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Abstract001

Multi-Hop Question Answering (MHQA) tasks002
permeate real-world applications, posing chal-003
lenges in orchestrating multi-step reasoning004
across diverse knowledge domains. While ex-005
isting approaches have been improved with006
iterative retrieval, they still struggle to iden-007
tify and organize dynamic knowledge. To ad-008
dress this, we propose DualRAG, a synergistic009
dual-process framework that seamlessly inte-010
grates reasoning and retrieval. DualRAG op-011
erates through two tightly coupled processes:012
Reasoning-augmented Querying (RaQ) and013
progressive Knowledge Aggregation (pKA).014
They work in concert: as RaQ navigates the015
reasoning path and generates targeted queries,016
pKA ensures that newly acquired knowledge017
is systematically integrated to support coher-018
ent reasoning. This creates a virtuous cycle019
of knowledge enrichment and reasoning refine-020
ment. Further, through targeted fine-tuning,021
DualRAG preserves its sophisticated reason-022
ing and retrieval capabilities in smaller-scale023
models, demonstrating its versatility and core024
advantages across different scales. Extensive025
experiments demonstrate that this dual-process026
approach substantially improves answer accu-027
racy and coherence, approaching, and in some028
cases surpassing, the performance achieved029
with oracle knowledge access. These results030
establish DualRAG as a robust and efficient so-031
lution for complex multi-hop reasoning tasks.032

1 Introduction033

In recent years, large language models (LLMs)034

have demonstrated exceptional capabilities in lan-035

guage understanding, generation, and reasoning036

tasks, even surpassing human performance on some037

benchmarks (OpenAI, 2023). However, despite038

the extensive knowledge these models acquire dur-039

ing training, they often exhibit hallucination issues040

and face limitations about their knowledge bound-041

aries when dealing with domain-specific, dynami-042

cally evolving, or long-tail information (Zhou et al.,043
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I need …

Reasoning chain

Interrupt for retrieval

Figure 1: Challenges in iterative RAG, illustrating the
evolving knowledge demands in multi-hop reasoning
and the three core challenges.

