV-D yield larger performance gains by
ensuring those tokens remain in the KV cache. In contrast, non-reasoning models do not exhibit this

14

Under review as a conference paper at ICLR 2026

DeepSeek-Distill-Qwen-7B Meta-Llama3-8B-Instruct
Okay, so I need to figure out minutes Kim slept on her \## Step 1: Determine normal bedtime and wake-up time
bed that. Let me start by understanding all the information Normal bedtime for Kim is p.m., and normal wake-up time 15@
given. a.m.
Firstly, normally Kim(goes]to sleep at (10)p.m. (which is :00) \## Step(2) : Calculate total number of minutes slept normally per
and wakes up at () a.m. next morning (which would be () :00). So night
let's calculate her usual total sleeping time first before There are 8 hours between (16) p.m. and (6] a.m. Since there are (6)0
considering to 's anomaly because sometimes it helps have minutes in an hour, this means that under normal circumstances,
some context. Kim sleeps for (8 *(6]0) = 480 minutes every night.
From (10) p.m. to midnight is(2)hours, which is 1(2)@ minutes. \## Step 3: Find out how early Kim went to sleep that particular
Then from midnight to(6)a.m. is another (6] hours, which is 3(g)0 evening.
minutes. Since Kim fell asleep while sleepwalking from(2:15) to [2:38] AM but
So altogether, normal sleeping duration is 1(2)0 + 3(6)0 = 480 actually started waking up before regular wake-up time,
minutes each night. we need to determine what time it would be if she had gone to bed
But one [day] , something different happened. On this particular at the normal time instead of falling asleep during the middle of
day]| : the night.
- She went to sleep as usual? Or maybe not... Wait, no-the \## Step 4: Convert wake-up times into just minutes past midnight
problem says "that (day)" meaning only that specific instance For calculation purposes, let's convert all relevant times into
where we're analyzing what happened differently. minutes since midnight:
Wait-let me read again carefully: - Normal wake-up time is(6)a.m., which equals 3 (6] @ minutes past
"She installed a camera ... Kim usually(goes]to sleep at (10]p.m., midnight (since 1(2)am = 0).
but that (day) , she found herself waking up earlier than - Sleep period due to being awake early: From(2:15]A.M. till(2:38]
usual." Hmm... AM. is ((2)3(*6)0)+(15)=1(38] 9+ [15] =1404 minutes past midnight

Figure 5: A generated answer by DeepSeek-R1-Distill-Qwen-7B and Meta-Llama3-8B-Instruct. Critical
tokens rendered in blue and red boxes respectively. Reasoning models outputs contain a higher density of critical
tokens. Prompt: Kim sleepwalks, to monitor her sleeping hours, she installs a camera in her room. Kim usually
goes to sleep at 10 p.m. and wakes up at 6 a.m. She is a sleepwalker. One day, after reviewing the cameras,
she finds that she woke up that day and was sleepwalking from 2:15 to 2:38 am. Also, that day she woke up 5
minutes earlier than usual to go to the bathroom. How many minutes did she sleep on her bed that day?

strong reliance on critical tokens, so no single cache-retention strategy is universally optimal across
model types.

A.5 MEMORY PERFORMANCE ANALYSIS

In this section, we report the peak memory usage between methods.

Table 9: Peak allocated GPU memory (GB) by press and cache budget on GSM8K.

press 128 256 384 512

Full 1488 14.88 14.88 14.88
H20 1481 1481 14.82 14.83
KNorm 1479 1480 14.81 14.83
R-KV 1480 14.81 1483 14.84

StreaminglLLM 14.79 14.80 14.81 14.83

A.6 WINDOW SIZE

SnapKV-D using a sliding window of fixed size w to determine critical tokens. In particular, after the
budget is filled to capacity, every w decoding steps, SnapKV-D measures the attention scores of all
current tokens in the cache against the w most recent tokens (the aggregation is described in
[2024)). Those with the lowest scores are dropped to meet the budget again.

In our core experiments, we set w = 128, which is recommended by both the authors and the kvpress
library. We perform an ablation size over window size in Table [T0] The effects are only noticeable
at lower budgets, where smaller window size forces more frequent re-assessment of critical tokens
in the cache, thus maintaining tokens more relevant to incoming context. However, this costs more
overhead: if the total decoded output is length N, we are performing N /w applications of SnapKV-D.

