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ABSTRACT

While vision-language models (VLMs) have made significant progress in multi-
modal perception (e.g., open-vocabulary object detection) with simple language
queries, state-of-the-art VLMs still show limited ability to perceive complex
queries involving descriptive attributes and relational clauses. Our in-depth anal-
ysis shows that these limitations mainly stem from text encoders in VLMs. Such
text encoders behave like bags-of-words and fail to separate target objects from
their descriptive attributes and relations in complex queries, resulting in frequent
false positives. To address this, we propose restructuring linguistic representa-
tions according to the hierarchical relations within sentences for language-based
object detection. A key insight is the necessity of disentangling textual tokens
into core components—objects, attributes, and relations (“talk in pieces””)—and
subsequently aggregating them into hierarchically structured sentence-level rep-
resentations (“see in whole”). Building on this principle, we introduce the TaSe
framework with three main contributions: (1) a hierarchical synthetic caption-
ing dataset spanning three tiers from category names to descriptive sentences; (2)
Talk in Pieces, the three-component disentanglement module guided by a novel
disentanglement loss function, transforms text embeddings into subspace compo-
sitions; and (3) See in Whole, which learns to aggregate disentangled components
into hierarchically structured embeddings with the guide of proposed hierarchical
objectives. The proposed TaSe framework strengthens the inductive bias of hier-
archical linguistic structures, resulting in fine-grained multimodal representations
for language-based object detection. Experimental results under the OmniLabel
benchmark show a 24% performance improvement, demonstrating the importance
of linguistic compositionality.

1 INTRODUCTION

Vision-language (VL) understanding, which aims to perceive each modality and form associations
between them, is a long-standing and fundamental problem. Recently, foundational VLMs such
as CLIP (Radford et al., 2021a) have leveraged web-scale image-text pairs to learn generic VL
representations, achieving strong generalization performance on tasks like image classification and
image-text retrieval. Building upon these advances, recent studies have actively explored ground-
ing language queries into specific image regions (e.g., open-vocabulary object detection (L1u et al.,
2024bj; [Zhao et al.l 2024} [Yin et al.| 2025)). Many approaches (Liu et al.| [2024a} |Li et al.| [2022)
distill the general VL knowledge embedded in foundational models into object detectors and have
demonstrated remarkable results in detecting previously unseen object categories—commonly re-
ferred to as open-vocabulary object detection (Gu et al., 2021)).

Despite these advances, current VL detectors often succeed only when the input queries are short
and consist of simple category names. They still struggle to fully comprehend complex language
queries and accurately localize the corresponding objects. To illustrate this limitation, we conduct
a preliminary analysis using the state-of-the-art foundation model for visual grounding, GLEE (Wu
et al) 2024) (see Fig. [Ia). The model reliably detects objects given simple noun phrases (e.g.,
“segway”). However, it fails when faced with more complex and specific queries (e.g., “segway
with a man”), indicating its limited compositional understanding.
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Figure 1: (a) VL detectors struggle with attributes or relations due to limitations in capturing fine-
grained semantics from image-text similarity. We propose a hierarchical multimodal representation
learning to enhance the linguistic compositionality of complex language queries. (b) Limitations of
text encoders in VLMs for compositional understanding. Although some sentences refer to different
target objects, their embeddings remain close due to shared tokens, contrary to the ideal case where
their embeddings should be well-separated (e.g., “with a man” vs. “with a woman™ ).

To investigate the underlying cause of this limitation, we visualize sentence-level text features using
t-SNE (Van der Maaten & Hinton| 2008) in Fig.[Tb] Interestingly, we observe that although some
sentences (“‘a segway with a man” vs. “a segway with a woman”) refer to different target objects
(“with a man” vs. “with a woman”), their embeddings remain close in the feature space due to
shared tokens (“segway”). The contrasts with the ideal cases, where embeddings of distinct target
objects should be well-separated, while those of the same object with different attributes should be
closer for object detection (“a segway” vs. “a black segway”’). These results indicate limited hier-
archical and compositional understanding in current VLMs (Yuksekgonul et al.| [2022). Most VL
detectors (Liu et al., [2024a; [Li et al., 2022) are trained to align a few positives with image regions
while distinguishing them from negatives using contrastive learning. For example, training with
augmented captions (Li et al.| 2023b}; [Yuksekgonul et al.||2022) labeled as positive or negative is ef-
fective for coarse-grained concept analysis. Still, detectors often struggle to handle tasks that require
understanding of fine-grained text, such as reasoning over interactions between objects (e.g., “bigger
than). Sentence embeddings obtained via simple pooling compress token-level information and fail
to capture contextualization in language queries. Beyond augmentation, sentence embeddings need
to disentangle text tokens and encode compositional features. We argue that VL detectors should go
further: representations need to see the whole sentence from meaningful pieces.

In this paper, we propose a novel framework that disentangles component-wise text features (“Talk
in Pieces”) and explicitly learns hierarchical knowledge (“See in Whole”) from these disentangled
representations to construct sentence-level understanding for language-based object detection. We
refer to our framework as TaSe (Talk in Pieces, See in Whole). We begin by formally defining a
hierarchical structure tailored for language-based object detection. Specifically, we design our new
HiVG dataset, a three-tiered hierarchy, object—attribute—relation, where the first tier represents ob-
ject category names, the second tier adds descriptive attributes, and the last tier includes relational
phrases that describe interactions or contexts. Our approach builds on phrase grounding datasets
like Visual Genome (Krishna et al.||2017), which provide densely annotated phrases associated with
images and object regions. Using a large language model (LLM) (Dubey et al., 2024), we abstract
these phrases into a three-tier hierarchy—obiject, attribute, relation—by sequentially removing re-
lational and attribute information in phrases to obtain the final object categories. Unlike typical
generation-based approaches (e.g., generating sentences from category names (Li et al., [2023b) or
captions from images), our abstraction-based process performs reverse abstraction, effectively miti-
gating hallucination issues (Ji et al.| 2023) common in generative models.

