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ABSTRACT

While vision-language models (VLMs) have made significant progress in multi-
modal perception (e.g., open-vocabulary object detection) with simple language
queries, state-of-the-art VLMs still show limited ability to perceive complex
queries involving descriptive attributes and relational clauses. Our in-depth anal-
ysis shows that these limitations mainly stem from text encoders in VLMs. Such
text encoders behave like bags-of-words and fail to separate target objects from
their descriptive attributes and relations in complex queries, resulting in frequent
false positives. To address this, we propose restructuring linguistic representa-
tions according to the hierarchical relations within sentences for language-based
object detection. A key insight is the necessity of disentangling textual tokens
into core components—objects, attributes, and relations (“talk in pieces”)—and
subsequently aggregating them into hierarchically structured sentence-level rep-
resentations (“see in whole”). Building on this principle, we introduce the TaSe
framework with three main contributions: (1) a hierarchical synthetic caption-
ing dataset spanning three tiers from category names to descriptive sentences; (2)
Talk in Pieces, the three-component disentanglement module guided by a novel
disentanglement loss function, transforms text embeddings into subspace compo-
sitions; and (3) See in Whole, which learns to aggregate disentangled components
into hierarchically structured embeddings with the guide of proposed hierarchical
objectives. The proposed TaSe framework strengthens the inductive bias of hier-
archical linguistic structures, resulting in fine-grained multimodal representations
for language-based object detection. Experimental results under the OmniLabel
benchmark show a 24% performance improvement, demonstrating the importance
of linguistic compositionality.

1 INTRODUCTION

Vision-language (VL) understanding, which aims to perceive each modality and form associations
between them, is a long-standing and fundamental problem. Recently, foundational VLMs such
as CLIP (Radford et al., 2021a) have leveraged web-scale image-text pairs to learn generic VL
representations, achieving strong generalization performance on tasks like image classification and
image-text retrieval. Building upon these advances, recent studies have actively explored ground-
ing language queries into specific image regions (e.g., open-vocabulary object detection (Liu et al.,
2024b; Zhao et al., 2024; Yin et al., 2025)). Many approaches (Liu et al., 2024a; Li et al., 2022)
distill the general VL knowledge embedded in foundational models into object detectors and have
demonstrated remarkable results in detecting previously unseen object categories—commonly re-
ferred to as open-vocabulary object detection (Gu et al., 2021).

Despite these advances, current VL detectors often succeed only when the input queries are short
and consist of simple category names. They still struggle to fully comprehend complex language
queries and accurately localize the corresponding objects. To illustrate this limitation, we conduct
a preliminary analysis using the state-of-the-art foundation model for visual grounding, GLEE (Wu
et al., 2024) (see Fig. 1a). The model reliably detects objects given simple noun phrases (e.g.,
“segway”). However, it fails when faced with more complex and specific queries (e.g., “segway
with a man”), indicating its limited compositional understanding.
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Target object: segway
(Word-level) segway ⇾⇽ bicycle 
(Sentence-level) segway with a woman ⇽⇾ segway with a man

✓
✓

Detectors

(e.g., “segway”) (e.g., “segway with a man”)

W/ Hierarchy
entailment

✘
✓

(a) Detection results from w/o and w/ our hierarchy en-
tailment

black      with a woman

black

a      with a segway

white

a  riding a segway

a      with a segway

black       with a man
0.011

0.058

Positive
Negative

(b) t-SNE of sentence features from text en-
coder of VLMs

Figure 1: (a) VL detectors struggle with attributes or relations due to limitations in capturing fine-
grained semantics from image-text similarity. We propose a hierarchical multimodal representation
learning to enhance the linguistic compositionality of complex language queries. (b) Limitations of
text encoders in VLMs for compositional understanding. Although some sentences refer to different
target objects, their embeddings remain close due to shared tokens, contrary to the ideal case where
their embeddings should be well-separated (e.g., “with a man” vs. “with a woman” ).

To investigate the underlying cause of this limitation, we visualize sentence-level text features using
t-SNE (Van der Maaten & Hinton, 2008) in Fig. 1b. Interestingly, we observe that although some
sentences (“a segway with a man” vs. “a segway with a woman”) refer to different target objects
(“with a man” vs. “with a woman”), their embeddings remain close in the feature space due to
shared tokens (“segway”). The contrasts with the ideal cases, where embeddings of distinct target
objects should be well-separated, while those of the same object with different attributes should be
closer for object detection (“a segway” vs. “a black segway”). These results indicate limited hier-
archical and compositional understanding in current VLMs (Yuksekgonul et al., 2022). Most VL
detectors (Liu et al., 2024a; Li et al., 2022) are trained to align a few positives with image regions
while distinguishing them from negatives using contrastive learning. For example, training with
augmented captions (Li et al., 2023b; Yuksekgonul et al., 2022) labeled as positive or negative is ef-
fective for coarse-grained concept analysis. Still, detectors often struggle to handle tasks that require
understanding of fine-grained text, such as reasoning over interactions between objects (e.g., “bigger
than”). Sentence embeddings obtained via simple pooling compress token-level information and fail
to capture contextualization in language queries. Beyond augmentation, sentence embeddings need
to disentangle text tokens and encode compositional features. We argue that VL detectors should go
further: representations need to see the whole sentence from meaningful pieces.

In this paper, we propose a novel framework that disentangles component-wise text features (“Talk
in Pieces”) and explicitly learns hierarchical knowledge (“See in Whole”) from these disentangled
representations to construct sentence-level understanding for language-based object detection. We
refer to our framework as TaSe (Talk in Pieces, See in Whole). We begin by formally defining a
hierarchical structure tailored for language-based object detection. Specifically, we design our new
HiVG dataset, a three-tiered hierarchy, object–attribute–relation, where the first tier represents ob-
ject category names, the second tier adds descriptive attributes, and the last tier includes relational
phrases that describe interactions or contexts. Our approach builds on phrase grounding datasets
like Visual Genome (Krishna et al., 2017), which provide densely annotated phrases associated with
images and object regions. Using a large language model (LLM) (Dubey et al., 2024), we abstract
these phrases into a three-tier hierarchy—object, attribute, relation—by sequentially removing re-
lational and attribute information in phrases to obtain the final object categories. Unlike typical
generation-based approaches (e.g., generating sentences from category names (Li et al., 2023b) or
captions from images), our abstraction-based process performs reverse abstraction, effectively miti-
gating hallucination issues (Ji et al., 2023) common in generative models.

To effectively construct contextualized (i.e., holistic) sentence representations from the HiVG
dataset, we disentangle into several key aspects (“Talk in Pieces”)—such as objects, attributes, and
relations. This design allows us to disentangle text representations into subspaces to adjust targeted
token embeddings and preserve meaningful information in the remaining features. For this purpose,
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we further design a lightweight learnable attention module for the TriDe (Three-component disen-
tanglement), enabling efficient fine-tuning of conventional text encoders. The key idea of TriDe is
to leverage the hierarchical structure of the HiVG dataset to contrast component-wise tokens so that
targeted tokens to be adjusted without loss of meaningful information.