15

Under review as a conference paper at ICLR 2026

Table 10: Model Performance across Cache Budgets and Window Sizes for SnapKV

Cache Budget
Model Window Size 128 256 384 512
16 0.71 0.69 0.80 0.69
. . 32 074 0.71 073 0.73
deepseek-ai/DeepSeek-R1-Distill-Llama-8B 64 072 072 074 072
128 0.72 0.69 0.75 0.70
16 071 0.69 0.66 0.66
o 32 071 0.66 0.68 0.67
Nvidia/Llama-3.1-Nemotron-Nano-8B-v1 64 065 063 066 066
128 072 0.73 0.72 0.67
16 0.74 0.68 0.65 0.67
. - 32 0.69 0.71 0.68 0.68
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B 64 067 067 070 071
128 0.66 0.65 0.70 0.72

Our results illustrate that for larger budgets, wider window sizes should be used since this both
improves accuracy and reduces computation.

A.7 PYRAMIDKV ANALYSIS

PyramidKYV is a dynamic KV-cache compression method that is built around the idea of pyramidal
information funneling: in early Transformer layers, attention is spread broadly over many tokens,
while in deeper layers it becomes concentrated on a small subset of salient tokens. Under a fixed
overall KV budget, PyramidKV therefore allocates larger cache sizes to lower layers and progressively
smaller caches to higher layers, forming a pyramid-shaped retention profile across depth. Within
each layer, it uses attention patterns to decide which keys and values to keep (e.g., tokens that are
strongly attended to by query/instruction tokens are preferentially retained), so that the cache focuses
on the most informative context while still substantially reducing memory usage.

Budget
Dataset Model 128 256 384 512

GSMSK

gsm8k DeepSeek-R1-Distill-Llama-8B 0.01 0.01 0.10 0.22
gsm8k DeepSeek-R1-Distill-Qwen-7B 0.00 0.03 0.09 0.25

gsm8k Meta-Llama-3.1-8B-Instruct 0.03 038 072 0.79
gsm8k Llama-3.1-Nemotron-Nano-8B-vl 0.01 0.01 0.03 0.20
MATHS00

math500 DeepSeek-R1-Distill-Llama-8B 0.00 0.00 0.00 0.00
math500 DeepSeek-R1-Distill-Qwen-7B 0.00 0.01 0.01 0.06
math500 Meta-Llama-3.1-8B-Instruct 0.01 0.05 0.16 0.25
math500 Llama-3.1-Nemotron-Nano-8B-vl 0.02 0.02 0.04 0.04

Table 11: Test accuracy on the GSM8K and MATHS00 test sets for each model and KV-cache budget. Budgets
(128, 256, 384, 512) index the maximum KV-cache size in tokens, and each cell reports the corresponding
accuracy at that budget.

A.8 COMPARISON WITH A SPARSE ATTENTION METHOD

Although our main benchmark evaluates KV Cache pressing methods, we extend our study to compare
these results with other architectural categories, such as sparse attention methods. Such methods
(Gao et al 2025}, [Yuan et al.,[2025) train their architectures to enforce sparse attention computations
by learning to identify and cluster critical tokens. This is in contrast to eviction methods which are
generally training-free. Furthermore, these methods are not memory-bound and host the full KV
cache.

16

Under review as a conference paper at ICLR 2026

We perform a comparative evaluation of sparse decoding modeling with SeerAttention using the
SeerAttention-Decode-R1-Distill-Qwen-14B model and present results in Table
This analysis is performed on the GSM8K benchmark using a randomly sampled subset of 100
questions. We can see that SnapKV-D and SeerAttention are close in performance with SnapKV-D
as slightly better. Further note that SeerAttention must maintain the full cache which scales with
sequence length, while SnapKV-D maintains a fixed size cache.

Table 12: SeerAttention-R1-Distill-Qwen14B. Cache budgets = [128, 256, 384, 512]. We examine the
performance of SeerAttention together with H20 and SnapKV-D. Winner per budget in bold.

