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Abstract

Recent psycholinguistic studies have drawn
conflicting conclusions about the relationship
between the quality of a language model and
the ability of its surprisal estimates to predict
human reading times, which has been specu-
lated to be due to the large gap in both the
amount of training data and model capacity
across studies. The current work aims to consol-
idate these findings by evaluating surprisal esti-
mates from Transformer-based language model
variants that vary systematically in the amount
of training data and model capacity on their
ability to predict human reading times. The
results show that surprisal estimates from most
variants with contemporary model capacities
provide the best fit after seeing about two bil-
lion training tokens, after which they begin to
diverge from humanlike expectations. Addi-
tionally, newly-trained smaller model variants
reveal a ‘tipping point’ at convergence, after
which the decrease in language model perplex-
ity begins to result in poorer fits to human read-
ing times. These results suggest that the mas-
sive amount of training data is mainly respon-
sible for the poorer fit achieved by surprisal
from larger pre-trained language models, and
that a certain degree of model capacity is nec-
essary for Transformer-based language models
to capture humanlike expectations.

1 Introduction

The predictability of upcoming linguistic material
has long been considered a crucial factor underly-
ing difficulty in human sentence processing (Hale,
2001; Levy, 2008), and has received empirical
support from numerous studies showing surprisal
(Shannon, 1948) to be highly predictive of relevant
behavioral and neural measures (e.g. Demberg and
Keller, 2008; Smith and Levy, 2013; Hale et al.,
2018; Shain et al., 2020). Since language models
(LMs) are trained to estimate a conditional proba-
bility distribution of a word given its context, sur-
prisal estimates calculated from them have often

been evaluated on their ability to predict measures
of processing difficulty.

Recent studies in computational psycholinguis-
tics have provided conflicting evidence with regard
to the relationship between LM quality (i.e. next-
word prediction accuracy) and goodness-of-fit to
human reading times. Earlier work using newly-
trained LMs showed a negative relationship be-
tween LM perplexity and predictive power of sur-
prisal estimates (Goodkind and Bicknell, 2018;
Wilcox et al., 2020; Merkx and Frank, 2021),
but more recent work using large pre-trained
Transformer-based LMs (e.g. GPT-2; Radford et al.,
2019) show a robust positive relationship between
the two variables (Oh et al., 2022; Oh and Schuler,
2023). While Oh and Schuler (2023) conjecture
that these studies capture two distinct regimes, it
remains less clear where the reversal in this rela-
tionship happens. The main challenge in answering
this question lies in the massive difference in terms
of both the amount of training data and the model
capacity of LMs that were studied.

The current study aims to cover this conceptual
middle ground by evaluating, on their ability to pre-
dict human reading times, surprisal estimates from
Transformer-based LM variants that vary system-
atically in the amount of training data and model
capacity. Results from regression analyses show
that surprisal from most LM variants with contem-
porary model capacities make the biggest contri-
bution to regression model fit after seeing about
two billion tokens of training data, after which ad-
ditional training data result in surprisal estimates
that continue to diverge from humanlike expecta-
tions. Additionally, surprisal estimates from newly-
trained smaller LM variants reveal a ‘tipping point’
at convergence, after which the decrease in perplex-
ity begins to result in poorer fits to human read-
ing times. Taken together, these results suggest
that the vast amount of training data is mainly re-
sponsible for the poorer fit achieved by surprisal



from larger Transformer-based pre-trained LMs
(Oh et al., 2022; Oh and Schuler, 2023), and that
a certain degree of model capacity is necessary
for Transformer-based LMs to capture humanlike
expectations that manifest in reading times.

2 Experiment 1: Influence of Training
Data Size

The first experiment examines the influence of
training data size on the predictive power of
Transformer-based LM surprisal by evaluating LM
variants at various points in training on self-paced
reading times from the Natural Stories Corpus
(Futrell et al., 2021) and go-past eye-gaze durations
from the Dundee Corpus (Kennedy et al., 2003).

