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ABSTRACT

This paper provides a unified analytic framework integrating expressions of sev-
eral variants of convolutional neural networks and wavelet filter banks. The ex-
pressions are derived recursively, from downstream to upstream layers, for the
sequences of features returned at the nodes of a general form of network archi-
tecture. The inspiring framework for the derivation of these expressions is that
of the so-called M -band convolution filter banks. In addition with the inter-layer
inter-node expressions, activation sequences of convolutional neural networks also
are mathematically described by suitable algebraic path representations.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) are powerful analysis tools in discriminant representations
of images by providing various salient feature subspaces Krizhevsky et al. (2012), Jia et al. (2014),
Simonyan & Zisserman (2014), Chollet et al. (2015), Szegedy et al. (2015), Abadi et al. (2016).
After a decade of fine tuning and fine parameterization of CNNs with respect to a wide range of data
and applications, their relevancy is now heuristically proven and we now reach the period where
the scientific community is focusing on the synthesis of various theories for CNN design, analysis,
validation and optimization, especially for deep networks.

Among such theories, we can mention the analysis of deep layer properties depending on the type of
functionals involved. For instance, in Pal et al. (2019), dropout operators are shown to be responsible
of regularization in deep learning networks whereas in Aberdam et al. (2019), this regularization is
intuited through sparsity concerns. Several other examples can be provided and it is reasonable at
present time to admit that there is no single universal theory for addressing deep CNN mathematics:
on the one hand, if one is interested in designing invariant features, then the scattering approach of
Mallat (2016) can help understanding CNN stabilization through iterations and weight propagation to
a somewhat translation-rotation invariant transform. On the other hand, if one seeks classification
task (finding the best separators in a suitable space), then stochastic optimization has to be pushed to
its tricky recipes in order to avoid getting stuck in non-desirable local minima of the global objective
function attached with the underlying CNN.

Actually, a brief literature tour of mathematical theories of deep CNNs does not allow to quickly
retrieve deep equation machinery, which is substantially the most informative way of highlighting
statistical properties of such networks. Literature has rather focused on analyzing activations of the
networks during or after the learning stage, insightful case studies can be found in Papadopoulos et al.
(2016), Tran & d’Avila Garcez (2018), Kim et al. (2018), among other references. In addition with
the proven interest of such data/application-based activation analysis in understanding the salience
captured by CNNs, unrolling deep equations can also help in deriving general CNN properties.

The main issue in addressing deep CNN analytical forms is that deep networks are huge in terms of
the variety of architectures and the possible number of parameters. But starting with a background on
the theory of filter banks, especially the one associated with the so-called M -Band Discrete Wavelet
Packet Transform (M -DWPT, which is likely the closest theory to deep CNN architectures), this
paper shows that deep CNN equations can fit on a short paper.

The organization of the paper is the following. Section 2 recalls basics of M -DWPT and works out
its deep inspired multiserial generalization. This section is written for a sake of both highlighting
similarities and bringing together, multiserial linear filter bank and CNN architectures. Section
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3 provides analytic expressions of standard and expanded CNNs with respect to their congruent
generalized multiserial filter banks. Section 4 derives algebraic descriptions of deep network paths for
both the multiserial linear and CNN frameworks. Finally, Section 5 concludes the work by proposing
a discussion and highlighting some prospective exploitation of multiserial linear and deep CNN
analytical expressions.

Insights: The motivation in unifying CNNs and wavelet packet transforms in the same analytical
framework can help us building interacting semi-supervised functionals involving fixed (wavelets)
and learnable (CNNs) filters. It can also help in the design of more generalizable CNNs which can
avoid the limitations highlighted in Atto et al. (2020): CNNs tend to get specialized by passing
information that is significant in the training dataset and blocking non-relevant information with
respect to the classification loss so that if a given information/frequency is absent or irrelevant for
classifying the training dataset, then the corresponding CNN will be have some limitation in a transfer
learning scenario where this information/frequency now become important.