To effectively construct contextualized (i.e., holistic) sentence representations from the HiVG
dataset, we disentangle into several key aspects (“Talk in Pieces””)—such as objects, attributes, and
relations. This design allows us to disentangle text representations into subspaces to adjust targeted
token embeddings and preserve meaningful information in the remaining features. For this purpose,
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we further design a lightweight learnable attention module for the TriDe (Three-component disen-
tanglement), enabling efficient fine-tuning of conventional text encoders. The key idea of TriDe is
to leverage the hierarchical structure of the HiVG dataset to contrast component-wise tokens so that
targeted tokens to be adjusted without loss of meaningful information.

Then, we guide the model to learn linguistic representations that capture these levels of abstrac-
tion. This facilitates learning of sentence context enriched with descriptive attributes and relational
clauses. We introduce a hierarchical aggregation method (“See in Whole”) based on sentence-level
hierarchy entailment, which effectively models sentence-level hierarchical relationships with our
HiVG. Our learning hierarchical objective offers a richer and more structured alternative to naive
contrastive learning, which typically aligns image regions with positive tokens in a sentence while
contrasting them with negative tokens. In contrast, our method models the full sentence hierarchy,
promoting a more dense VL understanding.

To summarize, our main contributions are as follows: 1) We present an efficient hierarchical data
generation pipeline that abstracts dense existing phrases into an explicit hierarchical structure of
“object—attribute—relation.” 2) We introduce a novel framework for disentangling the three core
components and employ the TriDe loss to guide this process. 3) We propose a method for learning
disentangled and hierarchical representations that capture sentence-level inductive biases and can
be integrated into conventional VL detectors. With hierarchical learning on our generated dataset
HiVG, our model significantly outperforms strong baselines, including state-of-the-art VL detectors,
on challenging language-based object detection benchmarks such as OmnilLabel (Schulter et al.,
2023)) and D3 (Xie et al., [2023)).

2 RELATED WORKS

2.1 LANGUAGE-BASED OBJECT DETECTION

Language-based object detection aims to locate and identify objects in images using free-form text.
One of the leading approaches is to transfer the pre-trained model and align images and texts us-
ing contrastive learning (L1 et al.| [2022} [2023b; |Park et al., 2024). Contrastive learning enhances
compositionality in VLMs by capturing relationships with contextual entities and improves the un-
derstanding of object relationships (Li et al., 2023b; [Minderer et al., [2022a} |Gu et al.| 2021} |Gao
et al.| 2024} [Liu et al.} |2024b). GLIP (L1 et al., |2022) proposes to add deep fusion layers between
different modalities and learn a language-aware visual representation based on reformulated align-
ment scores.

However, existing approaches overlook the need for contextualized sentence-level understanding
of VL text embedding. For example, APE (Shen et al., [2024); GLEE (Wu et al., [2024); Dino-x
(Ren et al.}[2024)); and Zeng et al.|(2024)) explore VLM alignment challenges and highlight the need
to improve reasoning capabilities in multimodal LLMs. These works investigate model capabilities
from restricted VL perspectives, with a primary focus on fine-grained textual details and inter-object
relationships. VL detectors still struggle to align images with syntactically intricate language queries
(Wang et al.}2023), underscoring the need for a more grounded contextual understanding of text.

Disentangled representation learning is a method for enhancing linguistic understanding by learn-
ing fine-grained representations (Bengio et al., 2013; [Wang et al., 2024). Several approaches have
been proposed for disentangled representation learning, including prompt learning (Lu et al., 2023},
Zheng et al.| 2024)), learnable vectors (Qi et al., 2024])), and attention-based mechanisms (Wu et al.,
2025). Prior works have introduced methods for designing object—attribute compositions, which
improve compositional zero-shot learning. In contrast to these concept-aware approaches that dis-
entangle objects and attributes for recomposition, our method leverages disentanglement to capture
hierarchical sentence structures and contextualized understanding.

2.2 HIERARCHICAL ENTAILMENT FOR VISION-LANGUAGE MODELS

To better represent the embedding space of VLMs, hyperbolic learning has highlighted the need
to capture hierarchical structures and relationships in multimodal data. Hyperbolic learning was
formulated on the Poincaré ball by |Ganea et al.| (2018)), learning entailment relations between em-
bedded objects. The formulation now extends the more common Lorentz model as|Lou et al.[(2020)
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due to its computationally heavy Gyrovector operations. Hyperbolic learning maps the embedding
into an entailment cone (EC) to represent hierarchical entailment in a continuous space. Recent
studies investigated the use of the EC embedding for vision tasks (Atigh et al., 2022} Kong et al.,
2024; Khrulkov et al.| 2020), multimodal learning Desai et al.[(2023)); Hong et al.| (2023); [Pal et al.
(2024), and synthetic data generation (Kong et al., 2024).

However, the hyperbolic manifold needs to transpose features from Euclidean to hyperbolic and re-
quires additional hyperparameter configurations. To address this limitation, |Alper & Averbuch-Elor
(2024) proposed radial embedding (RE) optimization for learning hierarchical representations di-
rectly in Euclidean space. Inspired by this approach, we extend RE optimization to language-based
object detection based on hierarchical representation learning at the sentence level. While previous
works explore hierarchical manifolds to capture natural hierarchy (Lang et al.,[2022)), sentence-level
hierarchy objectives remain underexplored. This work introduces a hierarchical modeling approach
to define the sentence-level hierarchy entailment with compositional learning, which captures inclu-
sive relationships between hierarchy nodes in language-based object detection.