2021; Maynez et al., 2020; Mallen et al., 2023). To 044

address these issues, researchers have introduced 045

Retrieval-Augmented Generation (RAG) systems, 046

which enable LLMs to efficiently utilize external 047

knowledge bases and search engines to obtain rele- 048

vant information, thereby enhancing the accuracy 049

and reliability of the generated content (Lewis et al., 050

2020; Fan et al., 2024). 051

Traditional RAG methods follow a retrieve-then- 052

read paradigm, where documents are retrieved 053

based on the original query and then used for an- 054

swer generation (Gao et al., 2024). While effec- 055

tive for simple tasks, such a fixed retrieval strat- 056

egy struggles to adapt flexibly to the ever-changing 057

knowledge demands when confronted with multi- 058

hop questions. 059

When tackling complex multi-hop problems, the 060

model encounters evolving knowledge demands 061

as reasoning unfolds. This dynamic process gives 062

rise to two primary challenges when to retrieve 063

and what to retrieve. Although a series of iterative 064

RAG systems have been proposed (Trivedi et al., 065

2023; Jiang et al., 2023b; Lee et al., 2024; Shi et al., 066

2024; Zhou et al., 2024), most of these approaches 067

lack the ability to proactively identify emerging 068

knowledge gaps.This oversight often leads to inter- 069

ruptions in the LLM’s reasoning process frequently. 070

1



Furthermore, the subsequent retrieval operations071

are not sufficiently targeted to bridge these gaps,072

which compromises the recall of relevant docu-073

ments. Therefore, there is a pressing need for a074

method that can proactively accommodate shifting075

demands and effectively leverage retrieval tools to076

fill these knowledge gaps.077

As retrieval demands increase, a third core chal-078

lenge arises: how to efficiently organize and utilize079

the retrieved information. Noise in retrieved docu-080

ments, stemming from both the documents them-081

selves and retrieval tools, is a common issue (Cai082

et al., 2024; Xu et al., 2024; Chen et al., 2024b;083

Yoran et al., 2024). In iterative RAG, noise accumu-084

lation can progressively interfere with the model’s085

understanding of available knowledge. Moreover,086

poor organization of complex documents frag-087

ments knowledge, making it challenging for the088

model to construct a coherent reasoning chain (Liu089

et al., 2024; Agrawal et al., 2023). Existing works090

have attempted to address this issue through re-091

ranking (Li, 2023; Jiang et al., 2023a, 2024), yet092

overlook the inherent associations among different093

documents.094

To address the challenges above, we propose Du-095

alRAG, a novel iterative RAG framework with a096

dual-process architecture for efficiently coordinat-097

ing reasoning and retrieval. DualRAG integrates098

two interdependent processes. The primary pro-099

cess, Reasoning-augmented Querying (RaQ), acts100

as a diligent researcher, constructing reasoning101

chains, identifying knowledge gaps, and generat-102

ing targeted queries when additional information103

is needed. Meanwhile, the auxiliary process, pro-104

gressive Knowledge Aggregation (pKA), serves105

as a dedicated assistant, filtering and organizing106

retrieved information into a coherent, evolving107

knowledge outline. In this tightly coupled dual-108

process framework, the two processes continuously109

reinforce each other: RaQ provides explicit knowl-110

edge demands that guide pKA, while pKA con-111

tinuously supplies a progressive knowledge out-112

line to support RaQ’s reasoning. This synergy en-113

ables DualRAG to dynamically adapt to evolving114

knowledge demands, efficiently bridge gaps, and115

maintain a noise-resilient foundation for complex116

multi-hop reasoning. DualRAG is compatible with117

LLMs of various parameter scales, meaning its118

performance improves as the base models become119

more powerful. Given the lower computational120

cost of smaller models, we construct a specialized121

dataset and fine-tune them to enhance their capabil-122

ities, ensuring that DualRAG’s core advantages are 123

preserved even in smaller-scale models. 124

To validate the effectiveness of our approach, we 125

conducted extensive experiments on several multi- 126

hop question-answering datasets. Experimental 127

results indicate that our framework achieves sig- 128

nificant improvements across multiple key metrics 129

compared to existing methods, demonstrating its 130

superiority in handling complex reasoning tasks. 131

Our contributions can be summarized as follows: 132

(1) We propose DualRAG, a dual-process frame- 133

work where RaQ guides reasoning and retrieval, 134

while pKA organizes retrieved knowledge to sup- 135

port inference. (2) By identifying key entities, RaQ 136

dynamically generates targeted queries, while pKA 137

structures and integrates relevant information into 138

a coherent knowledge outline, ensuring effective 139

knowledge utilization; (3) We develop a fine-tuned 140

version of DualRAG, to enhance proficiency of 141

LLMs in retrieval and generation, significantly re- 142

ducing computational cost; (4) Extensive experi- 143

ments on multiple multi-hop question answering 144

datasets validate the effectiveness and robustness 145

of our approach. 146

2 Related work 147

The development of Retrieval-Augmented Gener- 148

ation (RAG) methods has progressed from tradi- 149

tional single-round retrieval to iterative RAG with 150

multi-turn retrieval (Gao et al., 2024), better adapt- 151

ing to the demands of complex reasoning tasks. 152

2.1 RAG 153

The earliest Retrieval-Augmented Generation 154

(RAG) methods adopted the retrieve-then-read 155

paradigm. Initially, a retriever fetches relevant 156

documents from a corpus, and then a generative 157

model produces an answer based on these docu- 158

ments. Common retrieval methods include sparse 159

retrieval (e.g., BM25 (Robertson and Zaragoza, 160

2009)), dense retrieval (e.g., E5 (Wang et al., 2022), 161

DPR (Karpukhin et al., 2020)), and search engines 162

like Bing and Google. 163

To enhance retrieval accuracy, researchers 164

have proposed various optimization strategies. 165

D2LLM (Liao et al., 2024) transfers the compu- 166

tationally expensive cross-encoder capabilities to 167

a more efficient bi-encoder model. MRAG (Besta 168

et al., 2024) introduces multi-head attention mech- 169

anisms to encode documents into multiple vectors, 170

capturing semantic information more comprehen- 171
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Figure 2: Overview of DualRAG, an iterative RAG framework for MHQA that combines Active Reasoning and
Querying with Progressive Knowledge Aggregation.

sively. Additionally, some studies utilize rerank-172

ing techniques to filter retrieval results, ensuring173

that only the most relevant knowledge is retained174

(Chen et al., 2024a; Yu et al., 2024b). LongLLM-175

Lingua (Jiang et al., 2024) further optimizes the176

document ranking order.177

Meanwhile, some research has explored leverag-178

ing the inherent knowledge capabilities of large179

models to enhance the adaptability of retrieval180

strategies, thereby reducing unnecessary external181

queries. For instance, SKR (Wang et al., 2023b)182

assesses the complexity of the the given ques-183

tion by comparing it with similar past questions.184

FLARE (Jiang et al., 2023b) and DRAGIN (Su185

et al., 2024) trigger external retrieval when the186

model’s output logits indicate uncertainty.187

Given that the effectiveness of RAG systems188

heavily depends on query quality, many studies fo-189

cus on optimizing query formulation to enhance190

retrieval recall. Methods like HyDE (Gao et al.,191

2023) and Query2doc (Wang et al., 2023a) gen-192

erate a pseudo-document based on the question,193

which is then used for retrieval. RRR (Ma et al.,194

2023) introduces a rewrite-retrieve-read paradigm195

and fine-tunes the rewrite model using PPO.196

Unlike the previous approaches, our method ac-197

knowledges that knowledge needs evolve dynam-198

ically throughout the reasoning process and the199

acquisition of new knowledge, tackling complex200

multi-hop problems through an iterative approach.201

2.2 Iterative RAG 202

Although early RAG methods achieved some suc- 203

cess in knowledge retrieval, their limitations in 204

complex reasoning tasks have led to the develop- 205

ment of Iterative Retrieval-Augmented Generation 206

(iterative RAG) frameworks. These frameworks 207

enable models to retrieve external knowledge mul- 208

tiple times throughout the reasoning process, grad- 209

ually constructing a complete reasoning path for 210

complex reasoning tasks. IRCoT (Trivedi et al., 211

2023), Iter-RetGen (Shao et al., 2023), In Contenx- 212

RALM (Ram et al., 2023) leverage previously gen- 213

erated content from LLMs to trigger retrieval at 214

predefined intervals. FLARE (Jiang et al., 2023b), 215

DRAGIN (Su et al., 2024) utilize model output 216

logits as signals as trigger retrieval signals. Plan- 217

RAG (Lee et al., 2024), Plan×RAG (Verma et al., 218

2024), GenGround (Shi et al., 2024) decompose 219

the original question into sub-questions, retrieve 220

information separately, and synthesize a final an- 221

swer. SlimPLM (Tan et al., 2024), MetaRAG (Zhou 222

et al., 2024) generate heuristic answers first, then re- 223

fine them through retrieval. Self-RAG (Asai et al., 224

2024) introduces special tokens during training, 225

allowing models to control the retrieval directly 226

through these tokens. 227

Unlike existing methods, our approach proac- 228

tively identifies knowledge needs during reasoning, 229

retrieves the relevant information, and organizes 230

the knowledge into a coherent knowledge base, en- 231

abling more effective multi-hop reasoning. 232
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3 DualRAG233