Guidelines: Sections are organized in a bottom up dissertation starting fromM -DWPT and linking its
tree structure to that of CNNs via multiserial filter bank trees. For both multiserial linear filter banks
and CNNs, we focus on deriving network equations without considering the final output: the latter
(as well as its upstream layers) depends on the application considered and our aim is concentrating
on the decomposition nodes that are common to a wide range of applications. Indeed, note that if
the output is associated with regression, then there is no need of a softmax layer. In addition, if the
output is classification, then there is no need to reconstruct with respect to a feature space having the
same dimensionality as the input space. Furthermore, expressions will be given without any concern
on the recurrences involved by the learning stage (iterative weight updates requiring unnecessary
clumsy indices that are useless in operational deployment and testing purposes).

Regarding network architecture, we will focus on homogeneous ones: adaptation to group of
convolutions or parallel networks is generally motivated by the sake of calculus distribution over
several workstations rather than for the sake of performance. In addition, the terminology of fully-
connected layer will not be used as such a layer can be explained by a suitable selection of convolution
operators. Finally, we choose without loss of generality, a monochanel image convention for the
input layer: adaptation to multichannel input images can be obtained straightforwardly by assuming
that the first layer performs multichannel image coloration from a given set of color or spectral filters
on a monochannel spatial field.

2 GENERAL FRAMEWORKS FOR THE DESIGN OF MULTISERIAL LINEAR FILTER
BANK ARCHITECTURES

2.1 STANDARD (UNISERIAL) M -DWPT

Given a natural number M larger than or equal to 2, the M -DWPT achieves an orthogonal decompo-
sition of a functional space U via a double-indexed sequence {Wj,n}j∈N,n=0,1,...,Mj−1 of nested
functional subspaces (see examples given in Figures 1 and 2 for M = 2, 3 respectively), where
N = {1, 2, . . .} stands for the set of natural numbers. Each Wj,n is the closure of a space spanned by
wavelet packet functions denoted {Wj,n,k : k ∈ Z} and forming an orthonormal basis of the vector
space Wj,n. Index j is the decomposition level and the shift parameter n has values restricted to
{0, 1, . . . ,M j − 1}. The standard DWPT corresponds to the particular case where M = 2.

As illustrated in Figures 1 and 2, the M -DWPT decomposition of the function space U consists
in first the splitting of U into M orthogonal subspaces: U =

⊕M−1
m=0 W1,m, and then recursively

applying the following splitting Wj,n =
⊕M−1

m=0 Wj+1,Mn+m, for every natural number j and every
n = 0, 1, 2, . . . ,M j − 1. This splitting of U is uniserial in the sense that in practice, it is performed
by applying recursively exactly the same M wavelet1 filters (h0, h1, . . . , hM−1) at any given node
(j, n) of the M -DWPT tree. Due to this splitting scheme, layer j of an M -DWPT has exactly M j

outputs. For more details on the practical details leading to the implementation M -DWPT, the reader
is asked to refer to Steffen et al. (1993).

1Wavelet framework is useful for constructing filters that are complementary in the spectral domain.
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Figure 1: 2-DWPT decomposition tree of U down to resolution level j = 3. A sequence {h0, h1} is
used for recursive decomposition of the tree nodes.
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Figure 2: 3-DWPT decomposition tree of U down to resolution level j = 2. A sequence {h0, h1, h2}
is used for recursive decomposition of the tree nodes.