Method 128 256 384 512

H20 0.33 0.56 0.62 0.64
SnapKV-D 0.80 0.82 0.81 0.78
SeerAttention | 0.66 0.80 0.82 0.70

A.9 COMPUTATIONAL OVERHEAD

In this section, we describe the asymptotic computational overhead of each method. More specifically,
in Table [T3] we report the computational complexity of cache eviction throughout the decoded
sequence. Once the cache is evicted down to the budget B, the attention calculation is O4(1) (since
there are only B tokens of dimension d to compute attention over). Thus, we are interested in
comparing the complexity of evaluating token importance itself.

Any method relying on accumulated attention scores (H20 & SnapKV-D) incurs a greater cost.
StreamingLLM and KNorm are comparatively cheap; the former just keeps a few sink tokens and
recent context, while the latter simply evicts the token with the largest key norm. These latencies are
reflected accordingly in Figurd2]

Table 13: Decoding computational overhead of importance estimation for our tested KV cache compression
methods. B is the cache budget, N is the decoded sequence length, and d the key dimension. For simplicity, we
are assuming that the budget is filled after pre-fill and that each attention layer is single-head.

Method Overhead Approach

StreamingLLM O(1) Maintain sink token + recent tokens.

H20 O(NBd) Next token in, token in cache with lowest average accumulated attention
score is out.

SnapKV-D O(%Bd) Keep the next window of w tokens, evict tokens in the cache with low
accumulated attention score against the window.

R-KV O(%BQd) Measures token redundancy (key cache self-product) and accumulated
attention scores against the query every w steps.

Knorm O(N) Evicts the token in the cache with the largest /2 norm.

A.10 THE TRANSFORMER DECODER ARCHITECTURE AND INFERENCE

We visualize decoder-only inference and the role of the cache. Figure[6](a) exhibits the @, K, and V'
vectors along with the self-attention mechanism. Figure[§](b) demonstrate the decoding KV cache
bottleneck on memory.

A.11 HYPERPARAMETER DETAILS

In this section, we describe the hyperparameter details for all eviction methods. We tend towards the
default hyper-parameters set by KVPress, which are typically author-recommend selections.

H20: H, tokens kept

PyramidKV: window size 64, kernel size 5, 5 = 20

17

Under review as a conference paper at ICLR 2026

ulput Prefilling Decoding

o
Probabilties

(i i1t
N [layer ¢
g [
flE T
II I 1 |a.ye,2 1 1 1 Il 1
N [layer 1
Frr rrirt
to t1 t2 tho1tn

Positional Positional
Encoding Encoding

oot Gt .
Enoeadng Endeadng) -)
Growing KV lookup sizes for next token generation

e e gn (a) (b)

Figure 6: Overview of the Transformer Decoder Architecture and the Inference Bottleneck. (a) The
standard Transformer decoder architecture (left) and the Multi-Head Attention (MHA) mechanism (right). In
MHA, Query vectors representing the current context attend to a sequence of Key-Value (K-V) pairs from
all previous tokens. Such K-V pairs form the basis of the KV cache. (b) The two-phase inference process in
autoregressive generation. During Prefilling, the tokens in the input context are processed in parallel to populate
the initial KV cache across all layers. During Decoding, each new token is generated sequentially. This requires
recomputing the entire set of the preceding KV entries at each step, causing the lookup size to grow linearly
with the sequence length.

StreamingLLLM: Sink retention, first 4 tokens.
SnapKV-D: Observation window size 128.

KNorm: k=2

R-KV: window size 8, buffer interval 128, kernel size 5.

A.12 MAX TOKEN ABLATION

We study the effects of max token limit on performance under a fixed budget of 1024 tokens. Results
are presented in Figure

Max Token Ablation for R1-Qwen-7b on Math500

—8— snapkv
1 knorm

—8— streaming_|im
—— h2o0

0.55 1

o
@
=)

Accuracy

o
P
v

0.401

0.35

2048 5096 10192
Max New Tokens

Figure 7: Performance versus max tokens permitted. Fixed budget of 1024.