3 TASE: DISENTANGLED AND HIERARCHICAL TEXT REPRESENTATION
LEARNING FOR LANGUAGE-BASED OBJECT DETECTION

This section introduces TaSe, a framework for disentangling and hierarchy aggregating method.
Specifically, our approach comprises three components: 1) the HiVG dataset (Sec. [3.1)), a synthetic
dataset re-captioned from VG to capture hierarchical entailment relations; 2) disentangling text rep-
resentations into objects, attributes, and relations for a component-wise subspace for aligning se-
mantic pieces within sentences (Sec. [3.2)); and 3) a hierarchical aggregation method to represent
contextualized sentence embedding based on disentangled tokens (Sec. [3.3). Fig. 2] outlines the
TaSe to learn contextualized sentence representations within language-based object detection.

3.1 Hi1VG: HIERARCHY CAPTIONING PIPELINE

Although augmented captions enhance fine-grained textual representations (Li et al., 2023b; |Yuk-
sekgonul et al.| 2022)), open-vocabulary detectors often rely on keywords and fail to separate target
objects from their attributes and relations, owing to the absence of hard textual negatives that reflect
linguistic hierarchy. To address this problem, we propose a Hierarchical captioning pipeline that re-
captions the Visual Genome dataset (HiVG) by leveraging pre-trained LLMs and lexical databases
(e.g., WordNet (Miller, [1995)) and ConceptNet (Speer et al., [2017)). HiVG is a synthetic dataset
constructed by spanning from category names to descriptive sentences and structuring hierarchical
captions into three tiers: objects, attributes, and relations. Each caption in the Visual Genome (Kr-
ishna et al., 2017) annotation is transformed into three positive (e™) and negative tiers (¢~) where e
follows the notation introduced in Sec. We show an example for the input image in Fig.

* Tier 1. Category names (object): containing the class name (e.g., woman (ef) and man (e} )).

* Tier 2. Enriched descriptions (w/ attribute): adding an attribute to the object (e.g., middle woman
(e;) and left woman (e, ) for learning fine-grained linguistic compositionality).

 Tier 3. Contextual understanding (w/ attribute and relation): emphasizing the relationships be-
tween objects by injecting a relation into the second-tier caption (e.g., middle woman with dark
hair (e3) and with red shirt (e )).

Further details of our re-captioning approach and examples are provided in the supplementary ma-
terial (see Sec. [A] Fig.[T3).

3.2 TALK IN PIECE: COMPONENT-WISE TEXT DISENTANGLEMENT

Textual descriptions typically contain not only descriptive attributes but also complex relational
structures, which cause false positives in language-based object detection. To address this, we pro-
pose the TriDe module to disentangle text embeddings into meaningful subspaces, which adaptively
refines these components to enhance semantic representation.

Text embedding. We extract text features by CLIP text encoder with low-rank adaptation (LoRA)
(Hu et al., [2021) for efficiently evolving text embedding from the text encoder. Let {v;, ti}le
be a batch of image—text pairs. The text embedding X = Tp(text), where X € REXT X dmocel | g
obtained using the text encoder. Here, B, T', and d,,,,q4¢; denote the batch size, number of tokens,
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Figure 2: The overall framework of TaSe. (Left) The text encoder is fine-tuned with LoRA (Hu
et al., |2021) and the TriDe module to restructure text representations. (Right) Overview of the
TriDe module and its embedding space. Top: Hierarchy aggregated embeddings with HiVG, where
the recaptioned dataset passes through the TriDe module to learn linguistic hierarchy. Bottom:
Architecture of the TriDe module.

and embedding dimension, respectively. A text projection layer maps the input into X € RB*T>D,
where D denotes the text embedding dimension.

— Positive [ Object (1 Relation
------ Negative (2 Attribute () Meaningless
rainbow

Component-wise disentanglement. We disentangle text
representations into three components—objects, attributes,
and relations. This design mirrors the three-tier structure
of HiVG and facilitates the learning of effective contextu-
alized sentence embeddings. We adjust learnable vectors
Vo,Va, Vg € REXTXD to disentangle the text embed- T2: Attribute
ding into the three components. We employ a multi-head @
cross-attention layer between the learnable vectors and text  73: Relation
embedding X. Let FFN, LN, and Proj denote the feed-
forward network, layer normalization, and projection layer,
respectively. The TriDe module is defined as follows:
X = LN(Proj(X + FFN(X))),
[0, A,R] = CrossAttn(X, [V, Va, Vg]),

middle woman middle woman

4 (1 GAEaC)

Figure 3: Learning process for hierar-
chically structured positive and nega-
tive sentences. The model is trained

ey

E = pooling(FFN(LN(O + A + R))),

where O, A, R, and E represent the object, attribute, re-
lation components, and restructured text embedding. Note

with contrastive learning on HiVG,
where text features are disentangled
into subspaces across tiers and opti-
mized with cosine distance.

that E is employed to learn hierarchical entailment for con-
textualized sentence representations in Sec. The CrossAttn(Q, V) with the scaling factor dj, is
defined as follows:

Proj(Q)Proj (V)™

vy

Objective for component disentanglement. In Fig.|3| components are aligned with their positive
counterparts, while negatives are enforced to remain distant according to their tier. Let ¢ be the tier
of HiVG, and the disentanglement of text embedding is adjusted Lryipe as follows:

.. ! _
Lriipe = >\Z(i’j)e{(QA),(O,R)’(A’R)}‘1 ~_]’ +> (m + cos(0f, 04, ;) — cos(Of, 0, ))
+ Yy (m+ cos(AT, AT — cos(AT A7) + (m = cos(RFLR) ).

Lriipe and m represent compositional loss for the TriDe module and margin, respectively. A rep-
resents a hyperparameter for stability adjustment. Minimizing correlation among components pro-
motes an inductive bias toward semantically grounded object representations.

CrossAttn(Q, V) = Softmax( )Proj (V). 2)

3)

3.3 SEE IN WHOLE: SENTENCE-LEVEL HIERARCHICAL AGGREGATION

We design a hierarchy aggregation method of disentangled features to serve fine-grained semantic
distinction, which helps capture contextual meaning beyond simple word-level perception.

