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ABSTRACT

Subspace optimization algorithms, with GaLore (Zhao et al., 2024) as a repre-
sentative method, have gained popularity for pre-training or fine-tuning large lan-
guage models (LLMs) due to their memory efficiency. However, their conver-
gence guarantees remain unclear, particularly in stochastic settings. In this paper,
we unexpectedly discover that GaLore does not always converge to the optimal
solution and substantiate this finding with an explicit counter-example. We then
investigate the conditions under which GaLore can achieve convergence, demon-
strating that it does so either in deterministic scenarios or when using a suffi-
ciently large mini-batch size. More significantly, we introduce GoLore (Gradient
random Low-rank projection), a novel variant of GaLore that provably converges
in stochastic settings, even with standard batch sizes. Our convergence analysis
can be readily extended to other sparse subspace optimization algorithms. Finally,
we conduct numerical experiments to validate our theoretical results and empiri-
cally explore the proposed mechanisms.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance across a variety of
tasks, including language processing, planning, and coding. However, LLMs require substantial
computational resources and memory due to their large model size and the extensive amounts of
training data. Consequently, recent advancements in stochastic optimization have focused on de-
veloping memory-efficient strategies to pre-train or fine-tune LLMs with significantly reduced com-
puting resources. Most approaches (Vyas et al., 2024; Ramesh et al., |2024; [Luo et al., 2023} [Liu
et al., 2024} Bini et al., [2024; [Hao et al., 2024} |Zhao et al., [2024; Muhamed et al.| [2024; [Pan et al.,
2024; Loeschcke et al., 2024} [Hayou et al.| [2024; [Lialin et al, |2023; |[Han et al.| 2024} Song et al.,
2023) concentrate on reducing the memory of optimizer states, which are critical components of
overall training memory consumption. For instance, optimizers such as Adam (Kingma, [2014) and
AdamW (Loshchilov} 2017 maintain first and second-order momentum terms for gradients as opti-
mizer states, leading to significant memory overhead for large models.

Among the most popular memory-efficient fine-tuning algorithms is LoRA (Hu et al.| [2021), which
decreases the number of trainable parameters by employing low-rank model adapters. However, the
low-rank constraint on weight updates can result in substantial performance degradation for tasks
that require full-rank updates, particularly in the pre-training of LLMs. To address this issue, sev-
eral LoRA variants have been proposed, including ReLLoRA (Lialin et al.,|2023)) and SLTrain (Han
et al.,|2024). Recently, GaLore (Zhao et al.,2024) has emerged as an effective solution, significantly
reducing optimizer states by projecting full-parameter gradients into periodically recomputed sub-
spaces. By retaining optimizer states in low-rank subspaces, Gal.ore can reduce memory usage by
over 60%, enabling the pre-training of a 7B model on an NVIDIA RTX 4090 with 24GB of memory.
In contrast, the vanilla 8-bit Adam without low-rank projection requires over 40GB of memory.

1.1 FUNDAMENTAL OPEN QUESTIONS AND MAIN RESULTS

While GaLore’s memory efficiency has been well established both theoretically and empirically, its
convergence guarantees remain unclear. This raises the following fundamental open question:

Q1. Can GaLore converge to stationary solutions, under regular assumptions?
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Figure 1: Loss curves of algorithms using AdamW (left) and Momentum SGD (right) on problem , where
L.B. GaLore stands for large-batch GaLore, GoLore@x% applies GaLore for the beginning (100 — )% itera-
tions and GoLore for the last % iterations.

By stationary solutions, we refer to first-order stationary points = € R? such that V f(z) = 0 for
objective function f : RY — R. By regular assumptions, we refer to standard conditions in non-
convex smooth optimization, including lower boundedness, L-smoothness and unbiased stochastic
gradients with bounded variances, as outlined in Assumptions|[I}f3]in Sec. 2}

Contrary to expectations, our investigation reveals that GalL.ore does NOT converge to stationary
solutions under regular assumptions. The intuition behind this finding is straightforward: GaLore
projects the stochastic gradient matrix onto a low-rank subspace spanned by the top r singular vec-
tors obtained via Singular Value Decomposition (SVD), effectively capturing the dominant compo-
nents of the stochastic gradient matrix. However, the stochastic gradient comprises two components:
the true gradient and gradient noise. When the true gradient dominates, the SVD-identified subspace
primarily captures the gradient component. In contrast, as the algorithm approaches a local mini-
mum so that the true gradient diminishes while noise persists, the SVD-derived subspace captures
only the noise component, rather than the true gradient, ultimately leading to non-convergence. To
validate this intuition, we construct a counter-example demonstrating that GaLore fails to converge
to stationary solutions, see the illustration in Fig.[T} This leads us to a subsequent open question:

Q2. Under what additional assumptions can GaLore converge to stationary solutions?

Based on the preceding discussion, we conclude that the SVD-identified subspace in GaLore aligns
well with the descent direction in scenarios where the true gradient component dominates the gra-
dient noise component. This observation naturally leads to two additional assumptions under which
GalLore can converge:

* Noise-Free Assumption. We theoretically establish that GaLore converges at a rate of O(1/T)
in the deterministic and non-convex setting.

* Large-Batch Assumption. We theoretically demonstrate that Gal.ore converges at a rate of
O(1/+/T) in the stochastic and non-convex setting, provided that the batch size is extremely
large and increases with the number of iterations T', e.g., a batch size of ©(v/T).

However, neither the noise-free assumption nor the large-batch assumption applies to the practical
pre-training and fine-tuning of LLMs. This leads to another fundamental open question:

3. Under what modifications can GaLore provably converge in the LLM setting, in which
P Y 8 8
gradient noise presents and the batch-size cannot be extremely large?

It is evident that SVD-based projections cannot extract meaningful information from noise-dominant
matrices. To address this issue, this paper proposes modifying the SVD projection to a Gradient
Random Low-Rank projection, resulting in the GoLore algorithm for pre-training or fine-tuning
LLMs. This random projection can effectively capture gradient information even when gradient
noise predominates, allowing for convergence in the stochastic and non-convex setting with normal

batch sizes. We establish that GoLore converges at a rate of O(1/ V/T) under standard assumptions.

In our empirical experiments, we implement GaLore during the primary phases of pre-training or
fine-tuning LLMs due to its efficacy in capturing the gradient component using SVD-based projec-
tion. In contrast, we employ GoLore in the final phase, leveraging its ability to extract the gradient
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component from noise-dominant stochastic gradients using random projection. This approach en-
hances performance compared to employing GaLore throughout all stages.

While our analysis primarily focuses on GaLore, it also has significant connections to other memory-
efficient algorithms. We demonstrate that a ReLoRA-like implementation is equivalent to GaLore,
which is more computational efficient with little additional memory overhead. Furthermore, our
theoretical results can be easily adapted to sparse subspace descent algorithms with minimal effort.

Contributions. Our contributions can be summarized as follows:

* We find that Gal.ore cannot converge to stationary solutions under regular assumptions. The key
insight is that the SVD-derived subspace primarily captures the noise component rather than the
true gradient in scenarios where gradient noise predominates. We validate the non-convergence
of GaLore by providing an explicit counterexample. This addresses Question Q1.

¢ Inspired by the aforementioned insight, we propose different additional assumptions under
which GaLore can provably converge to stationary solutions. Under the noise-free assump-
tion, we establish that GaL.ore converges at a rate of O(1/T'). Under the large-batch assumption
or some additional isotropic noise assumptions, we demonstrate that GaLore converges at a rate

of O(1/+/T). This addresses Question Q2.

* Insettings where gradient noise persists and the batch size cannot be extremely large, we modify
the SVD projection in GaLore to a random projection, resulting in the GoLore algorithm that
provably converges to stationary solutions at a rate of O(1/ VT ). This addresses Question Q3.

* We present an equivalent yet more computationally efficient, ReLoRA-like implementation of
GaLore/GoLore, and extend our analysis to other sparse subspace descent algorithms.

* We conduct experiments across various tasks to validate our theoretical findings. In particular,
by alternately using GalLore and GoLore during different phases in LLMs pre-training and fine-
tuning, we achieve enhanced empirical performance.

1.2  RELATED WORK

Memory-efficient training. In LLM training, the primary memory consumption arises not only
from the model parameters but also from activation values and optimizer states. [Jiang et al.| (2022}
and |Yu et al.| (2024) have proposed methods to compress activation values into sparse vectors to
alleviate memory usage. Other approaches primarily focus on reducing optimizer states. A notable
work, LoRA (Hu et al., 2021) reparameterizes the weight matrix W € R™*"™ as W = W, + BA,
where Wy € R™*" remains frozen as the pre-trained weights, and B € R™*" and A € R"™*"
are learnable low-rank adapters. Variants of LoRA, such as those proposed by |[Liu et al| (2024)
and [Hayou et al.| (2024), aim to enhance training performance. However, constrained to low-rank
updates, LoRA and its variants are primarily effective for fine-tuning tasks and struggle with pre-
training tasks that require high-rank updates. To address this limitation, ReLoRA (Lialin et al.,
2023)) enables high-rank updates by accumulating multiple LoRA updates, while LISA (Pan et al.,
2024) learns full-parameter updates on dynamically selected trainable layers. GaLore (Zhao et al.,
2024) and FLORA (Hao et al., [2024)) achieve high-rank updates by accumulating low-rank updates
in periodically recomputed subspaces, and SLTrain (Han et al., [2024) employs additional sparse
adapters for high-rank updates. SIFT (Song et al.l 2023) also utilizes sparse updates. Although
these algorithms have demonstrated comparable empirical performance to full-parameter training
methods, theoretical guarantees regarding their convergence have not been established. A recent
study by |Liang et al.|(2024])) provides a proof of continuous-time convergence for a class of online
subspace descent algorithms, however, its analysis depends on the availability of true gradients rather
than the stochastic gradients that are more practical in LLM training. To the best of our knowledge,
this work offers the first analysis of the discrete-time convergence rate for memory-efficient LLM
training algorithms in stochastic settings.

Convergence for lossy algorithms. Many optimization algorithms utilize lossy compression on
training dynamics, such as gradients, particularly in the realm of distributed optimization with com-
munication compression. Researchers have established convergence properties for these algorithms
based on either unbiased (L1 et al., [2020; |[L1 & Richtarik, 20215 Condat et al.l 2024; He et al.,
2024bga Mishchenko et al.| [2019; |Gorbunov et al., 20215 |Alistarh et al., 2017; He et al., [2023)) or
contractive (Richtarik et al., 2021} | Xie et al.l [2020; [Fatkhullin et al., [2024; [He et al., 2023) com-
pressibility. |[Kozak et al.| (2019) provides a convergence analysis for subspace compression under
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Polyak-Lojasiewicz or convex conditions, where the subspace compression adheres contractive com-
pressibility at each iteration. Despite these extensive findings, analyzing the convergence properties
of subspace descent algorithms like GaLore remains challenging, as the compressions used can be
neither unbiased nor contractive due to the reuse of projection matrices.

2  PRELIMINARIES AND ASSUMPTIONS

Full-parameter training. Training an Ny -layer neural network can be formulated as the following
optimization problem:

min f(z) := Eevp F(; ).

Here, x = (vec(X1) ", -+ ,vec(Xy,) ") " collects all trainable parameters in the model, where N,
is the number of layers, X, € R™¢*"™ denotes the weight matrix in the ¢-th layer, / = 1,--- | Np.
F(x;&) computes the loss with respective to data point £, D denotes the training data distribution.
In full-parameter training, we directly apply the optimizer to the full-parameter x:

Gét) :VgF($(t),£(t))7 Xét-i—l) :Xlgf) +p2t)(Géf))7 ! = ]_, 7NL;
where V, computes the gradient with respective to the ¢-th weight matrix X, superscript (¢) denotes

the variable in the ¢-th iteration, and py) is an entry-wise stateful gradient operator, such as Adam
or Momentum SGD (MSGD). Specifically, using MSGD leads to the following pét) (-):

M = (1= )MV 4 560 p(G) = vy

where 7) is the learning rate, 5, € (0, 1] is the momentum coefficient, and M, ét) is the momentum
retained in the optimizer state. In full-parameter pre-training or fine-tuning of LLMs, the memory
requirements for storing momentum in MSGD and the additional variance state in Adam are highly
demanding. According to|Zhao et al.| (2024)), pre-training a LLaMA 7B model with a single batch
size requires 58 GB of memory, with 42 GB allocated to Adam optimizer states and weight gradients.

GaLore algorithm. To address the memory challenge, Zhao et al.|(2024) proposes a Gradient Low-
Rank Projection (GaLore) approach that allows full-parameter learning but is much more memory-
efficient. The key idea is to project each stochastic gradient G, € R™¢*"¢ onto a low-rank subspace,

yielding a low-dimensional gradient approximation. Specifically, GaLore performs SVD on G’y) =
UXVT and obtains rank-r, projection matrices Pe(t) = Ul:,: r¢ € R™>*" and Qét) =V,
re] € R™*"¢ where [:,: r] denotes the selection of the matrix’s first  columns. When m, < ny,
GalLore projects G, onto P, yielding a low-rank gradient representation (Pg(t))TGét) € Rrexne,

Conversely, when m, > ny, GalLore projects G, onto @y, resulting in G?)Qét) € R™meXTe  Ip
either scenarios, the memory cost of optimizer states associated with these low-rank representations
can be significantly reduced, leading to memory-efficient LLMs pre-training or fine-tuning:

X (1) _ X"+ P (PTG, if my <y
¢ Tl x® Oa®aoDyoT  if
o e (GrQyNQT) T, ifmye > ny.
Typically, GaLore selects py(-) as the Adam gradient operator, as illustrated in Alg. [Il However,
GaLore can also choose py(-) to be gradient operators in either vanilla SGD or MSGD. Since SVD
decomposition is computationally expensive, GaLore updates Pe(t) or Qét) periodically. In other
words, GaLore computes Pg(t) or Q?) when iteration step ¢ Z 0 (mod 7) where 7 > 0 is the period,

otherwise Pe(t) = Pe(tfl) and Qgt) = Qgtil) remain unchanged. Both the gradient subspace

projection and periodic switches between different low-rank subspaces pose significant challenges
to the convergence analysis for GaLore-like algorithms.

Stiefel manifold. An m x r Stiefel manifold (r < m) is defined as

Stm,r — {P c RHLXT‘ | PTP — Ir}
Stiefel manifold is the set of low-rank projection matrices to use in subspace optimization. Typically,
in GaLore we have P;t) € Sty,,r, and Qy) € Stpy,r,-

Basic assumptions. We introduce the basic assumptions used throughout our theoretical analysis.
Each of these assumptions is standard for stochastic optimization.
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Assumption 1 (Lower boundedness). The objective function f : R? — R satisfies inf zepa f() >
—o0, where d = Zé\zl myny is the total number of parameters in the model.

Assumption 2 (L-smoothness). The objective function f : R? — R satisfies |V f(z) =V f(y)||2 <
L||x — yl|2, for any x,y € R%

Assumption 3 (Stochastic gradient). The gradient oracle (F, D) satisfies
Eeon|VeF(2;6)] = Vof(z), and Eeup[|VeF(x;€) - Vof(@)||7] < o7, Vo € RY,
where oy > 0 is a scalar. Summing all weight matrices we obtain

E¢op[VF(z;€)] = Vf(x), and Eeupl|VF(x;€) — Vf(z)|3] <o VaeR?,

[N
where o = o o2,

3 NON-CONVERGENCE OF GALORE: INTUITION AND COUNTER-EXAMPLE

In this section, we demonstrate why Galore cannot guarantee exact convergence under Assumptions
We first illustrate the insight behind the result, then present its formal description.
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Figure 2: An illustration of the insight on why GalLore fails to converge in small-gradient scenarios. We use
color green for true gradient and red for gradient noise.