Then, we guide the model to learn linguistic representations that capture these levels of abstrac-
tion. This facilitates learning of sentence context enriched with descriptive attributes and relational
clauses. We introduce a hierarchical aggregation method (“See in Whole”) based on sentence-level
hierarchy entailment, which effectively models sentence-level hierarchical relationships with our
HiVG. Our learning hierarchical objective offers a richer and more structured alternative to naı̈ve
contrastive learning, which typically aligns image regions with positive tokens in a sentence while
contrasting them with negative tokens. In contrast, our method models the full sentence hierarchy,
promoting a more dense VL understanding.

To summarize, our main contributions are as follows: 1) We present an efficient hierarchical data
generation pipeline that abstracts dense existing phrases into an explicit hierarchical structure of
“object–attribute–relation.” 2) We introduce a novel framework for disentangling the three core
components and employ the TriDe loss to guide this process. 3) We propose a method for learning
disentangled and hierarchical representations that capture sentence-level inductive biases and can
be integrated into conventional VL detectors. With hierarchical learning on our generated dataset
HiVG, our model significantly outperforms strong baselines, including state-of-the-art VL detectors,
on challenging language-based object detection benchmarks such as OmniLabel (Schulter et al.,
2023) and D3 (Xie et al., 2023).

2 RELATED WORKS

2.1 LANGUAGE-BASED OBJECT DETECTION

Language-based object detection aims to locate and identify objects in images using free-form text.
One of the leading approaches is to transfer the pre-trained model and align images and texts us-
ing contrastive learning (Li et al., 2022; 2023b; Park et al., 2024). Contrastive learning enhances
compositionality in VLMs by capturing relationships with contextual entities and improves the un-
derstanding of object relationships (Li et al., 2023b; Minderer et al., 2022a; Gu et al., 2021; Gao
et al., 2024; Liu et al., 2024b). GLIP (Li et al., 2022) proposes to add deep fusion layers between
different modalities and learn a language-aware visual representation based on reformulated align-
ment scores.

However, existing approaches overlook the need for contextualized sentence-level understanding
of VL text embedding. For example, APE (Shen et al., 2024); GLEE (Wu et al., 2024); Dino-x
(Ren et al., 2024); and Zeng et al. (2024) explore VLM alignment challenges and highlight the need
to improve reasoning capabilities in multimodal LLMs. These works investigate model capabilities
from restricted VL perspectives, with a primary focus on fine-grained textual details and inter-object
relationships. VL detectors still struggle to align images with syntactically intricate language queries
(Wang et al., 2023), underscoring the need for a more grounded contextual understanding of text.

Disentangled representation learning is a method for enhancing linguistic understanding by learn-
ing fine-grained representations (Bengio et al., 2013; Wang et al., 2024). Several approaches have
been proposed for disentangled representation learning, including prompt learning (Lu et al., 2023;
Zheng et al., 2024), learnable vectors (Qi et al., 2024), and attention-based mechanisms (Wu et al.,
2025). Prior works have introduced methods for designing object–attribute compositions, which
improve compositional zero-shot learning. In contrast to these concept-aware approaches that dis-
entangle objects and attributes for recomposition, our method leverages disentanglement to capture
hierarchical sentence structures and contextualized understanding.

2.2 HIERARCHICAL ENTAILMENT FOR VISION-LANGUAGE MODELS

To better represent the embedding space of VLMs, hyperbolic learning has highlighted the need
to capture hierarchical structures and relationships in multimodal data. Hyperbolic learning was
formulated on the Poincaré ball by Ganea et al. (2018), learning entailment relations between em-
bedded objects. The formulation now extends the more common Lorentz model as Lou et al. (2020)
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due to its computationally heavy Gyrovector operations. Hyperbolic learning maps the embedding
into an entailment cone (EC) to represent hierarchical entailment in a continuous space. Recent
studies investigated the use of the EC embedding for vision tasks (Atigh et al., 2022; Kong et al.,
2024; Khrulkov et al., 2020), multimodal learning Desai et al. (2023); Hong et al. (2023); Pal et al.
(2024), and synthetic data generation (Kong et al., 2024).

However, the hyperbolic manifold needs to transpose features from Euclidean to hyperbolic and re-
quires additional hyperparameter configurations. To address this limitation, Alper & Averbuch-Elor
(2024) proposed radial embedding (RE) optimization for learning hierarchical representations di-
rectly in Euclidean space. Inspired by this approach, we extend RE optimization to language-based
object detection based on hierarchical representation learning at the sentence level. While previous
works explore hierarchical manifolds to capture natural hierarchy (Lang et al., 2022), sentence-level
hierarchy objectives remain underexplored. This work introduces a hierarchical modeling approach
to define the sentence-level hierarchy entailment with compositional learning, which captures inclu-
sive relationships between hierarchy nodes in language-based object detection.

3 TASE: DISENTANGLED AND HIERARCHICAL TEXT REPRESENTATION
LEARNING FOR LANGUAGE-BASED OBJECT DETECTION

This section introduces TaSe, a framework for disentangling and hierarchy aggregating method.
Specifically, our approach comprises three components: 1) the HiVG dataset (Sec. 3.1), a synthetic
dataset re-captioned from VG to capture hierarchical entailment relations; 2) disentangling text rep-
resentations into objects, attributes, and relations for a component-wise subspace for aligning se-
mantic pieces within sentences (Sec. 3.2); and 3) a hierarchical aggregation method to represent
contextualized sentence embedding based on disentangled tokens (Sec. 3.3). Fig. 2 outlines the
TaSe to learn contextualized sentence representations within language-based object detection.

3.1 HIVG: HIERARCHY CAPTIONING PIPELINE

Although augmented captions enhance fine-grained textual representations (Li et al., 2023b; Yuk-
sekgonul et al., 2022), open-vocabulary detectors often rely on keywords and fail to separate target
objects from their attributes and relations, owing to the absence of hard textual negatives that reflect
linguistic hierarchy. To address this problem, we propose a Hierarchical captioning pipeline that re-
captions the Visual Genome dataset (HiVG) by leveraging pre-trained LLMs and lexical databases
(e.g., WordNet (Miller, 1995) and ConceptNet (Speer et al., 2017)). HiVG is a synthetic dataset
constructed by spanning from category names to descriptive sentences and structuring hierarchical
captions into three tiers: objects, attributes, and relations. Each caption in the Visual Genome (Kr-
ishna et al., 2017) annotation is transformed into three positive (e+) and negative tiers (e−) where e
follows the notation introduced in Sec. 3.3. We show an example for the input image in Fig. 2.

• Tier 1. Category names (object): containing the class name (e.g., woman (e+1 ) and man (e−1 )).
• Tier 2. Enriched descriptions (w/ attribute): adding an attribute to the object (e.g., middle woman

(e+2 ) and left woman (e−2 ) for learning fine-grained linguistic compositionality).
• Tier 3. Contextual understanding (w/ attribute and relation): emphasizing the relationships be-

tween objects by injecting a relation into the second-tier caption (e.g., middle woman with dark
hair (e+3 ) and with red shirt (e−3 )).