Background: hierarchical entailment in Euclidean space. The goal of hierarchical entailment
is to learn general concepts by representing entailment relations via low-dimensional embeddings
(Ganea et al., |2018). While conventional contrastive learning to learn embedding from pair-wise
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(i.e., positive and negative), the RE objective (Alper & Averbuch-Elor, [2024) aims to represent the
hierarchy structure of embedding by exterior angle with respect to the reference point. Two key
advantages of this representation learning with the RE are: 1) modeling sentence-level structure;
and 2) learning compositional generalization without requiring transformation into sphere space.
Let = denote the exterior angle in radians and » € R? denote a root embedding, the exterior angle
between embedding a and b in the RE objective is defined:

E(aza b> = Ccos (W) <. (4)
where a’=a—r, b'’=b-—r—a’, abecR?

The value (a,b)= € [0, 7] is bounded. Given a root embedding r and a reference embedding of a
text embedding e, the objective function of the RE is represented as follows:

Lre =) ((ef el)=—(ef,ei)z). 5)
Here, e and e ; denote distinct positive embeddings, and e; is a corresponding negative. The
ObJeCtIVC LRrE encourages smaller exterior angles between pos1tive pairs while enforcing larger
angles between positive and negative pairs. This deviation reflects a misalignment from the reference
anchor r (frozen) and corresponds to a larger angular distance in the embedding space.

Reference-based hierarchy induction. The

I
previous approach still has challenges to en- middle ¢2) 1 [eﬁ(ez) —~ (&)
hance compositional generalization from the | woman middle
perspective of sentence-level hierarchy entail- | root 4 woman
ment (see Fig. [d). First, we introduce a regular- I \
ization term to preserve the inherent embedding 1 ()

1 woman

space, defining two objective functions for hi-
erarchy entailment. Since angular-only super- oL L
vision may induce directional bias and degrade Figure 4: Limitation of the RE objective. (left)
representational fidelity, we regularize the em- Solid - ideal angle, Dotted - distortion from larger
bedding space to retain knowledge. Second, Upper-tier embedding. (right) Red - positive pairs,
contrastive learning is formulated using exte- blue - negative pairs; with the root fixed, the “left
rior angles, where sentence pairs are trained Woman” represents a trade-off.

with respect to a reference-conditioned point. A key consideration in sentence-level contrastive
learning with a text encoder is that a negative e, is also positive with respect to the previous tier
e;~ ;. To account for this, we position samples in opposing directions based on a dynamic reference
7 rather than a fixed root (see Eq. [6).

Hierarchical objectives. Let [ denote the tier of HiVG in the object-attribute-relation hierarchy. Let
e; be an embedding at tier ¢ of HiVG, e; its positive counterpart at tier , and e;” a negative sample
at the same tier. We use two complementary losses—(i) alignment across tiers and (ii) within-tier
discrimination—defined compactly as

l —_ —_ _
EH* = Zt:l :<e;r’ €t++1> + :<e;r’ et+1>7 v = (b - T) - a/7
r ift=0 (globalref.) (6)

= l =let e b = —b) —d _
L = 2 Bler e, (r=b)-d, r {e;rl ift >0 (local ref.)

with normalization e = =<7, e € {e*,e™}. Note that normalization maintains directional

consistency independent of embedding scale. r is adapted to expose directional differences not
captured by global alignment and to account for locally meaningful variation. The proposed formu-
lation minimizes directional deviation from the reference point, which helps preserve the intrinsic
structure of the embedding space while enforcing separation between negative pairs.

Training objectives. For learning contextualized features, the objective function of hierarchical and
disentangled representation learning, Lr,se, is defined as:
Ltase = Lrvipe + Ly+ + Ly-- (7

The loss function is formulated as a weighted sum of classification, localization, and hierarchy losses
updated on the text encoder and VL fusion layers as follows:

L= Eclass + ‘cbboz + Egiou + £TaSea (8)

where Lqss represents Focal loss (Lin et al., [2017), Ly, represents L1 loss, and L., represents
generalized intersection over union (GloU) loss (Rezatofighi et al.,[2019)).
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Model Backbone D3 (default) D? (length) OmniLabel (default) Omnilabel (length)
Full Pres Abs S M L XL AP AP, AP, S M L
OFA-L (Wang et al.|[2022} RN50 42 4.1 4.6 49 5.4 3.0 2.1 2.7 2.7 2.6 3.6 2.7 23
OWL (Minderer et al.|2022b} ViT-B 96 107 64 207 94 6.0 53 80 156 54 5.7 5.4 6.2
UNINEXT (Lin et al.| 2023} RN50  21.6 237 154 236 226 205 184 222 272 188 - - -
G-DINO (Liu et al.][2024a} Swin-T 207 20.1 225 226 225 189 165 193 236 164 294 148 82
GEN (Zhao et al.]2024]} Swin-T 214 206 237 281 245 174 115 222 272 188 - - -
GLIP (Li et al.||2022} Swin-T  19.1 183 215 224 220 166 106 193 236 164 294 148 82
GLEE-Lite™ (Wu et al.|[2024} RN50  27.6 268 301 300 276 269 172 217 366 154 284 138 103
GLIP + DesCo (Li et al.]2023b) Swin-T 242 229 278 243 219 164 11,5 238 274 210 337 190 137
GLEE-Lite + DesCo RN50 283 276 303 302 284 278 182 246 373 183 320 170 132
GLEE-Lite + TaSe (ours) RN50 307 299 332 318 312 303 198 269 368 212 331 193 148

Table 1: Evaluation on D3 (Xie et all, [2023) and OmniLabel (Schulter et al., 2023). D? provides
three types of descriptions: absence (ABS), presence (PRES), and full (FULL). text length. For
OmniLabel, the final AP is computed as the geometric mean of category-level (AP.) and description-
level (AP,) scores. Note that the evaluation results of GLEE-Lite* are reproduced.