Insight behind non-convergence. As reviewed in Sec. |2} GaLore performs SVD on stochastic gra-
dient G = UXV T and obtains rank-r projection matrices P = U[:,: ] € R™*". GaLore projects
G onto P, yielding a low-rank gradient representation PTG € R"". In other words, GaLore
projects the stochastic gradient matrix onto a low-rank subspace spanned by the top r singular vec-
tors, capturing the dominant components of the stochastic gradient matrix. However, the stochastic
gradient comprises two components: the true gradient and gradient noise, as shown in Fig.[2] When
the true gradient significantly exceeds the gradient noise, typically at the start of training, the low-
rank subspace obtained via SVD effectively preserves the true gradient information. As training
progresses and the true gradient diminishes to zero, especially near a local minimum, the subspace
may become increasingly influenced by gradient noise. In the extreme case, this noise-dominated
subspace can become orthogonal to the true gradient subspace, leading to non-convergence.

Counter-Example. We consider the following quadratic problem with gradient noise:
1
F(X) =5|AX |7 + (B, X)r, VF(X;8) = V(X) +£0C, (D)

D 0

where A = (I,_, 0) e R*—"xn B — (0 0

) € R™" with D e R("~")*("=") generated

randomly, C' = (8 IO € R™*™ ¢ is a random variable uniformly sampled from {1, —1} per
iteration, and o is used to control the gradient noise. It is straightforward to verify that problem
satisfies Assumptions Moreover, as X approaches the global minimum of f(X), the true
gradient V f(X) — 0, while the gradient noise persists with a variance on the order of o2. Fig.
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illustrates the performance of GaLore when solving problem (I)). It is observed that GaLore fails to
converge to the optimal solution, regardless of whether the AdamW or MSGD optimizer is used.

Non-convergence of GaLore. Based on the aforementioned insight, we establish the following
theorem regarding the non-convergence of Gal.ore.

Theorem 1 (Non-convergence of GaLore). There exists an objective function f : R — R satisfying
Assumptions a stochastic gradient oracle (F, D) satisfying Assumption an initial point £(°) €
R%, a constant eg > 0 such that for any rank ro < min{mg, ng}, subspace changing frequency ,
any subspace optimizer p inputting subspace gradient of shape ry X ny and outputting subspace
update direction of shape ry X ny with arbitrary hyperparameters and any t > 0, it holds that

IVF (@) > eo.

4 CONDITIONS UNDER WHICH GALORE CAN CONVERGE

GalLore provably converges in the noise-free setting. According to the insight presented in Sec. |3}
GaLore fails to converge when gradient noise dominates the true gradient in magnitudes. This
motivates us to examine the deterministic scenario where the true gradient V f () can be accessed
without any gradient noise. The GaLore algorithm with noise-free gradients is presented in Alg.[T](or

Al g.in Appendix , where the true gradient oracle is highlighted with the label (deterministic) .

Since no gradient noise exists, the projection matrix Pé(t) obtained by SVD can effectively capture
the true gradient even when the algorithm approaches a local minimum. For simplicity, we analyze
GaLore with MSGD and the following momentum updating mechanism:

Aﬂg:{a-ggufUﬁ#*M@“”+ﬂﬂw“fcp,ihw<nb .

¢ 1 - s)MITQINTQY + B,c" QM if my > ny.

If the subspace does not change at iteration ¢, (Pl(t))TPé(t_l) = (Qy_l))TQét) = I,, and H

reduces to regular momentum updates. If the subspace changes at iteration ¢, we inherit M e(t_l) by
first projecting back to the previous space and then to the new subspace. For convenience, we use
momentum projection (MP) to refer to mechanism (2). When MP is used in the algorithm, we label

the corresponding with [(with MP) in Alg. |1| otherwise (without MP) . The following theorem
provides convergence guarantees for GaLore using deterministic gradients and MSGD with MP.

Theorem 2 (Convergence rate of deterministic GaLore). Under Assumptions if the number of
iterations T > 64/(39) and we choose

-1
64 80L2 8072L2 167L2
=t 7 [355» we ( *\/365%+ 30 +¢351) ’

GaLore using deterministic gradients and MSGD with MP converges as

T-1
1 LA
LI =o0(5).
t=0 =

where A = f(x(®)) —inf, f(x) and § := min,

Ty
min{me,ne}"

Remark. In fact, MSGD here reduces to momentum gradient descent by using deterministic gra-
dients. Theorem [2| demonstrates that GaLore converges at a rate of O(1/7T) in the deterministic
scenario, which is on the same order as full-parameter training. A more detailed result is presented
in Theorem[6]in Appendix [B.3] where we established convergence for more general hyperparameter
choices However, in deep learning tasks with exceptionally large training datasets, computing the
true gradient becomes impractical due to significant computational and memory costs. Therefore,
we will next focus on the stochastic setting.

GaLore provably converges with large-batch stochastic gradients. Inspired by the insight pre-
sented in Sec. |3} GaLore converges in cases where the true gradient dominates the gradient noise.
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Algorithm 1 -/ GoLore algorithm using |stochastic / deterministic / large-batch gra-
dients - / without momentum projection

Input: Initial point (*), data distribution D, learning rate 7, subspace changing frequency 7, rank
{r¢} ", optimizer hyperparameters 31, (3, €, large batch size 3.
Output: {z}]_.
Initialize optimizer state { M é_l) }1{,\7:’“1 and {\Q(_l) }évzf“l to zero;
fort=0,1,--- ;T —1do
for{=1,2,--- Ny do
if ¢t = 0 (mod 7) then

Ggf) — VoF(2®;£®);  (stochastic)
G« V,f(x®); (deterministic)
G &S0, VeF(@;00); (large-batch)

Sample Pe(t) ~ U(Stme,re)a ét) ~ u(Stne,re); (GoLore)
else
GEt) — VoF(x®;6®);  (stochastic)

G « Vv, f(x®); (deterministic)

G?) — VoF(x®;£®);  (large-batch)

Pe(t) . Pé(t—l)’Qﬁt) - QEt_l);
end if

t t .
Rét) - {(Pz( ))TG§)7 if mg < ny;

G&t)Qgt), if my > ny;

MO — (1- )M + 8 RY;  (without MP)
‘/[(t) — (1 _ ﬁ2)‘/g(t_1) + B2R§t) o R(t);

if using Adam then
M = MO )=, VO e v NP e M 6V e
else if using MSGD then
t t
NP« M
end if
X (#+1) X" — P N, if me < ny;
¢ x® _ pyNO QT 5 .
) n Z(Q[)z 1L my > Nyg;
end for
end for

This convergence can be ensured by reducing the gradient noise through an increased batch size, par-
ticularly as the algorithm approaches a local minimum. Specifically, we replace the stochastic gra-
dient G\ = V,F(a®; £1) with large-batch gradient G\ = LSP  VeF(2®;¢09), which
reduces the variance of gradient noise by 5 times. The GaL.ore algorithm with large-batch stochastic
gradients is presented in Alg.[T](or Alg.[3]in Appendix [B.4), where the large-batch stochastic gradi-
ent oracle is highlighted with the label (large-batch) . It is worth noting that the non-convergence
of GaLore primarily stems from the erroneous subspace dominated by gradient noise. Therefore,
we compute a large-batch gradient only for the SVD step while maintaining a smaller batch size for
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other computations, see Alg.[I] As the batch size B increases with iteration 7, GaLore provably
converge to stationary solutions, as established in the following theorem:

Theorem 3 (Convergence rate of large-batch GalLore). Under Assumptions Sl if T > 2+
256/(368) + (2560)2/(9/SLA) and we choose T = [128/(35531)] [1/(661)],

—1 -1
532 g2 80L2 4072L2 3272
=11 R d n=|4L
6, +\ 7 cand = AL+ [ )

GalLore using large-batch gradients and MSGD with MP converges as

T-1
1 5 LA | LAG?
? ;_0: E[”Vf(m(t))”Q] =0 (55/21—\ + 57/2T> ’

where A = f(x(®)) —inf,, f(x) and § := min,

T
min{mg,ng}"

Remark. A more detailed result is presented in Theorem[7]in Appendix [B.4] where we established
convergence for more general hyperparameter choices. The batch size B = @(\/T) in large-batch
GaLore grows with iteration 7', leading to increased memory overhead, making it less practical
than small-batch GaLore. With gradient accumulation, an additional variable is needed to track the
gradient, complicating compatibility with per-layer weight updates. Otherwise, larger batch sizes
raise the memory required for activation values. Therefore, exploring algorithms that can converge
with standard small-batch stochastic gradients becomes essential.

Empirical validation. Fig. |l| illustrates the convergence of large-batch Galore (blue curve) in
solving problem (T)). It demonstrates that large-batch GaLore effectively corrects the bias present in
small-batch stochastic GaLore (green curve), achieving convergence to stationary solutions.

GalLore provably converges with isotropic noise assumptions. In Appendix |G} we further prove
that under some additional isotropic noise assumptions, Gal.ore with small-batch stochastic gradi-
ents can also be guaranteed to converge at a rate of O(1/v/T).

5 GOLORE: GRADIENT RANDOM LOW-RANK PROJECTION

GoLore algorithm. The main issue with SVD-based projection in GaL.ore is that it aims to capture
the dominant component in the stochastic gradient matrix. Consequently, when gradient noise over-
shadows the true gradient as the algorithm approaches a local minimum, the SVD-based projection
fails to identify valuable gradient information.

To address this, we propose replacing the SVD-based projection with a random projection, which
captures components of the stochastic gradient matrix randomly without any preference. This re-
sults in the GoLore algorithm presented in Alg. [I] (or Alg. ] in Appendix [B.3). In Alg.[I] the

GaLore method highlighted with the label | (GaLore) samples the projection matrix Pé(t) via SVD

decomposition. In contrast, the GoLore method highlighted with the label (GoLore) samples Pe(t)

from U (Styy, r, ), a uniform distribution on the m, x r; Stiefel manifold. The following proposition
provides a practical strategy to sample from distribution U (St ).
Proposition 1 (Chikuse|(2012), Theorem 2.2.1). A random matrix X uniformly distributed on St,, ,

is expressedas X = Z(Z"Z Y~1/2, where the elements of an m x r random matrix Z are inde-
pendent and identically distributed as normal N'(0, 1).

Convergence guarantee. Unlike SVD used in GalL.ore, the random sampling strategy in GoLore
prevents the subspace from being dominated by gradient noise. The theorem below provides con-
vergence guarantees for GoLore when using small-batch stochastic gradients and MSGD with MP.

Theorem 4 (Convergence rate of GoLore). Under Assumptions[I\3] for any T > 2 + 128/(38) +
(1280)2/(9\/SLA), if we choose T = [64/(35531)],

—1 _1
532 g2T 0L2 8072L2 167L2
- |1 s ° - d n=|4L
6, +\ =7 cand = (AL [ I
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Table 1: Memory and computation comparison between GaLore’s original implementation and our ReLoRA-
like version, both utilizing MSGD with batch size b. We assume the weight W € R ™ satisfies m < n.

GaLore Implementation | Memory \ Computation
(Zhao et al.| 2024) ‘ mn +rm+rn+bm ‘ 6bmn + 4rmn + 2mn + 3rn
Our ReLoRA-like version | mn 4 rm + 2rn + bm + br | 4bmn + 4brm + 6brn + 5rn

GoLore using small-batch stochastic gradients and MSGD with MP converges as

T—1
1 5 LA LAc?
7 3 BV = 0 ( | 5%) ,

where A = f(x(®)) — inf,, f(x) and § := min, T RS

Remark. Theoremdemonstrates that GaLore converges at a rate of O(1/+/T'), which is consistent
with the convergence rate of full-parameter pre-training using standard MSGD. A more detailed
result is presented in Theorem [8] in Appendix where we established convergence for more
general hyperparameter choices. Unlike deterministic GaLore and low-rank GaLore discussed in
Sec.[d] the newly-proposed GoLore algorithm converges in the non-convex stochastic setting with
regular batch sizes, making it far more suitable for LLM pre-training and fine-tuning.

Practical application of GoLore in LLMs. While GoLore have theoretical convergence guaran-
tees, directly applying GoLore in LLM tasks may not be ideal. The advantage of using randomly
sampled projection matrices becomes evident in the later stages of training, where stochastic gra-
dients are primarily dominated by gradient noise. However, in the early stages, projection matrices
derived from SVD retain more gradient information, leading to more effective subspaces. Therefore,
we recommend a hybrid approach: initially using GalLore to converge toward the neighborhood of
the solution, then switching to GoLore for refinement and achieving more accurate results.

Empirical validation. Fig.[T|shows the convergence of the hybrid algorithm (red curve) applied to
problem (I)), which employs GaLore during the early training phase and switches to GoLore in the
later stage. It is observed that the hybrid algorithm successfully converges to stationary solutions.

6 CONNECTION WITH OTHER SUBSPACE OPTIMIZATION METHODS

Connection with ReLoRA. Algorithms like GaL.ore/GoLore that optimizes in periodically recom-
puted subspaces can be implemented in an equivalent yet potentially more computational efficient,
ReloRA-like way. Consider a linear layer y = Wa with W € R™*", where m < n, GaL.ore first
computes the full-parameter gradient Vi £ = (V4 L)z via back propagation and update W in
the subspace as W < W + Pp(PT (Vw L)), where P € R™*" is a low-rank projection matrix.
If we use LoRA adaptation W = W, + BA with B € R™*" and A € R"*", we compute A’s
gradient VoL = (V.L)z" = BT (V, L)z, where z = Bz is the additional activation. If we fix
B = P, update A < A + p(V aL) is equivalent to W < W + Pp(P T (VwL)). The memory
and computational costs of the two implementations are compared in Table[I] showing the potential
of our ReLoRA-like implementation to reduce computation with little memory overhead. Detailed
algorithm descriptions and calculations are in Appendix [D}

Connection with FLORA. Aware of the equivalence of the two (GaLore/ReLoRA-like) implemen-
tations, the main difference between GoLore and FLORA lies in the choice of projection matrices.
Though both algorithms sample P € R™*" randomly, GoLore uses a uniform distribution on the
Stiefel manifold U/ (St ), while FLORA uses a random Gaussian distribution where each element
in P is independently sampled from A (0, 1/r), and thus P may not belongs to St,, .

Connection with SIFT. SIFT fine-tunes LLMs with sparsified gradients, which can also be viewed
as subspace descent. While GaLore projects gradient G to P'" G via a projection matrix P, SIFT
projects gradient G to S ® G via a sparse mask matrix S. Our theoretical analysis can be directly
transferred to sparse subspace descent with little effort, implying similar results as in low-rank sub-
space descent, see Appendix [C|

7 EXPERIMENTS

We evaluate GaLore and GoLore on several different tasks, including solving a counter-example
problem (I), pre-training and fine-tuning LLMs with real benchmarks. Throughout our experi-
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Figure 3: Pre-training curves of various approaches Figure 4: Fine-tuning curves of various approaches
using AdamW with BF16 precision. using MSGD with BF16 precision.

Table 2: Fine-tuning results on GLUE benchmark using pre-trained RoOBERTa-Base.