2.2 FIRST RELAXATION OF M -DWPT: MULTISERIAL SPLITS AND ANALOGY WITH CNN

Starting from the standard M -DWPT and noting that most relevant deep CNN architectures have
variable numbers of filters in their layers, we can consider a first extension of M -DWPT consisting
of decomposing U by using a multiserial set {(hj,0, hj,1, . . . , hj,Mj−1) : 1 6 j 6 J} where
(hj,0, hj,1, . . . , hj,Mj−1) is used at decomposition level (layer) j. The corresponding transform is
called MultiSerial DWPT (MS-DWPT). An illustration of MS-DWPT is presented in Figure 3.
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Figure 3: MultiSerial DWPT tree with M1 = 2, M2 = 3 and M3 = 2. Three sequences {h1,0, h1,1},
{h2,0, h2,1, h2,2} and {h3,0, h3,1} are used for recursive decomposition of the tree nodes. The 3
hidden layers have respectively 2, 6 and 12 nodes, but a total of M1 + M2 + M3 = 7 different
convolution filters have been used. This structure will be associated to an expanded CNNs having
j = 1, 2, 3 hidden layers involving respectively 2, 3 and 2 convolution layers.

The MultiSerial DWPT inherits several basic DWPT properties such as: sequence
(hj,0, hj,1, . . . , hj,Mj−1) is associated with scaling and wavelet convolution filters for any j ∈
{1, 2, . . . , J}. Standard bivariate wavelet-based filter construction also assumes 2D separability and
identical 1D filter on both variables, that is:

hj,mj [p, q] = fj,mj [p]fj,mj [q] (1)
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Moreover, Fj,mj
[•] satisfy the following paraunitary conditions: matrix(

Fj,mj

(
ω + nπ

Mj

))
06n,mj6Mj−1

is unitary for every real number ω, where

Fk,m(ω) =
1√
M1

∑
`∈Z

fk,m[`]ei`ω (2)

is a normalized Fourier transform of the mirror of fk,m. Finally, it is assumed that F0(0) = 1 to
ensure that approximation node is located at the top of any layer.

These conditions follow from the DWPT framework and are motivated by orthogonality constraints:
the different outputs are exactly complementary. There is no information redundancy in an MS-DWPT
because of its tight frame property.

2.3 SECOND RELAXATION: REMOVING WAVELET AND ORTHOGONALITY CONSTRAINTS

Wavelet properties (fast decay conditions for both f0 and F0 introduced in equation 1 and equation 2),
2D separability constraints and orthogonal splits will constrain significantly the design of convolution
filters from MS-DWPT. For bringing closer MS-DWPT and CNN, we remove these constraints
from now on. Instead, we suggest a constraint guaranteeing only bounded over-completeness of the
representation. This variant is no longer a wavelet framework (vanishing moments are not guaranteed
for instance). The corresponding multiserial frame obtained will be called Bounded Overcomplete
MS-Discrete Linear Transform (BOMS-DLT) involves a single constraint:

1 6
Mj−1∑
m=0

|Hj,m[ξ1, ξ2]| 6Mj (3)

for every 1 6 j 6 J and (ξ1, ξ2) ∈ R2 where Hm(ξ1, ξ2) =
∑
p,q∈Z hm[p, q] exp (−i(pξ1 + qξ2)) .

It consists in splitting U as: U ⊆
M1−1⋃
m=0

V1,m where coefficients of I ∈ U on space V1,m with

1 6 m 6M1 are (activation image):

C1,m[k, `] =
∑
p,q∈Z

h1,m[p, q]I[k − p, `− q] (4)

where I is the input image and C1,m is the convolutional output map (layer 1 and m-th convolution
filter). From this first layer, we then iteratively perform the multiserial decomposition: Vj,n ⊆
Mj+1−1⋃
m=0

Vj+1,Mj+1n+m for every natural number j and every n = 0, 1, 2, . . . ,M1M2 · · ·Mj − 1

where

Cj+1,Mj+1n+m[k, `]=
∑
p,q∈Z

hj+1,m[p, q]Cj,n[k − p, `− q] (5)

for 1 6 m 6 Mj+1, where we have assumed that Mj+1 convolution filters
{hj+1,0, hj+1,1, . . . , hj+1,Mj+1−1} are selected at level j + 1. Note that the corresponding tree
architecture is the same as in Figure 3.