Further details of our re-captioning approach and examples are provided in the supplementary ma-
terial (see Sec. A, Fig. 13).

3.2 TALK IN PIECE: COMPONENT-WISE TEXT DISENTANGLEMENT

Textual descriptions typically contain not only descriptive attributes but also complex relational
structures, which cause false positives in language-based object detection. To address this, we pro-
pose the TriDe module to disentangle text embeddings into meaningful subspaces, which adaptively
refines these components to enhance semantic representation.

Text embedding. We extract text features by CLIP text encoder with low-rank adaptation (LoRA)
(Hu et al., 2021) for efficiently evolving text embedding from the text encoder. Let {vi, ti}Bi=1

be a batch of image–text pairs. The text embedding X = Tθ(text), where X ∈ RB×T×dmodel , is
obtained using the text encoder. Here, B, T , and dmodel denote the batch size, number of tokens,
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Figure 2: The overall framework of TaSe. (Left) The text encoder is fine-tuned with LoRA (Hu
et al., 2021) and the TriDe module to restructure text representations. (Right) Overview of the
TriDe module and its embedding space. Top: Hierarchy aggregated embeddings with HiVG, where
the recaptioned dataset passes through the TriDe module to learn linguistic hierarchy. Bottom:
Architecture of the TriDe module.

and embedding dimension, respectively. A text projection layer maps the input into X ∈ RB×T×D,
where D denotes the text embedding dimension.

woman rainbow

middle woman

+

left woman

with red shirtwith dark hair
-

T1: Object

T2: Attribute

T3: Relation
middle woman middle woman

Positive
Negative

Object
Attribute

Relation
Meaningless

(O)

(A)

(R)

Figure 3: Learning process for hierar-
chically structured positive and nega-
tive sentences. The model is trained
with contrastive learning on HiVG,
where text features are disentangled
into subspaces across tiers and opti-
mized with cosine distance.

Component-wise disentanglement. We disentangle text
representations into three components—objects, attributes,
and relations. This design mirrors the three-tier structure
of HiVG and facilitates the learning of effective contextu-
alized sentence embeddings. We adjust learnable vectors
VO,VA,VR ∈ RB×T×D to disentangle the text embed-
ding into the three components. We employ a multi-head
cross-attention layer between the learnable vectors and text
embedding X. Let FFN, LN, and Proj denote the feed-
forward network, layer normalization, and projection layer,
respectively. The TriDe module is defined as follows:

X = LN(Proj(X + FFN(X))),
[O,A,R] = CrossAttn(X, [VO,VA,VR]),
E = pooling(FFN(LN(O + A+R))),

(1)

where O, A, R, and E represent the object, attribute, re-
lation components, and restructured text embedding. Note
that E is employed to learn hierarchical entailment for con-
textualized sentence representations in Sec. 3.3. The CrossAttn(Q,V) with the scaling factor dk is
defined as follows:

CrossAttn(Q,V) = Softmax
(Proj(Q)Proj(V)T√

dk

)
Proj(V). (2)

Objective for component disentanglement. In Fig. 3, components are aligned with their positive
counterparts, while negatives are enforced to remain distant according to their tier. Let t be the tier
of HiVG, and the disentanglement of text embedding is adjusted LTriDe as follows:

LTriDe = λ
∑

(i,j)∈{(O,A),(O,R),(A,R)}
∣∣i · j∣∣+∑l

t=1

(
m+ cos(O+

t ,O+
t+1)− cos(O+

t ,O−
t )

)
+
∑l
t=2

(
m+ cos(A+

t ,A+
t+1)− cos(A+

t ,A−
t )

)
+

(
m− cos(R+

l ,R−
l )

)
.

(3)

LTriDe and m represent compositional loss for the TriDe module and margin, respectively. λ rep-
resents a hyperparameter for stability adjustment. Minimizing correlation among components pro-
motes an inductive bias toward semantically grounded object representations.

3.3 SEE IN WHOLE: SENTENCE-LEVEL HIERARCHICAL AGGREGATION

We design a hierarchy aggregation method of disentangled features to serve fine-grained semantic
distinction, which helps capture contextual meaning beyond simple word-level perception.

Background: hierarchical entailment in Euclidean space. The goal of hierarchical entailment
is to learn general concepts by representing entailment relations via low-dimensional embeddings
(Ganea et al., 2018). While conventional contrastive learning to learn embedding from pair-wise
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(i.e., positive and negative), the RE objective (Alper & Averbuch-Elor, 2024) aims to represent the
hierarchy structure of embedding by exterior angle with respect to the reference point. Two key
advantages of this representation learning with the RE are: 1) modeling sentence-level structure;
and 2) learning compositional generalization without requiring transformation into sphere space.
Let Ξ denote the exterior angle in radians and r ∈ Rd denote a root embedding, the exterior angle
between embedding a and b in the RE objective is defined:

Ξ⟨a, b⟩ = cos−1
(

a′·b′

∥a′∥∥b′∥

)
≤ π.

where a′ = a− r, b′ = b− r − a′, a,b ∈ Rd
(4)

The value ⟨a, b⟩Ξ ∈ [0, π] is bounded. Given a root embedding r and a reference embedding of a
text embedding e, the objective function of the RE is represented as follows:

LRE =
∑
i

(
⟨e+i , e

+
>i⟩Ξ − ⟨e+i , e

−
i ⟩Ξ

)
. (5)

Here, e+i and e+>i denote distinct positive embeddings, and e−i is a corresponding negative. The
objective LRE encourages smaller exterior angles between positive pairs while enforcing larger
angles between positive and negative pairs. This deviation reflects a misalignment from the reference
anchor r (frozen) and corresponds to a larger angular distance in the embedding space.

root

(e  ) 

(e  )

woman (e  )
woman

middle -
2

+
1

+
2

woman

(e  ) +
2 root

(e  ) 

(e  )

woman
middle

+
1

+
2

woman

left

+ +

Figure 4: Limitation of the RE objective. (left)
Solid - ideal angle, Dotted - distortion from larger
upper-tier embedding. (right) Red - positive pairs,
blue - negative pairs; with the root fixed, the “left
woman” represents a trade-off.

Reference-based hierarchy induction. The
previous approach still has challenges to en-
hance compositional generalization from the
perspective of sentence-level hierarchy entail-
ment (see Fig. 4). First, we introduce a regular-
ization term to preserve the inherent embedding
space, defining two objective functions for hi-
erarchy entailment. Since angular-only super-
vision may induce directional bias and degrade
representational fidelity, we regularize the em-
bedding space to retain knowledge. Second,
contrastive learning is formulated using exte-
rior angles, where sentence pairs are trained
with respect to a reference-conditioned point. A key consideration in sentence-level contrastive
learning with a text encoder is that a negative e−t is also positive with respect to the previous tier
e+t−1. To account for this, we position samples in opposing directions based on a dynamic reference
r rather than a fixed root (see Eq. 6).