Algorithm | CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP | Avg
Full Params. | 62.07 90.18 9225 7834 9438 87.59 9246 91.90 | 86.15

GalLore 61.32 9024 9255 77.62 94.61 8692 92.06 90.84 | 85.77
FLORA 57.71 8959 9196 76.17 9450 8542 9193 90.49 | 84.72
GoLore@20% | 61.66 90.55 9293 78.34 94.61 87.02 9220 90.91 | 86.03

ments, GoLore@x% uses GaLore in the first (100 — x)% iterations and GoLore in the last 2%
iterations, L.B. GaLore denotes large-batch Galore, and Full Params. denotes full-parameter train-
ing. Further results and detailed experimental specifications including the hyperparameter choices
and computing resources are deferred to Appendix [E]

GaLore’s non-convergence. To validate the non-convergence of Gal.ore and the convergence prop-
erties of GoLore and large-batch GalLore, we compare them with full-parameter training on the
constructed quadratic problem defined in (I). Fig.[I]shows that, regardless of whether AdamW or
MSGD is employed as the subspace optimizer, GaL.ore does not converge to the desired solution.
In contrast, both GoLore and large-batch GaLore, along with full-parameter training, achieve exact
convergence, thereby validating our theoretical results.

Pre-training. To validate the efficiency of GoLore in LLM pre-training tasks, we pre-trained
LLaMA-60M on the C4 (Raffel et al., 2020) dataset for 10,000 iterations using various algorithms,
including GaLore, GoLore and full-parameter training. All implementations utilized the AdamW
optimizer in BF16 format. As illustrated in Fig.[3] there is a noticeable performance gap between
GaLore/GoLore and full-parameter training, indicating that the parameters are away from local min-
ima. However, GoLore still demonstrates slightly better training performance compared to GaLore.

Fine-tuning. To validate the efficiency of GoLore in LLM fine-tuning tasks, we fine-tuned pre-
trained LLaMA2-7B models (Touvron et al.l 2023) on the WinoGrande dataset (Sakaguchi et al.,
2021) and pre-trained RoBERTa models (Liul [2019) on the GLUE benchmark (Wang| [2018)) with
AdamW optimizers. Fig.[d] displays the fine-tuning loss curves for GaLore and GoLore with rank
1024, while Table ] presents the task scores for GaLore/GoLore and FLORA with rank 4. In both
experiments, GoLore outperforms GaL.ore.

8 CONCLUSION AND LIMITATIONS

This paper investigates subspace optimization approaches for LLM pre-training and fine-tuning.
We demonstrate that GaLore fails to converge to the desired solution under regular assumptions,
as the SVD-based projection often generates noise-dominated subspaces when the true gradient is
relatively small. However, we establish that GaLore can achieve exact convergence when using
deterministic or large-batch stochastic gradients. We further introduce GoLore—a variant of Ga-
Lore employing randomly sampled projection matrices—and establish its convergence rate even
with small-batch stochastic gradients. A limitation of this paper is that convergence guarantees for
GolLore are currently provided only when using MSGD as the subspace optimizer. Although GoLore
with AdamW performs well empirically, as shown in Table[2] its theoretical convergence guarantees
remain unknown and will be addressed in future work.

10
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APPENDIX

A CHALLENGES IN THEORETICAL ANALYSIS

Gradient projection onto a low-rank subspace poses two significant challenges for the convergence
analysis of (momentum) stochastic gradient descent:

¢ Neither unbiased nor contractive compression. gradient projection onto this subspace can
be viewed as gradient compression. Traditional analyses of optimization algorithms with lossy
compression typically rely on either unbiased (L1 et al., 2020; |L1 & Richtarik, 2021} [Huang &
Pul, 2023} |He et al., [2024a3b; (Condat et al.,[2024) compressibility, i.e., the compressor C satisfies

ElC(x) =z, E[|C(z)-=|3] <wllz|3, VzeR?

for some w > 0, or contractive (Richtarik et al., 2021} |Xie et al.| [2020; Fatkhullin et al., 2024}
He et al., 2023) compressibility, i.e.,

ElC(z) —z[3] < (1 - 0)[|=ll3, VxR,

for some § € (0, 1]. However, GaLore’s subspace compression is neither unbiased nor contrac-
tive due to the reuse of projection matrices. For example, consider a pre-computed projection
matrix P € R™*", There exists a full-parameter gradient G € R™*" such that G # 0 and
C(G) := PP G = 0, violating both unbiased and contractive compressibility.

* Periodically projected optimizer states. When GaLore changes the subspace, the retained mo-
mentum terms must be adjusted to track the gradients in the new subspace. Since these momen-
tum terms were initially aligned with the gradients in the original subspace, such adjustments
inevitably introduce additional errors, especially when the two subspaces differ significantly.
In the extreme case where the two subspaces are entirely orthogonal, the momentum from the
previous subspace becomes largely irrelevant for optimization in the new one.

B THEORETICAL PROOFS

B.1 NOTATIONS AND USEFUL LEMMAS

We assume the model parameters consist of Nz, weight matrices. We use X, € R"*™ to denote
the /-th weight matrix and € R? = (vec(X;) ", -+ ,vec(Xx,)") " to denote the vector collect-

ing all the parameters, d = Zévjl myny. We assume GaLore/GoLore applies rank-r, projection to
the ¢/-th weight matrix and denote

Te

§p=————— d= min J, &= max 6.
min{myg, ne} 1<U<Ng 1<U<N;
We define Mét) as
a0 _ JPOME . itme <y,
e M(t)< (t))T ifm, >
L L ? L n@)

and m = (vec(M;)T,--- ,vec(My,)")T. While using Alg. 1| with MSGD and MP, it holds for
my < ny that

ﬁng(O)(Pg(O))TGEO), t=0;
M = S POPIT (1= )MV + G, = ke ke N
(1- ﬁl)Me(til) + /31Pg(t)(Pg(t))TG§t), t=kr+nr,keN, 1<r<m

for my > ny that

BGYQV Q)T t=0;

M = (=M +560) QU@P)T, t=hr, ke
1-p)M +8,6QM @), t=kr+r, keN, 1<r<m
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and for both cases that
Xét+1) _ Xlgt) . UMe(t)~

Lemma 1 (Error of GaLore’s projection). Let G = UXV T be the SVD of G € R™*™, projection
matrix P =Ul[:,: r], Q = V[:,: r], r < min{m, n}. It holds for m < n that

IPPTG -G} < (1- =) Gl
and for m > n that

16QQ™ - Gl < (1- ) |G-

Proof. Without loss of generality assume m < n (the other case can be proved similarly). Let
Q=U[,(r+1):,Itholdsthat I =UU " = PP + QQ". Thus,

IPPTG - G|} =|(I- PP UV}
=tr(VE'U(I - PPT)’UZV)
=tr(X'U'QQR'UR), 3)

where the second equation uses || X ||2 = tr(X " X) and the last equation uses tr(AB) = tr(BA),
VIV=IandQ'Q=1. By QTP =0and PTQ = 0, we have

UTQQT T QQT (P Q) O’I”XT Orx(m—r) ) (4)
Q O(mfr)xr m—r
Letoy > 09 > --+ > 0, > 0 denote the eigenvalues of G, @I) implies
TooT T Oy e ) Or><(m—7') OT'X(n—m)
XU QQ U = O(m—r)xr dlag(gr+17 T 7Um) O(m—r)x(n—m) . &)
(n—m)xr O(nfm)x(mfr) (n—m)x(n—m)
Applying (3) to (3) yields
IPPTG G2 —(3TUTQQTUS) = 3 02 < "Gl
i=r+1
where the inequality uses |G[|%2 = tr(GTG) = tr(ZTX) = Y1" | o2 O
Lemma 2 (Gradient connections). It holds for any t, T > 0 that
T—2
IVef ()1 < Z IVef @ D)E + (= 1) Y [Vef (@) = Vef@)7. ©6)
r=0

Proof. Foranyr =1,--- ;7 — 1, it holds that

IVef (@[3 =IVef (@) = (Ve f (@) = Ve f (D)3
<2|[Vef(@)E + 2| Vef (@) = Vo f(a®)]3 (7
For any r = 2,--- ;7 — 1, it holds that
2

HVef(a:(t-i-r)) Vif(z (t) ”2 _ t-H) ng(il:(ﬁ_i_l))

F

<r Z Ve f (@) — V()12 (8)

i=1
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where the inequality uses Cauchy’s inequality. Summing (7) from r = 1 to 7 — 1 and applying (8)
yields

T—1 1

7(|Vef (@)% <2Z||Vef CEONE+2D Y il Vef (@) = Vo f (@ D)|1%
i=1 j=1
T—17-1

<QZIIVef @ N5 42> > il Vef (@) = Ve (@t D))13

j=11i=1

722 IVef (@)% + 7(r — 1) Z Ve f (@) — Vo f(2-1)|3,

j=1
which is exactly (). ]
Lemma 3 (Projection orthogonality). If P € St ,, it holds for any A, B € R™*" that
IPPTA+ (I - PP")B|j% = ||[PP T A|} + |(I - PPT)B]3. ©)

Proof. By definition we have P P = I. It suffices to note that
(PPTA,(I - PP")B)r =tr(ATPP"(I - PP")B) = tr(0) = 0.

Lemma 4 (Descent lemma). Under Assumption[2} for update

2D = 2O i ®),

it holds that

1 -
P ) <f(@0) = (5= 5 ) 104~ 2Ol + T - V1)

- 2NV @) (10)

Proof. By L-smoothness of f (Assumption[2) we have
f(m(tJrl)) _ f(m(t))
L
V(@) 2 = 2) 4 St — a3

~ (t ~ (t
_ <m2(),w<t+1> _ w(t)> n <vf($<t>) _ mT() LD :c(t)> N §||w<t+1> 0|2

2
which is exactly (10). O

Lemma 5 (Error of GoLore’s projection). Let P ~ U(Sty,..), Q ~ U(Sty,), it holds for all
G € R™*" that

1 n . 7
=~ (5 - 5 ) 1o~V + VA ) - RO - TR

E[PP]= I, EQQ']= an

3\ﬁ

and

E[|PPTG -G} = (1-~) |G} EIGQQT -G} = (1- )G} (2

Proof. We refer the proof of to Theorem 2.2.2 in|Chikuse|(2012). By PTP =1, we have
E[|[PPTG - G|}] =E[x(GT (I - PPT)’G)]
=E[tr(GT(I - PPT)G)]
=tr(G' (I - E[PP'])Q). (13)
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Applying (TT) to (T3) yields
T 27 _ T _r
E[|PP G — G|%] =tr (G (I —I) G)

- (1 - %) tr(GTG)

r
= (1= 21613
(1- )Gl

The other part of (I2)) can be proved similarly. O

B.2 NON-CONVERGENCE OF GALORE

In this subsection, we present the proof for Theorem |1} We first restate Theorem |1|as follows:

Theorem 5 (Non-convergence of GaLore). There exists an objective function f : R? — R satisfying
Assumptions a stochastic gradient oracle (F, D) satisfying Assumption an initial point £(*) €
R¢, a constant eq > 0 such that for GaLore with any rank ry < min{mg,n,}, subspace changing
frequency T, any subspace optimizer p with arbitrary hyperparameters and any t > 0, it holds that

IV f (@) > e

Proof. Consider target function f(X) = Ltr(X "pp" X) where L > 0, X € R"*" withn > 1
and p = (1,0,---,0)" € R™. It holds that

FX) = £lp" XJ3 > 0,
thus f satisfies Assumption Since Vf(X) = Lpp" X, it holds that
IVA(X) =VIY)|r = Lipp" (X = Y)|lr < Lllpp" [l2[| X = Y||r = L|X = Y|,
thus f satisfies Assumption 2}
Consider the following stochastic gradient oracle:
F(X;€) =f(X) +& - 2(QQX), and Peuplé = 1] =Peuplé = ~1] = 0.5,

where & = o/+/(n — 1)n/2 and

_ 0
Q= (diag (1.v2,-- . ¥ 1)
Note that VF(X;¢) = Vf(X) +£5QQ'T, it holds for any X € R™ " that
Eep[VF(X;€)] =Vf(X)

) E]Rnx(n—lx

02 n—1
BenlIVF(Xi€) = VIO =5°1QQT I = g - 1= o

thus oracle (F, D) satisfies Assumption [3]

.
© _ (AP
xo= ().

where 0 < A < &/L is a scalar and A € R(»~D*" is an arbitrary matrix. We show that GaLore

with the above objective function f, stochastic gradient oracle (F, D), initial point X (%), arbitrary
rank 0 < r < n, arbitrary subspace changing frequency 7 and arbitrary subspace optimizer p, can
only output points X () with ||V f(X)||2, > ¢ for ¢g = L?\? > 0.

Consider the following initial point:

When 7 | t, GaLore recomputes the subspace projection matrix at iteration ¢. If the first row of X ()
equals \p ', i.e., X([1,:] = Ap", the stochastic gradient is given by

G = Lpp” X +£V5QQT = diag (LA, €15, v2V5, - V=115 ).
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since L\ < &, computing SVD yields

L 0 0
0 Mg ... 0
GY=| . ¢ 7 , :
0 0 - Vn—1tWs
0 -+ 0 G vn—16 --- 0 0 0 0 c GREW
0 - G 0 : - oo : : - :
I 0 o & 0|0 W o |
o -+ 0 0 0 oo 0 L) G 0 0
=U =3 =V
where (1, -+ ,(, € {—1,1}. For any rank r < n, the projection matrix is thus
0 0 0
O 0 - 0
PO=10 0 - Curgr| eR¥.
0 (o1 - 0
Cn 0 0

Using this projection matrix, the subspace updates in the following 7 iterations is as

Ay—1
X+ — x (&) 4 p®) Z p(t-&-S)((P(t))TG(t)) - X(t+A")[1, )= X(t)[l, ] = Ap',
s=0

for A; = 1,2,---, 7. Since X (O[1,:] = Ap", it holds for all t > 0 that X I[1,:] = A\p" and thus
IVFXOF = L2X = .

O

Remark. When setting B = 0 in the quadratic problem setting (Sec. [7), the quadratic problem is

equivalent to the counter-example we construct in the proof of Theorem|[5] The illustration in Fig. 3|
displays the loss curves for this problem.

B.3 CONVERGENCE OF DETERMINISTIC GALORE

In this subsection, we present the proof for Theorem [2| Galore using deterministic gradients and
MSGD with MP is specified as Alg. 2}

Lemma 6 (Momentum contraction). In deterministic GaLore using MSGD with MP (Alg. E]) if
0< B <1, term M é(t) has the following contraction properties:

e Whent = 0, it holds that

T—2
1M — Ve f(XO) 3 <(r = 1)(1 - 681) Y [Vef (@) = Vo f (@)%
r=0

2(1— 60B1) = .
+ 20208 579, a3 (14

r=0

18
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Algorithms using AdamW

9 ® = _e— GoLore@50%

== L.B. GaLore
0.6 - == Full Params.

0.2: T

a
0.1- t
0.0 ‘k—ﬁ ke e

o 200 400 600 800 1000
Iterations

Figure 5: Loss curves of algorithms using AdamW. GoLore@50% uses GaLore in the first half and
shifts to GoLore in the last half, Full Params. denotes full-parameter training.

e Whent = kt, k € N*, it holds that

132~ 9o @O~ (1= (1= %) 50) INZEY = Depe Ol
2(1 = §y) < 5(1—
<0 S vt + P19, @0) - Vst
r=0
T—2
=)= 68) 3 IV @07 ) = Vg3 s
r=0

e Whent=kr+r, ke N, 1<r <, itholds that
. S ~ (1 _
IV = Ve f @)% - (1 - (1 - 4) 51) |82 = e f @)

< (1 - ‘5‘) BuVef @)% + 2L P17 1 2®) - )
2 0¢f1
10(;[31 ; [Vef (@E740) = Ve f(2ET D)3 (16)

Proof. Without loss of generality assume m, < ny (the other case can be proved similarly). When
t = 0, we have

1M = Vof (@))% =18 (PO (P — DV f(2@) — (1 - 1)V f (@)%
<B1(1 = 8)IVef (D)3 + (1 = B Vef (2 @)]|3

=(1 = 0B Ve (@), (17)
where the inequality uses Lemma [T]and Jensen’s inequality. Applying Lemma2|to (I7) yields (T4).