A.13 CONFIDENCE INTERVALS

For each configuration (model, dataset, cache budget, method), we estimate uncertainty by computing
a binomial confidence interval over correctness across runs, as shown in Table[I4] Specifically, we
evaluate 3 independent seeds, each on 100 questions, and treat the resulting 300 binary outcomes
(correct/incorrect) as Bernoulli trials with unknown success probability. The sample accuracy for
that configuration is the proportion of correct answers over these 300 trials, and we then compute
a 95% Wilson score confidence interval for this underlying accuracy parameter (using the normal

18

Under review as a conference paper at ICLR 2026

approximation with z = 1.96. The table cells in this appendix report only these Wilson intervals
[L,U], omitting the point estimates, which are shown separately in the main results Tables [T}4]

Table 14: Confidence intervals across cache budgets (Continuous)

Budget 128 256 384 512 128 256 384 512
Llama-3.1-8B-Instruct

Method GSMSK Math500

Full [0.838, 0.912] [0.337, 0.446]

ShadowKV [0.270, 0.375] [0.177,0.270]

H20 [0.574, 0.683] [0.719, 0.814] [0.773, 0.859] [0.783, 0.868] [0.251, 0.354] [0.279, 0.385] [0.279, 0.385] [0.308, 0.416]

Knorm [0.031, 0.081] [0.473,0.586] [0.677,0.777] [0.773,0.859] [0.016,0.056] [0.141,0.227] [0.177,0.270] [0.279, 0.385]

RKV [0.088, 0.162] [0.289, 0.395] [0.444, 0.556] [0.434, 0.546] [0.016, 0.056] [0.071,0.139] [0.123,0.206] [0.159, 0.249]

SnapKV [0.473,0.586] [0.493,0.605] [0.503, 0.615] [0.473,0.586] [0.159,0.249] [0.168, 0.260] [0.150, 0.238] [0.159, 0.249]

StreamingLLM [0.214, 0.312] [0.698, 0.796] [0.794, 0.877] [0.827, 0.903] [0.079, 0.150] [0.214,0.312] [0.270, 0.375] [0.298, 0.406]

Method CSQA OBQA

Full [0.719, 0.814] [0.794, 0.877]

ShadowKV [0.159, 0.249] [0.260, 0.364]

H20 [0.688, 0.786] [0.709, 0.805] [0.719, 0.814] [0.719, 0.814] [0.783, 0.868] [0.816, 0.895] [0.816, 0.895] [0.816, 0.895]

Knorm [0.289, 0.395] [0.719, 0.814] [0.698, 0.796] [0.709, 0.805] [0.356, 0.466] [0.740, 0.832] [0.794,0.877] [0.773, 0.859]

RKV [0.308, 0.416] [0.564, 0.673] [0.709, 0.805] [0.719,0.814] [0.177,0.270] [0.605,0.711] [0.719, 0.814] [0.794, 0.877]

SnapKV [0.646, 0.749] [0.584, 0.692] [0.656, 0.758] [0.667,0.768] [0.677,0.777] [0.719,0.814] [0.667,0.768] [0.709, 0.805]

StreamingLLM [0.159, 0.249] [0.698, 0.796] [0.709, 0.805] [0.719, 0.814] [0.105, 0.184] [0.667,0.768] [0.794, 0.877] [0.794, 0.877]

Method ReClor DROP

Full [0.544, 0.654] [0.114, 0.195]

ShadowKV [0.223, 0.323] [0.232, 0.333]

H20 [0.270, 0.375] [0.503, 0.615] [0.544, 0.654] [0.523, 0.634] [0.088,0.162] [0.105,0.184] [0.132,0.217] [0.132,0.217]

Knorm [0.003, 0.029] [0.150, 0.238] [0.404,0.517] [0.534, 0.644] [0.003,0.029] [0.054,0.116] [0.097,0.173] [0.097, 0.173]

RKV [0.023, 0.069] [0.168, 0.260] [0.346, 0.456] [0.483, 0.596] [0.038,0.093] [0.046, 0.105] [0.105, 0.184] [0.079, 0.150]

SnapKV [0.473, 0.586] [0.513,0.625] [0.523, 0.634] [0.493, 0.605] [0.114, 0.195] [0.088,0.162] [0.079, 0.150] [0.088, 0.162]

StreamingLLM [0.031, 0.081] [0.168, 0.260] [0.534, 0.644] [0.523, 0.634] [0.063, 0.128] [0.079, 0.150] [0.114, 0.195] [0.123, 0.206]

Method StrategyQA FOLIO

Full [0.783, 0.868] [0.454, 0.566]