Note also that equation 5 can be rewritten by taking (j + 1)-th strides (sj+1, tj+1) into account:

Cj+1,Mj+1n+m[k, `] =
∑
p,q∈Z

hj+1,m[p, q]Cj,n[sj+1k − p, tj+1`− q] (6)

equation 6 provides a general framework for multiserial multilayer transforms which include a
standard M -DWPT when assuming that: M1 = M2 = . . . = Mj = M , afterwards sj = tj = Mj =
M and finally, that all M filters considered for the decomposition are wavelet-based and paraunitary.

3 ANALYTIC EXPRESSIONS OF CNNS

BOMS-DLT is the natural way of deriving expanded CNN analytical forms: the term expanded is
used here because standard CNNs already encompass several fusion stages which make them less
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writable. First, we will present analytical expressions of expanded versions of the CNNs sharing
similar architecture than BOMS-DLT in Section 3.1. Then we will derive in Section 3.2, the analytical
expressions of standard CNNs from the expanded ones.
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Figure 4: Standard CNN structure composed by 3 hidden layers that have respectively 2, 3 and 2
convolution filters. It involves fusion (sum in general) of convolutional outputs associated with the
same filter over the previous layer channels and prior to applying the transfer function: compare the
above graph with the expanded one given by Figure 3.

3.1 ANALYTIC EXPRESSIONS OF EXPANDED CNNS

It is worth noticing that applying a neural transfer function on every Cj,n prior to convolution in
equation 5 suffices for obtaining a first version of an expanded CNN2. Such a CNN is called expanded
because outputs of layer j are Mj × nj−1 where nj−1 is the number of outputs coming from layer
j − 1 and Mj is the number of 2D convolution filters pertaining to layer j.

Let us construct a more intricate expanded CNN step by step, by adding sophistication and heuristics
relatively to state-of-the-art standard CNNs. First, let us focus on layer 1: for an expanded CNN, it is
composed by M1 convolution filters as in equation 4, but with the following M1 neural outputs

D1,m[k, `]=Υ1,m

∑
p,q∈Z

h1,m[p, q]I[s1k − p, t1`− q]

 (7)

for m = 0, 1, 2, . . .M1 − 1 where (s1, t1) is a couple of stride parameters and Υ1,m is a neural
transfer function3. Iterating from equation 7, a lightweight feedforward deep CNN simply follows as:

Dj+1,Mj+1n+m[k, `] = Υj+1,Mj+1n+m

( ∑
p,q∈Z

hj+1,m[p, q]Dj,n[sj+1k − p, tj+1`− q]

)
(8)

for j > 1, 0 6 m 6 Mj+1 − 1 and 0 6 n 6 M1M2 · · ·Mj − 1, where D1,n has been defined by
equation 7. The non-linear transfer functions Υj+1,Mj+1n+m are not necessarily the same (one can
combine, from layer to layer and/or in the same layer, sigmoids, hyperbolic tangent, rectified linear
unit, etc.).

One can add bias/correction terms θj+1,Mj+1n+m to equation 8 for a heavier model:

Dj+1,Mj+1n+m[k, `] (9)

= Υj+1,Mj+1n+m

(
− θj+1,Mj+1n+m +

∑
p,q∈Z

hj+1,m[p, q]Dj,n[sj+1k − p, tj+1`− q]

)
2Note that equation 3 is just a useful constraint on BOMS-DLT: it has a consequence on the multiserial filter

selection, not on the tree architecture. In practice, such a constraint can be integrated in CNN filter selection
if one wishes the latter to not definitely erase frequency information that is absent in the training database for
instance.