Existing methods struggle to dynamically identify234

evolving knowledge demands during reasoning and235

to effectively organize retrieved information, weak-236

ening retrieval-enhanced reasoning. To address237

this, we introduce DualRAG, which tightly inte-238

grates retrieval and reasoning through two interde-239

pendent processes: Reasoning-augmented Query-240

ing (RaQ) and progressive Knowledge Aggrega-241

tion (pKA). Furthermore, DualRAG is compatible242

with LLMs of various scales—stronger models fur-243

ther enhance its performance, while smaller ones244

may see a slight drop in performance. To mitigate245

this, we fine-tune them on a specialized dataset,246

ensuring effectiveness with minimal performance247

loss and enabling a smooth transition to smaller248

models, thereby reducing computational costs.249

3.1 Framework of DualRAG250

To address the aforementioned challenges, we pro-251

pose a dual-process closed-loop framework cen-252

tered around two tightly interconnected core pro-253

cesses: Reasoning-augmented Querying (RaQ) and254

progressive Knowledge Aggregation (pKA). These255

two processes operate in a synergistic and iterative256

manner, continuously refining knowledge acquisi-257

tion and reasoning.258

To begin with, we formally define the RAG259

task to enhance clarity, as follows: Given a user260

question x and a large-scale document corpus261

D = {di}Ni=1, the objective of a RAG system is262

to generate an accurate answer â by retrieving and263

leveraging relevant documents from D.264

Our framework is illustrated in Figure 2. RaQ265

acts as a diligent researcher, reasoning over the266

progressive knowledge outline K maintained by267

pKA while dynamically identifying missing infor-268

mation and generating targeted retrieval queries,269

thus ensures a continuous flow of knowledge de-270

mands and potentially relevant documents D into271

pKA. Meanwhile, pKA serves as a dedicated as-272

sistant, integrating retrieved documents into a pro-273

gressive knowledge outline K, which continuously274

supports RaQ’s reasoning. This closed-loop inter-275

action enables the system to iteratively refine both276

the reasoning process and the external knowledge277

integration. Formally, for the t-th iteration, this278

iterative collaboration can be expressed as follows:279

rt, Dt = RaQ(Kt−1, x,Rt−1) (1)280

Kt = pKA(Kt−1, Dt) (2)281

where rt represents the reasoning outcome at step 282

t, Dt denotes the retrieved documents and Kt 283

is the updated knowledge outline. The accumu- 284

lated reasoning history is captured as Rt−1 = 285{
r1, r2, · · · , rt−1

}
. 286

In the following sections, we elaborate on the 287

mechanisms of RaQ and pKA and their synergy in 288

the dual-process framework. 289

3.1.1 Reasoning-augmented Querying (RaQ) 290

The RaQ process aims to dynamically identify 291

emerging knowledge demands during reasoning 292

and formulates queries accordingly. To achieve 293

this, we guide LLMs to assess knowledge gaps and 294

generate queries to retrieve relevant information 295

to expand the knowledge closure. This process is 296

facilitated by two collaborative components: the 297

Reasoner and Entity Identifier. 298

Reasoner The Reasoner advances reasoning 299

based on the current knowledge outline Kt−1 main- 300

tained by pKA and the previous reasoning history 301

Rt−1. It also determines whether retrieval is neces- 302

sary by identifying knowledge gaps. Formally, this 303

process can be expressed as: 304

rt, f t = MR(K
t−1, x, rt−1) (3) 305

where f t denotes the retrieval trigger flag. If f t = 306

False, it indicates that no additional knowledge 307

is required for reasoning, the final answer is then 308

generated using the aggregated external knowledge 309

KT and the complete reasoning history RT : 310

â = MA(K
T , x,RT ) (4) 311

where KT and RT denote the final knowledge out- 312

line and reasoning history, respectively. 313

Entity Identifier Once the Reasoner detects a 314

knowledge gap (f t = True), retrieval is triggered 315

to obtain relevant information. Prior studies have 316

demonstrated that query rewriting significantly im- 317

proves retrieval recall (Ma et al., 2023; Wang et al., 318

2023a). Knowledge is often centered around enti- 319

ties, which serve as core carriers of diverse related 320

information. Thus, we guide LLMs to identify key 321

entities or concepts relevant to the current knowl- 322

edge demand. This serves two purposes. First, it 323

enables the generation of multiple queries, each 324

capturing different aspects of the entity’s knowl- 325

edge. Second, in the § 3.1.2, pKA will organize 326

knowledge around these entities. Formally, this 327

process is represented as: 328

Et, {Qt(e)}e∈Et = MEI(K
t−1, x, rt) (5) 329
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where Et =
{
et1, e

t
2, · · · , etK

}
denotes the set of330

identified key entities, {Qt(e)}e∈Et denotes the set331

of queries associated with each entity e ∈ Et. To332

maintain consistency in entity identification across333

reasoning steps, the Entity Identifier also links cur-334

rent key entities to synonymous counterparts from335

previous iterations.336

Subsequently, each query q ∈ Qt(e) retrieves337

relevant documents from the corpus D:338

D̂e,q = Retrieve(q) for each q ∈ Qt(e) (6)339

To enable efficient learning and integration of re-340

trieval results by pKA, we first Group documents341

by entity and apply a reranker model for initial342

filtering. This process is formalized as follows:343

D̂e =
⋃

q∈Qt(e)