Hierarchical objectives. Let l denote the tier of HiVG in the object-attribute-relation hierarchy. Let
et be an embedding at tier t of HiVG, e+t its positive counterpart at tier l, and e−t a negative sample
at the same tier. We use two complementary losses—(i) alignment across tiers and (ii) within-tier
discrimination—defined compactly as

LH+ =
∑l
t=1 Ξ⟨e+t , e+t+1⟩+ Ξ⟨e+t , e−t+1⟩, b′ = (b− r)− a′,

LH− =
∑l
t=1 Ξ⟨e+t , e−t ⟩, b′ = (r − b)− a′, r =

{
r if t = 0 (global ref.)
e+t−1 if t > 0 (local ref.)

(6)

with normalization e = e−r
∥e−r∥+ϵ , e ∈ {e+, e−}. Note that normalization maintains directional

consistency independent of embedding scale. r is adapted to expose directional differences not
captured by global alignment and to account for locally meaningful variation. The proposed formu-
lation minimizes directional deviation from the reference point, which helps preserve the intrinsic
structure of the embedding space while enforcing separation between negative pairs.

Training objectives. For learning contextualized features, the objective function of hierarchical and
disentangled representation learning, LTaSe, is defined as:

LTaSe = LTriDe + LH+ + LH− . (7)
The loss function is formulated as a weighted sum of classification, localization, and hierarchy losses
updated on the text encoder and VL fusion layers as follows:

L = Lclass + Lbbox + Lgiou + LTaSe, (8)
where Lclass represents Focal loss (Lin et al., 2017), Lbbox represents L1 loss, and Lgiou represents
generalized intersection over union (GIoU) loss (Rezatofighi et al., 2019).
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Model Backbone D3 (default) D3 (length) OmniLabel (default) Omnilabel (length)
Full Pres Abs S M L XL AP APc APd S M L

OFA-L (Wang et al., 2022) RN50 4.2 4.1 4.6 4.9 5.4 3.0 2.1 2.7 2.7 2.6 3.6 2.7 2.3
OWL (Minderer et al., 2022b) ViT-B 9.6 10.7 6.4 20.7 9.4 6.0 5.3 8.0 15.6 5.4 5.7 5.4 6.2
UNINEXT (Lin et al., 2023) RN50 21.6 23.7 15.4 23.6 22.6 20.5 18.4 22.2 27.2 18.8 - - -
G-DINO (Liu et al., 2024a) Swin-T 20.7 20.1 22.5 22.6 22.5 18.9 16.5 19.3 23.6 16.4 29.4 14.8 8.2
GEN (Zhao et al., 2024) Swin-T 21.4 20.6 23.7 28.1 24.5 17.4 11.5 22.2 27.2 18.8 - - -
GLIP (Li et al., 2022) Swin-T 19.1 18.3 21.5 22.4 22.0 16.6 10.6 19.3 23.6 16.4 29.4 14.8 8.2
GLEE-Lite∗ (Wu et al., 2024) RN50 27.6 26.8 30.1 30.0 27.6 26.9 17.2 21.7 36.6 15.4 28.4 13.8 10.3
GLIP + DesCo (Li et al., 2023b) Swin-T 24.2 22.9 27.8 24.3 21.9 16.4 11.5 23.8 27.4 21.0 33.7 19.0 13.7
GLEE-Lite + DesCo RN50 28.3 27.6 30.3 30.2 28.4 27.8 18.2 24.6 37.3 18.3 32.0 17.0 13.2
GLEE-Lite + TaSe (ours) RN50 30.7 29.9 33.2 31.8 31.2 30.3 19.8 26.9 36.8 21.2 33.1 19.3 14.8

Table 1: Evaluation on D3 (Xie et al., 2023) and OmniLabel (Schulter et al., 2023). D3 provides
three types of descriptions: absence (ABS), presence (PRES), and full (FULL). text length. For
OmniLabel, the final AP is computed as the geometric mean of category-level (APc) and description-
level (APd) scores. Note that the evaluation results of GLEE-Lite∗ are reproduced.

4 EXPERIMENTS

This section compares our method with baselines. The following sections provide the implementa-
tion details (Sec. B), the main results for performance comparison (Sec. 4.2), and ablation studies
conducted to analyze the results in three benchmark datasets (Sec. 4.3). Additional experimental
details can be found in the Sec G of the supplementary material. The key findings of this study are as
follows: 1) sentence-level hierarchical supervision enhances VL alignment by improving linguistic
compositionality (Tab. 2); 2) disentangling components with hierarchical structures leads to better
modeling of the inductive biases of sentences (Tab. 3); and 3) compositional structure improves the
discrimination of positive and negative pairs to represent descriptive sentences better (Tab. 1).

4.1 EXPERIMENTAL SETTINGS

Implementation details. We build our method based on GLEE (Wu et al., 2024), a pre-trained foun-
dation model composed of MaskDINO (Li et al., 2023a) and CLIP (Radford et al., 2021b) text-image
encoders. GLEE was selected as a baseline because, despite being a powerful vision–language foun-
dation model in many benchmarks (e.g., RefCOCO (Yu et al., 2016)), it still faces challenges in
contextualizing text embeddings. This study demonstrates that a lightweight hierarchy entailment
mechanism can address this limitation and yield further performance gains. For implementations,
we use only HiVG dataset for training, which contains 10 K hierarchy captions. We provide more
details of the experimental settings in Sec. B of the supplementary materials.

Benchmarks and evaluation metrics. We evaluate the language-based object detection capabilities
in two different benchmarks. 1) D3 (Xie et al., 2023) dataset is a widely used benchmark for visual
grounding tasks. The dataset includes negative instances, multi-target scenarios, and long sentences.
2) Omnilabel (Schulter et al., 2023) dataset is an open-vocabulary detection dataset. Omnilabel
provides an evaluation of compositionality from perspectives such as spatial relationships, actions,
and numeracy within referring objects. We perform mean average precision (mAP), a standard
evaluation metric, to validate the language-based object detection task.

4.2 MAIN RESULTS

We investigate the impact of object detection on disentanglement and hierarchical representation
learning through a set of research questions.

Does learning hierarchical entailment improve generalization? As shown in Tab. 1, the proposed
model improves upon the baseline by fine-tuning only the LoRA and TriDe. Compared to GLEE,
which served as the vision foundation model, we observe improvements of +3.1 in D3 and +5.2
in Omnilabel AP scores. The AP scores in OmniLabel show that hierarchical learning improves
performance in zero-shot evaluation, and the gains observed on open-vocabulary benchmarks further
demonstrate its effectiveness.

Does hierarchical learning provide greater benefits than caption augmentation like DesCo?
We further evaluate the performance of GLEE with caption augmentation based on DesCo (Li et al.,
2023b). To apply this augmentation, we randomly sample from HiVG. The selected sentence is con-
catenated with the original caption, and the augmented components are pooled separately and then
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averaged. The DesCo improves the GLEE model +2.4 AP on D3 and +2.3 on Omnilabel. While
caption augmentation increases textual diversity, our hierarchy learning further enhances TaSe by
enabling accurate distinction of positives and negatives, even when sentences share category names
or attributes.