2.1 Response Data

The Natural Stories Corpus contains reading times
from 181 subjects that read 10 naturalistic English
stories consisting a total of 10,245 tokens. The data
points were filtered to remove those for sentence-
initial and final words, those from subjects who
answered three or fewer comprehension questions
correctly, and those shorter than 100 ms or longer
than 3000 ms, which resulted in a total of 384,905
observations in the exploratory set. The Dundee
Corpus contains eye-gaze durations from 10 sub-
jects that read 67 newspaper editorials consisting
a total of 51,501 tokens. The data points were fil-
tered to exclude those for unfixated words, words
following saccades longer than four words, and
sentence-, screen-, document-, and line-initial and
final words, which resulted in a total of 98,115 ob-
servations in the exploratory set.1 All observations
were log-transformed prior to model fitting.

2.2 Predictors

This experiment evaluates surprisal estimates from
eight variants of Pythia LMs (Biderman et al.,
2023), whose intermediate parameters were saved
at various points during training. Pythia LMs
are decoder-only autoregressive Transformer-based
models2 whose variants differ primarily in their ca-
pacity. The model capacities of the Pythia variants
are summarized in Table 1.

1The held-out set of each corpus, which have a comparable
number of observations, is reserved for statistical significance
testing and therefore was not analyzed in this work.

2Technical details such as the parallelization of self-
attention/feedforward computations and the separation of em-
bedding/projection matrices differentiate Pythia LMs from
other large language model families.

Model #L #H dmodel #Parameters
Pythia 70M 6 8 512 ∼70M
Pythia 160M 12 12 768 ∼160M
Pythia 410M 24 16 1024 ∼410M
Pythia 1B 16 8 2048 ∼1B
Pythia 1.4B 24 16 2048 ∼1.4B
Pythia 2.8B 32 32 2560 ∼2.8B
Pythia 6.9B 32 32 4096 ∼6.9B
Pythia 12B 36 40 5120 ∼12B

Table 1: Model capacities of Pythia variants whose
surprisal estimates were examined in this work. #L, #H,
and dmodel refer to number of layers, number of attention
heads per layer, and embedding size, respectively.

Crucially for this experiment, all eight Pythia
variants were trained using identical batches of
training examples that were presented in the same
order. These training examples come from the Pile
(Gao et al., 2020), which is a collection of English
language datasets that consist of around 300 bil-
lion tokens. Batches of 1,024 examples with a
sequence length of 2,048 (i.e. 2,097,152 tokens)
were used to train the eight variants for 143,000
steps, which amounts to about one epoch of the
entire Pile dataset. Model parameters that were
saved during early training stages (i.e. after 1, 2,
4, ..., 256, 512 steps) as well as after every 1,000
steps are publicly available.

Each article of the Natural Stories Corpus and
each article of the Dundee Corpus was tokenized
by Pythia’s byte-pair encoding (BPE; Sennrich
et al., 2016) tokenizer and provided as input to each
model variant. For each model variant, all publicly
available intermediate model weights were used to
calculate surprisal estimates on the two corpora. In
cases where each story or article was longer than
a single context window of 2,048 tokens, surprisal
estimates for the remaining tokens were calculated
by using the second half of the previous context
window as the first half of a new context window.

2.3 Regression Modeling
Subsequently, following previous work (Oh et al.,
2022; Oh and Schuler, 2023), a ‘baseline’ linear
mixed-effects (LME) model that contains baseline
predictors for low-level cognitive processing, and
‘full’ LME models that additionally contain each
LM surprisal predictor, were fit to self-paced read-
ing times and go-past durations using lme4 (Bates
et al., 2015). These baseline predictors are word
length in characters and index of word position
in each sentence (Natural Stories and Dundee), as
well as saccade length and whether or not the pre-



Figure 1: Increase in regression model log-likelihood due to including each surprisal estimate from Pythia variants
as a function of training steps (top) and perplexity (middle; the stars indicate the fully trained versions after 143,000
steps), as well as perplexity as a function of training steps (bottom) on the exploratory set of Natural Stories (left)
and Dundee data (right).

vious word was fixated (Dundee only). All pre-
dictors were centered and scaled,3 and the LME
models included by-subject random slopes for all
fixed effects and random intercepts for each subject.
In addition, a random intercept for each subject-
sentence interaction was included for self-paced
reading times collected from 181 subjects, and a
random intercept for each sentence was included
for eye-gaze durations collected from a smaller
number of 10 subjects. Once the regression mod-
els were fit, the increase in regression model log-
likelihood (∆LL) was calculated for each regres-
sion model by subtracting the log-likelihood of the
baseline regression model from that of a full re-

3‘Spillover’ predictors were not included in the regression
models to avoid convergence issues.

gression model. Finally, the perplexity of each LM
variant was calculated on the two corpora.