3We can use the same neural function by default and in this case, Υ1,m , Υ1 which can further be denoted
Υ when exactly the same function is used whatever the layer of the CNN.
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and further integrate connection dropout via binary sequences (εj,n = 0 for removal of node (j, n)):

Dj+1,Mj+1n+m[k, `] = Υj+1,Mj+1n+m

(
− θj+1,Mj+1n+m

+
∑
p,q∈Z

hj+1,m[p, q]εj,nDj,n[sj+1k − p, tj+1`− q]

)
(10)

3.2 ANALYTIC EXPRESSIONS OF STANDARD CNNS

In the expanded version of a CNN given by equation 10 (see also Figure 3), the decomposition space
is very huge and saving all features will require a huge latent memory4. In practice, standard CNNs
integrate a fusion stage for reducing this feature space. The standard CNNs have graphs similar
to that of Figure 4 which mask a fusion stage that may sow confusion5. The following provides
analytical forms of the equations involved by standard CNNs.

Assuming a mono-channel image I as in equation 4, the first neuro-convolutional layer of a standard
CNN has the same M1 outputs as the expanded one, that is equation 7 including the possible bias
correction terms:

D1,m1
[k, `] = Υ1,m1

(
− θ1,m1

+
∑
p,q∈Z

h1,m1
[p, q]I[s1k − p, t1`− q]

)
(11)

where m1 ∈ {0, 1, 2, . . . ,M1 − 1}. Note that if we assume a multichannel image (M0 channels that
can be associated with RGB, multispectral, polarimetric SAR, . . . ), then the expanded CNN will
return M0 ×M1 outputs whereas a standard CNN will replace equation 7 by the following one:

D1,m1 [k, `] = Υ1,m1

(
− θ1,m1 +

M0−1⊕
m0=0

∑
p,q∈Z

h1,m1 [p, q]I[s1k − p, t1`− q,m0]

)
(12)

where m0 is current channel and ⊕ is a fusion applied over all channels filtered by h1,m1
(⊕ is a

standard sum in almost all standard CNN architectures available from scientific repositories). Thus,
instead of getting M0 ×M1 outputs, the number of outputs remains equal to the number of filters
given in the layer 1: this is the main difference with respect to the expanded CNNs framework
presented in Section 3.1.

Let us go back to the monochannel image case and highlight all the differences between expanded
and standard CNNs through a layer trip: the second layer of a standard CNN with respect to the
monochannel image derives from equation 11 and is subject to

D2,m2
[k, `] = Υ2,m2

(
− θ2,m2

+

M1−1⊕
m1=0

∑
p,q∈Z

h2,m2
[p, q]ε1,m1

D1,m1
[s2k − p, t2`− q]

)
(13)

where ⊕ denotes a fusion operator that can be different with that involved in equation 12. As it can be
seen from this equation, layer 1 outputs (D1,m1

)m1
are convolved by using the specific filter h2,m2

and the convolution results are fused, as in equation 12: the layer 1 outputs have been considered as
channels of an M1-variate image.

We finally derive the layer j + 1 outputs, given the j-th ones by using the same procedure:
Dj+1,mj+1 [k, `] (14)

= Υj+1,mj+1

(
− θj+1,mj+1

+

Mj−1⊕
mj=0

∑
p,q∈Z

hmj+1
[p, q]εj,mj

Dj,mj
[sj+1k − p, tj+1`− q]

)
where mj+1 ∈ {0, 1, 2, . . . ,Mj+1 − 1}. Adaptation of the latter equation to scattering transforms as
described in Sifre & Mallat (2014) consists in replacing any Υj+1,mj+1

by the modulus operator.
4For a network such as AlexNet Krizhevsky et al. (2012) involving M1 = 96, M2 = 128, M3 = 384,

M4 = 192 and M5 = 128 convolution filters, then M1M2M3M4M5 yields more than 100 billions of active
convolution nodes in an expanded CNN, in contrast with the thousand active convolution nodes actually available
in this standard CNN due to the fusion stage described by equation 12 and equation 14.