Qualitative results. We present two qualitative examples in Fig. 5 to illustrate the effectiveness
of our hierarchical entailment learning. The first case shows negative cases containing an attribute
(i.e., blue), and the second case presents a positive case with attributes and descriptive relations (e.g.,
numeracy and text in the image). In the first case, GLEE incorrectly assigns a confident score of
0.92 to the language query. In the second case, GLEE predicts all bikes as positives, including those
that do not correspond to the queried bike. On the other hand, TaSe captures contextual information
related to category names, and hierarchical entailment helps reduce false positives. More qualitative
results are provided in Figs. 11 and 12 of the supplementary material.

4.3 ABLATION STUDIES

D3 OmniLabel
FULL PRES ABS AP APc APd

Original GLEE 27.6 27.1 30.5 21.7 36.6 15.4
+ LoRA (base) 27.5 26.7 30.0 21.7 36.5 15.5

+ LCL 26.9 26.1 29.1 23.9 36.7 17.7
+ LRE 27.5 26.7 30.0 25.7 36.9 19.8
+ LH (ours) 28.6 27.8 31.6 26.2 38.9 19.2
⌞ w/ LH+ 28.8 27.7 31.8 24.8 37.1 18.5
⌞ w/ LH− 27.7 27.0 30.1 23.6 36.4 18.4

+ Reverse LH 26.7 25.8 29.3 22.1 36.8 15.3

Table 2: GLEE trained with hierarchy entail-
ment. The final AP value is the geometric
mean of categories (APc) and free-form de-
scriptions (APd). LCL and LRE represnt con-
trastive loss (Oord et al., 2018) and RE em-
bedding objective, respectively.

D3 OmniLabel

Where-to-apply disentanglement
w/o disentangling 27.8 (+1.0) 26.2 (+4.5)
Token-level disentangling 30.7 (+3.1) 26.9 (+5.2)
⌞ Identity initialization 30.7 (+3.1) 26.9 (+5.2)
⌞ Uniform initialization 28.8 (+1.2) 26.4 (+4.4)
After pooling 28.6 (+1.4) 22.6 (+0.9)

How-to-apply disentanglement
Self-attention 29.0 (+1.4) 25.5 (+3.8)
Learnable query 29.6 (+2.0) 24.7 (+3.0)
Learnable key & value 30.7 (+3.1) 26.9 (+5.2)

Effectiveness of disentangling components (# of learnable vector)
1 (w/o disentanglement) 29.4 (+1.8) 25.4 (+3.7)
2 (Object + Attribute) 29.5 (+1.9) 26.5 (+4.8)
3 (Object + Attribute + Relation) 30.7 (+3.1) 26.9 (+5.2)

Table 3: Comparison between disentangled
representations with hierarchy entailment

What advantages does our hierarchical loss of-
fer over traditional contrastive loss? In Tab. 2,
we conduct an ablation study to validate the effec-
tiveness of our hierarchical loss. Within the base
setting (GLEE with LoRA), we evaluate three con-
figurations: (1) conventional contrastive loss (LCL);
(2) the RE objective (LRE); and (3) the proposed
method. For sentence-level hierarchy aggregation,
our loss LH outperforms contrastive baselines. Con-
ventional contrastive learning causes embeddings of
identical category names to diverge when descriptive
information differs, whereas our reference-based hi-
erarchy induction aligns them hierarchically and im-
proves sentence-level meaning and performance.

In hierarchy entailment loss, is it better to learn
positives or negatives? We ablate the hierarchy en-
tailment loss to compare learning with positive and
negative pairs. Fine-tuning with positives improves
OmniLabel by +3.1 AP, while negatives yield +1.9
AP. Combining both provides the best generaliza-
tion in zero-shot settings. To validate this, we invert
the objective and observe performance degradation
when positives and negatives are aligned in oppo-
site directions (Tab. 2). These findings highlight the
role of hierarchical entailment in building effective
sentence-level embeddings and suggest that aligning
semantically meaningful sentences with visual rep-
resentations improves performance.

Ablation on where and how to disentangle in text representation. Tab. 3 reports ablation studies
analyzing the design choices of the TriDe module. Interestingly, we observe that where text embed-
dings are disentangled has the greatest influence on learning granularity. We compare three modes
for constructing compositional text embeddings: (1) no disentanglement, (2) token-level disentan-
glement, and (3) disentangled text embeddings after pooling. Pooling compresses information and
limits effective disentanglement, while the no-disentanglement approach is insufficient for capturing
sentence-level contextualization. Token-level disentanglement generalizes better and yields the best
performance, with module initialization also having a substantial impact on the results. In exploring
how to design the TriDe module, we investigate disentanglement under three self-attention variants:
direct text alignment, learnable queries, and key–value configurations. Key–value attention outper-
forms query-only and self-attention mechanisms. Key (indexing)–value (content) attention preserves
independent subspaces and yields more structured semantic features than query-based approaches.
We provide the disentangled embedding results in supplementary material, Fig. 14.
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Ground truth GLEE TaSe
“The blue bus.”

“these two bikes are closet to the Harley Davidson banner”

Figure 5: Qualitative analysis on Omnilabel data (Schulter et al., 2023).
We visualize and compare the results between our baseline (GLEE) and
TaSe. We select the scenario that includes attributes and relations for
referring to a category name.
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Figure 6: Comparison of
exterior angles between
GLEE and TaSe

black       with a woman

black

a      with a segway
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a       riding a segway

a       with a segway 

black          with a man

(a) GLEE embedding visualization

a      with a man

a  riding a segway a     with a segway

black      with a woman

white

(b) TaSe embedding visualization

black

black       with a woman

white

1.7° ⇨ 1.9°

1.7° ⇨ 1.6°

black       with a man

Positive
Negative

GLEE TaSe

GLEE TaSe

(c) Zoom in TaSe embedding

Figure 7: Comparison between GLEE and TaSe text embedding. We set objects to correspond to
each icon. Our proposed hierarchical representation learning aligns text embedding of GLEE.

Is it beneficial to disentangle the representation into three components? Conventional detectors
(Li et al., 2023b; Yuksekgonul et al., 2022) disentangle objects and attributes, whereas we separate
representations into three components—object, attribute, and relation—and evaluate their effective-
ness. As shown at the bottom of Tab. 3, overall, the performance of three-component disentan-
glement is higher than two-component (i.e., object and attribute) disentanglement. These findings
suggest that three-component disentanglement introduces an inductive bias for complex linguistic
structures, making longer sentences more robust to negatives. The granularity of text embeddings
reveals features that characterize their representational properties. To further disentangle these com-
ponents, explicit criteria for dataset composition are required.