When t = k7, k € N*, we have
1M — Vo f (@)
—1PO(PY T = B)MI Y 4 G — V(@) — (1 — PO (P, f(aD)][%
=P (PIYTI(1 = B)(MI™D = Vo f(eO)]1F + (X~ PO (PO )V f (@))%
<1 = B = Vef (@)[3 + (1= 6) | Vef ()13, (18)

19
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Algorithm 2 GaLore using deterministic gradients and MSGD with MP

Input: Initial point 2(°), learning rate 7, subspace changing frequency 7, rank {rg}éV:Ll, momentum
parameter (3.
Output: {x®}]_ .
Initialize optimizer state { M, 2(71) }5 to zero;
fort=0,1,--- ,T—1do
for/=1,2,--- ,Ny do
G Vi f(a®);
if ¢ = 0 (mod 7) then
U,S,V « SVD(GY);
if m, < ny then
Pe(t) — Ul:,:rel;
MY (1= )P P METY 4 gy (PTG
XlSHl) “ Xét) _ an(t)Mg(t)§
else ®
y = VI
M (1= 8)MITVQT) TR + 8,61 Q)
XéH_l) « Xét) - UMg(t)(Qét))T§
end if
else
if my, < n, then
Pl(t) . Pz(til);
M (1= p)M{ 4 si(P) TG
Xét+1) “ Xlgt) _ an(t)MZ(t);

eise (t) (t-1)
Qz — Qe 5
M (1= )MV 1+ 5.GQ);
X[gt+1) - Xét) . nMg(t)(Qgt))T;

end if

end if
end for
end for

where the second equality uses Lemmaand G;t) = V,f(xz®), the inequality uses Lemmaand
| P (P, = 1. By Young’s inequality, we have
|6 Y = Ve (@)
=1L = Vef(@) = (Vef (@) = Vef (@)

= (1 * 55) 1M =V @)% + (1 + ) IVef(@®) — Vo f(xtD)]2.
(19)

4
e
Applying Lemma[2]and (I9) to (I8) yields (I5).

Whent =k7+r, ke N,1<r <7, wehave

M =V, f (D)2
—|[(1 = B = Vo f(2D)) + (PP — DV, f (D)%
<(1=BNIMIY = Ve f(@)2 + 81| - PE(BEYVef@D)Z,  (20)

20
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where the inequality uses Jensen’s inequality and Pe(t) = Pl(tfl) == Pz(kT)' The first term can
be similarly upper bounded as (T9). For the second term, we have

(I - PI(PF TV f (D)2

(1+ )n(I P ()T, f(2 )%
*(“ )H(I P (P TY (T f(20) — Vo f(@7)]|2

S 5)
(1 " j) (1 =8IVl @ )+ £ IVef @) = Ver @) @D

where the first inequality uses Young’s inequality and the second inequality uses Lemma [T} By
Young’s inequality, we have

sz(w““”)H?F<<1+ )nv@f(w“)nF ( ;;) IV f@®) = Vef @) 22)

Note that t = k7 + r, we further have
2

||ng(w(t)) ng (kT) ||2 ZVUC kr+z) ng(:n(k""'i_l))

F

<r Z Ve f(@FTH0) — W f(@TH-DY 2 (23)

=1

where the inequality uses Cauchy’s inequality. Applying 22)(23) to (1) yields
kT kT
(I - P (P )Vef (@)]3

(1—) IVef(@® ||F+@Z||Vf 40y _ @b E.

Applying (194 to (20) yields (16). =

Lemma 7 (Momentum error). Under Assumption[2} if 0 < 81 < 1 in deterministic GaLore using
MSGD and MP (Alg.[2)), it holds for any K > 1 that

Kr—1
> I = V@)
t=0

Krt—2

5(1—p1) 57(r —1) ( ©
: ((1—5/4)55% T T (1_5/4 ) Z 2 — 23

1 _é/z 9 Kr—1 -

* (1_5/4+ (16/4)751) ; IV @)z (25)
Proof. By Lemmal[f] we have
K71 ~ Kr—-2
> IMY = Vef (@) - (1— (1—) ﬁl) > I - Vi@l
=0
Krt-2

< <5(1 — (1) n 57(1 — 1)
- 01 ¢
Kr—-1

H(E(-5)m) X It
t=0

n r—l) S V@) - Vsl

21
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which implies

Kr—1
~ (¢
> I = Vef @)
=0
5(1— 1) 5r(r —1) )KT 2 (1
< + + Vef (@) = Vo f (D)3
= <<1 — o000 T (T =00 (1 55/4 D IVif(a ef @)%
1— 5//2 > Kr—1
+ v 26
(1 ot T 2 Ivef (= 26)
Summing 26) for ¢ = 1,--- , Ny, and applying Assumption2]yields (23). O

Now we are ready to prove the convergence of Alg.[2}
Theorem 6 (Convergence of deterministic Gal.ore). Under Assumptions |ZHZ| if hyperparameters

64 1 \/ 3832 \/ \/ 36,
<1, > < min{ — 27
O<h=l 72555 0<T’—mm{4L’ oz \sore Vierzz [0 @D

GaLore using deterministic gradients and MSGD with MP (Alg. 2)) converges as
Kr—1

1 (2 < 16
2
e Z IVi@E < 577 (28)
forany K > 1, where A = f(x(0)) — 1nfm f(x).
Proof. By Lemmad] we have
Kr—1 (0)y _ (KT) Kr—1
> 19 ss RIS ) )

n
Kr—1

- ( - ) Z 2+ — O3, (29)

Applying Lemmalto and using § <6 < 1 ylelds

Kr—1
< _ t) 2
(535 2 198

2

<2 f(@) - f(a7)
n
Kr—1
_ i —_ £ _ 20(1 — /Bl)LQ _ 207—(7- B 1)L2 _ 4 Z ||$(t+1 (t)HQ (30)
U 307 30 2
By we have
_ 2 172 172
08 6 g s {200 ﬁzl)L 207 - DE A -DEPY
4 361 8 4n? n 30437 30 361
Applying (3T) to (30) yields (28). O

We now prove Theorem 2] which is restated as follows.

Corollary 1 (Convergence complexity of deterministic GaLore). Under Assumptions [I{2} if T >
64/(39) and we choose

-1
_(ar+ 80L2 n 8072 L2 n 167L2
o 3357 38 36, )
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GaLore using deterministic gradients and MSGD with MP (Alg. 2)) converges as

T-1
1 - LA
72 197l =0 (5737 ) 62)

where A = f(x(®)) —inf, f(x). Consequently, the computation complexity to reach an e-accurate
solution x such that |V f(x)||3 < e is O ( La %)

é5/26

Proof: T > 1+ 64/(30) guarantees ' > 7. Let T = K7 +r, where K € N*and 0 < r < 7. If
r =0, (32) is a direct result of Theorem@ If r > 0, applying Theorem|§|to K = K + 1yields

T-1 - Kr—1

1 Er o1 LA
LN~ v pa®yz < K7 v 2:@()
F YIS < o 3 19l =0 (i

B.4 CONVERGENCE OF LARGE-BATCH GALORE

In this subsection, we present the proof for Theorem 3] GaLore using large-batch stochastic gradi-
ents and MSGD with MP is specified as Alg. 3]

Lemma 8 (Momentum contraction). Under Assumption[3) in large-batch GaLore using MSGD with
MP (Alg. , if0< B <1, term Me(t) has the following contraction properties:

e Whent = 0, it holds that

T—2
E[| M = Vo f(XO)|2] <2(r — 1)(1 = 6,81) 3Bl Vef (@) = Vo f(2™)]1%]
r=0
_ 1 2
0B S g sz + 0 )
r=0

e Whent = kt, k € N*, it holds that

Bl ~ Vese )3 - (1- (1) 4 ) BINZE D - Vst ) )

0 S gvisaez + 2 P, p@) - v, p(at)) 2]

<
= e
T—2 2
+2(r = 1)(1=80) Y E[[Vef (@) = Vo fTH)[F] + %; (34)
r=0

e Whent=kr+r, ke N, 1<r <, itholds that

BT - Vs - (1- (1) o) B - Vs

< (1 B (Z) BLE(IVef (@)]13] + WEHW(M = Vef @ )F]
15781 : : 1
I ;’eﬂl ;E[”vef(m(errz)) . vef(m(k'rJrzfl))H%] + ( 6;;)’1 + 5%) O'g. (35)
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Algorithm 3 Gal.ore using large-batch stochastic gradients and MSGD with MP

Input: Initial point 2(*), data distribution D, learning rate 7, subspace changing frequency 7, rank
{T‘g}é\]:l‘l, momentum parameter (31, large batch size B.
Output: {z}]_,
Initialize optimizer state { M e(*l) }ok to zero;
fort=0,1,--- ,T—1do
if t = 0 (mod 7) then

Sample {ﬁ(tvb)}szl iLd. D;
else

Sample ¢() ~ D;
end if

for/=1,2,--- ,N do
ift=0 (mod 7') then
G = § ¥ VeF (2510,
U,X,V « SVD(GY):;
if my, < ny then
Pl(t) — Ul:,:rel;
M — (1= )P TP MY 4 gy (P) TG,
XéHl) “ Xl(t) . an(t)MZ(t);
else ®
y = VL
MY« (1= p)MITVQIT)TQY + 516 Q)
1 :
X x0 - M (@)
end if
else
G = v, F(x®W;cW);
if my < n, then
Pé(t) s Pf(tfl);
MY (1 - )M + (PTG
Xlgt+1) “ Xlgt) - an(t)Mg(t)§

M (1= )MV + 8.6 Q)Y
Xét“’l) — X(t) 7]M( )( ét))T;

end for
end for

Proof. Without loss of generality assume m; < ny (the other case can be proved similarly). When
t = 0, we have

E[| M7 - Vo f(x
:E[||/31P;0>< NTGY — Ve f(x )3

=E[|8:(P" (P = DG + B1(GY — Vi f(x@)) — (1 = 1) Ve f (2 ™)[|3)
<BE[|(P PN - DGP + G = Vif (@[3 + (1= B)|Vef (@)}, (36)

NE
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where the inequality uses Jensen’s inequality. For the first term we have
0 0 0 0
E[(P7(P)T - DG + G — Vef(x)|3]
<2E[||(I - PP G 2] + 2B G — Vo f (2 @)||2]
<2(1 - §)E[[|Ge|3] + 2E[|GY” — Vo f (23]

_ 2
<21 - 8|V f@O)3 + L2

where the first inequality uses Cauchy’s inequality, the second inequality uses Lemmam the third
inequality uses E[| G\ — V,f(z)|2] < 02/B (Assumptlon' Applying (37) and Lemmato
B9 yields (53)
When t = k7, k € N*, we have
E[| M - Vef(®)|}]
B[P (P)T[(1 = B)M ™V + BiGY = Ve f(@D)] - (1 = PO (PO)T)Vef(29)[13]
=E[| P (P)TI(1 = )MV + LG — Vef (@)]]})
+E[|(I - PP )V ef (@), (38)

(37)

where the second equality uses Lemma By ||Pé(t) (Pz(t))T |2 = 1, we have

1P (POYTI(1 = MY + Bi1GY = Vo f(@D)][13)

<E[(1 - >M“ Y +/31G“> Vef(z®)|3]

E[ll(1 = B) (MY = Ve f(@®)) + B1(GY — Vof (29))|3]

<E[||(1 - ) (MY = Vo (M) [3] + BEIGL — Vef (@)]I3], (39)

where the last inequality uses the unbiasedness of th) (Assumption . By Young’s inequality, we
have

E[| M — Vo f(2®)|2]
=E[||(M;") — Vo f(@V)) — (Vof (@) — Vof(@tD)[|]

(1 - ‘”3) EIMY — Vef @) + (1 + 4) E[|[Vef(@") = Vef @ )II7)

E

508
(40)
Applying (@0) to (39) yields
B[P (PIYT[(1 = )M + 5GP — Vo f ()] 3]
_ _Q 70D _ (t-1)y27 4. P10
<(1-(1 B1 ) E[| M Vef (@ D)[F+ =
+ ‘r’(%ﬁl)lﬁ[\\vzf(w“)) — Vef (D)3 (41)
51
For the second term in @ we have
E[||<I—P<”<P“’>T>vef< ®)]12]
<2E[|(I - P (POYNHGWV|2] + 2E[|(I — PP TNGY — Vif (D)%)
<2(1 — 60)E[| G ||F1+2E[HG<”—vef<:c<t>>||F1
<2(1 = 0)E[|Vef (=®)[[F] + 42.‘5 (42)

where the first inequality uses Cauchy’s inequality, the second inequality uses Lemma|l|and || I —
J

Pe(t)(PZ(t))—r |l = 1, the third inequality uses Assumption (3} Applying @) to (
Lemma 2] yields

) and using
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Whent =kt +7r, k€N, 1 <r <7, wehave

E[| M) — Vo f(@®)[|2]
=E[|(1 - ) (MY — Vo f(20)) + (PO (PO) TG — Vo f(x®))||2]
=E[[|(1 - ><M“‘” Vef (@) + (P (P = DV, f(a™)][3]
+ BEP (PTG — Vef (2))|[3]
<(1— BE[M) = Vo f (D)2 + SENT - PP )V (2®))3
+ BEPY (PTG — Vo f ()3, 43)
where the second equality uses the unbiasedness of th) and the independence implied by Pe(t) =

Pg(tfl), the inequality uses Jensen’s inequality. The first term is similarly bounded as . For the
second term, we have

E[|(I - P (PE )V f (D)3

6 T T T
< (1+ %) B0 - POV PG
4 T T T
# (14 5 ) B = POV BE) e @) - Gl
<(1- 2Vt v 2 (14 L) EIIGEY - Vor@®)3
D) RG] +2 (14 ) BIGE - Tor@t )

49 (1 n é) E[|Vef(x®) — Vo f(®))2], (44)

where the first inequality uses Young’s inequality, the second inequality uses LemmalI]and Cauchy’s
inequality. We further have

36 - 4 T T
<1 - 4@) E[IGY 73] +2 (1 T 5) E[IG" — Ve @73
30 T T
< (1- BV RIves @t + REIGE - Vst
_ 30 0))3 ”"f
<1 ’ )IE:HVef(SE Wi+ 55
1102

(1 - 52) E[|Vef(=®)]3] + (1 ¥ 54) E[IVef(2®) - Vef @) 3]+ =2, @5)
Y/ ¢

where the first inequality uses unbiasedness of G’yw) , the second inequality uses Assumption the
third inequality uses Young’s inequality.