D̂e,q (7)344

De = Rerank(e, D̂e) (8)345

Through the collaboration of Reasoner and En-346

tity Identifier, the RaQ process dynamically iden-347

tifies knowledge demands and retrieves entity-348

structured documents while advancing the reason-349

ing chain. This ensures a continuous document350

flow to pKA.351

3.1.2 Progressive Knowledge Aggregation352

The pKA process aims to maintain a progres-353

sive knowledge outline, serving as external knowl-354

edge support Kt for the RaQ process. Studies355

have shown that retrieval results often contain356

noise (Chen et al., 2024b; Yoran et al., 2024), and357

the sequential organization of documents greatly358

affects LLM output (Liu et al., 2024; Jiang et al.,359

2024). To address these issues, we propose360

knowledge-demand-driven summarization and an361

entity-based knowledge organization structure.362

Knowledge Summarizer Although the RaQ pro-363

cess has applied initial document-level filtering,364

substantial noise remains in individual documents.365

We guide LLMs to summarize retrieved results366

Dt = {D∗
e}e∈Et in a knowledge-demand-driven367

manner. This ensures that only essential knowledge368

is retained while reducing noise and redundancy.369

Formally, for each key entity e, the summarized370

knowledge fragment ke is obtained as follows:371

ke = MKS(x, R
t, e, Qt(e), De) (9)372

Progressive Knowledge Outline In the previ- 373

ous step, we summarized the retrieved documents. 374

Next, newly acquired knowledge fragments ke are 375

merged with previously accumulated knowledge 376

for each entity, integrating them into the Knowl- 377

edge Outline K: 378

Kt(e) = Kt−1(e) ∪ {ke} (10) 379

Initially, the knowledge outline is empty, K0 = ∅. 380

This structured representation links knowledge to 381

specific entities, allowing the Reasoner in the RaQ 382

process to better utilize the available knowledge. 383

Through the Knowledge Summarizer and the 384

progressive maintenance of the Knowledge Out- 385

line, the pKA process effectively filters, structures, 386

and continuously integrates retrieved information. 387

This creates a dynamically evolving knowledge 388

foundation for reasoning in the RaQ process. 389

3.2 Fine-Tuning for Compact Models 390

DualRAG is compatible with LLMs of various pa- 391

rameter scales, where stronger models yield bet- 392

ter performance but also incur disproportionately 393

higher computational costs (Kaplan et al., 2020). 394

Consequently, while smaller models significantly 395

reduce computational costs, their performance may 396

degrade due to limited capacity. 397

To mitigate this, we construct a specialized 398

dataset to fine-tune smaller models and en- 399

hance their capabilities. Using Qwen2.5-72B- 400

Instruct (Team, 2024), we apply DualRAG to gen- 401

erate 5,000 complete trajectories from the training 402

sets of HotpotQA (Yang et al., 2018), 2WikiMul- 403

tihopQA (Ho et al., 2020), and MuSiQue (Trivedi 404

et al., 2022). From these trajectories, we derive 405

targeted training data to enhance three key capa- 406

bilities. (1) Reasoner: Smaller models struggle 407

to determine when to retrieve. To address this, we 408

use the teacher model’s outputs as supervision, en- 409

abling the student model to learn explicit retrieval 410

triggers. (2) Entity Identifier: Smaller models 411

often produce redundant or ineffective queries. To 412

refine this, we employ a cross-encoder model for 413

entity linking, aligning key entities with labeled en- 414

tities and removing redundancies. (3) Knowledge 415

Summarizer: Smaller models struggle to identify 416

implicit connections between retrieved documents 417

and the question. To address this, we assign sum- 418

marization labels based on whether a document 419

belongs to the ground truth set. 420

Table 1 presents dataset statistics. Fine-tuning 421

on this dataset enables our method to transition to 422

5



Capability Count

Reasoner 33,342
Entity Identifier 22,109
Knowledge Summarizer 31,617

Sum 87,068

Table 1: Statistics of the train dataset

more compact, computationally efficient models423

while preserving its core advantages.424

4 Experiment425

4.1 Datasets and Metrics426

We evaluate our method on three open-domain427

multi-hop question answering datasets: Hot-428

potQA (Yang et al., 2018), 2WikiMultihopQA (Ho429

et al., 2020), and MuSiQue (Trivedi et al., 2022).430

For HotpotQA, we use its official Wikipedia corpus431

as the retrieval database. Since 2WikiMultihopQA432

and MuSiQue do not provide an official corpus,433

we construct the retrieval database by merging all434

supporting and non-supporting passages from each435

dataset. Due to computational constraints, we ran-436

domly sample 1,000 questions from the dev or test437

subsets of each dataset for evaluation. More details438

can be found in Appendix C.439

Regarding evaluation metrics, we use the fol-440

lowing standard measures to assess the quality of441

generated responses: Exact Match (EM), which442

measures the degree of exact matching between the443

generated answer and the ground truth; Acc, which444

measures whether the generated answer adequately445

captures the key content of the ground truth; and446

Token-level F1, which evaluates the token-level447

similarity between the generated and ground truth448

answers. Acc†, assesses correctness using a LLM,449

with details provided in Appendix D.450

4.2 Baselines451

We first consider a non-retrieval baseline: (1) Di-452

rect, which generates answers without retrieving453

external knowledge.454

Next, we include a standard RAG method: (2)455

NativeRAG (Lewis et al., 2020), which follows a456

retrieve-then-read paradigm.457

Finally, we consider iterative RAG methods, in-458

cluding (3) IRCOT (Trivedi et al., 2023), which459

retrieves information at predefined intervals during460

reasoning process; (4) MetaRAG (Zhou et al.,461

2024), which refines the initial answer through462

multiple rounds of retrieval; (5) GenGround (Shi463

hotpotqa 2wikimultihopqa musique
0

1

2

3

4

5

St
ep

 N
um

be
rs

Methods

DualRAG
IRCoT
MetaRAG

Figure 3: The distribution of the average number
of iterations per question for each method. Note that
GenGround does not specify a clear termination crite-
rion and always iterates up to the preset maximum limit.
Therefore, its iteration count distribution is not included
in the figure.

et al., 2024), which decomposes the original ques- 464

tion into multiple sub-questions for retrieval. 465

4.3 Implementation Details 466

All iterative RAG methods are set with maximum 467

of 5 iteration steps. Training parameters are pro- 468

vided in Appendix B. 469

Retrieval Module We employ faiss-gpu to build 470

an efficient vector index and use bge-small-en- 471

v1.5 (Xiao et al., 2023) as the document encoder 472

model. To enhance retrieval quality, we use bge- 473

reranker-v2-m3 (Chen et al., 2024a) as the reranker 474

and deploy an online retrieval service based on 475

fastapi. To ensure fair comparisons across all base- 476

line methods, we incorporate the reranker to filter 477

retrieval results. During retrieval, we first recall 478

the top-50 documents and then use the reranker to 479

further refine the selection to the top-10 documents 480

for model reasoning. 481

Language Models We conduct experiments 482

on both Qwen-2.5-72B-Instruct and Qwen-2.5- 483

7B-Instruct (Team, 2024) models and utilize 484

vllm (Kwon et al., 2023) for efficient inference 485

deployment. 486

4.4 Experimental Results 487

The evaluation results are shown in Table 2. 488

Overall, these results demonstrate that DualRAG 489

achieves substantial performance improvements 490

across a variety of datasets. We make the following 491

key observations: 492

(1) Incorporating external knowledge consis- 493

tently outperforms relying solely on model param- 494

eters, confirming the critical role of retrieval in 495

addressing knowledge gaps in multi-hop tasks. 496
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Methods HotpotQA 2Wikimultihopqa MuSiQue