How are embeddings structured after disentanglement? While a few negative pairs still exhibit
large angles, Fig. 6 confirms that positive and negative pairs are effectively aligned in the embedding
space. To examine whether this alignment follows the intended structure after disentanglement and
hierarchical aggregation, we visualize the t-SNE projection of the trained TaSe embeddings. As
shown in Fig. 7a, GLEE is dispersed around category names, whereas TaSe realigns embeddings
around objects and preserves robust angular distance for negatives corresponding to attributes or
relations. This is evident in the “segway” object, where the captions “black segway with a woman”
and “black segway with a man” lie at different angles from the reference point “black segway.”

5 CONCLUSION

This study proposed a disentanglement and hierarchy aggregation framework for constructing con-
textualized sentence representations within language-based object detection. Additionally, we gen-
erate re-captioned data for object detection using hierarchical concepts. TaSe improved the lin-
guistic compositionality, which serves as a key learning factor and leads to competitive results.
The results indicated that hierarchy entailment allows learning the granularity of text embedding
to distinguish descriptive sentences. This study highlights the need for further exploration of the
underlying linguistic compositionality in future studies for downstream vision tasks.
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takes full responsibility for the content of the publication.

REPRODUCIBILITY STATEMENT

We recaptioned our dataset, utilizing the publicly available Llama 3 (Dubey et al., 2024) model
released on Hugging Face hub (Wolf et al., 2020). Additional statistics and details of the dataset are
presented in Sec. A of the supplementary material. The code for the experiments can be found in
the supplementary material.
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Differentiating through the fréchet mean. In International conference on machine learning, pp.
6393–6403. PMLR, 2020.

Xiaocheng Lu, Ziming Liu, Song Guo, Jingcai Guo, Fushuo Huo, Sikai Bai, and Tao Han. Drpt:
Disentangled and recurrent prompt tuning for compositional zero-shot learning. arXiv preprint
arXiv:2305.01239, 2023.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
ple open-vocabulary object detection. In European Conference on Computer Vision, pp. 728–755.
Springer, 2022a.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
ple open-vocabulary object detection. In European conference on computer vision, pp. 728–755.
Springer, 2022b.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Avik Pal, Max van Spengler, Guido Maria D’Amely di Melendugno, Alessandro Flaborea, Fabio
Galasso, and Pascal Mettes. Compositional entailment learning for hyperbolic vision-language
models. arXiv preprint arXiv:2410.06912, 2024.

Kwanyong Park, Kuniaki Saito, and Donghyun Kim. Weak-to-strong compositional learning from
generative models for language-based object detection. In European Conference on Computer
Vision, pp. 1–19. Springer, 2024.

Tianhao Qi, Shancheng Fang, Yanze Wu, Hongtao Xie, Jiawei Liu, Lang Chen, Qian He, and Yong-
dong Zhang. Deadiff: An efficient stylization diffusion model with disentangled representations.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
8693–8702, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021a.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianhe Ren, Yihao Chen, Qing Jiang, Zhaoyang Zeng, Yuda Xiong, Wenlong Liu, Zhengyu Ma,
Junyi Shen, Yuan Gao, Xiaoke Jiang, et al. Dino-x: A unified vision model for open-world object
detection and understanding. arXiv preprint arXiv:2411.14347, 2024.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese.
Generalized intersection over union: A metric and a loss for bounding box regression. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 658–666,
2019.

Samuel Schulter, Yumin Suh, Konstantinos M Dafnis, Zhixing Zhang, Shiyu Zhao, Dimitris
Metaxas, et al. Omnilabel: A challenging benchmark for language-based object detection. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11953–11962,
2023.

Yunhang Shen, Chaoyou Fu, Peixian Chen, Mengdan Zhang, Ke Li, Xing Sun, Yunsheng Wu,
Shaohui Lin, and Rongrong Ji. Aligning and prompting everything all at once for universal
visual perception. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13193–13203, 2024.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
general knowledge. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou,
Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through a
simple sequence-to-sequence learning framework. In International conference on machine learn-
ing, pp. 23318–23340. PMLR, 2022.

Tan Wang, Kevin Lin, Linjie Li, Chung-Ching Lin, Zhengyuan Yang, Hanwang Zhang, Zicheng Liu,
and Lijuan Wang. Equivariant similarity for vision-language foundation models. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 11998–12008, 2023.

Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(12):9677–9696, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Junfeng Wu, Yi Jiang, Qihao Liu, Zehuan Yuan, Xiang Bai, and Song Bai. General object foundation
model for images and videos at scale. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3783–3795, 2024.

Peng Wu, Xiankai Lu, Hao Hu, Yongqin Xian, Jianbing Shen, and Wenguan Wang. Logiczsl:
Exploring logic-induced representation for compositional zero-shot learning. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 30301–30311, 2025.

Chi Xie, Zhao Zhang, Yixuan Wu, Feng Zhu, Rui Zhao, and Shuang Liang. Described object
detection: Liberating object detection with flexible expressions. Advances in Neural Information
Processing Systems, 36:79095–79107, 2023.

Heng Yin, Yuqiang Ren, Ke Yan, Shouhong Ding, and Yongtao Hao. Rod-mllm: Towards more
reliable object detection in multimodal large language models. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 14358–14368, 2025.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 69–85. Springer, 2016.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
why vision-language models behave like bags-of-words, and what to do about it? arXiv preprint
arXiv:2210.01936, 2022.

Yunan Zeng, Yan Huang, Jinjin Zhang, Zequn Jie, Zhenhua Chai, and Liang Wang. Investigating
compositional challenges in vision-language models for visual grounding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14141–14151, 2024.

Shiyu Zhao, Long Zhao, Yumin Suh, Dimitris N Metaxas, Manmohan Chandraker, Samuel Schulter,
et al. Generating enhanced negatives for training language-based object detectors. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13592–13602,
2024.

Zhaoheng Zheng, Haidong Zhu, and Ram Nevatia. Caila: concept-aware intra-layer adapters for
compositional zero-shot learning. In Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pp. 1721–1731, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DETAILS OF HIVG

A.1 CREATING HIERARCHICAL POSITIVE CAPTIONS

Our hierarchical captioning pipeline is illustrated in Tab. 4, which highlights key differences from
conventional captioning approaches. We generate a 10 K re-captioned dataset from the Visual
Genome dataset. We first filter out all Visual Genome captions with fewer than six words to ensure
sufficient semantic richness. For positive captions, we leverage in-context learning using LLaMA
(Dubey et al., 2024) to transform the remaining Visual Genome captions into a three-tier hierarchical
structure. To enhance attribute diversity within the captions, we draw on common visual concepts
(Huang et al., 2023; Lin et al., 2024) to define a set of visual attributes (spatial, color, number,
and size) and randomly select one to modify the object for alternative object attributes. Based on
our experiments, we set the randomization ratio to 50%. To fully align with the in-context learning
demonstration format, samples that lack attributes or relations are also incorporated into the learning
process, following the approach suggested by Min et al. (2022).