Applying @) to @ and applying Cauchy’s inequality yields
BT~ P (BT 1)V (2)]3]
< (1- 1) BTl + 2oL+ 2 ZE [Vef @) = T f(@rHD) 3],
(46)
For the third term, we have
EIIP (PG - Vel @) <EIGY - Vef@)F <o, @D)
where the first inequality uses HPe(kT) (Pe(kT))T l2 = 1, the second inequality uses Assumption

Applying BO)@EE)ET) to @3) yields (35). 0
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Lemma 9 (Momentum error). Under Assumption if 0 < By < 1in large-batch GaLore using
MSGD and MP (Alg.[3), it holds for any K > 1 that

Krt—1

> Ellm —Vf@)3
t=0
S1—By  1or(r—1) 27 —1) N R — 20
: <<1 5798 " 2(1-5/08 ' (1 _5/4>51> L2 ) Efjet - 2|3

t=0
Kr—1

1-6/2 4 CNT
(=a ) > Bl

5K 11KT K70, 2
+ <<1 “3/0BB (- 0/4B 1 5/4> 7 (48)

Proof. By Lemma|8|we have

Kr—1 ) s K12 -
S B[N — V)3 - (1 - (1 - ‘) 51) S BN V()]

4
t=0 t=0
Kr—2
< (BL=B) BT Db o 1)) ST B[V @) - Vef@®)3)
5251 26@ t=0
4 b ! 5K 11K7p
= 71 (t) 2 oo 1 2 2
P (1-3)3) X EiviseOi s (G T st ok
which implies
Kr—1 .
ST E(INLY — Vof(0))3]
t=0

5(1— 1) 157(r = 1) 2(r—1) & (t+1)\ ONE
= ((1 — 80/4)603? + 2(1—6¢/4)0, + (1— 5@/4)51) ; ElIVef (@) = Vef @ )lE]

1—4y/2 4 Kr-1 o
i (1 —o 1 - 54/4)761) > ElIVef@®)l3]

t=0
5K 11KT K15 ) 5
+ + + oy 49
<<1 —o/0BB T (1 —0,/05B " 1—0,/a) " )
Summing @9) for ¢ = 1,--- , Ny, and applying Assumption 23] yields (48). O

Now we are ready to prove the convergence of Alg. [3]

Theorem 7 (Convergence of large-batch GaLore). Under Assumptions[I}{3] if hyperparameters

128 1 /3687 \/ 5 \/ 36
0 <1 > — 0 < — 50
<hsl o T2ggn O<ns mm{4L’ \/80L2’ w0 OV

GaLore using large-batch stochastic gradients and MSGD with MP (Alg. 3) converges as

Kr—1
1 16A < 160 352 3251> 2 51)

_— E OY)121 <
7 2 BV S g+ (g s
forany K > 1, where A = f(x(9)) —inf, f(x).
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Proof. By Lemmafd] we have

Kr—1 Kr—1
2[f(x(0) — E[f(xK7)
I e RS (LR ERTE
t=0
1 I Kr—1
(%) X Elle - o (52)
A
Applying Lemma@to 52)) and using § < § < 1 yields
S 16 Kr—1
= _ E ()y]12
(55 2 BV
2 0K  44K7 4KTB,
<ZE 0)y _ (KT) 2
<2Blf@0) - @)+ (T + Bl + ) g
- 2 _ 2 _ 2\ K71
(1 L 20 ,5;1)L _107(r = 1)L*  8(r—1)L S Efla - o3,
7?oon 3007 s 30 =0
(53)
By (50) we have
_ 2 _ 2 _ 2
b 16 0L [0 B;)L’IOT(T DE? S(r-DItY
4 3761 — 8 4n? n 3033 d 354
Applying (54) to (33) yields (BI). O

We now prove Theorem 3] which is restated as follows.

Corollary 2 (Convergence complexity of large-batch GaLore). Under Assumptions ifT >
2+ 256/(33) + (2560)%/(9v/ILA) and we choose

—1
| 83262
— 1 -
61 + LA )

128
T 3061 |’
—1
Ny 017, faorre o fsarr
B 303% é 361 ’
1

B=| |,

{551-‘

GaLore using large-batch stochastic gradients and MSGD with MP (Alg. [3) converges as

T-1
LA LAo?
T Z E[||Vf(z®)|3] = (55/2T + ’/57/2T> : (55)

where A = f(x(©) —inf, f(x). Consequently, the computation complexity to reach an e-accurate
; ; LAo? LA 2 1
solution x such that ||V f(z)||3 < e is O (§7/2(7s2 + 55t s T E)'

Proof. T > 2+ 128/(38) + (1280)2/(9v/3LA) guarantees T > 7. Let T = K7 + r, where
K eNand0 <r < 7. Ifr =0, ({5 is a direct result of Theorem[7 If r > 0, applying Theorem
[lto K := K + 1 yields

— g Kr—1
1 LA LAG?
IV F(z®) <07 ENY f(2®)2] = © + .
;O IV f(")]3] < T Tor ; IV f(=™)]3] ST 52T
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Algorithm 4 GoLore using small-batch stochastic gradients and MSGD with MP

Input: Initial point 2(*), data distribution D, learning rate 7, subspace changing frequency 7, rank
{T‘g}é\]:l‘l, momentum parameter 3.
Output: {z"}]_,
Initialize optimizer state { M e(*l) }ok to zero;
fort:0,1,~-- ,Tfldo
Sample £(V) ~
G(t) \VA F( ( ) €M),
for (=1,2,- NL do
ift = O (mod 7') then
if my < n, then
Sample Pe(t) ~U(Stmy )
-1 -1 t
My (1= )P ) TR UMY+ (PTG
1
Xéﬁ_ ) . Xét) . nPZ(t)MZ(t);
else
Sample Qy) ~ Z/I(Stnwf); )
t t— t— t t t
M (1 - )My Q) TR + 1 Q)
1
Xé” ) Xlgt) _an(t)( ét))'l';
end if
else
if my < n, then
Pé(t) - Pe(t_l)’
M (1= )MV + B (PTG
X(t""l) Vs X(t) _ UPe(t)Mg(t)§
else
Qlt) - Q(t 1)
M« (1-5 )Mé““ +4G7Q
1
X - X M (@)
end if
end if
end for
end for

B.5 CONVERGENCE OF GOLORE

In this subsection, we present the proof for Theorem[d] GoLore using small-batch stochastic gradi-
ents and MSGD with MP is specified as Alg. ]

Lemma 10 (Momentum contraction). Under Assumption 3| in large-batch GoLore using MSGD
with MP (Alg. , if0< p1 <1, term Mz(t) has the following contraction properties:

e Whent = 0, it holds that

T—2
E[|M” — Vo f(XO)|2] <(r — 1)(1 — 8:51) ZE IVef (D) — Vo f (2™)]3]

1

2(1 = 60B1) —
+ 200 S g, ) 3+ ol (56)

r=0
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e Whent = kr, k € N*, it holds that

BT~ Tef(@ ) - (1 (1- 5 ) 51 ) BIINES ™ = Wepte ) 3]
T—1
<2 S vt )3 + R v @) - Vsl
r=0
T—2
(= 1)1 - 80 S Bl @) - V@O B 4 st 67)
r=0

e Whent=kr+r, ke N, 1<r <, itholds that

ElIAZ - Ves@ ) - (1- (1- %) 51 BINZE D - Vs @)
< (1- %) BNV @O + ESP BV @) - Vsl
+ 10(;51 SOE[[Vef (@E) - v, f(a®THD) 2] + g202. (58)
i=1

Proof. Without loss of generality assume m, < ny (the other case can be proved similarly). When
t = 0, we have

E[| M — Vof(z®)|2]
E[|6: P (PTG — Vo f(2™)][3)
=E[l|(6: P (BT — DV f(x)3] + BE[| P (PGP — Ve (2©))||2]
=tr((Vef (@) TE[(5: P” (P7)T — I)*]V, f(2))
+ Bitr(Eeo p[(GY = Vef (@) "Epasiist,,, . (PPTUG = Vef(@®))), (59)

where the second equality uses unbiasedness of Géo). By Lemmawe have
E[(BP"(P{")T - D =I - (26, - B)EIP” (P")]
=I — (261 - B})dcd,
thus
w(Vef @) TE[B P (PO)T = DVef (@) =(1 - 60(281 - B)IVef ()]
<=0 |Vef (@D)E. (60)
Similarly, by Lemma[5| we have

tr(Ego ~p[(G}” = Vef (@) Epasist,, ) (PP TG = Ve f(2@))])

—n (B[ - visr@O)" (2 1) (6 - Vi) )

my
=E[|G” ~ Vel )3
<407, (61)
where the inequality uses Assumption[3} Applying (60)(61) and Lemma[2|to (39) yields (56).
When t = k7, k € N*, we have
E[| M ~ Vef @)]3]
=E[| PO(P{)T[(1 = )M ) + 516 = Vef (@) — (1 = P (B T) Ve f ()13
=SE[|(1 — BOM ™ + BiGY) = Vef (@[3 + (1= S)E[|Vef @) 7, (62)
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where the second equality uses Lemma [3]and Lemmal[5] For the first term, we have
E[ll(1 - >M“‘” +B1GY =V, f(a®)]|]
=E[[|(1 = B) (M"Y = Vo f (2)) + B1(GYY — Y, f(2®))|3]
<E[|(1- 1><Mét V= Ve f@)IF] + BEIGY — Vef(z9)]3]

<(L-BOE(IM Y = Vef(@®) 7] + Bo?, (63)
where both inequalities use Assumption[3] By Young’s inequality, we have

E|M D =V f (D)%)
=E[||(M;'™" — Vo f (@) — (Vef (@) - Vof (D)3

<1 T z ) B[ — Vef (2 D)|3] + (1 + 4) E[|Vef (@) = Vef @)}

def3
(64)
Applying (63)(64) and Lemma[2to (62) yields (37).
Whent =kt +7r, ke N, 1 <r <7, wehave
E[[| M — Vo f(x®)[|3]
=E[[|(1 - 81) (M) — Vof (D)) + Bi(P, “)(Pé”WG? — Vef(9))|[3]
=E[|(1 - 8 ><Mét V- Ve f(a®) + 8PP — DV f(20))3]
+ BEP (P T(GY — Vef(z9))]3]
<(1-BE [HM“ V- Vef(x9)3] + BEI - PO (P T)Vef ()3
+ BEPO (PTG — Vi f (D)3, (65)

where the second equality uses the unbiasedness of th) and the independence implied by Pe(t) =

Pe(t_l), the inequality uses Jensen’s inequality. The first term is similarly bounded as . For the
second term, we have

E[|(I - P (P TV f (20))13]
< (1 + ‘”) E{I(T — P& (D) TV f () 2]

+( ) E[I(I - PPV (PE)T) (Ve f(2®) - Vefa®)|2]
< (1= ) BT + (14 £ ) BNV @) - Vi@ IEL 60

where the first inequality uses Young’s inequality, the second inequality uses Lemma and ||I —
Pe(kT)(PZ(kT))THQ = 1. By Young’s inequality, we have

8 4 i
BV /@I < (145 ) BIVeA @O + (14 5 ) BIVA ) - Vef@o) B
(67)
Applying (67) to (66) and applying Cauchy’s inequality yields
E[|[(I — P (P TV f(™)13]

(1) E[| Ve f(@®)]2] + 1OTZE\|vefw<kT“>> VoA EtTHONEL  6R)

For the third term, we have
kT kT
BB BTG — Vet @O)F] < EIGY ~ Vef @) <of.  (69)
where the first inequality uses HPe(kT) (Pe(kT))T l2 = 1, the second inequality uses Assumption

Applying 4 E8)©9) to (65) yields (58). 0
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Lemma 11 (Momentum error). Under Assumption2}3] if 0 < 81 < 1 in GoLore using MSGD and
MP (Alg.H), it holds for any K > 1 that

Kr—1

> E[Im® — v f(®)3]

t=0
<( S(1-p) | Sr(r—1) 71 ) KizEHiB(H_l 2O
“\(1—d/4)dp7  (1-4/4)8  (1-6/4)8 2

1-4/2 2 Kr—1 o . Krhio?
+ (1_5/4+ (1—6/4)7‘61) ; ]E[va($ )”2}4‘ 1_5/4, (70)

Proof. By Lemma|[I0] we have

3 BT - vef<w<t>>||%1—< (1—) ,61) S EIALY — Vot )]

t=0 t=0

(1-B1) , 57(r—1)B K2 " -
<(Miat+ T, “‘1>§E”W 2 ) = Vs (@)}

2 Kr—1
" (T <1 - > *81) > ElIVef (D)7 + K807,

t=0
which implies

Kr—1

ST E[IMY - Ve f(z)]3]

t=0

5(1 - B1) 5r(r—1) T—1 = (t+1)y _ ONE
s((l_ )+ O /4)51) S E[Vef (@) - Vo))

t=0
Kr—-1
1—6¢/2 2 Ktpio2
E )\ 12 J4 . 1
+(1_5£/4+(1_5£/4)751> ;:O [”V(f(w )||F]+1_6l/4 (71
Summing (71) for £ = 1,--- , Ny, and applying Assumption 2}3yields (70). O

Now we are ready to prove the convergence of Alg. ]

Theorem 8 (Convergence of Golore). Under Assumptions[I3 if hyperparameters

64 1 [38p2 \/ \/ 361
il < il
358 O < nsmin { AL \/80L2’ sorzrz V162 (0 7P

GoLore using small-batch stochastic gradients and MSGD with MP (Alg.H)) converges as

0<51§17 7_2

Kr—1

1 » 16A 3280
e Z EIVS @3 < 50+ 5 (73)
forany K > 1, where A = f(x(0) — inf, f(x).
Proof. By Lemmafd] we have
Kr-1 Krt—-1
21f (@) — E[f (K™ _
> v <DL Y s - v
t=0 t=0
1 I Krt—1
~(5-2) X Elle - o 74)
g N7 =
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Applying Lemma.to and using § < § < 1 yields

(3-55) X EIvi@O

t=0
4K 2
<2Elf(@®) - fat7) + LT
n
Kr—1
(1 L 20(1-p)L* 207(r—1)L* A(r - 1)L? 3 B[t — 203,
UR 3057 30 361 pr
(75)
By we have
_ 2 _ 2 _ 2
b8 b gL L 20(1= 5L 20r(r = 12 A =L oo
4 3161 — 8 4n? n 3037 30 361
Applying to yields (73). O

We now prove Theorem [} which is restated as follows.