Acc† EM Acc F1 Acc† EM Acc F1 Acc† EM Acc F1

Base LLM Qwen2.5-72B-Instruct
Direct 42.1 26.0 29.1 36.4 33.0 28.6 31.0 35.0 19.4 8.3 11.8 17.5
NativeRAG (Lewis et al., 2020) 69.3 46.4 54.3 60.3 50.5 40.6 46.5 48.1 39.4 23.0 30.2 33.6
IRCOT (Trivedi et al., 2023) 79.4 52.5 69.7 67.4 77.2 56.6 83.6 67.5 58.3 34.3 51.0 48.1
MetaRAG (Zhou et al., 2024) 74.3 53.4 58.8 66.9 63.1 54.2 59.7 61.2 57.4 39.3 47.5 51.7
GenGround (Shi et al., 2024) 78.7 46.4 64.8 61.8 76.3 57.3 78.1 70.3 54.8 28.8 53.0 43.0
Oracle 89.3 64.3 72.4 79.6 88.0 76.1 85.6 83.5 75.6 56.6 68.0 69.1

DualRAG 79.7 49.7 70.0 65.7 84.8 65.6 85.0 77.3 70.1 40.8 66.3 56.3

Base LLM Qwen2.5-7B-Instruct
Direct 27.3 17.4 19.1 25.0 26.1 23.5 24.3 28.2 10.3 4.6 6.4 9.9
NativeRAG (Lewis et al., 2020) 57.9 38.5 43.9 49.5 32.1 26.8 29.2 30.9 22.0 12.6 15.7 20.2
IRCOT (Trivedi et al., 2023) 68.3 38.9 60.6 52.8 53.5 38.2 62.6 48.8 34.0 13.9 29.6 24.6
MetaRAG (Zhou et al., 2024) 62.9 44.4 49.4 56.8 46.2 40.1 43.2 46.5 39.2 28.3 33.6 37.9
GenGround (Shi et al., 2024) 66.4 36.0 58.2 50.0 47.1 37.4 57.0 47.5 42.3 17.5 38.8 30.6
Oracle 76.4 55.1 60.1 67.6 63.3 53.7 60.1 59.3 61.6 38.6 45.3 48.1

DualRAG 72.2 43.4 64.1 58.6 68.6 53.2 75.8 64.4 56.3 29.9 52.5 44.9
DualRAG-FT 76.3 45.6 64.8 61.6 81.2 61.8 82.0 74.6 58.6 32.7 52.8 46.5

Table 2: Evaluation results on three MHQA datasets, using Qwen2.5-72B-Instruct and Qwen2.5-7B-Instruct as the
base LLMs. Bold indicates the best performance and underline denotes the second-best. Oracle represents an upper
bound where the LLM receives key information directly from ground-truth relevant documents, bypassing retrieval.

(2) Iterative retrieval allows the system to pro-497

gressively expand its knowledge closure by captur-498

ing the evolving information needs during reason-499

ing. This results in a more comprehensive support500

for inference compared to single-round retrieval.501

(3) Among iterative RAG methods, DualRAG502

stands out due to its dual closed-loop design, which503

tightly integrates active reasoning with dynamic ex-504

ternal information aggregation. This mechanism505

for generating targeted queries and structurally or-506

ganizing the retrieved data leads to more accurate507

and coherent answers.508

(4) DualRAG-FT achieves significant perfor-509

mance improvements through fine-tuning, allow-510

ing a reduction in computational costs with smaller511

models while maintaining strong performance.512

(5) As illustrated in Figure 3, the retrieval mecha-513

nism in DualRAG, triggered when the model identi-514

fies the need for additional information, effectively515

reduces iterative steps thereby minimizing interrup-516

tions in the LLM’s reasoning process.517

4.5 Ablation Study518

We conduct a series of ablation studies to assess519

the contributions of individual components to our520

framework and to evaluate the effectiveness of our521

fine-tuning. Our analyses cover both the framework522

itself and the impact of fine-tuning on each module.523

Methods HQA WQA MQA

Acc F1 Acc F1 Acc F1

DualRAG 70.0 65.7 85.0 77.3 66.3 56.3
- w/o R 68.7 64.2 84.2 73.2 56.1 48.6
- w/o EI 69.2 65.3 83.7 72.5 54.2 48.4
- w/o KO 69.5 64.0 79.4 72.8 58.1 49.8

Table 3: Ablation Study on DualRAG Framework Com-
ponents using Qwen2.5-72B-Instruct.

Ablation on the Framework As shown in Ta- 524

ble 3, we examine the framework by incrementally 525

removing key components. First, we disable Rea- 526

soner’s active exploration for missing knowledge 527

(w/o R), mirroring the retrieval behavior in IRCoT. 528

The performance drop underscores that detecting 529

missing information during reasoning is critical 530

for generating effective queries. Next, we remove 531

Entity Identifier, using Reasoner’s output as the 532

query (w/o Ei). This modification leads to a no- 533

table decline in performance, indicating that gener- 534

ating queries tailored to specific knowledge needs 535

is essential. Finally, we eliminate the Knowledge 536

Outline mechanism, feeding the model unstruc- 537

tured retrieval results (w/o KO). The corresponding 538

performance drop underscores the importance of 539

organizing and structuring retrieved information 540

for subsequent reasoning. 541
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Methods HQA WQA MQA

Acc F1 Acc F1 Acc F1

DualRAG-FT 64.8 61.6 82.0 74.6 52.8 46.5
- w/o R-FT 63.4 59.9 77.6 70.2 51.0 46.4
- w/o EI-FT 65.7 61.7 79.5 73.6 51.7 46.5
- w/o KS-FT 60.7 58.5 76.4 66.4 51.9 46.2
- w/o FT 64.1 58.6 75.8 64.4 52.5 44.9

Table 4: Ablation Study on the fine-tune for DualRAG
Using Qwen2.5-7B-Instruct.
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Figure 4: Comparison of the count of queries gen-
erated per question by DualRAG and DualRAG-FT.
The DualRAG-FT produces fewer redundant queries,
thereby reducing unnecessary retrieval calls.