5The convolution outputs computed on a given node (j, n) by the series of layer filter are considered as
image channels and are summed up.
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4 ALGEBRAIC DESCRIPTIONS OF DEEP NETWORK PATHS

It follows by comparing equation 10 and equation 14 that the j-th layer of the expanded CNN
involves M1M2 · · ·Mj output channels whereas it has only Mj channels in a standard CNN, where
Mj denotes the number of convolution filters given in layer j for 1 6 j 6 J . The algebraic
descriptions of their corresponding graphs is thus different.

From equation 10, the expanded CNN defines a tree structure that can be described by BOMS-
DLT (see graph of Figure 3): a root node U and an activation sequence that forms a path of the
form P =

(
U, {Vj,n(j)}16j6J

)
. By construction, each Vj,n(j) is obtained by decomposing U by

means of a particular sequence of convolution filters (h`,m`
)`=1,2,··· ,j where each mj belongs to

{0, 1, . . . ,Mj − 1}. Therefore, the position parameter in layer j is

n(j) = mj +

j−1∑
`=1

m`

j−∏̀
k=1

Mk ,
j∑
`=1

m`

j−∏̀
k=1

Mk (15)

satisfying 0 6 n(j) 6M1M2, · · ·Mk − 1.

Thus, path P can be assigned to the ordered sequence (m`)`>1 where any m` ∈ {0, 1, . . . ,M` − 1}.
This sequence characterizes the unique set of active nodes leading to a specific node Vj,n(j). An
alternative to equation 15 is the recursive equation, which requires the convention n(0) = 0: n(j) =
Mjn(j − 1) +mj .

From equation 14, the fusion stage involved in standard CNNs reduces considerably their graph
structuring (see Figure 4) and all downhill nodes contribute to a given uphill node: providing the
pair (j,mj) of layer index and convolution filter position in that layer suffices for the retrieval of
the aggregated nodes leading to (j,mj). Alternative descriptions corresponding to group invariant
scattering transforms can be found in Mallat (2012).

5 DISCUSSION AND PROSPECTS

Addressing further mathematical developments of CNNs by using standard conventions through
equation 14 is probably less traceable (due to fusion of operators) than when using the fully multiserial
expansion of equation 10. We expect that with the increase of storage and computing capabilities,
CNN developers will prefer the expanded (and more explicable) CNN of equation 10. Moreover,
the latter can lead to generalized hyperserial convolutions in the sense described by Figure 5. In
such a hyperserial CNN, the series of filters selected depend no more on the layer: they depend on
any node under consideration in the layer. Thus, a triple indexed sequence of convolution filters
{hj,n,0, hj,n,1, . . . , hj,n,Mj,n−1} will be attached to node (j, n) of layer j for the hyperserial CNNs.
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Figure 5: Hyperserial CNN structure where the node Lj,n of layer j involves Mj,n convolution
filters and the sequence (Mj,n)n is not necessarily constant. Compare this graph with the multiserial
one given by Figure 3: on the latter, every node of layer j has the same number Mj of convolution
filters (it is multiserial because Mj 6= M` in general from layer to layer). The multiserial graph is
described by 2 parameters whereas the hyperserial one requires 3 parameters.
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Figure 6: Graphs illustrating several possible processing: (i) analysis at nodes
{V3,n : n = 0, 1, . . . , 11} of hidden layer 3 and reconstruction at output node U′ ; (ii) joint analysis
from a late fusion stage at nodes {V4,n : n = 0, 1, . . . , 5} of hidden layer 4 (in contrast with early
fusion stage for standard CNNs) (iii) selective analysis at nodes {V4,n : n = 0, 1} and instance
reconstruction at output node U′′.

