SUBSPACE OPTIMIZATION FOR LARGE LANGUAGE MODELS WITH CONVERGENCE GUARANTEES

Anonymous authors

Paper under double-blind review

ABSTRACT

Subspace optimization algorithms, with GaLore (Zhao et al., 2024) as a representative method, have gained popularity for pre-training or fine-tuning large language models (LLMs) due to their memory efficiency. However, their convergence guarantees remain unclear, particularly in stochastic settings. In this paper, we unexpectedly discover that GaLore does not always converge to the optimal solution and substantiate this finding with an explicit counter-example. We then investigate the conditions under which GaLore can achieve convergence, demonstrating that it does so either in deterministic scenarios or when using a sufficiently large mini-batch size. More significantly, we introduce **GoLore** (Gradient random Low-rank projection), a novel variant of GaLore that provably converges in stochastic settings, even with standard batch sizes. Our convergence analysis can be readily extended to other sparse subspace optimization algorithms. Finally, we conduct numerical experiments to validate our theoretical results and empirically explore the proposed mechanisms.

025 026

027

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

028 Large Language Models (LLMs) have demonstrated impressive performance across a variety of 029 tasks, including language processing, planning, and coding. However, LLMs require substantial computational resources and memory due to their large model size and the extensive amounts of training data. Consequently, recent advancements in stochastic optimization have focused on de-031 veloping memory-efficient strategies to pre-train or fine-tune LLMs with significantly reduced computing resources. Most approaches (Vyas et al., 2024; Ramesh et al., 2024; Luo et al., 2023; Liu 033 et al., 2024; Bini et al., 2024; Hao et al., 2024; Zhao et al., 2024; Muhamed et al., 2024; Pan et al., 034 2024; Loeschcke et al., 2024; Hayou et al., 2024; Lialin et al., 2023; Han et al., 2024; Song et al., 035 2023) concentrate on reducing the memory of optimizer states, which are critical components of overall training memory consumption. For instance, optimizers such as Adam (Kingma, 2014) and 037 AdamW (Loshchilov, 2017) maintain first and second-order momentum terms for gradients as opti-038 mizer states, leading to significant memory overhead for large models.

Among the most popular memory-efficient fine-tuning algorithms is LoRA (Hu et al., 2021), which 040 decreases the number of trainable parameters by employing low-rank model adapters. However, the 041 low-rank constraint on weight updates can result in substantial performance degradation for tasks 042 that require full-rank updates, particularly in the pre-training of LLMs. To address this issue, sev-043 eral LoRA variants have been proposed, including ReLoRA (Lialin et al., 2023) and SLTrain (Han 044 et al., 2024). Recently, GaLore (Zhao et al., 2024) has emerged as an effective solution, significantly 045 reducing optimizer states by projecting full-parameter gradients into periodically recomputed sub-046 spaces. By retaining optimizer states in low-rank subspaces, GaLore can reduce memory usage by over 60%, enabling the pre-training of a 7B model on an NVIDIA RTX 4090 with 24GB of memory. 047 In contrast, the vanilla 8-bit Adam without low-rank projection requires over 40GB of memory. 048

049 050

1.1 FUNDAMENTAL OPEN QUESTIONS AND MAIN RESULTS

While GaLore's memory efficiency has been well established both theoretically and empirically, itsconvergence guarantees remain unclear. This raises the following fundamental open question:

053

Q1. Can GaLore converge to stationary solutions, under regular assumptions?

081

082

084

085

087

090

091

092

093 094

095

096

098

099

Figure 1: Loss curves of algorithms using AdamW (left) and Momentum SGD (right) on problem (1), where *L.B. GaLore* stands for large-batch GaLore, *GoLore*@x% applies GaLore for the beginning (100 - x)% iterations and GoLore for the last x% iterations.

By stationary solutions, we refer to first-order stationary points $x \in \mathbb{R}^d$ such that $\nabla f(x) = 0$ for objective function $f : \mathbb{R}^d \to \mathbb{R}$. By regular assumptions, we refer to standard conditions in nonconvex smooth optimization, including lower boundedness, *L*-smoothness and unbiased stochastic gradients with bounded variances, as outlined in Assumptions 1-3 in Sec. 2.

Contrary to expectations, our investigation reveals that GaLore does **NOT** converge to stationary 071 solutions under regular assumptions. The intuition behind this finding is straightforward: GaLore 072 projects the stochastic gradient matrix onto a low-rank subspace spanned by the top r singular vec-073 tors obtained via Singular Value Decomposition (SVD), effectively capturing the dominant compo-074 nents of the stochastic gradient matrix. However, the stochastic gradient comprises two components: 075 the true gradient and gradient noise. When the true gradient dominates, the SVD-identified subspace 076 primarily captures the gradient component. In contrast, as the algorithm approaches a local mini-077 mum so that the true gradient diminishes while noise persists, the SVD-derived subspace captures only the noise component, rather than the true gradient, ultimately leading to non-convergence. To validate this intuition, we construct a counter-example demonstrating that GaLore fails to converge 079 to stationary solutions, see the illustration in Fig. 1. This leads us to a subsequent open question:

Q2. Under what additional assumptions can GaLore converge to stationary solutions?