ShadowKV [0.625, 0.730] [0.279, 0.385]

H20 [0.762, 0.850] [0.827,0.903] [0.838,0.912] [0.850,0.921] [0.177,0.270] [0.375,0.487] [0.356, 0.466] [0.375, 0.487]

Knorm [0.414,0.527] [0.805,0.886] [0.838,0.912] [0.827,0.903] [0.009, 0.043] [0.232,0.333] [0.337,0.446] [0.327, 0.436]

RKV [0.544, 0.654] [0.740, 0.832] [0.719, 0.814] [0.740, 0.832] [0.046,0.105] [0.308, 0.416] [0.385,0.497] [0.289, 0.395]

SnapKV [0.730, 0.823] [0.730, 0.823] [0.762, 0.850] [0.709, 0.805] [0.385, 0.497] [0.346, 0.456] [0.395,0.507] [0.404, 0.517]

StreamingLLM [0.079, 0.150] [0.709, 0.805] [0.850, 0.921] [0.805, 0.886] [0.016, 0.056] [0.063, 0.128] [0.204, 0.302] [0.298, 0.406]

Deepseek-R1-Distill-Qwen-7B

Method GSMSK Math500

Full [0.646, 0.749] [0.414, 0.527]

ShadowKV [0.414, 0.527] [0.279, 0.385]

H20 [0.168, 0.260] [0.385, 0.497] [0.454,0.566] [0.464,0.576] [0.105,0.184] [0.168, 0.260] [0.242, 0.344] [0.260, 0.364]
Knorm [0.000, 0.013] [0.000, 0.013] [0.054,0.116] [0.123, 0.206] [0.000, 0.013] [0.003, 0.029] [0.016, 0.056] [0.031, 0.081]
RKV [0.023, 0.069] [0.046, 0.105] [0.141,0.227] [0.251, 0.354] [0.023, 0.069] [0.023, 0.069] [0.031,0.081] [0.132,0.217]
SnapKV [0.615, 0.721] [0.615, 0.721] [0.646, 0.749] [0.656, 0.758] [0.327, 0.436] [0.308, 0.416] [0.308, 0.416] [0.270, 0.375]
StreamingLLM [0.009, 0.043] [0.150, 0.238] [0.270, 0.375] [0.385, 0.497] [0.016, 0.056] [0.088, 0.162] [0.150, 0.238] [0.214, 0.312]
Method CSQA OBQA

Full [0.615, 0.721] [0.730, 0.823]

ShadowKV [0.159, 0.249] [0.260, 0.364]

H20 [0.385, 0.497] [0.554, 0.663] [0.544, 0.654] [0.584, 0.692] [0.366, 0.477] [0.584,0.692] [0.636,0.740] [0.615, 0.721]
Knorm [0.031, 0.081] [0.097,0.173] [0.251, 0.354] [0.366, 0.477] [0.016, 0.056] [0.031,0.081] [0.186, 0.281] [0.327, 0.436]
RKV [0.071, 0.139] [0.063, 0.128] [0.223, 0.323] [0.289, 0.395] [0.071,0.139] [0.071,0.139] [0.168, 0.260] [0.214, 0.312]
SnapKV [0.594, 0.702] [0.564, 0.673] [0.534, 0.644] [0.554, 0.663] [0.656, 0.758] [0.698, 0.796] [0.625, 0.730] [0.709, 0.805]
StreamingLLM [0.054, 0.116] [0.105, 0.184] [0.260, 0.364] [0.424, 0.536] [0.009, 0.043] [0.079, 0.150] [0.232, 0.333] [0.317, 0.426]
Method ReClor DROP

Full [0.395, 0.507] [0.123, 0.206]

ShadowKV [0.223, 0.323] [0.105, 0.184]

H20 [0.003, 0.029] [0.023, 0.069] [0.141,0.227] [0.232, 0.333] [0.023, 0.069] [0.046, 0.105] [0.071,0.139] [0.071, 0.139]
Knorm [0.000, 0.013] [0.000, 0.013] [0.003, 0.029] [0.003, 0.029] [0.000, 0.013] [0.003, 0.029] [0.003, 0.029] [0.016, 0.056]
RKV [0.023, 0.069] [0.016, 0.056] [0.009, 0.043] [0.003, 0.029] [0.023, 0.069] [0.023, 0.069] [0.016, 0.056] [0.023, 0.069]
SnapKV [0.395, 0.507] [0.337, 0.446] [0.346, 0.456] [0.375, 0.487] [0.097,0.173] [0.079, 0.150] [0.088, 0.162] [0.123, 0.206]

StreamingLLM [0.000, 0.013] [0.003, 0.029] [0.003, 0.029] [0.023, 0.069] [0.023, 0.069] [0.031, 0.081] [0.054, 0.116] [0.097, 0.173]

Continued on next page...