A.2 CREATING HIERARCHICAL NEGATIVE CAPTIONS

One of the challenges in language-based object detection is effectively handling negative samples,
which often report higher false negative rates compared to false positives. To address the issue, we
focus on both re-captioning hard and easy negative samples. For hard negative samples in tier 1, we
replace the positive object with an antonym (e.g., man is replaced by woman) or a random concrete
noun. Easy negative samples are generated by selecting nouns from ImageNet1000 (Deng et al.,
2009) classes and lexical databases such as WordNet and ConceptNet. Additionally, we insert a
negative determiner to the object (e.g., dog is switched to no dog).

In tier 2, we reuse the same set of visual attributes from the positive captions but replace them
with semantically different attributes (e.g., tall building is replaced by short building) for generating
hard negative samples. We use LLM-based mask-filling (Liu et al., 2019) to diversify attributes
by substituting them with contextually plausible but semantically different terms or by prepending
“not” to create hard negatives (e.g., tall building → not tall building).

In tier 3, we use a set of common spatial relations (e.g., above and beside) and object-specific re-
lations from the Visual Genome dataset. These pre-defined object-specific relations ensure that the
relation is contextually relevant to the object in question. To introduce hard negatives, we apply
absence-based transformations by replacing affirmative relations with their negative counterparts
(e.g., with is replaced by without). We also leverage LLaMA’s (Dubey et al., 2024) sentence com-
pletion capability to generate further relation diversity.

Captions that do not adhere to the hierarchical structure are filtered out. By re-captioning using a
multi-tiered set of positive and negative captions, our approach is intended to facilitate the learning
of hierarchical representations, thereby improving linguistic compositionality.

A.3 STATIC DATASET CONSTRUCTION

The combined dataset consists of 286,006 annotations, with the majority containing 8.75 ± 1.34
words, as shown in Fig. 9. Caption length distributions across Positive and Negative samples are
largely consistent within each tier. Tier 3 contains the most linguistically diverse and structurally
rich captions, which may be particularly beneficial for semantic reasoning.

B EXPERIMENTAL SETUP

Baselines This paper compares the language-based object detection models on MDETR (Kamath
et al., 2021), OFA (Wang et al., 2022), OWL (Minderer et al., 2022b), G-DINO (Liu et al., 2024a),
GLIP (Li et al., 2022), UNINEXT (Lin et al., 2023), Desco (Li et al., 2023b), GLIP-GEN (Zhao
et al., 2024), and GLEE (Wu et al., 2024).
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Positive caption strategy: In-context learning

Visual Genome Captions : "Picture on the floor resting against the wall"

"Picture"

"Large picture"

"Large picture on the floor resting..."

Negative caption strategy: BERT, WordNet
Step 1: (object) Step 2: (+ attribute) Step 3: (+ relation)

WordNet
Relations

Inference using BERT:
<MASK> picture on...

"Table" "Small picture" "Large picture hanging on the wall"

+
Easy negative

Negative 
Expression

Hard negative

Prompt
Simplify the sentences step-by-step:
- A white car parked => A white car => Car
- Ball to the left=> Small ball =>  Ball
- Picture on the floor => Large picture => 

Picture

Figure 8: Overview of generating positive and negative captions. Positive captions are derived using
in-context learning based on Llama3 (Dubey et al., 2024). We transform Visual Genome captions
into structured forms: object (category name), attribute (category name with an attribute), and re-
lation (category name with an attribute and a relation). Negative captions are constructed through
a multi-step process: 1) retrieving antonyms or random concrete nouns from lexical databases for
negative objects; 2) using LLM-based mask-filling combined with pre-defined visual attributes to
generate semantically different negative attributes; and 3) using pre-defined object-specific relations
to create negative relations.

Dataset / Approach Positive Captions Negative Captions Entailment Structure

Visual Genome
(Krishna et al., 2017)

Flat object-centric region
descriptions

- -

Image Paragraphs
(Krause et al., 2017)

Multi-sentence paragraphs
per image

- Narrative-level cohesion
only

HierarCaps
(Alper & Averbuch-Elor, 2024)

LLM-generated
hierarchical captions

LLM&NLI-based structure
contradiction samples

Inferred via entailment
prediction

HiVG Explicit object → attribute
→ relation chains, used in

in-context learning

WordNet-informed hard
negatives and

ImageNet-based visual
diversity

Explicit tiered entailment

Table 4: Comparison of positive/negative caption strategies and entailment assumptions across
datasets. Our method introduces grounded, logic-consistent supervision with object-level structure,
unlike prior captioning datasets.

B.1 IMPLEMENTATION DETAILS

We sample 16 images per batch and further select 6 corresponding sentences per image for hierarchy
learning. We employ AdamW (Loshchilov & Hutter, 2017) to optimize the trainable model, using a
learning rate of 1 × 10−4 for the TriDe module and 5 × 10−6 for LoRA. For the comparison with
baselines, our detector was trained for 60 K iterations, the same as in the ablation studies. Following
Alper & Averbuch-Elor (2024), the RE loss was set with a positive-to-negative ratio of 10:4. In case
of LH, we conduct experiments wit positive-to-negative ratio of 2:1. The values of γ is set to 0.1.

B.2 MODEL SIZE AND BUDGET

For fine-tuning the pre-trained GLEE, we only train LoRA layers, TriDe module, and VL fusion
layers. We train a total of 5,447,680 parameters, which is an efficient approach that reduces memory

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 10 20 30 40
Word Count

0

25000

50000

75000

100000

Fr
eq

ue
nc

y

VG Phrase Length Distribution

0 10 20 30 40
Word Count

0

25000

50000

75000

100000

Fr
eq

ue
nc

y

Positive Captions Length Distribution

0 10 20 30 40
Word Count

0

25000

50000

75000

100000

Fr
eq

ue
nc

y

Negative Captions Length Distribution

1.00 1.25 1.50 1.75 2.00
Word Count

0

25000

50000

75000

100000

Fr
eq

ue
nc

y

Tier 1 Length Distribution
Positive
Negative

1 2 3 4
Word Count

0

25000

50000

75000

100000

Fr
eq

ue
nc

y

Tier 2 Length Distribution
Positive
Negative

0 10 20 30 40
Word Count

0

25000

50000

75000

100000

Fr
eq

ue
nc

y

Tier 3 Length Distribution
Positive
Negative

Figure 9: Statistics of HiVG dataset. Top: Distribution of the number of words. (Left) The original
Visual Genome dataset. (Middle) positive captions. (Right) Negative captions. Bottom: Distribution
of the number of words per tier. (Left) Tier1 - category name. (Middle) Tier2 - attribute. (Right) -
Tier3 relation.

Params. Value

Batch size 4
Optimizer AdamW

Optimizer momentum β1 = 0.9, β2 = 0.999
Rank of LoRA 16

scaling factor of LoRA 16
learning rate of LoRA 5e-6
learning rate of TriDe 1e-4

Input resolution 800 × 800
loss of class (Lclass) 4.0
loss of bbox (Lbbox) 5.0
loss of gIoU (Lgiou) 2.0
loss of TaSe (LTaSe) 5.0

λ 0.1

Table 5: Hyperparameters setting

usage by 2.93% of the model parameters. Experiments were conducted using 4 NVIDIA A6000
GPUs for model training.