4 EXPERIMENTS

This section compares our method with baselines. The following sections provide the implementa-
tion details (Sec. [B), the main results for performance comparison (Sec. 4.2)), and ablation studies
conducted to analyze the results in three benchmark datasets (Sec. f.3). Additional experimental
details can be found in the Sec[G|of the supplementary material. The key findings of this study are as
follows: 1) sentence-level hierarchical supervision enhances VL alignment by improving linguistic
compositionality (Tab. [2); 2) disentangling components with hierarchical structures leads to better
modeling of the inductive biases of sentences (Tab.[3); and 3) compositional structure improves the
discrimination of positive and negative pairs to represent descriptive sentences better (Tab. [I)).

4.1 EXPERIMENTAL SETTINGS

Implementation details. We build our method based on GLEE (Wu et al.,|2024)), a pre-trained foun-
dation model composed of MaskDINO (Li et al.,|2023a)) and CLIP (Radford et al.,|2021b) text-image
encoders. GLEE was selected as a baseline because, despite being a powerful vision—language foun-
dation model in many benchmarks (e.g., RefCOCO (Yu et al., |2016)), it still faces challenges in
contextualizing text embeddings. This study demonstrates that a lightweight hierarchy entailment
mechanism can address this limitation and yield further performance gains. For implementations,
we use only HiVG dataset for training, which contains 10 K hierarchy captions. We provide more
details of the experimental settings in Sec. [BJof the supplementary materials.

Benchmarks and evaluation metrics. We evaluate the language-based object detection capabilities
in two different benchmarks. 1) D (Xie et al.| [2023)) dataset is a widely used benchmark for visual
grounding tasks. The dataset includes negative instances, multi-target scenarios, and long sentences.
2) Omnilabel (Schulter et al.| 2023)) dataset is an open-vocabulary detection dataset. Omnilabel
provides an evaluation of compositionality from perspectives such as spatial relationships, actions,
and numeracy within referring objects. We perform mean average precision (mAP), a standard
evaluation metric, to validate the language-based object detection task.

4.2 MAIN RESULTS

We investigate the impact of object detection on disentanglement and hierarchical representation
learning through a set of research questions.

Does learning hierarchical entailment improve generalization? As shown in Tab.|I| the proposed
model improves upon the baseline by fine-tuning only the LoRA and TriDe. Compared to GLEE,
which served as the vision foundation model, we observe improvements of +3.1 in D? and +5.2
in Omnilabel AP scores. The AP scores in OmniLabel show that hierarchical learning improves
performance in zero-shot evaluation, and the gains observed on open-vocabulary benchmarks further
demonstrate its effectiveness.

Does hierarchical learning provide greater benefits than caption augmentation like DesCo?
We further evaluate the performance of GLEE with caption augmentation based on DesCo (Li et al.|
2023b). To apply this augmentation, we randomly sample from HiVG. The selected sentence is con-
catenated with the original caption, and the augmented components are pooled separately and then
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averaged. The DesCo improves the GLEE model +2.4 AP on D? and +2.3 on Omnilabel. While
caption augmentation increases textual diversity, our hierarchy learning further enhances TaSe by
enabling accurate distinction of positives and negatives, even when sentences share category names
or attributes.

Qualitative results. We present two qualitative examples in Fig. 5] to illustrate the effectiveness
of our hierarchical entailment learning. The first case shows negative cases containing an attribute
(i.e., blue), and the second case presents a positive case with attributes and descriptive relations (e.g.,
numeracy and text in the image). In the first case, GLEE incorrectly assigns a confident score of
0.92 to the language query. In the second case, GLEE predicts all bikes as positives, including those
that do not correspond to the queried bike. On the other hand, TaSe captures contextual information
related to category names, and hierarchical entailment helps reduce false positives. More qualitative
results are provided in Figs. [[T]and [T2] of the supplementary material.

4.3 ABLATION STUDIES

What advantages does our hierarchical loss of- D? OmniLabel
fer over traditional contrastive loss? In Tab. FULL PRES ABS AP AP, AP,
we conduct an ablation study to validate the effec-  oOriginal GLEE 27.6 27.1 305 217 366 154
tiveness of our hierarchical loss. Within the base *LoRA(base) 275 267 300 217 365 155
setting (GLEE with LoRA), we evaluate three con- *La
figurations: (1) conventional contrastive loss (Lcp);  +Lu(ours) 286 278 316 262 389 192
(2) the RE objective (Lye): and (3) the proposed /v 2% 7 i 2% T
method. For sentence-level hierarchy aggregation,  +Reverse £y 267 258 293 221 368 153
our loss Ly outperforms contrastive baselines. Con- . o .
. H outpet - . Table 2: GLEE trained with hierarchy entail-
ventional contrastive learning causes embeddings of . .
. - : e ment. The final AP value is the geometric
identical category names to diverge when descriptive £ cat ies (AP,) and free-f d
information differs, whereas our reference-based hi- ¢4 ri_o ca :1%0;162 ¢ 4 221 ree- orrtn e
erarchy induction aligns them hierarchically and im-  SC"'PHOnS (APq). Ly, and L represnt con-
trastive loss (Oord et al., 2018) and RE em-

roves sentence-level meaning and performance. . . = -
p J P bedding objective, respectively.