Corollary 3 (Convergence complexity of GoLore). Under Assumptions[I{3} if T > 2+128/(348) +
(1280)%/(94/0LA) and we choose

-1
[83/%02T
= 1 =
61 + LA ;
64
T =
3061 |’
-1
80L2 8072L2 167L2
n=|4L+ )
3@51 351
GoLore using small-batch stochastic gradients and MSGD with MP (Alg.H) converges as

T-1
1 0) LA | LAc?

where A = f(x(©) —inf, f(x). Consequently, the computation complexity to reach an e-accurate
solution x such that ||V f(z)||3 < e is O (é,%"; + ég/ée + Ql/(;QLA + é)

N

Proof. T > 2+ 128/(34) + (1280)%/(9+/3LA) guarantees T > 7. Let T = KT + r, where
KeNand0<r<r7.Ifr =0, is a direct result of Theorem 8] If » > 0, applying Theorem
to K = K + 1 yields

T-1 Kr—-1

1 Kr 1 LA LAg?
il (t) . (V)21 —
F Y BTSN < B Bl 0<55/2T+\/ WT)-

C RESULTS FOR SPARSE SUBSPACE OPTIMIZATION

In this section, we illustrate how to transfer the main results of this paper to sparse subspace opti-
mization algorithms. We first present the detailed algorithm formulation, then present the theoretical
results corresponding to GaLore/GoLore. Although it only requires little effort to transfer results in
GaLore/GoLore to sparse subspace optimization, we still include proofs for completeness.
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Algorithm 5 |GaSare / GoSare algorithms using stochastic / deterministic / large-batch gra-
dients

Input: Initial point 2(), data distribution D, learning rate 7, subspace changing frequency 7, rank
{Tg}észl, optimizer hyperparameters 31, 32, €, large batch size B.
Output: {z}] .
Initialize optimizer state { M €(—1) }éVZLl and {Vé(_l) }évzf‘l to zero;
fort=0,1,--- , T —1do
for/{=1,2,--- Ny do
if t = 0 (mod 7) then

G?) — ViF(x®;£®);  (stochastic)

Gét) — Vef(x®); (deterministic)

GEt) — %Zf:l VF(x®;£®0);  (large-batch)
Sét) — Topk(GEt)); (GaSare)

Sample Sét) ~U(Sp* . );  (GoSare)

me,ne

else
GV« V,F(x®;¢®);  (stochastic)
GV Vif(x®); (deterministic)
th) — VF(x®;£®);  (large-batch)
SH s,
end if
B 800 G
M« (1-p)8" o MY + iR
VY (1-8)8" o V'V + R © RYY;

if using Adam then
M =M )1 -8, VO VO -8 NP MV o)
else if using MSGD then

N MY

end if
XétJrl) - Xét) B nsét) @Nl(t);
end for
end for

C.1 ALGORITHM DESIGN

While low-rank subspace optimization algorithms like GaLore/GoLore project full-parameter gra-
dient G € R(™*"™) into low-rank subspaces via projection like PTG, sparse subspace optimization
algorithms use a sparse mask S to get S © G. Specifically, consider the following set

SPm.n = {8 € {0,1}™" | S|} = K},

i.e., a set of m X n matrices contains k ones and (mn — k) zeros. Corresponding to the subspace
selecting strategy in GalLore, we consider a Top-k strategy which places the k ones at indices cor-
responding to G’s elements with the k largest absolute values. We also consider a Rand-k strategy
which samples the sparse mask matrix S from the uniform distribution on Smen corresponding to
GoLore. For convenience, we name the algorithm using Top-k strategy as GaSare (Gradient Sparse
projection), and the one using Rand-% strategy as GoSare (Gradient random Sparse projection). The

concerned sparse subspace descent algorithms are described as in Alg. 5]
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C.2 NOTATIONS AND USEFUL LEMMAS

We assume the model parameters consist of Ny, weight matrices. We use X, € R"¢*"™ to denote
the /-th weight matrix and € R? = (vec(X;)T, - ,vec(Xn,)T)T to denote the vector collect-
ing all the parameters, d = ZéV:Ll myny. We assume GaSare/GoSare applies sparse mask in Sp]f,f e
to the ¢-th weight matrix and denote

We define M(t S(t) ©) M(t) and . = (vec(M,)T,---  vec(My,)")T. While using Alg.
with MSGD, 1t holds that

8,59 0 G, o
M = s e (- 51)M§t‘” +HGY), =kt ke N
(l_ﬁl)Me(til)+Blszgt)®G§t)v t=kr+r, keN, 1<r<m
and that
Xlgt+1) _ Xét) _ an(t).

We use E,, ,, to denote the all-one m x n matrix, i.e.,

Em,n: . . . . eRan.
11 - 1

Lemma 12 (Error of GaSare’s projection). Let S be the Top-k mask of G € R™*™, it holds that

k
e

Proof. Letgi,go,- " , gmn be elements of G such that |g1| > |ga| > -+ > |gmn/|- It holds that
k mn
ISOG-GlF=> (g—g:)”+ > (0—g)?
i=1 i=k+1
mn
= > 9
i=k+1

IN

k mn
<1 - mn) ;gl%

k
~(1- =) 6l

ko2
where the inequality uses —L- 3" g2 < 1377 g2 O

Lemma 13 (Error of GoSare’s projection). Let S ~ U (Spfn,n), it holds for all G € R™*™ that

E[S] = e -Ep oy, (78)
mn
and
E[|S® G - G|%] = (1—k >||G||2 (79)
F mn e
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Proof. To prove @), it suffices to note that for any element S; ; in S, it holds that

(mn — D)!/[(mn — k)!(k — 1)! k
ElSi] =PlSi; = 1= (mn)‘/[[(mn — k)EY } ~mn

To prove (79), we have

ElSoG-G3= Y P, =02 = (1 .

1<i<m,1<j<n

k

mn

) Gl

C.3 NON-CONVERGENCE OF GASARE

In this subsection, we present the non-convergence result of GaSare, similar to that of GaLore.

Theorem 9 (Non-convergence of GaSare). There exists an objective function f : R — R satisfying
Assumptions E] a stochastic gradient oracle (F, D) satisfying Assumption an initial point ),
a constant €9 > 0 such that for GaSare with any sparsity level ky < mgny, subspace changing
frequency T and any subspace optimizer p with arbitrary hyperparameters and any t > 0, it holds
that

IV f(@ D)3 > eo.

Proof. Consider target function f(X) = %[|(pp") © X||% where L > 0, X € R"*" withn > 1
and p = (1,0,---,0)" € R™. It holds that

LX?%,
1>
2~ 0,
thus f satisfies Assumption Since Vf(X) = L(pp") ® X, it holds that
IVAX) = VIX)|r=Llitpp") © (X = Y)|lr < L|X = Y|,
thus f satisfies Assumption 2]

fF(X) =

Consider the following stochastic gradient oracle:
F(X,f) :f(X) +&o - tI‘(QX), and ]PENDK = 1} = Png[f = 71} = 0.5,

where 6 = 0/y/n?(n? — 1)/2 and
0 vn vn?—n
V1 vn+1l - VnZ-n+1

€ Rnxn.
vn—1 2n—-1 --- Vvn?2 -1
Note that VF (X ;&) = Vf(X) + £6Q, it holds for any X € R™*™ that
Eep[VF(X;€)] =Vf(X)
2 n?—1
ey 27 _=2 2 _ g ) L 2
thus oracle (F, D) satisfies Assumption[3]

Consider the initial point X (9 with X 1(01) = A, where 0 < A < /L is a scalar. We show that

GaSare with the above objective function f, stochastic gradient oracle (F, D), initial point X (0,
arbitrary sparsity level 0 < k < n?, arbitrary subspace changing frequency 7 and arbitrary subspace
optimizer p, can only output points X *) with |V f(X ®))||2. > ¢ for eg = L2\ > 0.

When 7 | ¢, GaSare recomputes the sparse mask matrix at iteration ¢. If X {t} = ), the stochastic
gradient is given by

GY =Lpp") © X +¢{V5Q.
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since L\ < &, the Top-k mask S € R™*" satisfies

VGC(S) = (0707 7071a1a"' 71)T Ean,
——— ——
(n?2—k)x kX

Using this mask matrix, the subspace updates in the following 7 iterations is as

A—1
X080 = X0 4 50 o ( PNAARICRC G“”) = Xt =x{i=a
s=0

for A, = 1,2,---,7. Since X{*) = A, it holds for all # > 0 that X"} = X and thus
IVAXO)[F = L2 = .

C.4 CONVERGENCE OF DETERMINISTIC GASARE

In this subsection, we prove the convergence properties of GaSare with deterministic gradients. The
results and proofs are similar to those of deterministic GaL.ore in Appendix

Lemma 14 (Momentum contraction). In deterministic GaSare using MSGD (Alg. |§|) ifo< fy <1,
term M, Z(t) has the following contraction properties:

e Whent = 0, it holds that
T—2

IV — Ve f(XO) 3 <(r = 1)(1 = 6081) Y [Vef (D) = Vo f ()|
r=0
21— 6,81) =
" % XZ:O Ve f ()17 (80)

e Whent = kt, k € N*, it holds that

192 - 9ep @O - (1- (1= %) 52 ) INEEY = Vep( )
2(1 — 6;) <= 1—
DS st + L9 @) - Ve )
r=0
T—2
+ (7= 1)1 =80) D IVef (@ D) — v, f (@57 |13 81
r=0

e Whent=kr+r, ke N, 1<r <, itholds that

BIAT - Vs - (1- (1) o) BIAZE ™ - Vs )]

< (1 - ‘5‘) BENVF@)2] + 2L P9, @) - v, f(20-) 2]
2 0eB1
+ 5 S (V@) - Vst (82)
=1

Proof. For convenience we use E to denote E,,, ,,,. When t = 0, we have
1M = f @) 5 =15:(S,” — B) © Vef (@) — (1= 5)Vef (@)
<BLL =) |IVef @ )5 + (1= B)[Vef @)
=(1 = 8eB1)[|Vef ()], (83)
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where the inequality uses Lemma[I2]and Jensen’s inequality. Applying Lemmal[2)to (83) yields (80).
When t = k7, k € N*, we have
|82 = Vef @ )7
=18{" @ [(1 = B)ML" ™ + 516 = Vef ()] = (B - 57) © Ve f (@)
=115 © [(1 = p) (M ™" = Ve f @O)]F + (B~ 517) © Vef (@)]7
<= B = Ve f@ON)F + (1= 60| Vef @D, (84)
where the inequality uses Lemma([I2} By Young’s inequality, we have
Ll
=LY = Vef (@) = (Vef @0) = Vef (@)

<(1+ £ NI = i@+ (14 55 ) Ve ) - Ve D).

(85)
Applying Lemma 2] and (83) to (84) yields (8T).
Whent=kr+7r, k€N, 1 <r <, wehave
1M~ V0f (2D);
=11 = B)(M ™Y = Vef @) + br(S)" — B) © Ve (@)}
<(1=B)IM ™Y = Vit @)E + Al(E ~ 5(7) 0 Vef (@)}, (86)
where the inequality uses Jensen’s inequality and S,E” = Sétil) =...= SékT). The first term can
be similarly upper bounded as (83). For the second term, we have
(B~ 8") 0 Ve (@)}
< (145 ) 1B - 587 0 Vst
# (145 ) 168 = 857) 0 (V@) - Taf ()1
<(1+ %) - 8IS @D + LIV @) - Tf @ 6D

where the first inequality uses Young’s inequality and the second inequality uses Lemma [I2} By
Young’s inequality, we have

|vef<m<“>>||%s(1+ >||sz(w(t)llp+(1+ )nvm )= Vef@*)E 89)

Note that ¢t = k7 + r, we further have
2

||VZf(;13(t ) vef (k) ||2 kTJrz véf( kTJri—l))

F

<r Z IVef(@®H0) — Vo f@® D)2, (89)
=1

where the inequality uses Cauchy’s inequality. Applying (88)(89) to (87) yields
(B~ 5/7) 0 Vef (@)}

10 )
(1— ) IVef (@))% + ’"va F@ )~ V@R, o)
Applying (3)(©0) to (86) yields (82). O
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Based on Lemma([T4] we can prove the convergence properties of deterministic GaSare similarly as
the proofs of Lemma[7] Theorem[6|and Corollary[T] Below we directly present the final convergence
results.

Theorem 10 (Convergence of deterministic GaSare). Under Assumptions[I{2] if hyperparameters

64 N \/3651\/ \/351
<1 > — < —
0<Prsl, 72355 0<77—“““{4L’ sor2’ V sorzr2 V 16722

GaSare using deterministic gradients and MSGD (Alg.[5) converges as

Krt—-1

16A
(t) 2 <
Z IVF O < 5

forany K > 1, where A = f(x(%)) —inf, f(zx). If T > 64/(33) and we further choose
pr =1

| 64
"7 | 388
-1
80L2 8072L2 167L2
n=|\4L+ ;
3§ﬁ1 351
GaSare using deterministic gradients and MSGD (Alg.[5) converges as
T—1
1 LA
T X I9iIE=0 (55 )
= 8

Consequently, the computation complexity to reach an e-accurate solution x such that |V f(z)||3 <

ElSO(65/2 —&—é).

C.5 CONVERGENCE OF LARGE-BATCH GASARE

In this subsection, we present the convergence properties of GaSare with large-batch stochastic
gradients. The results and proofs are similar to those of large-batch GaLore in Appendix

Lemma 15 (Momentum contraction). Under Assumption |3} in large-batch GaSare using MSGD
(Alg. , if0 < p1 <1, term M, Z(t) has the following contraction properties:

e Whent = 0, it holds that

T—2
E[ M — Ve f(XO)2] <2(r — 1)1~ 661) D El|Vef (@) — Vo f(™)]3]
r=0
_ T—1 2
* w S EIVes@)E + T o1
r=0

e Whent = k7, k € N*, it holds that

E[| M -V, f ()] - ( (1 - ‘54) 51) E[| M = Vo f(@t)|2]

T—1
S BTS2 @) Vsl
r=0
T—2 2
+2(r = 1)(1 = 60) Y E[IVef (@* ) — Vo f@ ) 7] + %; o
r=0
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e Whent=kr+r, ke N, 1<r <, itholds that

B - Ver@ O3 - (1 (1= %) 51 BN - Tes(e )13

< (1= ) B0V A+ B P BT e ) - Vs ]
¢P1
115

157’51 " : .
hilg 3 E BV m(k‘rJrz) I v/ m(k‘rJrz 1)y1(12

+ ﬂf) o2, (93)

Proof. For convenience we use E to denote E,, When ¢ = 0, we have

E[| M — Vo f ()2
=E[5:8)” © Gy — Vo f (z)||3]
=E[[5:(5)" — B) © G + Bi(GY — Ve f(xD)) = (1= B1)Vof (z)[|3]
<BE[(SL ~E) 0 G + G — Vi f(@ )2 + (1 - )IVef(@ ) (94)

where the inequality uses Jensen’s inequality. For the first term we have

0 0 0
E[l(s,” - B)© G[” + G} ~ V(@ )}]

0 0 0

<2E[|(E - 5;") © G, [}] + 2E[|G}" ~ Ve @®)|[3
0
<2(1 - S)E[|Gel}) +2E[G” — Vef ()]
(4 — 25@)0’ %
B )

where the first inequality uses Cauchy’s inequality, the second inequality uses Lemma[T2] the third
inequality uses E[||Gg0) — Viof(@)|%] < 02/B (Assumption . Applying and Lemmato
(©4) yields (O1).

When t = k7, k € N*, we have

<2(1 = 80)||Vef ()% + (95)

B[ — Vo f(2®))|2]

=E[|S” & [(1 - )M + BGY — V()] — (B — 8P) 0 Vof(z®)|2]

—E[|IS{” © [(1 - )M + G — Vi f(@D)]| 2] +E|(E - ) © Ve f (@D)||Z].
(96

‘We further have

@
®
—
|
@
=
2
S~
L
JF
isS
9!
~2
|
<
o~
=
8/\
fre’

(M =) + B1(GY = Vif(2®))|3]
DY = Vo f@))2] + B2E[|GY — Vof(a®)]2], 97)

where the last inequality uses the unbiasedness of th) (Assumption . By Young’s inequality, we
have

B[ M =V, f(@D)|%]

=E[||(M;'™" — Vo f (@) — (Vef (@) — Vof (D)3
4

< (1+ 22 ) BINE Y - Vs @B+ (14 5 ) BIVes@) - Vef @ D))
(98)
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Applying (98) to (97) yields
E[|S” o [(1 - 81)M ™V + B1GY — Vo f(x®))[3]

< (1 (1-%) ) BUNE) — Vst Dy + O

N MEHW@% — Vef (@), (99)
51

For the second term in (96), we have
E(E - 5”) © Vef(@")]3]
<2E[|(E - 5;”) © G |[}] + 2E[|[(E - §;") © (G} — Ve (=) 7]
<2(1 - 6)E[IG" I} + 2E(IGY” — Vi ()]
403
B )
where the first inequality uses Cauchy’s inequality, the second inequality uses Lemma|l2] the third
inequality uses Assumption 3] Applying (99)(100) to (96) and using Lemma[2]yields (92).