19

Under review as a conference paper at ICLR 2026

Table 14: Confidence intervals (continued)...

Budget 128 256 384 512 128 256 384 512

Method StrategyQA FOLIO

Full [0.615, 0.721] [0.308, 0.416]

ShadowKV [0.544, 0.654] [0.279, 0.385]

H20 [0.279, 0.385] [0.584, 0.692] [0.688, 0.786] [0.667, 0.768] [0.016, 0.056] [0.168, 0.260] [0.186,0.281] [0.186, 0.281]

Knorm [0.000, 0.013] [0.088, 0.162] [0.385, 0.497] [0.534, 0.644] [0.000, 0.013] [0.003, 0.029] [0.016, 0.056] [0.031, 0.081]

RKV [0.031, 0.081] [0.105, 0.184] [0.289, 0.395] [0.366, 0.477] [0.023, 0.069] [0.016, 0.056] [0.009, 0.043] [0.038, 0.093]

SnapKV [0.544, 0.654] [0.534,0.644] [0.513, 0.625] [0.574, 0.683] [0.251, 0.354] [0.204, 0.302] [0.260, 0.364] [0.242, 0.344]

StreamingLLM [0.000, 0.013] [0.031, 0.081] [0.177,0.270] [0.366, 0.477] [0.000, 0.013] [0.003, 0.029] [0.009, 0.043] [0.016, 0.056]

Nemotron-Nano-8B

Method GSMSK Math500

Full [0.584, 0.692] [0.395, 0.507]

ShadowKV [0.385, 0.497] [0.232, 0.333]

H20 [0.177,0.270] [0.395, 0.507] [0.464,0.576] [0.513, 0.625] [0.123,0.206] [0.195,0.291] [0.260, 0.364] [0.279, 0.385]

Knorm [0.003, 0.029] [0.009, 0.043] [0.063, 0.128] [0.141, 0.227] [0.003, 0.029] [0.003, 0.029] [0.016, 0.056] [0.038, 0.093]

RKV [0.023, 0.069] [0.016, 0.056] [0.063, 0.128] [0.114, 0.195] [0.009, 0.043] [0.023, 0.069] [0.016, 0.056] [0.038, 0.093]

SnapKV [0.594, 0.702] [0.574, 0.683] [0.605, 0.711] [0.605, 0.711] [0.356, 0.466] [0.385, 0.497] [0.395, 0.507] [0.375, 0.487]

StreamingLLM [0.016, 0.056] [0.159, 0.249] [0.346, 0.456] [0.473, 0.586] [0.009, 0.043] [0.097,0.173] [0.177,0.270] [0.289, 0.395]

Method CSQA OBQA

Full [0.454, 0.566] [0.584, 0.692]

ShadowKV [0.159, 0.249] [0.260, 0.364]

H20 [0.414, 0.527] [0.434, 0.546] [0.464, 0.576] [0.454, 0.566] [0.534,0.644] [0.534, 0.644] [0.523, 0.634] [0.564, 0.673]

Knorm [0.308, 0.416] [0.346, 0.456] [0.385,0.497] [0.404,0.517] [0.270,0.375] [0.385,0.497] [0.424,0.536] [0.513, 0.625]

RKV [0.232,0.333] [0.251, 0.354] [0.366, 0.477] [0.356, 0.466] [0.298, 0.406] [0.385, 0.497] [0.454, 0.566] [0.454, 0.566]

SnapKV [0.434, 0.546] [0.444, 0.556] [0.454,0.566] [0.473,0.586] [0.625,0.730] [0.574,0.683] [0.605,0.711] [0.605, 0.711]