In hierarchy entailment loss, is it better to learn

egs . . D’ OmniLabel
positives or negatives? We ablate the hierarchy en-

Where-to-apply disentanglement

tailment loss to compare learning with positive and ~ wio disentangling ~~~~~ "~ 7B (+10) | 262 (#45)

. . . . . ees . Token-level disentangling 30.7 (+3.1) 26.9 (+5.2)
negative pairs. Fine-tuning with positives improves . idenity initialization 307 (31 269 (+5.2)

o 3 : : L Uniform initialization 28.8 (+1.2) 26.4 (+4.4)
OmniLabel by +3.1 AP, while negatives yield +1.9 3¢ 000 WOG1s  2260109)
AP. Combining both provides the best generaliza- — How-t0-apply disentanglement
tion in zero-shot settings. To validate this, we invert  Self-atiention 20(+14H" —255(+38)

. . . Learnable query 29.6 (+2.0) 24.7 (+3.0)
the objective and observe performance degradation  Learnable key & value 307 (+3.0) 269 (+5.2)
when positives and negatives are aligned in Oppo- ~_ Effectiveness of disentangling components (# of leamable vector)

. . . . . . 1 (w/o disentanglement) 29.4 (+1.8) 254 (+3.7)
site directions (Tab. [2). These findings highlight the ;e s Atibate) 29519 26508

role of hierarchical entailment in building effective 3 (Object+ Atribute + Relation) 307 (+3.) 269 (+5.2)

sentence-level embeddings and suggest that aligning  Taple 3: Comparison between disentangled

semantlfzally. meaningful sentences with visual rep- representations with hierarchy entailment
resentations improves performance.

Ablation on where and how to disentangle in text representation. Tab. [3|reports ablation studies
analyzing the design choices of the TriDe module. Interestingly, we observe that where text embed-
dings are disentangled has the greatest influence on learning granularity. We compare three modes
for constructing compositional text embeddings: (1) no disentanglement, (2) token-level disentan-
glement, and (3) disentangled text embeddings after pooling. Pooling compresses information and
limits effective disentanglement, while the no-disentanglement approach is insufficient for capturing
sentence-level contextualization. Token-level disentanglement generalizes better and yields the best
performance, with module initialization also having a substantial impact on the results. In exploring
how to design the TriDe module, we investigate disentanglement under three self-attention variants:
direct text alignment, learnable queries, and key—value configurations. Key—value attention outper-
forms query-only and self-attention mechanisms. Key (indexing)—value (content) attention preserves
independent subspaces and yields more structured semantic features than query-based approaches.
We provide the disentangled embedding results in supplementary material, Fig.
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Figure 5: Qualitative analysis on Omnilabel data (Schulter et al., 2023).
We visualize and compare the results between our baseline (GLEE) and Figure 6: Comparison of
TaSe. We select the scenario that includes attributes and relations for exterior angles between

referring to a category name. GLEE and TaSe

black g, with a woman

& black g& with a woman T
6 black oy ite & white oy bISk O N mesHEED
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() a B withaman \GLEE Tase
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(a) GLEE embedding visualization (b) TaSe embedding visualization (c) Zoom in TaSe embedding

Figure 7: Comparison between GLEE and TaSe text embedding. We set objects to correspond to
each icon. Our proposed hierarchical representation learning aligns text embedding of GLEE.

Is it beneficial to disentangle the representation into three components? Conventional detectors
(Li et al.} 2023b} [Yuksekgonul et al., [2022)) disentangle objects and attributes, whereas we separate
representations into three components—object, attribute, and relation—and evaluate their effective-
ness. As shown at the bottom of Tab. [3] overall, the performance of three-component disentan-
glement is higher than two-component (i.e., object and attribute) disentanglement. These findings
suggest that three-component disentanglement introduces an inductive bias for complex linguistic
structures, making longer sentences more robust to negatives. The granularity of text embeddings
reveals features that characterize their representational properties. To further disentangle these com-
ponents, explicit criteria for dataset composition are required.

How are embeddings structured after disentanglement? While a few negative pairs still exhibit
large angles, Fig.[6]confirms that positive and negative pairs are effectively aligned in the embedding
space. To examine whether this alignment follows the intended structure after disentanglement and
hierarchical aggregation, we visualize the t-SNE projection of the trained TaSe embeddings. As
shown in Fig. GLEE is dispersed around category names, whereas TaSe realigns embeddings
around objects and preserves robust angular distance for negatives corresponding to attributes or
relations. This is evident in the “segway’ object, where the captions “black segway with a woman”
and “black segway with a man” lie at different angles from the reference point “black segway.”

5 CONCLUSION

This study proposed a disentanglement and hierarchy aggregation framework for constructing con-
textualized sentence representations within language-based object detection. Additionally, we gen-
erate re-captioned data for object detection using hierarchical concepts. TaSe improved the lin-
guistic compositionality, which serves as a key learning factor and leads to competitive results.
The results indicated that hierarchy entailment allows learning the granularity of text embedding
to distinguish descriptive sentences. This study highlights the need for further exploration of the
underlying linguistic compositionality in future studies for downstream vision tasks.
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REPRODUCIBILITY STATEMENT

We recaptioned our dataset, utilizing the publicly available Llama 3 (Dubey et al., [2024) model
released on Hugging Face hub (Wolf et al.,|2020). Additional statistics and details of the dataset are
presented in Sec. [A] of the supplementary material. The code for the experiments can be found in
the supplementary material.
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A DETAILS OF HIVG

A.1 CREATING HIERARCHICAL POSITIVE CAPTIONS

Our hierarchical captioning pipeline is illustrated in Tab. ] which highlights key differences from
conventional captioning approaches. We generate a 10 K re-captioned dataset from the Visual
Genome dataset. We first filter out all Visual Genome captions with fewer than six words to ensure
sufficient semantic richness. For positive captions, we leverage in-context learning using LLaMA
(Dubey et al.|[2024) to transform the remaining Visual Genome captions into a three-tier hierarchical
structure. To enhance attribute diversity within the captions, we draw on common visual concepts
(Huang et al., [2023; [Lin et al., [2024) to define a set of visual attributes (spatial, color, number,
and size) and randomly select one to modify the object for alternative object attributes. Based on
our experiments, we set the randomization ratio to 50%. To fully align with the in-context learning
demonstration format, samples that lack attributes or relations are also incorporated into the learning
process, following the approach suggested by Min et al.| (2022).