Ablation on the SFT As shown in Table 4, we542

further investigate the impact of fine-tuning by543

comparing DualRAG-FT with its variants without544

fine-tuning on individual components. In the w/o545

R-FT, w/o EI-FT, and w/o KS-FT settings, the Rea-546

soner, Entity Identifier, and Knowledge Summa-547

rizer are replaced with their counterparts without548

being fine-tuned on data from § 3.2. In the w/o FT549

setting, no component is fine-tuned. The experi-550

mental results indicate that the fine-tuned Reasoner551

and Knowledge Summarizer significantly enhance552

the small model’s ability to utilize retrieved infor-553

mation. Moreover, as shown in Figure 4, the fine-554

tuned Entity Identifier effectively reduces redun-555

dant query generation, thereby decreasing unneces-556

sary retrieval calls.557

Overall, these ablation studies highlight the criti-558

cal role of fine-tuning all three components in im-559

proving the small model’s performance.560

4.6 Other QA Tasks561

Beyond primary MHQA datasets, we also evaluate562

our approach on other QA datasets, as shown in Ta-563

bles 5 and 6. The results show strong performance564

across QA tasks, highlighting notable advantages565

Methods NQ PopQA

Acc† Acc F1 Acc† Acc F1

Direct 42.1 37.9 38.8 34.9 30.9 26.3
Native 60.8 48.5 44.5 77.1 74.7 57.9
IRCoT 64.7 52.9 44.8 70.3 70.0 48.1
MetaRAG 59.8 48.1 48.3 76.9 72.8 58.3
GenGround 68.1 57.2 44.5 73.9 72.9 49.6
DualRAG 68.2 57.9 45.0 78.9 79.0 52.8

Table 5: Evaluation results on simple single-hop ques-
tion answering datasets, using Qwen2.5-72B-Instruct.

Methods ASQA ELI5

Rouge-2 Rouge-L Rouge-2 Rouge-L

Direct 1.9 6.6 1.1 7.5
Native 3.7 9.9 1.8 10.0
IRCoT 14.6 30.8 4.9 21.6
MetaRAG 4.4 10.9 1.1 7.3
GenGround 12.9 29.3 3.8 18.2
DualRAG 15.4 31.7 3.8 18.1

Table 6: Evaluation results on long-format question
answering datasets, using Qwen2.5-72B-Instruct. We
evaluate using ROUGE (Lin, 2004)

over the conventional retrieve-then-read paradigm 566

in RAG (Gao et al., 2024; Jin et al., 2024). 567

4.7 Case Study 568

We conduct case studies and find that DualRAG 569

effectively identifies knowledge needs during rea- 570

soning, generates tailored queries, and organizes 571

retrieved knowledge to facilitate high-quality an- 572

swer generation. Detailed examples and analyses 573

are provided in Appendix E. 574

5 Conclusion 575

We propose DualRAG, a dual-process RAG frame- 576

work that tightly integrates Reasoning-augmented 577

Querying (RaQ) and progressive Knowledge Ag- 578

gregation (pKA) to address multi-hop QA prob- 579

lems. RaQ dynamically identifies knowledge de- 580

mands and formulates targeted retrieval queries, 581

while pKA structures and refines acquired infor- 582

mation to support coherent reasoning. Meanwhile, 583

by fine-tuning DualRAG on smaller models, we 584

ensure that it maintains its strong reasoning and 585

retrieval capabilities, allowing it to retain its core 586

advantages even with reduced resource consump- 587

tion. Experimental results on multiple datasets 588

demonstrate that DualRAG significantly improves 589

answer accuracy and coherence, confirming its ef- 590

fectiveness as a robust and efficient solution for 591

complex reasoning tasks. 592
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Limitations593

Despite the effectiveness of our approach, several594

limitations remain. First, while our method ex-595

hibits some robustness to noise, real-world retrieval596

corpora may still suffer from missing, contradic-597

tory, or outdated knowledge, which can impact598

reasoning reliability. To address these challenges,599

future improvements could involve enhancing the600

Knowledge Summarizer to better resolve incon-601

sistencies and infer missing information. Second,602

although our method reduces retrieval frequency603

by identifying knowledge needs, thereby minimiz-604

ing interruptions to reasoning, it still introduces605

additional latency due to multi-turn retrieval. A606

promising direction for improvement is to enhance607

the Knowledge Outline, enabling it to progressively608

accumulate and reuse knowledge across questions,609

thereby reducing retrieval dependency on multi-610

turn retrieval and facilitating continuous learning611

and self-improvement.612
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A Prompts942