2.4 Results

The results in Figure 1 show that across both cor-
pora, surprisal from most LM variants made the
biggest contribution to regression model fit after
1,000 training steps (i.e. after about two billion
tokens).4 This seems to represent a ‘humanlike

4Results from after 2,000 steps were selectively omitted
for clarity, as they were consistent with the general trend. As
pointed out by a reviewer, including a frequency-based pre-
dictor in the regression models may change the exact location
of this peak. However, this work avoids potential confounds
introduced by the corpus used for frequency estimation by
evaluating surprisal estimates on their own following the pro-
tocols of Oh and Schuler (2023).



Figure 2: Increase in regression model log-likelihood due to including each surprisal estimate from newly-trained
LM variants as a function of training steps (top) and perplexity (middle; the stars indicate the fully trained versions
after 10,000 steps), as well as perplexity as a function of training steps (bottom) on the exploratory set of Natural
Stories (left) and Dundee data (right). The variants are labeled using their number of layers, number of attention
heads per layer, and embedding size, in that order.

optimum,’ after which surprisal estimates begin to
diverge from humanlike expectations as training
continues. At this point in training, there appears
to be no systematic relationship between model ca-
pacity and predictive power of surprisal estimates.
However, after all 143,000 training steps (i.e. after
about 300 billion tokens), the eight model variants
show a strictly monotonic and negative relation-
ship, which directly replicates the findings of Oh
and Schuler (2023).5 Taken together, these results
indicate that the vast amount of training data is re-
sponsible for the poorer fit achieved by surprisal

5The best-fitting line between log perplexity and ∆LL
of these variants had a slope significantly greater than 0 at
p < 0.05 level according to a one-tailed t-test on both corpora.

from larger Transformer-based LMs.

3 Experiment 2: Influence of Model
Capacity

The second experiment further examines the re-
lationship between model capacity and predic-
tive power of surprisal estimates by evaluating
Transformer-based LM variants smaller than the
Pythia variants at various points in training, follow-
ing similar procedures as Experiment 1.

3.1 Procedures
Surprisal estimates from eight smaller LM vari-
ants were evaluated at various points during train-
ing in this experiment. The largest of these vari-



ants has the same model capacity as the smallest
Pythia 70M variant, and the smaller variants were
designed to have fewer layers and attention heads,
as well as smaller embeddings. These variants
were trained closely following the training proce-
dures of the Pythia variants, including the size and
order of training batches. For computational ef-
ficiency, these variants were trained for the first
10,000 training steps, based on the observation that
∆LL on both corpora did not change substantially
after 8,000 steps for the smallest Pythia variant.6

The predictive power of resulting surprisal esti-
mates was evaluated following identical procedures
as Experiment 1.

3.2 Results
The results in Figure 2 show that surprisal from the
two largest variants made the biggest contribution
to regression model fit after 1,000 training steps on
both corpora, replicating the results of Experiment
1. In contrast, the smaller variants such as the 2-
2-128 and 2-3-192 variants seem to peak later at
around 2,000 training steps and stabilize afterward.
After all 10,000 training steps, the model variants
show a reversal in the relationship between LM
perplexity and fit to reading times; the 2-3-192
variant seems to represent a ‘tipping point,’ after
which the decrease in perplexity starts to result in
poorer fits to human reading times. Additionally,
variants that are smaller than this yield surprisal
estimates that are less predictive of reading times
when sufficiently trained. These results suggest
that a certain degree of model capacity is necessary
for Transformer-based LMs to capture humanlike
expectations that manifest in reading times.