Whent =kt +7r, ke N, 1 <r <7, wehave
E[|[ M — Vo f (2)|[3]
=E[J|(1 - 8) (M = Vo (@) + p1(S{” © G = Vef(@™)|F]
=E[[|(1 - BV = Vef(a®) + Bi(S — E) 0 Vef(z0)|3]
+ BIE[S)Y 0 (G = Vof(@™)|}]
<(1 - BOE[IM Y = Vo f (2 D)3] + KEI(E — S§Y) 0 Vef (M)}
+ BIE[S) © (G — Vef (&), (101)

<2(1 - 6)E[|Vef(2™)|2] + (100)

where the second equality uses the unbiasedness of Gy) and the independence implied by S ét) =

S ét_l), the inequality uses Jensen’s inequality. The first term is similarly bounded as . For the
second term, we have

E[|(E - S*) ® Vof (®)|3]

(5 T T
< (1 * f) E[I(E - 8*) o GI*|I2]
4 T T
+ (1 + 5@> E[I(E - S{*) o (Vef (") - G)|I%]

36 . 4 . ]
< (1= 2 Bt + 2 (14 £ ) BIGE - V@t
#2145 ) BIVA @) - Ve @) (102)
14

where the first inequality uses Young’s inequality, the second inequality uses Lemma [I2] and
Cauchy’s inequality. We further have

3(5@ T 4 o o
(1 - 4) E[IG{713) + 2 (1 + 5) (|G — Vo f(x*7)[3]

1- ) E[||Vef(@*)2] + %E[IIGE’”) — Vef(@*)[|2]

110?
0B

2
VENT @O+ (14 5 ) BV @) - Tef@ 3 + 55 o3
14 14

(
< (1 _ 35@) Bl Ve f (@) 2] +
(
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where the first inequality uses unbiasedness of Gyw), the second inequality uses Assumption the
third inequality uses Young’s inequality.

Applying (T03) to (T02)) and applying Cauchy’s inequality yields
kT
E[[(E ~ 8*7) © Ve f(@")||7]

b} 1162 15r y i
< (1= %) EIVe @Ol + 55+ ZE Ve f @) — Ty patr+0) 3.
(104)
For the third term, we have
E[|S{" @ (GfY = Vif(z))[}] <E[IGY — Vef(x®)|}] < o, (105)
where the second inequality uses Assumption [3]

Applying O8)(T0A(IO3) to (IOT) yields ©3). -

Based on Lemma we can prove the convergence properties of large-batch GaSare similarly as
the proofs of Lemma|9] Theorem[7]and Corollary 2] Below we directly present the final convergence
results.

Theorem 11 (Convergence of large-batch GaSare). Under Assumptions[I[3] if hyperparameters

128 1 \/3éﬁ% \/ g \/ 361
0 <1 > 0 < _
ShsloT2ass <”—mm{4L’ sor?’ V407202 \ 32722 [

GaSare using large-batch stochastic gradients and MSGD (Alg. |5) converges as

Kr—1

1 16A 160 352 3201
— E x® 2

for any K > 1, where A = f(x0) — inf,, f(x). If T > 2 + 256/(36) + (2560)2/(9v/OLA) and

we further choose
-1
3/2 9o
5 6 o T
1= )

N 40721;2 59012
3ﬁ1 361 ’
LSBJ

GaSare using large-batch stochastic gradients and MSGD (Alg. |5) converges as

T-1
1 5 LA LAc?
7 2 BVl = 0 ( | WT) ~

Consequently, the computation complexity to reach an e-accurate solution  such that |V f(z)||3 <

. LAc? LA o 1
eis O (é7/252 + 5 tsera T 5).

ﬂ
|

C.6 CONVERGENCE OF GOSARE

In this subsection, we present the convergence properties of GoSare with small-batch stochastic
gradients. The results and proofs are similar to those of GoLore in Appendix
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Lemma 16 (Momentum contraction). Under Assumption [3} in GoSare using MSGD (Alg. [5), if
0< p1 <1, term M, e(t) has the following contraction properties:

e Whent = 0, it holds that
T—2

B[ M — Vo (XO)2] <(r = 1)1 = 8:81) Y E[|Vef (@) = Vi f(@)|2]

+ 2o T::E[Ivef(w(”)%] oot (100
* Whent = k7, k € N*, it holds that
BT~ Tef(@ ) - (1 (1- 5 ) 51 ) BIINES ™ = Wep(e ) 3]
S éﬁ[nvzﬂx(mr»%} + M Bg)19,1(w) - Vst 0) )
- D60 S BT - Ve R e 07

e Whent=kr+r, ke N, 1<r <, itholds that

E[|M;" - Vef (@)} - (1 - (1 - ff) ﬁ1> E[| MY - Vof @t D)|3)
= (1 - 55) BIE[[Vef(M)[F] + %Ewww) — Vef(@")|I7]
i 10(;61 ZE[”VZf(w(kT—H)) _ sz(:l:(kT—’_i_l))H%] + 5502. (108)
=1

Proof. For convenience we use E to denote E,,, ,,,. When ¢t = 0, we have

B[\ M — Vo f(2©)|%]
—E[|5:8” © G — v, f(2@)|2]
=E[||(5:5)”) — E) © Vo f(x)|2] + BZE[|S” & (G - Vof (2 @))|2], (109)

where the second equality uses unbiasedness of G§0). By Lemmawe have
E[[|(5:5;" ~ E) © Vef (@) 3
0
= > EBIS") - DAV @O,

1<is<me,1<j<ne

= Y (1—2B10+ B [Vef ()2,

1<i<my,1<j<n,
<(1 =8B Vef ()7 (110)
Similarly, by Lemma[5| we have
B[S © (G — Ve f(@®))||2]
= > ESURGY - Vef(x ),

1<i<my,1<j<n,
=5E[|GY) — Vo f(@@)|3]
S(SZU?a (11])
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where the inequality uses Assumption[3] Applying (TTO)(TTT)) and Lemma [2]to (T09) yields (T06).
When t = k7, k € N*, we have
E[|[ M) — Vo f(x®)[|3]
=E[[|s}” & [(1 - m)M“‘” +BGY —Vof(@D)] = (B - 87) © Vi f(zM)||}]
=5E[[|(1 - BOM Y + /G — Vof(xD)[3] + (1= 8)E[|[Vef (D)3, (112)
where the second equahty uses Lemma|[T3] For the first term, we have
Elll(1 - )MV + /G — Vof(2®))3)
=E[|(1 - ><Mét V- Ve f @) + Bu(GY = Vef())[13)
<E[|(1 - B)MY = Ve f(x®)|3] + BEGY — Ve (x®)[3]
<(1-B)E wa V-V f(@®)}] + Bio?, (113)

where both inequalities use Assumption[3] By Young’s inequality, we have

E[|M ) = Vo f(®)|3]
=E[||(M;"" — Vo f (2" V)) — (Vef (@) - Vof (2 1>||2F]

(1 T i ) E[|8Z Y = Vef @03 + (1 + ) E[|Vef (@) = Vef (@)

5b1
(114)
Applying (IT3)(TT4) and Lemma2]to (TT2) yields (107).
Whent=kr+7r, k€N, 1 <r <, wehave
E[| M — Vo f(@®)||2]
=E[|(1 - )M = Vef(@®) + Bi(S 0 G — Vi (z9))]13]
=E[[|(1 - BV = Vef(a®) + Bi(S — E) 0 Vef(z0)|3]
+ BIE[S)Y 0 (G — Vof(@™)|}]
<= BOE[MITY = Vo f (D) |3] + HE[(E - 5) © Vef (D)%
+B2E[S” 0 (G — Vo f (D)2, (115)

where the second equality uses the unbiasedness of th) and the independence implied by Sét) =

S ét_l), the inequality uses Jensen’s inequality. The first term is similarly bounded as li For the
second term, we have

E[I(E - 8"") © Vof (@)|I3)
< (145 ) BB - ) 0 Vsl

+ (1 + ;) E[l[(E - 8§*") @ (Vef (&™) = Ve f (@*7)[3]

< (1= ) Bt + (14 £ ) BV @®) - Vi@t IR ate

where the first inequality uses Young’s inequality, the second inequality uses Lemma[I3] By Young’s
inequality, we have

BIIVes @ < (14 % ) BV @Ol + (1+ 5 ) Ve @) - Vef (@),
(117)
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Applying (IT7) to (I16) and applying Cauchy’s inequality yields
kT
E[|(E - 8{") © Ve (@®)[7]

1) 10 ) )
<(1- %) BT + iZE Ve f @7 40) V@ D)3 (18)

For the third term, we have
E[|S{7 © (G — Vof (z9)[3] < E(IG{ - Ve f(2V)||3] < o2, (119)

where the second inequality uses Assumption 3]
Applying (AT to (IT3) yields (T0) O

Based on Lemma[I6] we can prove the convergence properties of GoSare similarly as the proofs of
Lemma [T} Theorem §|and Corollary [3] Below we directly present the final convergence results.

Theorem 12 (Convergence of GoSare). Under Assumptions[I}3] if hyperparameters

64 1 /3882 \/ \/ 361
<1 > < [
O0<frsl, 72355 0<ns mm{4L’ \/80L2’ s0r202' \ 16722 [

GoSare using small-batch stochastic gradients and MSGD (Alg.[3)) converges as
Kr—1

1 ® 16A 3283102
o ZEHW B < 5 T 35

for any K > 1, where A = f(a;<0>) —infg f(x). If T > 2+ 128/(30) + (1280)2/(9v/SLA) and

we further choose
; —1
[ 83252
— 1 = =
61 + LA )
64
T =
3061 |’
-1
8OL2 807’2L2 167L2
n=|4L+ ;
3§ﬁ1 361
GoSare using small-batch stochastic gradients and MSGD (Alg. ) converges as

T—1
1 Hi2 LA LAo?
7 3 BV = 0 < o\ e )

Consequently, the computation complexity to reach an -accurate solution x such that |V f (z)||3 <

. LAc? LA o2 1
eis O (§7/2€2 + §572¢ + él/ZLA + E)

D THE RELORA-LIKE IMPLEMENTATION

An equivalent, ReLoRA-like implementation of Alg. [I]is as illustrated in Alg. [6] where we only
present the case with small-batch stochastic gradients for convenience. In fact, applying ReLoRA
with a fixed A or B is not our contribution, as it has already been used in several previous works(Hao
et al., 2024; [Loeschcke et al., [2024). While leading to the same results, this ReLoRA-like imple-
mentation (Alg. [6) can potentially save computation as it computes the subspace gradient directly
without computing the full-parameter one. Consider the case where m < n and we use MSGD and
a batch size of b. The computation complexity of Galore’s original implementation is 2bmn for
forward propagation, 4bmn for backward propagation, 4rmn for projection, 3rn for momentum
update and 2mn for weight update. The computational complexity of our ReLoRA-like imple-
mentation is 2bmn + 2brm + 2brn for forward propagation, 2bmn + 2brm + 2brn for backward
propagation, 3rn for momentum updates and 2rn for weight updates. As illustrated in Table[I] our
implementation can potentially reduce computation with little memory overhead.
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Algorithm 6 ReLoRA-like implementation of - / GoLore algorithm using stochastic gra-
dients - / without momentum projection

Input: Initial point (*), data distribution D, learning rate 7, subspace changing frequency 7, rank
{r¢} ", optimizer hyperparameters 3;, (2, €, large batch size 3.
Output: {x}]_ .
Initialize LoRA adaptation X, = W, + ByA, for £ = 1,2,--- | Ny, where WE(O) = Xéo),
Aéo) =0 and Béo) =0
Initialize optimizer state { M Z(_l)}évjl and {Vé(_l)}é\jzﬁ to zero;
fort=0,1,--- ;T —1do
for/{=1,2,--- N do
if ¢t = 0 (mod 7) then
G VoF(@V;0);

Sample P[(t) ~ U(Stmy .1, )s g) ~ U(Sty,r,); (GoLore)

R (PTG, if mg < ng;
N Pe1OFe10 i :
) 0 1Imy > ny;

else
RO . [VaF@6®), it my <y

‘ Ve, F(x®;¢0), if my > ny;
end if

MY (1- )M + 8 RY;  (without MP)
‘/Z(t) — (1 _ ﬁz)‘fg(t_l) + B2R§t) o R(t);

if using Adam then

M = M) =), VeV g). NY e MO (VY + ey
else if using MSGD then

NP« M
end if

if t = 0 (mod 7) then

w —w + B AW,
AlHD —an(t), if mp < my;
e = (ONT _
(Q£ ) 9 lf my > Toes
®) e
BétJrl) - P, " %f myp < ng;
—nN,”, if mg > ny;

else
We(t-i-l) - Wz(t);

t t .
Az(ztﬂ) - {Az(z) - 77Nz( ), if my < ny;

Ay), if my > ny;
(t+1) B, if mg < ny;
B, A () ) .
B,” —nN,"’, ifmy > ny;
end if
end for
end for
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E EXPERIMENTAL SPECIFICATIONS

In this section, we elaborate on the missing details concerned with the experiments we present in

Sec.[7

GalLore’s non-convergence. We compared Galore, large-batch GaLore, GoLore and full-parameter
training on the constructed quadratic problem defined in (I)). We used a batch size of 128 for large-
batch GaLore and a batch size of 1 for the others.

Pre-training tasks on C4 dataset. We pre-trained LLaMA-60M on C4 dataset for 10,000 iterations
on 4 NVIDIA A10040G GPUs. We use batch size 128, learning rate 1.0e-3, rank 128, scaling factor
a = 1, subspace changing frequency 7 = 200, and a max sequence length of 256. Results under
8-bit training are shown in Fig. @ Fig. presents the results of different algorithms after trained on
more tokens.

500 Algorithms using 8-Bit AdamW Algorithms using AdamW
—8— GolLore@20% 34 —8— Golore@20%
—— Galore —— Galore
4007 —4A— Full Params. 32
> >
£ 300 £ 30
3 45.0 ——— 3 v
[ 40.0 g
g 200 | g
35.0 26
0 8.5 9.0 9.5
100 24
o 22
0.0 2.5 5.0 7.5 10.0 5.0 10.0 15.0 15.0 20.0
Iterations(x1000) Iterations(x1000)

Figure 6: Pre-training curves of algorithms us- Figure 7: Pre-training curves of algorithms us-
ing 8-bit AdamW. ing AdamW.

Fine-tuning tasks on WinoGrande dataset. We fine-tune pre-trained LLaMA2-7B model on the
WinoGrande dataset for 30 epochs on 4 NVIDIA A100 80G GPUs. We use batch size 1, rank 1024,
subspaces changing frequency 7 = 500 and a max sequence length of 2048. The learning rate and
scaling factor are set as 1.0e-4 and o = 4 for GalLore/GoLore, thus corresponds to a learning rate
of 4.0e-4 in full-parameter fine-tuning. The test accuracy is presented in Table [3] where GoLore
performs similarly to GaLore due to overfitting.

Fine-tuning tasks on BoolQ dataset. We fine-tune pre-trained LLaMA?2-7B model on the BoolQ
(Clark et al., [2019) dataset on 4 NVIDIA A100 80G GPUs. We use batch size 1, rank 1024, sub-
spaces changing frequency 7 = 500 and a max sequence length of 2048. We use MSGD as the
subspace optimizer, where the learning rate and scaling factor are set as 1.0e-4 and o« = 4 for
GaLore/GoLore, corresponding to a learning rate of 4.0e-4 in full-parameter fine-tuning. Table [3]
presents the test accuracy of different algorithms, where GoLore outperforms GalLore. We further
fine-tune pre-trained OPT-13B (Zhang et al.| |2022) for 1 epoch using the same experimental setup,
whose results are shown in Table [

Table 3: Evaluating GaLore/GoLore for fine-tuning on WinoGrande and BoolQ using pre-trained
LLaMA2-7B.