StreamingLLM [0.308, 0.416] [0.385, 0.497] [0.404, 0.517] [0.444,0.556] [0.308, 0.416] [0.404,0.517] [0.464, 0.576] [0.564, 0.673]

Method ReClor DROP

Full [0.424, 0.536] [0.079, 0.150]

ShadowKV [0.223, 0.323] [0.079, 0.150]

H20 [0.159, 0.249] [0.177,0.270] [0.298, 0.406] [0.346, 0.456] [0.031,0.081] [0.038, 0.093] [0.071,0.139] [0.063, 0.128]

Knorm [0.003, 0.029] [0.016, 0.056] [0.046,0.105] [0.046, 0.105] [0.003, 0.029] [0.003, 0.029] [0.009, 0.043] [0.016, 0.056]

RKV [0.016, 0.056] [0.054, 0.116] [0.054,0.116] [0.046, 0.105] [0.009, 0.043] [0.038, 0.093] [0.031, 0.081] [0.016, 0.056]

SnapKV [0.366, 0.477] [0.366, 0.477] [0.366, 0.477] [0.317,0.426] [0.079, 0.150] [0.079, 0.150] [0.088, 0.162] [0.071, 0.139]

StreamingLLM [0.016, 0.056] [0.038, 0.093] [0.063, 0.128] [0.105, 0.184] [0.016, 0.056] [0.009, 0.043] [0.038, 0.093] [0.054, 0.116]

Method StrategyQA FOLIO

Full [0.850, 0.921] [0.308, 0.416]

ShadowKV [0.594, 0.702] [0.279, 0.385]

H20 [0.709, 0.805] [0.794, 0.877] [0.805, 0.886] [0.783, 0.868] [0.177,0.270] [0.308, 0.416] [0.298, 0.406] [0.317, 0.426]

Knorm [0.327, 0.436] [0.493, 0.605] [0.625,0.730] [0.709, 0.805] [0.016,0.056] [0.023, 0.069] [0.046,0.105] [0.097,0.173]

RKV [0.366, 0.477] [0.395, 0.507] [0.584,0.692] [0.656, 0.758] [0.038,0.093] [0.054,0.116] [0.079,0.150] [0.105, 0.184]

SnapKV [0.783, 0.868] [0.805, 0.886] [0.794,0.877] [0.794, 0.877] [0.327, 0.436] [0.366, 0.477] [0.356, 0.466] [0.356, 0.466]

StreamingLLM [0.195, 0.291] [0.337, 0.446] [0.464, 0.576] [0.636, 0.740] [0.016, 0.056] [0.016, 0.056] [0.038,0.093] [0.114,0.195]
DeepSeek-R1-Distill-Llama-8B

Method GSMSK Math500

Full [0.646, 0.749] [0.404, 0.517]

ShadowKV [0.454, 0.566] [0.289, 0.395]

H20 [0.317, 0.426] [0.473, 0.586] [0.564,0.673] [0.554,0.663] [0.159,0.249] [0.260, 0.364] [0.308, 0.416] [0.308, 0.416]

Knorm [0.000, 0.013] [0.063, 0.128] [0.150, 0.238] [0.232, 0.333] [0.000, 0.013] [0.003, 0.029] [0.009, 0.043] [0.038, 0.093]

RKV [0.031, 0.081] [0.023, 0.069] [0.105,0.184] [0.132,0.217] [0.016, 0.056] [0.031, 0.081] [0.009, 0.043] [0.009, 0.043]

SnapKV [0.667, 0.768] [0.667, 0.768] [0.688, 0.786] [0.667, 0.768] [0.366, 0.477] [0.385, 0.497] [0.356, 0.466] [0.356, 0.466]

StreamingLLM [0.038, 0.093] [0.204, 0.302] [0.337, 0.446] [0.503, 0.615] [0.016, 0.056] [0.063,0.128] [0.168, 0.260] [0.242, 0.344]

Method CSQA OBQA

Full [0.698, 0.796] [0.794, 0.877]

ShadowKV [0.159, 0.249] [0.260, 0.364]

H20 [0.424, 0.536] [0.667, 0.768] [0.677,0.777] [0.677,0.777] [0.424,0.536] [0.730, 0.823] [0.783, 0.868] [0.794, 0.877]