A.2 CREATING HIERARCHICAL NEGATIVE CAPTIONS

One of the challenges in language-based object detection is effectively handling negative samples,
which often report higher false negative rates compared to false positives. To address the issue, we
focus on both re-captioning hard and easy negative samples. For hard negative samples in tier 1, we
replace the positive object with an antonym (e.g., man is replaced by woman) or a random concrete
noun. Easy negative samples are generated by selecting nouns from ImageNet1000 (Deng et al.,
2009) classes and lexical databases such as WordNet and ConceptNet. Additionally, we insert a
negative determiner to the object (e.g., dog is switched to no dog).

In tier 2, we reuse the same set of visual attributes from the positive captions but replace them
with semantically different attributes (e.g., fall building is replaced by short building) for generating
hard negative samples. We use LLM-based mask-filling (Liu et al., 2019) to diversify attributes
by substituting them with contextually plausible but semantically different terms or by prepending
“not” to create hard negatives (e.g., tall building — not tall building).

In tier 3, we use a set of common spatial relations (e.g., above and beside) and object-specific re-
lations from the Visual Genome dataset. These pre-defined object-specific relations ensure that the
relation is contextually relevant to the object in question. To introduce hard negatives, we apply
absence-based transformations by replacing affirmative relations with their negative counterparts
(e.g., with is replaced by without). We also leverage LLaMA’s (Dubey et al.l 2024) sentence com-
pletion capability to generate further relation diversity.

Captions that do not adhere to the hierarchical structure are filtered out. By re-captioning using a
multi-tiered set of positive and negative captions, our approach is intended to facilitate the learning
of hierarchical representations, thereby improving linguistic compositionality.

A.3 STATIC DATASET CONSTRUCTION

The combined dataset consists of 286,006 annotations, with the majority containing 8.75 & 1.34
words, as shown in Fig.[9] Caption length distributions across Positive and Negative samples are
largely consistent within each tier. Tier 3 contains the most linguistically diverse and structurally
rich captions, which may be particularly beneficial for semantic reasoning.

B EXPERIMENTAL SETUP

Baselines This paper compares the language-based object detection models on MDETR (Kamath
et al.,2021)), OFA (Wang et al.2022), OWL (Minderer et al., 2022b)), G-DINO (Liu et al.| 2024a),
GLIP (L1 et al., 2022), UNINEXT (Lin et al.l [2023)), Desco (Li et al., 2023b), GLIP-GEN (Zhao
et al., [2024), and GLEE (Wu et al., [2024]).
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[ Visual Genome Captions : "Picture on the floor resting against the wall" }

Positive caption strategy: In-context learning

. Prompt [
- Simplify the sentences step-by-step:
* A white car parked => A white car => Car
* Ball to the left=> Small ball => Ball [
o Picture on the floor => Large picture =>
Picture

"Picture" ]

"Large picture" ]

[ "Large picture on the floor resting..." ]

Negative caption strategy: BERT, WordNet

Step 1: (object) Step 2: (+ attribute) Step 3: (+ relation)

- | -
@ -\, Inference using BERT: T Negative
WordNet "[ <MASK> picture on... elations Expression

Easy negative Hard negative
4 4
4
[ "Table" ] ["Small picture"] ["Large picture hanging on the wall"]

Figure 8: Overview of generating positive and negative captions. Positive captions are derived using
in-context learning based on Llama3 (Dubey et al., 2024). We transform Visual Genome captions
into structured forms: object (category name), attribute (category name with an attribute), and re-
lation (category name with an attribute and a relation). Negative captions are constructed through
a multi-step process: 1) retrieving antonyms or random concrete nouns from lexical databases for
negative objects; 2) using LLM-based mask-filling combined with pre-defined visual attributes to
generate semantically different negative attributes; and 3) using pre-defined object-specific relations
to create negative relations.

Dataset / Approach Positive Captions Negative Captions Entailment Structure

Visual Genome

Flat object-centric region - -
(Krishna et al.;|2017) ) g

descriptions
Image Paragraphs

Narrative-level cohesion
(Krause et al.||2017)

Multi-sentence paragraphs -

per image only
) LLM-generated LLM&NLI-based structure  Inferred via entailment
HierarCaps hierarchical captions contradiction samples prediction
(Alper & Averbuch-Elor} [2024)
HiVG Explicit object — attribute ~ WordNet-informed hard ~ Explicit tiered entailment

— relation chains, used in
in-context learning

negatives and
ImageNet-based visual

diversity

Table 4: Comparison of positive/negative caption strategies and entailment assumptions across
datasets. Our method introduces grounded, logic-consistent supervision with object-level structure,
unlike prior captioning datasets.

B.1 IMPLEMENTATION DETAILS

We sample 16 images per batch and further select 6 corresponding sentences per image for hierarchy
learning. We employ AdamW (Loshchilov & Hutter, |2017) to optimize the trainable model, using a
learning rate of 1 x 10~ for the TriDe module and 5 x 10~° for LoRA. For the comparison with
baselines, our detector was trained for 60 K iterations, the same as in the ablation studies. Following
Alper & Averbuch-Elor|(2024), the RE loss was set with a positive-to-negative ratio of 10:4. In case
of Ly, we conduct experiments wit positive-to-negative ratio of 2:1. The values of ~ is set to 0.1.

B.2 MODEL S1ZE AND BUDGET

For fine-tuning the pre-trained GLEE, we only train LoRA layers, TriDe module, and VL fusion
layers. We train a total of 5,447,680 parameters, which is an efficient approach that reduces memory
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Figure 9: Statistics of HiVG dataset. Top: Distribution of the number of words. (Left) The original
Visual Genome dataset. (Middle) positive captions. (Right) Negative captions. Bottom: Distribution
of the number of words per tier. (Left) Tierl - category name. (Middle) Tier2 - attribute. (Right) -

Tier3 relation.