Among the prospective developments that can be based on the analytical expressions provided by the
paper, one can cite sparsity, stationarization, decorrelation or central-limit like properties as in Atto
& Pastor (2010) when considering monoserial M -DWPT. Their adaptation to monoserial DWPT
requires only the use of theorems providing transforms properties of random variables once the
analytical form of the non-linear function Υ is selected. For proving such properties for CNNs, the
main difficulties are related to the absence of mathematical frame constraints such as orthogonality
and tight frame properties. But once the training of a CNN has ended, then the analysis can be
performed by using the learned convolution filters. Several other open issues can be reported here:
for instance,

• exploring the best decomposition scheme for expanded CNNs depending on the application,
see for instance two possible configurations illustrated by Figure 6;

• using a more informative fusion operator than the sum for standard CNNs in equation 14;
• integrating a constraint per layer such as equation 3 that can help obtaining more generaliza-

tion properties for very deep CNNs;
• defining constraint programming models for selecting the set of filters to be applied to a

given layer with respect to node footprint distance or mutual information criteria, etc.

The answers require a huge amount of theories, developments and applications to a wide range of
datasets: this makes CNNs a captivating, mysterious and puzzling domain, at large.

When focusing on statistics of machine learning, the proposed unification framework can help in
dtermining generalization bounds. This requires however fixing the non-linear activation forms or
imposing some structural constraints as in Lee & Raginsky (2019) and Long & Sedghi (2020).

Another statistical prospect concerns building invariants (translation, rotation, scaling, shearing,
perspective, etc, see Sifre & Mallat (2013) for instance) to complex group of transformations that are
necessary for an unambiguous image content description. Expanded CNNs of Section 3.1 removes
the recombination along the channel axis. In this respect, seeking different forms of invariance will
require specific series of operators. In a deep learning framework, it is reasonable to expect that using
different forms of non-linear activation functions can helps in obtaining the required invariances.
This is why expansions presented in the paper does not all consider a same activation function Υ.
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Figure 7: Hybrid representation space. Gabor 00 and 01: Gabor magnitude coefficients corresponding
to two different wavelengths. Smooth 00 to 05: post-processing associated with different scaling
filters (for instance Gaussian filters with different scaling parameters). CNNs 00 to 11: CNN
architectures, where even numbers are associated with Xception CNN and odd numbers correspond
to DenseNet CNN. The fusion stage is associated with a geometric mean on the softmax probabilities
computed by the different CNNs.

An illustrative example of a hybrid framework integrating standard filter banks and CNNs is given
in Figure 7. From this architecture and when using transfer learning from Xception Chollet (2017)
and DenseNet Huang et al. (2017) CNNs (cloned 6 times each, V3,2k for Xception and V3,2k+1

for DenseNet when k = 0, 1, . . . , 5), we have been able to obtain up to 4% of performance gain in
comparison with a transfer learning6 by using one single Xception or DenseNet instance (see Table
1), when the issue is the classification of the Describable Textures Dataset (DTD7). This means that
using different Gabor filters (thus different frequency selectivities) make Xception more consistent
in terms of learning texture features. At this stage, the Gabor phase has not been integrated in the
framework of Figure 7 because learning is inhibited by complex mechanisms associated with the
phase. This is experimental observation is probably due to the classification constraints: we are not
seeking for the best representation of the input image, but the most relevant class separators.

Table 1: Performance of the hybrid framework presented in Figure 7 for a standard classification
issue of DTD. Comparison is provided with respect to transfer learning frameworks associated with a
single CNN being either Xception or DenseNet.

Standard CNN Hybrib filter bank & CNN methods
Xception DenseNet Xception

CNN 00 CNN 02 CNN 04 CNN 06 CNN 08 CNN 10
72 72 69 73 71 70

DenseNet
CNN 01 CNN 03 CNN 05 CNN 07 CNN 09 CNN 11

71 69 67 70 67 66
Fusion of CNNs 00-to-11 categorical probabilities + decision

72 69 76

6The transfer involves learning only the optimal fully connected layer preceding the output layer.
7DTD Cimpoi et al. (2015): collection of 5640 wild textural images associated perceptual description

characteristic, including 47 texture categories and divided in 10 experimental splits.
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