Knorm [0.031, 0.081] [0.232, 0.333] [0.483, 0.596] [0.605, 0.711] [0.016, 0.056] [0.223, 0.323] [0.513, 0.625] [0.646, 0.749]

RKV [0.046, 0.105] [0.079, 0.150] [0.123, 0.206] [0.298, 0.406] [0.046,0.105] [0.046, 0.105] [0.150, 0.238] [0.270, 0.375]

SnapKV [0.688, 0.786] [0.677, 0.777] [0.688, 0.786] [0.677,0.777] [0.773, 0.859] [0.783, 0.868] [0.783, 0.868] [0.762, 0.850]

StreamingLLM [0.023, 0.069] [0.105, 0.184] [0.298, 0.406] [0.444,0.556] [0.046,0.105] [0.114,0.195] [0.270, 0.375] [0.464, 0.576]

Method ReClor DROP

Full [0.454, 0.566] [0.105, 0.184]

ShadowKV [0.223, 0.323] [0.063, 0.128]

20

Continued on next page...

Under review as a conference paper at ICLR 2026

Table 14: Confidence intervals (continued)...

Budget 128 256 384 512 128 256 384 512
H20 [0.016, 0.056] [0.054,0.116] [0.186, 0.281] [0.327, 0.436] [0.038, 0.093] [0.046,0.105] [0.071,0.139] [0.079, 0.150]
Knorm [0.000, 0.013] [0.000, 0.013] [0.009, 0.043] [0.071, 0.139] [0.000, 0.013] [0.003, 0.029] [0.003, 0.029] [0.031, 0.081]
RKV [0.023, 0.069] [0.016, 0.056] [0.016, 0.056] [0.079, 0.150] [0.016, 0.056] [0.016, 0.056] [0.031,0.081] [0.046, 0.105]
SnapKV [0.444, 0.556] [0.054, 0.116] [0.031, 0.081] [0.031, 0.081] [0.132,0.217] [0.114,0.195] [0.114, 0.195] [0.123, 0.206]
StreamingLLM [0.000, 0.013] [0.000, 0.013] [0.003, 0.029] [0.038, 0.093] [0.009, 0.043] [0.009, 0.043] [0.063,0.128] [0.097, 0.173]
Method StrategyQA FOLIO

Full [0.688, 0.786] [0.414, 0.527]

ShadowKV [0.751, 0.841] [0.279, 0.385]

H20 [0.204, 0.302] [0.636, 0.740] [0.719, 0.814] [0.740, 0.832] [0.046,0.105] [0.317,0.426] [0.356, 0.466] [0.404, 0.517]
Knorm [0.038, 0.093] [0.308, 0.416] [0.513, 0.625] [0.646, 0.749] [0.000, 0.013] [0.016, 0.056] [0.079, 0.150] [0.168, 0.260]
RKV [0.054,0.116] [0.298, 0.406] [0.444, 0.556] [0.574,0.683] [0.016,0.056] [0.054,0.116] [0.097,0.173] [0.214, 0.312]
SnapKV [0.625, 0.730] [0.605, 0.711] [0.584, 0.692] [0.625, 0.730] [0.404, 0.517] [0.395, 0.507] [0.434, 0.546] [0.404, 0.517]
StreamingLLM [0.016, 0.056] [0.079, 0.150] [0.308, 0.416] [0.503, 0.615] [0.000, 0.013] [0.003, 0.029] [0.023, 0.069] [0.063, 0.128]

21

	Introduction
	Preliminaries
	Related Work
	KV Cache Compression
	Token Eviction

	Benchmarking Reasoning

	Experiments & Analysis
	Setup
	Latency Experiment
	Max Token Ablation
	Large Model Comparison
	Cache Budget vs Output Length
	Attention as an indicator of Performance
	Ablation Analysis & High-Level Trends

	Conclusion
	Ethics Statement
	Appendix
	Generation Lengths
	A Verbose, Wrong Answer
	LLM Usage
	Retention of Critical Tokens
	Memory Performance Analysis
	Window Size
	PyramidKV Analysis
	Comparison with a Sparse Attention Method
	Computational Overhead
	The Transformer Decoder Architecture and Inference
	Hyperparameter Details
	Max Token Ablation
	Confidence Intervals