C QUALITATIVE RESULTS

Hierarchy training embedding analysis. We validate the effectiveness of our proposed hierarchi-
cal learning approach by visualizing the impact of the angular loss on both inter-tier and intra-tier
constraints. For the experimental setup, we randomly initialize 50 two-dimensional embeddings and
train them using the original hierarchy loss and our extended loss function.

Additional qualitative results. To evaluate whether our model effectively learns sentence-level hi-
erarchy, we compared its performance with baselines using scenarios including objects, attributes,
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Layers # of Params. (M)

Image backbone 23.5
Text encoder 126.3

Detector 31.5
LoRA 0.4
TriDe 1.9

VL 3.2

Trainable params. 5.4 (2.93%)

Table 6: Model configuration.

1.582 0.636 0.311 1.257
1.520

0.357

0.806

1.969 Random embedding
Positive
Negative
Root

1.767 0.760 0.247 1.254
1.726

0.476

0.774

2.023 Baseline
Positive
Negative
Root

1.954 0.568 0.818 2.204
1.949

0.594

0.761

2.116
TaSe

Positive
Negative
Root

Figure 10: Visualization of angular embeddings (without dynamic reference). Triangles illustrate
learned pairs with respect to the root: positive pairs (red) and negative pairs (blue) are connected to
depict directional behavior. Positive pairs are expected to align in similar directions from the root,
while negative pairs should diverge. While the baseline tends to increase radial distance more than
meaningful angular adjustment, our objective function encourages more structured representations
guided by directional alignment.

and relations from the benchmark dataset. As shown in Fig. 11 and Fig. 12, we visualize the results
of two scenarios containing an absent example. Given that sentences become longer, many VLMs
focus on specific words, such as “running” to detect objects. For example, our model improves per-
formance by capturing richer semantic information, such as the attribute “pink,” and understanding
contextual meaning, like recognizing the “girl” as the subject of “running.” In contrast, our model
demonstrates greater robustness in detecting complex relations and predicts bounding boxes more
accurately by better understanding object states and relative information.

D HIVG STATISTIC ANALYSIS

We report that our hierarchy dataset, HiVG, in Fig. 13. Leveraging Visual Genome data for re-
captioning, we create a more diverse dataset by incorporating a wider range of classes and the LLM
and other datasets.

E DETAILS OF COMPOSITIONAL LEARNING

We provide the details of the disentanglement modes employed for compositional learning as shown
in Alg. 1. The first mode adopts traditional mean-pooling and uses the resulting representation
for contrastive learning. The second and third modes involve disentanglement via a TriDe module,
followed by contrastive learning based on the aggregated compositional embedding. Specifically, the
second mode applies the TriDe module at the token level to leverage information across all tokens,
whereas the third mode applies the module after pooling, focusing on sentence-level semantics.
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Ground truth GLEE TaSe
“smaller giraffe”

“each of these giraffes has a head that is among the leaves on the trees”

Ground truth GLEE TaSe
“Two people crouching low to the ground”

“All the people standing on the court”

Figure 11: Qualitative analysis on Omnilabel data Schulter et al. (2023). We visualize and compare
the results between GLEE and TaSe. We visualized the prediction results for both positive and
negative captions of the same image.

Algorithm 1: Pseudo code for disentangling and hierarchical aggregating paradigm

Input: Image-text pair (vi, ti)
B
i=1; Text encoder with LoRA Tθ; Learnable vectors

VO,VA,VR; Projection embedding δ; Vision backbone Vψ; MaskDINO fψ
Output: Bounding box and class Y ; Total Loss L;

for each training iteration do
Xv = Vψ(v)
X = Tθ(t) · δ
// TriDe: token-level disentangling
X = FFN(X)
O = CrossAttn(X,VO)
A = CrossAttn(X,VA)
R = CrossAttn(X,VR)
E = Pool(FFN(O+A+R))
//
Y,L = fψ(Xv,E)

Update θ by minimize L
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Ground truth GLEE TaSe
“the spoon in the cup of tea”

Ground truth GLEE TaSe
“People High Fiving each other”

Figure 12: Qualitative analysis on Omnilabel data Schulter et al. (2023). We visualize and compare
the results between GLEE and TaSe.
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Tier 1 Tier 2 Tier 3 Tier 1 Tier 2 Tier 3

car a red car red car are parked on the side of 
the road pen A red pen A red writing utensil ontop of 

a notebook

discard a sports car a red car parked on the side of a 
road: BMW 5 Sedan (G30)

bedstr
aw A blank pen

A red pen next to a yellow 
legal pad with the words ‘I 
don’t know what to write 

about it

Tier 1 Tier 2 Tier 3 Tier 1 Tier 2 Tier 3

table wooden table The wooden table and chairs are 
made of wood building Yellow building Yellow building opposite were 

the men are standing
string 

orchest
ra

summary table wooden tableware set wooden 
tableware set dining room chairs

equestri
enne Not yellow building Yellow building witout the letter 

l on it

Figure 13: Re-captioning data examples
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t-SNE Visualization of Disentangled Embeddings
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(a) Embedding visualization of the three disentangled components for the lan-
guage query “Segway with a man”
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(b) Embedding visualization of the three disentangled components for the lan-
guage query “middle woman with dark hair”

Figure 14: t-SNE visualization of disentangled text embedding
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Figure 17: Analysis on the mar-
gin m in the LTriDe

F ANALYSIS OF REPRESENTATION DISENTANGLEMENT

To verify whether disentangled embeddings contain distinct embedding representations for each
component, we visualize the embedding of each component using t-SNE. For the t-SNE visualiza-
tion, we construct the embedding space using our HiVG dataset of 10K samples. We then visualize
the embeddings based on language queries, which are our motivation. As shown in Fig. 14, while
there are slight variations depending on token information, we observe that the embeddings for each
component cluster relatively well. This validates that when a sentence is input, each component
holds disentangled representations.

G ADDITIONAL EXPERIMENTAL RESULTS

We conducted an ablation study on the model parameters. We compared and analyzed the effects of
adjusting the LoRA (Hu et al., 2021) rank (see Fig. 15), the number of tokens (see Fig. 16, and the
margin parameter (see Fig. 17) for the disentangled loss.

23


	Introduction
	Related Works
	Language-based Object Detection
	Hierarchical Entailment for Vision-Language Models

	TaSe: Disentangled and Hierarchical Text Representation Learning for Language-based Object Detection
	HiVG: Hierarchy Captioning Pipeline
	Talk in Piece: Component-wise Text Disentanglement
	See In Whole: Sentence-level Hierarchical Aggregation

	Experiments
	Experimental settings
	Main Results
	Ablation Studies

	Conclusion
	Details of HiVG
	Creating Hierarchical Positive Captions
	Creating Hierarchical Negative Captions
	Static Dataset Construction

	Experimental Setup
	Implementation Details
	Model Size and Budget

	Qualitative Results
	HiVG statistic analysis
	Details of Compositional Learning
	Analysis of Representation Disentanglement
	Additional Experimental Results