Algorithm BoolQ (1 epoch) BoolQ (3 epochs) WinoGrande (80 epochs)

Full Params. 86.48 87.43 69.85
GaLore 84.89 86.79 68.51
GoLore@20% 85.81 86.88 68.51
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Table 4: Results for fine-tuning pre-trained OPT-13B models on BoolQ. OOM stands for “out of
memory”.

Algorithm Memory  Accuracy
Full Params. OOM -

GalLore 77.68 GB 79.79
GoLore@30% 77.68 GB 81.96

Fine-tuning tasks on GLUE benchmark. We fine-tune pre-trained RoBERTa-Base model on the
GLUE benchmark for 30 epochs on a single GeForce RTX 4090. Training details including batch
size, learning rate, rank, scaling factor v and max sequence length are illustrated in Table 5]

Table 5: Hyperparameters used in fine-tuning pre-trained RoBERTa-Base model on the GLUE
benchmark.

Hyperparameter ‘ CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP

batch size 32 16 16 16 16 16 16 16
Learning Rate | 2.5e-5 2.0e-5 3.5¢-5 7.0e-6 1.0e-5 1.0e-5 1.0e-5 1.0e-5

Rank 4 4 4 4 4 4 4 4
GaLore’s o 4 4 4 4 4 4 4 4
FLORA’S « 4 4 4 4 4 4 4 4
GolLore’s v 4 4 4 4 4 4 4 4

Frequency 7 500 500 500 500 500 500 500 500

Max Seq. Len. 512 512 512 512 512 512 512 512

F CONNECTIONS WITH OTHER ALGORITHMS

Connection with zero-th order methods. Zero-th order methods (Malladi et all, 2023} [Zhang|
let all 2023}, [Chen et al} 2024) are another line of works on memory-efficient training. While these
algorithms randomly select a direction to estimate the directional derivatives by finite difference,
GoLore computes subspace gradients via back propagation. The directions used in zero-th order
methods change every iteration, while GoLore applies a more lazily strategy changing its subspace
every T iterations.

Connection with gradient sketching methods. Gradient sketching methods like [Hanzely et al/|
(2018)) and [Wang et al.| (2024)) uses gradient sketches in algorithm iterates. These methods recover
gradient estimates from projected gradients and retains full-size gradients and optimizer states. In
comparison, GoLore directly updates with projected gradients and retains compressed gradients and
optimizer states, which is more memory-efficient.

G CONVERGENCE OF GALORE UNDER ISOTROPIC NOISE ASSUMPTIONS

Based on the anisotropic gradient noise we use to construct the counter-example in the proof of
GaLore’s non-convergence under standard assumptions, an interesting open question is whether
GaLore is guaranteed to converge if the noise are further assumed isotropic. In this section, we
consider the following additional assumption:

Assumption 4 (Isotropic noise). The distribution of stochastic noise for each gradient matrix is
invariant under orthogonal transformations, i.e., it holds for any layer { = 1,--- | Ny, parameter
x € R? and orthogonal matrix O, € R™X™¢ Oy € R™X™ that

dist

ViF(x;§) = Vef(x) = O1[ViF(x;§) — Vo f(x)]O2,

dist o
where A =" B represents A and B shares the same distribution.
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1.0 A
0.8
0.6 1
— r=1 r=9 r=17 — =25
0.4 1 —_— =2 — r=10 — r=18 —— r=26
— r=3 — r=11 r=19 r=27
— r=4 — r=12 — r=20 — r=28
0.2 — r=5 — r=13 — r=21 r=29
— r=6 — r=14 — r=22 — r=30
r=7 — r=15 — r=23 — r=31
— r=8 —— r=16 —— r=24 —— r=32
O.o- T T T T T T T
0 5 10 15 20 25 30

Figure 8: Observations with a small noise scale o = 0.1.

Remark. The property in Assumption |4|can be satisfied by multivariate Gaussian distribution, e.g.,
vee(V F(z;€) — Vof(x)) ~ N0, =2 - I, 5, )-

P meng

Besides Assumption ] we consider an additional assumption, which is crucial in analyzing the
projection error.

Assumption 5 (Leading property). Let Dy(x) denotes the distribution of gradient noise
ViF(x; &) — Vof(x). We assume Dy(x) satisfies the following "leading property”: if A ~ Dy(x),
B € R™¢*" satisfies By > Baz > -+ > Buin{mg,ng }min{me,ne} > 0 and Bij = 0 fori # j, the
SVD decomposition ULV T satisfies

%, V1<kr<m, if mg<ny;

%, V1<kr<mn, if mg>ny.

Though not fully established in theory, we can empirically validate that multivariate Gaussian dis-
tribution may satisfy Assumption 5]

Specifically, we consider the following experiment setup. Let vec(A) ~ N(0,02 - I39x32) for

some noise scale o > 0 and select a fixed matrix B with By; > Bay > -+ > Bsa 32 > 0. In
order to validate the propernes in expectation, we sample matrix A for 200,000 times and uses the
empirical expectations E[Ulj] s to estimate the true expectations E[U;; Flguresl El nrepresent

results under different noise scales o = 10, 1, 0.1, respectively, where r = ro” in each figure plots
the line connecting points (, % Ele 220:1 E[UZ]) for k = 1,2,---,32. As presented, all lines
“r =1y~ with rg < 32 are above the line ”r = 327, which is guaranteed to pass through the points

(k, 3k2) k=1,2,---,32, in theory. Consequently, we have good reason to believe that multivariate

Gaussian dlstrlbutlon can empirically satisfy Assumption[5]

With Assumptions 4] and[5] we can establish new error bounds for GaLore’s SVD projection.

Lemma 17 (Error of GaLore’s projection under isotropic noise). Let G = V,f(x) and E =
ViF(x;€) — Vi f(x), projection matrix P = U]:,: 14, Q = V[:,: r¢] where ULV ' = G+ E
is the SVD of stochastic gradient ¥V F(x; ), it holds under Assumptionsand@for my < ny that

EIPPTG - Gl < (1- 2L ) 6.
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1.0 A
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Figure 9: Observations with a medium noise scale o = 1.
1.0 A
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0.6 1
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Figure 10: Observations with a large noise scale o = 10.
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and for my > ny that

EIGQQT - G < (1) IGI-

Proof. We only consider the case where m, < ny, as the proof for the other case is similar. We first
conduct SVD of G and get G' = U2V, . It holds that

PP'G|% =tr(G"PP'G
F
=tr(VoXg Uy PP UoZ0V,')
=tr(ZoXq U, PPUy). (120)

Denote U = U, U and V = V' V, it holds that U,V " = (UJ U)Z(V," V)T is SVD of

UJ (G + E)Vy = U] EV, + 3¢ =" E + 5. By Assumption|5|we have

k
—ZZE = k=12, ,my. (121)
mye
i=1 j=1
Letoy > 09 > -+ 0,,, > 0 represent the singular values of G, taking expectations of yields
E[|PPTG|[}] =tr(20Xg EU] PPTUy))
mye Te
= ol ) EU]
i=1 =1
me
e Ty 2
> 2. = — . |G 122
> o e IGIE (122)

m
=1 ¢

where the inequality applies 07 > 03 > --- 02, and (121). Based on (122), we have
E[|PP'G - G|3] = |G|} - E[|PPTG|F] < (1 - ) [rediz

which completes the proof. O

Lemma 18 (Momentum contraction). Under Assumption[BlP] in GaLore using MSGD with MP, if
0< B <1, term M, e(t) has the following contraction properties:

e Whent = 0, it holds that

T—2
E[|M” = Vo f(XO)2] <(r - 1)(2 - &) ZEHW (@) =V, f(@))|2]

-1

2220 S v @3] 4 B0l (123)

T

+
=0

e Whent = kt, k € N*, it holds that

E[| MY -V, f ()] - ( (1 - ‘54) 51) E[| M = Vo f(@t)|3]

_5) =2 _
<20 S g9 @) ]+ 25 PRV @) - Ve
r=0
T—2
=10 - 80) T BV @) - V@O 4 g (20
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e Whent=kr+r, ke N, 1 <r <, itholds that

B[ M ~ Vef (@)} - (1 R (1 B i) m) E[[M2 7 — Vo ()|3)
< (1= F) B0V O + B PB v @) - Vs ]
2 5061
n 10(;51 ZE[”vef(w(erri)) _ Vef(w(kﬂrifl))”%] + ﬂfaf. (125)
i=1

Proof. Without loss of generality assume m, < ny (the other case can be proved similarly). When
t = 0, (123) is direct result of Lemma ] by letting B = 1. When t = 0, we have

E[| M — Vof(z®)|2]
=E[||8: P,” (P") TG — Vo f(=™)][3]
=E[| (3P, (BT — D)V f () |3] + BE[|I P (PL) (G — Vi f ()3, (126)
For the first term, we have
Elll (5P (PN — DV f(z©)]3]
=(1- BB PO (PO Ve ()3 + BT - PP )Vef (@ @)3]
<((1= 1) + (1= 6)) [ Vef ()3 < 2 - 801V ef (= )13, (127)

where the first inequality uses Lemma[I7] For the second term, we have
E(IB (B (G ~ Vef @ ODIF] <BIGY ~ Vef(@D)[F) <of.  (128)
Applying (T27)(128) to (126) and using Lemma 2] yields (T23).

When ¢t = k7, k € N*, according to the proof of Lemma we have
~ (t—1
(MY — Vof(z0)|3]

< (14 22 BIAE ) - ViR + (14 2 ) BV @) - Vert )R
(129)

and
B[N - Vef (@)7]
=E[| P (P{)T((1 = p) M ™) + 516Gy — Vef (@ )]7]
+E(|I - PO Vs @0)]7]
<E[|(1 = B) (M ™" = Ve (@) [}) + B0 + (1= S)E(|Ves @D)F],  (130)
where the last inequality applies Lemma[T7} Applying (I29) to and using Lemma [2] yields

@24

Whent = kr +r, k € N, 1 < r < 7, we have the following results according to the proof of
Lemmal[8t

E[| M — Vof(a®)[|2]
<(1=BOE[M Y = Vof (D)3 + KET - POPO)Y)Vf(2®)]|
+ BEPY (PTG — Vef(9))]3]
<1 = BOE[M Y = Vo (@) [3] + BET - BV (PO))Vef (D)1} + Biof, (131)
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For the second term, we have

E[|(I - PV (P T)V o f(2®)][2]

< (1 T ff) E[I(I — PV (P) TV f (207) 3]
+ (1 + f) E[|(I - P (P ) T)(Vef (@) = Vef @*7)I13]
<1 - 35) E[IVef(@*7)1F] + (l i i) E(|[Vef (@) = Vef (@*7)7]
<1 - 52) E[[|Vef (@)} + 2 (1 i ;) E[| Ve /(@) = Vef (@) 7]

(1 - 5) E[|Vef (@®)]2] +@ZE (Ve f@®9) - T, fa®rH-D)2],  (132)

where the first inequality applies Young’s mequahty, the second inequality applies Lemma [I7] the
third inequality applies Young’s inequality, the last inequality applies Cauchy’s inequality. Applying
)3 to [31) yields (5. O
Lemma 19 (Momentum error). Under Assumption2}3] if 0 < 81 < 1 in GaLore using MSGD and
MP, it holds for any K > 1 that

Kr—1

Y Ellm® —vi@?)|3)

t=0

5(1 - ﬂl) 57'(7' — ]_) 2(7— _ 1) Kr—2 ) t)
= ((1 —/M0F T -0/ _5/4)31> L* " Effatt 12]

t=0
1-6/2 4 ! vz . K10
(=5 ) 2 BlIVI@E + T 133
Proof. By Lemmal[I8|we have
Krt—1 ~ Kt—-2
> Bl - Vs - (1- (1- %) ﬂl) SR ARAERIE
t=0

51—p51)  57(r—1)8 K72
= ( 0¢f1 =+ Op 1 +2(r -1 ) Z E[|Vef(a®) = Vof(x®)|2]

4 Kr—1
" (T <1 - > 51) > E[|IVef (D)7 + K807,

t=0
which implies
Kr—1
S E[IMLY - Vof(0)[3)

t=0

5(1—51) 5r(t—1) 2(1 — 1) Kr—2 (1)) 2
= ((1 e T U= e e (1= 55/4),51> > E[IVef (@) = Vi f (@) ]

=0
1—6,/2 4 ! Krpio?
- E[|Vef(x™)|? £ 134
(5 T & IV T (134
Summing for{ =1,---, Ny and applying Assumption 2}[3]yields (133). O

Now we are ready to prove the convergence of GaLore with small-batch stochastic gradients under
isotropic noise assumptions.
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Theorem 13 (Convergence of Galore under isotropic noise assumptions). Under Assumptions[I{]
if hyperparameters

128 |1 \/3551 \/ \/ 36
<1, 7> < min{ — 135
0<h=l 72355 0<ns< mln{4L’ soz2 Vsoreze Vg [0 (Y

GaLore using small-batch stochastic gradients and MSGD with MP converges as

Kr—1
1 » 16A 328,02
e Z EIVA@)IE < 57 + =5 (136)

forany K > 1, where A = f(m(o)) —inf, f(x).

Proof. By Lemmaf] we have

Kr—1 Kr—1
2[f(x©) — E[f (K™ 5
S v @®)g) < 2ETEVETT S me - vi@o)g
t=0 n t=0
1 I Kr—1
~(7-2) X Elle - o3 (137)
n n t=0
Applying Lemma.to 137) and using 6 < & < 1 yields
5 16 Kr—1
- ]E (t) 2
(5-55) X =976
2
ng[f(wm)) — fa®)] + %
7
_ (1 _L_200-B)L*  20r(r - )L* 8(r— 1>L2) N B2t — o)
UR 3057 30 361 pr >
(138)
By (I33) we have
_ 2 _ 2 _ 2
816 6 b 5’20(1 521)L ’207(7 1)L ’8(7 DL\ (139)
4 3781~ 8 4n? n 3087 30 361
Applying (139) to (T38) yields (T36). O

Corollary 4 (Convergence complexity of GalLore under isotropic noise assumptions). Under As-
sumptions|IfS| if T > 2 4 256/(39) + (2560)%/(9v/SLA) and we choose

-1
[ 83202
/81 — 1 + LA )
[ 128
e

—1
80L2 807’2L2 327L2
n=|4L+ ;
SQﬂl 361

GaLore using small-batch stochastic gradients and MSGD with MP converges as

T—
LA LAo?
f§: IV £(=D)[3] = (§MT+,/yﬂT>, (140)
t=0 g g

where A = f(x(®)) —inf, f(x). Consequently, the computatlon complexity to reach an e-accurate
solution x such that ||Vf( Wi <eisO (;792052 + 6§/% + 51/2LA + 6)
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Proof. T > 2+256/(30)+(2560)2/(9/dLA) guarantees T > 7. Let T = K7+, where K € N*
and 0 < r < 7. If r = 0, (T40) is a direct result of Theorem[T3} If » > 0, applying Theorem [13]to
K := K + 1 yields

T—1 o Kr—1
1 Kr 1 LA LAc?
2 < K7 (0)[2] — / .
T ;:O E[IVF(z)I2] < = e ;:o E[[Vf(z')[3] = O <55/2T + 67/2T>
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