The prompts for Reasoner, Entity Identifier,943

and Knowledge Summarizer are shown in Fig-944

ures 5, 6, 7, respectively.945

B Training Details946

We use LLamaFactory (Zheng et al., 2024) as the947

training framework and adopt DeepSpeed ZeRO948

Stage 3 optimization (Rasley et al., 2020) to enable949

efficient full-parameter fine-tuning. The learning950

rate is set to 3e−6, and we use a cosine learning951

rate scheduler. Experiments are conducted on 16952

NVIDIA A100-PCIE-80GB GPUs, with a total953

training time of approximately 10 hours.954

C Datasets Details955

The details of the datasets used in this article are as956

follows:957

NQ (Natural Questions) (Kwiatkowski et al.,958

2019) NQ is a benchmark dataset for question959

answering research. It plays a crucial role in eval-960

uating the ability of models to answer various961

types of questions. The dataset is sourced from962

Wikipedia, which provides a rich knowledge base.963

With 79,168 samples in the training set, 8,757 in964

the development set, and 3,610 in the test set, it965

offers a diverse range of questions and correspond-966

ing answers. These samples are designed to test967

the model’s understanding of language, knowledge968

retrieval, and answer generation capabilities. By969

using NQ, researchers can assess how well their970

models perform in real - world - like question -971

answering scenarios.972

PopQA (Mallen et al., 2023) PopQA is a ques-973

tion - answering dataset that focuses on specific974

domains or popular knowledge. It draws its knowl-975

edge source from Wikipedia, leveraging the exten-976

sive information available there. Although the train-977

ing set size is not specified, the development set978

contains 14,267 samples. This dataset is valuable979

for studying how models handle questions related980

to popular or specialized knowledge areas. It helps981

researchers understand the performance of models982

in retrieving and applying relevant knowledge from983

a well - known corpus like Wikipedia to answer984

questions within its scope.985

ASQA (Stelmakh et al., 2022) ASQA aims to986

match factoid questions with long - form answers,987

contributing to the research of long - form ques- 988

tion - answering tasks. It uses Wikipedia as its 989

knowledge source, which enriches the dataset with 990

reliable information. The training set of ASQA 991

has 4,353 samples, and the development set has 992

948 samples. By providing such data, ASQA al- 993

lows researchers to explore and develop models 994

that can generate comprehensive and accurate long 995

- form answers. It is useful for evaluating how well 996

models can process and synthesize information to 997

meet the requirements of long - form question - 998

answering. 999

ELI5 (Fan et al., 2019) ELI5 is a long - form 1000

question - answering dataset based on the Reddit 1001

community. The questions and answers in this 1002

dataset typically revolve around daily life, scien- 1003

tific knowledge, and other common topics. With 1004

272,634 samples in the training set and 1,507 in the 1005

development set, it offers a large - scale resource 1006

for studying detailed explanatory answers. Since 1007

it comes from a user - generated content platform, 1008

ELI5 reflects real - world language usage and the 1009

kind of questions people ask in an informal setting. 1010

This dataset helps researchers develop models that 1011

can generate natural - sounding and informative an- 1012

swers, similar to human - to - human explanations. 1013

HotpotQA (Yang et al., 2018) HotpotQA is a 1014

dataset for diverse and explainable multi - hop 1015

question - answering tasks. It requires models to 1016

perform multiple reasoning steps to answer ques- 1017

tions by integrating information from multiple doc- 1018

uments, all sourced from Wikipedia. The training 1019

set consists of 90,447 samples, and the develop- 1020

ment set has 7,405 samples. By using HotpotQA, 1021

researchers can evaluate the multi - step reasoning 1022

ability of models. This dataset is crucial for un- 1023

derstanding how well models can handle complex 1024

questions that demand the synthesis of information 1025

from different sources, and it promotes the develop- 1026

ment of more intelligent and explainable question - 1027

answering systems. 1028

2WikiMultiHopQA (Ho et al., 2020) 2WikiMul- 1029

tiHopQA is specifically constructed to comprehen- 1030

sively evaluate the reasoning steps of models in 1031

multi - hop question - answering. It is based on 1032

Wikipedia knowledge, providing a solid founda- 1033

tion for multi - step reasoning tasks. The dataset 1034

has 15,000 samples in the training set and 12,576 1035

in the development set. It enables researchers to 1036

study how models navigate through multiple pieces 1037
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Reasoner

Background Information
Currently, there is a knowledge question-answering problem that needs to be solved, and retrieval
tools can be used to find relevant knowledge to assist you in solving the problem.
For knowledge question-answering tasks, it is important to have a grasp of knowledge, which is
organized by entities, with each entity having a segment of knowledge.

Task Description
Your current task is to reason based on the knowledge that has been retrieved.
When reasoning, you must strictly adhere to the knowledge that has been retrieved to prevent
errors.
There are two conditions for concluding your reasoning:

• You have obtained the answer you were seeking, at which point you can conclude your
reasoning.

• You find that you cannot obtain the answer you want based solely on the retrieved knowledge
and need to further expand your knowledge through retrieval tools.

Note
• You must reason step by step carefully to ensure the rigor of the reasoning process.
• The knowledge used must be strictly based on the retrieved knowledge, and speculation is

prohibited.

Example
{few-shots}

Question currently being solved
{knowledge}
{question}
{reasoning history}

Figure 5: Prompt for Reasoner

of information to answer complex questions. By1038

analyzing the performance of models on 2Wiki-1039

MultiHopQA, researchers can identify areas for1040

improvement in multi - hop reasoning algorithms1041

and enhance the overall quality of question - an-1042

swering systems.1043

Musique (Trivedi et al., 2022) Musique is a1044

multi - hop question - answering dataset focused1045

on the music domain. It also uses Wikipedia as its1046

knowledge source, enabling models to draw on a1047

vast amount of music - related information. With1048

19,938 samples in the training set and 2,417 in the1049

development set, Musique provides a platform for1050

researchers to study how models perform multi -1051

step reasoning in the music - specific context. This1052

dataset helps in developing models that can answer1053

complex music - related questions, which may re-1054

quire gathering and integrating information from 1055

multiple Wikipedia articles, and contributes to the 1056

advancement of domain - specific question - an- 1057

swering technology. 1058

D Metrics Details 1059

LLM as a judge is widely adopted in many 1060

works (Yu et al., 2024a). We follow the evaluation 1061

methodology of (Shao et al., 2023), adopting the 1062

same judge prompt. Qwen2.5-72B-Instruct (Team, 1063

2024) is used as the evaluation model to assess 1064

the correctness of generated responses based on 1065

the question, the model-generated answer, and the 1066

ground truth. 1067
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E Case Study1068

We conducted several case studies to analyze the1069

effectiveness of our method. The results show that1070

DualRAG can dynamically retrieve information1071

when additional knowledge is required, enabling1072

efficient multi-hop reasoning with minimal itera-1073

tions. Detailed case study examples are illustrated1074

in Table 7.1075
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Entity Identifier

Background
Currently, there is a knowledge question that needs to be solved, and a retrieval tool can be used to
find relevant knowledge to assist you in resolving the issue.
For knowledge question tasks, it is important to have a grasp of the knowledge, which is organized
by entities, each of which has a segment of knowledge.