Params. Value
Batch size 4
Optimizer AdamW
Optimizer momentum |37 = 0.9, 82 = 0.999
Rank of LoRA 16
scaling factor of LoRA 16
learning rate of LoORA 5e-6
learning rate of TriDe le-4
Input resolution 800 x 800
loss of class (Leiqss) 4.0
loss of bbox (Lppos) 5.0
loss of gloU (Lyi0u) 2.0
loss of TaSe (L1use) 5.0
A 0.1

Table 5: Hyperparameters setting

usage by 2.93% of the model parameters. Experiments were conducted using 4 NVIDIA A6000
GPUs for model training.

C QUALITATIVE RESULTS

Hierarchy training embedding analysis. We validate the effectiveness of our proposed hierarchi-
cal learning approach by visualizing the impact of the angular loss on both inter-tier and intra-tier
constraints. For the experimental setup, we randomly initialize 50 two-dimensional embeddings and
train them using the original hierarchy loss and our extended loss function.

Additional qualitative results. To evaluate whether our model effectively learns sentence-level hi-
erarchy, we compared its performance with baselines using scenarios including objects, attributes,
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Layers # of Params. (M)
Image backbone 23.5
Text encoder 126.3
Detector 31.5
LoRA 04
TriDe 1.9
VL 3.2
Trainable params.| 5.4 (2.93%)

Table 6: Model configuration.
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Figure 10: Visualization of angular embeddings (without dynamic reference). Triangles illustrate
learned pairs with respect to the root: positive pairs (red) and negative pairs (blue) are connected to
depict directional behavior. Positive pairs are expected to align in similar directions from the root,
while negative pairs should diverge. While the baseline tends to increase radial distance more than
meaningful angular adjustment, our objective function encourages more structured representations
guided by directional alignment.

and relations from the benchmark dataset. As shown in Fig. [[T)and Fig. [I2] we visualize the results
of two scenarios containing an absent example. Given that sentences become longer, many VLMs
focus on specific words, such as “running” to detect objects. For example, our model improves per-
formance by capturing richer semantic information, such as the attribute “pink,” and understanding
contextual meaning, like recognizing the “girl” as the subject of “running.” In contrast, our model
demonstrates greater robustness in detecting complex relations and predicts bounding boxes more
accurately by better understanding object states and relative information.

D HIVG STATISTIC ANALYSIS

We report that our hierarchy dataset, HiVG, in Fig. [I3] Leveraging Visual Genome data for re-
captioning, we create a more diverse dataset by incorporating a wider range of classes and the LLM
and other datasets.

E DETAILS OF COMPOSITIONAL LEARNING

We provide the details of the disentanglement modes employed for compositional learning as shown
in Alg. [T} The first mode adopts traditional mean-pooling and uses the resulting representation
for contrastive learning. The second and third modes involve disentanglement via a TriDe module,
followed by contrastive learning based on the aggregated compositional embedding. Specifically, the
second mode applies the TriDe module at the token level to leverage information across all tokens,
whereas the third mode applies the module after pooling, focusing on sentence-level semantics.
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Ground truth GLEE TaSe
“smaller giraffe”

Ground truth GLEE TaSe

Figure 11: Qualitative analysis on Omnilabel data Schulter et al.| (2023). We visualize and compare
the results between GLEE and TaSe. We visualized the prediction results for both positive and
negative captions of the same image.

Algorithm 1: Pseudo code for disentangling and hierarchical aggregating paradigm

Input: Image-text pair (v;, ti)f; 1> Text encoder with LoRA 7y; Learnable vectors
Vo, Va, Vg; Projection embedding §; Vision backbone V,;,; MaskDINO f,
Output: Bounding box and class Y'; Total Loss L;

for each training iteration do

XV = Vw(v)

X = T4(t) -6

// TriDe: token-level disentangling
X = FFN(X)

O = CrossAttn(X, Vo)
A = CrossAttn(X, V)
R = CrossAttn(X, VR)
E = Pool(FFN(O + A + R))

//
L Y) L= fw(xva E)
Update 6 by minimize £
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Ground truth GLEE TaSe
“the spoon in the cup of tea”

Ground truth GLEE TaSe
“People High Fiving each other”

le

Figure 12: Qualitative analysis on Omnilabel data|Schulter et al.| (2023). We visualize and compare
the results between GLEE and TaSe.
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Figure 13: Re-captioning data examples
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t-SNE Visualization of Disentangled Embeddings
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(a) Embedding visualization of the three disentangled components for the lan-

guage query “Segway with a man”

t-SNE Visualization of Disentangled Embeddings
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(b) Embedding visualization of the three disentangled components for the lan-

guage query “middle woman with dark hair”

Figure 14: t-SNE visualization of disentangled text embedding
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Figure 15: Analysis on the ef- Figure 16: Analysis on the Figure 17: Analysis on the mar-
fect of different LoRA ranks number of tokens gin m in the Lyipe

F ANALYSIS OF REPRESENTATION DISENTANGLEMENT

To verify whether disentangled embeddings contain distinct embedding representations for each
component, we visualize the embedding of each component using t-SNE. For the t-SNE visualiza-
tion, we construct the embedding space using our HiVG dataset of 10K samples. We then visualize
the embeddings based on language queries, which are our motivation. As shown in Fig. while
there are slight variations depending on token information, we observe that the embeddings for each
component cluster relatively well. This validates that when a sentence is input, each component

holds disentangled representations.

G ADDITIONAL EXPERIMENTAL RESULTS
We conducted an ablation study on the model parameters. We compared and analyzed the effects of

adjusting the LoRA (Hu et al., 2021)) rank (see Fig. [I5)), the number of tokens (see Fig.[I6] and the
margin parameter (see Fig. for the disentangled loss.
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