4 Discussion and Conclusion

This work aims to consolidate conflicting findings
about the relationship between LM quality and
the predictive power of its surprisal estimates by
systematically manipulating the amount of train-
ing data and model capacity. Experimental re-
sults show that surprisal from most contemporary
Transformer-based LM variants provide the best
fit to human reading times with about two billion
training tokens, after which they begin to diverge
from humanlike expectations. It is conjectured that
early training data up to about two billion tokens is

6Refer to Appendix A for the model capacities of these
variants as well as further details on their training procedures.
Code and trained weights are available at https://github.
com/byungdoh/slm_surprisal.

helpful for learning e.g. selectional preferences that
align well with humanlike prediction and process-
ing difficulty. However, as the models see more
training data, they are able to achieve ‘superhuman’
prediction, which makes their surprisal estimates
diverge more and more from human reading times
as training continues. The words for which predic-
tion by LMs improves with massive amounts of
training data are likely to be open-class words like
nouns and adjectives, whose reading times were
identifed as being most severely underpredicted by
their surprisal estimates (Oh and Schuler, 2023).

Moreover, at the end of training, these model
variants show a strictly monotonic and negative
relationship between perplexity and fit to human
reading times. This directly replicates the find-
ings of Oh et al. (2022) and adds to a growing
body of research reporting an inverse correlation be-
tween model size and regression model fit (Kurib-
ayashi et al., 2022; Shain et al., 2022; de Varda and
Marelli, 2023). The current results demonstrate
that this relationship emerges with large amounts
of training data and becomes stronger as training
continues. The bottleneck posed by the limited
model capacity of the smaller variants appears to
prevent them from learning to make excessively
accurate predictions that cause the divergence be-
tween surprisal and human reading times. How-
ever, newly-trained LM variants that are smaller
than those of contemporary standards reveal a ‘tip-
ping point’ at convergence, which indicates that a
certain amount of model capacity is necessary for
LMs to correctly learn humanlike expectations.

Finally, across both experiments, model capacity
does not seem to modulate the relationship between
perplexity and fit to human reading times, with data
points from different LM variants forming a con-
tinuous curve between log perplexity and ∆LL.
This suggests that Transformer-based LMs of dif-
ferent capacities share a similar inductive bias that
initially improves the fit of surprisal estimates to
human reading times but begins to have an adverse
effect on it with large amounts of training data.
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Limitations

The connection between conditional probabilities
of Transformer-based language models and human
sentence processing drawn in this work is based on
language model variants trained on English text and
data from human subjects that are native speakers
of English. Therefore, the connection made in this
work may not generalize to other languages.

Ethics Statement

Experiments presented in this work used datasets
from previously published research (Futrell et al.,
2021; Kennedy et al., 2003), in which the proce-
dures for data collection and validation are outlined.
As this work focuses on studying the connection
between conditional probabilities of language mod-
els and human sentence processing, its potential
negative impacts on society seem to be minimal.
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A Model Capacities and Training
Procedures of Smaller LM Variants

The eight LM variants that were trained as part
of Experiment 2 are decoder-only autoregressive
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chitecture as the Pythia LM variants (Biderman
et al., 2023). Their model capacities are summa-
rized in Table 2.

These variants were trained using the GPT-NeoX
library (Andonian et al., 2021) closely following
the training procedures of the Pythia LM variants.7
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Table 2: Model capacities of newly-trained LM variants
whose surprisal estimates were examined in this work.
#L, #H, and dmodel refer to number of layers, number of
attention heads, and embedding size, respectively.
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der as the Pythia variants. The variants were trained
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jbhandari et al., 2020) implementation of Adam
(Kingma and Ba, 2015) with a learning rate of
0.001. The learning rate was warmed up linearly
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and were subsequently lowered to a minimum of
0.0001 following a cosine annealing schedule over
the remainder of the 143,000 training steps. How-
ever, for computational efficiency, training was
stopped after the first 10,000 training steps. For
comparability with the Pythia variants, intermedi-
ate parameters were saved during early training
stages (i.e. after 1, 2, 4, ..., 256, 512 steps) as well
as after every 500 steps from step 1,000 onward.
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