Task Description
Your current task is to identify what additional knowledge is needed based on the given question,
the existing knowledge, and the previous reasoning history, and to generate retrieval keywords.
Identify What Additional Knowledge is Needed
A knowledge point is a key piece of information necessary to solve the current problem. It often
revolves around a noun-like entity, which can be a person, location, organization, event, or proper
noun.
To help you identify the required knowledge, I will extract a list of entities from previous reasoning
processes. These entities can help you pinpoint key knowledge points. They may not all be
accurate, but they are generally helpful for guidance.
Generate Retrieval Keywords

• The generated retrieval keywords will be used by a dense retrieval tool. The keywords should
meet the requirements of this tool to ensure relevant documents are retrieved.

• For the same knowledge point, it may be necessary to retrieve multiple sub-knowledge points.
Ensure that the generated retrieval keywords cover all the required sub-knowledge points.
However, focus only on the knowledge points relevant to the current question and avoid
excessive retrieval.

• For a single sub-knowledge point, to improve the recall of relevant documents, you may need
multiple retrieval keywords with the same meaning but different expressions. However, for
similar-meaning keywords, retain at most two variations.

Example
{few-shots}

Question currently being solved
{knowledge}
{question}
{reasoning history}

Figure 6: Prompt for Entity Identifier
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Knowledge Summarizer

Task Description
You are assisting in solving a QA problem, and you have gathered relevant information using
retrieval tools.
Your task is to read and organize the retrieved documents, filtering out irrelevant content while
summarizing information pertinent to the current problem. When assessing the usefulness of
the content, consider that some information may not appear directly related to the final answer
but could be essential for multi-hop reasoning. Even if content does not lead to an immediate
conclusion, it may provide necessary context or intermediary insights that help progress toward
the answer.

Note
• Summarize the content directly without adding personal commentary or interpretations. Do

not infer or speculate about missing information.
• Preserve the original wording for important content and ensure that all entity names remain

consistent with the original documents.

Example
{few-shots}

Question currently being solved
{question}
{reasoning history}
Retrieval

• {entity}
• {retrieved docs}

Figure 7: Prompt for Knowledge Summarizer

Judger

In the following task, you are given a Question, a model Prediction for the Question, and a
Ground-truth Answer to the Question. You should decide whether the model Prediction implies
the Ground-truth Answer.
Note: For some questions, the given standard answer may not be the unique correct answer, but a
possible answer. In this case, if the model’s response is close in meaning to the standard answer, or
contains the standard answer, then the model’s response can be considered correct.
Question: {question}
Prediction: {response}
Ground-truth Answer {golden_answer}
Does the Prediction imply the Ground-truth Answer? Output Yes or No:

Figure 8: Prompt for Judger
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Case Study

Question: Which film has the director who was born later, El Extraño Viaje or Love In Pawn?
Gold Answers: [ El extraño viaje, Extraño viaje, El Extraño Viaje ]

Step 1
Reasoning-augmented Querying
Reasoner: To determine which film has the director who was born later, I need to find the birth years of the directors of El
Extraño Viaje and Love In Pawn. Reason interrupt for retrieval
Entity Identifier:
(1) El Extraño Viaje: [El Extraño Viaje director, El Extraño Viaje director birth year]
(2) Love In Pawn: [Love In Pawn director, When was the director of Love In Pawn born]

Retrieved Documents
(1) El extraño viaje: El extraño viaje is a 1964 Spanish black drama film directed by Fernando Fernán Gómez...
(2) Love in Pawn: Love in Pawn is a 1953 British comedy film directed by Charles Saunders and starring Bernard Braden
and Barbara Kelly...
(3) A Lover in Pawn: A Lover in Pawn is a 1920 Swedish silent drama film directed by Victor Sjöström...
(4) ...

progressive Knowledge Aggregation
Knowledge Summarizer
(1) El extraño viaje: El extraño viaje is a 1964 Spanish black drama film directed by Fernando Fernán Gómez.
(2) Love In Pawn: Love in Pawn is a 1953 British comedy film directed by Charles Saunders and starring Bernard Braden
and Barbara Kelly.

Step 2
Reasoning-augmented Querying
Reasoner: I need to find the birth years of Fernando Fernán Gómez, the director of El Extraño Viaje, and Charles Saunders,
the director of Love In Pawn. Reason interrupt for retrieval
Entity Identifier
(1) Fernando Fernán Gómez: [Fernando Fernán Gómez, Fernando Fernán Gómez birth year]
(2) Charles Saunders: [Charles Saunders birth year]

Retrieved Documents
(1) Fernando Fernán Gómez: Fernando Fernández Gómez (28 August 1921 – 21 November 2007) better known as...
(2) La vida alrededor: La vida alrededor is a 1959 Spanish comedy film written, starred...
(3) 7000 días juntos: 7000 días juntos is a 1994 film directed by...
(4) harles Saunders (director): Charles Joel Saunders (8 April 1904 – April 1997) was an English film director...
(5) ...

progressive Knowledge Aggregation
Knowledge Summarizer
(1) Fernando Fernán Gómez: Fernando Fernández Gómez, better known as Fernando Fernán-Gómez, was born on 28
August 1921.
(2) Charles Saunders: Charles Joel Saunders (8 April 1904 – April 1997) was an English film director and screenwriter.

Step 3
Reasoning-augmented Querying
Reasoner: From the known knowledge, Fernando Fernán Gómez was born on 28 August 1921, and Charles Saunders was
born on 8 April 1904. Since 1921 is later than 1904, the director born later is Fernando Fernán Gómez, who directed El
Extraño Viaje. Reasoning completed

Table 7: Case Study
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