Based on the preceding discussion, we conclude that the SVD-identified subspace in GaLore aligns well with the descent direction in scenarios where the true gradient component dominates the gradient noise component. This observation naturally leads to two additional assumptions under which GaLore can converge:

- Noise-Free Assumption. We theoretically establish that GaLore converges at a rate of O(1/T) in the deterministic and non-convex setting.
- Large-Batch Assumption. We theoretically demonstrate that GaLore converges at a rate of $\mathcal{O}(1/\sqrt{T})$ in the stochastic and non-convex setting, provided that the batch size is extremely large and increases with the number of iterations T, *e.g.*, a batch size of $\Theta(\sqrt{T})$.

However, neither the noise-free assumption nor the large-batch assumption applies to the practical pre-training and fine-tuning of LLMs. This leads to another fundamental open question:

Q3. Under what modifications can GaLore provably converge in the LLM setting, in which gradient noise presents and the batch-size cannot be extremely large?

It is evident that SVD-based projections cannot extract meaningful information from noise-dominant matrices. To address this issue, this paper proposes modifying the SVD projection to a <u>G</u>radient Random <u>Low-R</u>ank projection, resulting in the **GoLore** algorithm for pre-training or fine-tuning LLMs. This random projection can effectively capture gradient information even when gradient noise predominates, allowing for convergence in the stochastic and non-convex setting with normal batch sizes. We establish that GoLore converges at a rate of $O(1/\sqrt{T})$ under standard assumptions.

In our empirical experiments, we implement GaLore during the primary phases of pre-training or
 fine-tuning LLMs due to its efficacy in capturing the gradient component using SVD-based projection. In contrast, we employ GoLore in the final phase, leveraging its ability to extract the gradient

component from noise-dominant stochastic gradients using random projection. This approach enhances performance compared to employing GaLore throughout all stages.

While our analysis primarily focuses on GaLore, it also has significant connections to other memoryefficient algorithms. We demonstrate that a ReLoRA-like implementation is equivalent to GaLore, which is more computational efficient with little additional memory overhead. Furthermore, our theoretical results can be easily adapted to sparse subspace descent algorithms with minimal effort.

115 116

117

118

119

120

121

122

123

124

129

130

131

132

133

- **Contributions.** Our contributions can be summarized as follows:
- We find that GaLore cannot converge to stationary solutions under regular assumptions. The key insight is that the SVD-derived subspace primarily captures the noise component rather than the true gradient in scenarios where gradient noise predominates. We validate the non-convergence of GaLore by providing an explicit counterexample. This addresses Question Q1.
- Inspired by the aforementioned insight, we propose different additional assumptions under which GaLore can provably converge to stationary solutions. Under the noise-free assumption, we establish that GaLore converges at a rate of $\mathcal{O}(1/T)$. Under the large-batch assumption or some additional isotropic noise assumptions, we demonstrate that GaLore converges at a rate of $\mathcal{O}(1/\sqrt{T})$. This addresses Question Q2.
- In settings where gradient noise persists and the batch size cannot be extremely large, we modify the SVD projection in GaLore to a random projection, resulting in the GoLore algorithm that provably converges to stationary solutions at a rate of $O(1/\sqrt{T})$. This addresses Question Q3.
 - We present an equivalent yet more computationally efficient, ReLoRA-like implementation of GaLore/GoLore, and extend our analysis to other sparse subspace descent algorithms.
 - We conduct experiments across various tasks to validate our theoretical findings. In particular, by alternately using GaLore and GoLore during different phases in LLMs pre-training and fine-tuning, we achieve enhanced empirical performance.
- 134 1.2 RELATED WORK

135 **Memory-efficient training.** In LLM training, the primary memory consumption arises not only 136 from the model parameters but also from activation values and optimizer states. Jiang et al. (2022) 137 and Yu et al. (2024) have proposed methods to compress activation values into sparse vectors to 138 alleviate memory usage. Other approaches primarily focus on reducing optimizer states. A notable 139 work, LoRA (Hu et al., 2021) reparameterizes the weight matrix $W \in \mathbb{R}^{m \times n}$ as $W = W_0 + BA$, 140 where $W_0 \in \mathbb{R}^{m \times n}$ remains frozen as the pre-trained weights, and $B \in \mathbb{R}^{m \times r}$ and $A \in \mathbb{R}^{r \times n}$ 141 are learnable low-rank adapters. Variants of LoRA, such as those proposed by Liu et al. (2024) 142 and Hayou et al. (2024), aim to enhance training performance. However, constrained to low-rank updates, LoRA and its variants are primarily effective for fine-tuning tasks and struggle with pre-143 training tasks that require high-rank updates. To address this limitation, ReLoRA (Lialin et al., 144 2023) enables high-rank updates by accumulating multiple LoRA updates, while LISA (Pan et al., 145 2024) learns full-parameter updates on dynamically selected trainable layers. GaLore (Zhao et al., 146 2024) and FLORA (Hao et al., 2024) achieve high-rank updates by accumulating low-rank updates 147 in periodically recomputed subspaces, and SLTrain (Han et al., 2024) employs additional sparse 148 adapters for high-rank updates. SIFT (Song et al., 2023) also utilizes sparse updates. Although 149 these algorithms have demonstrated comparable empirical performance to full-parameter training 150 methods, theoretical guarantees regarding their convergence have not been established. A recent 151 study by Liang et al. (2024) provides a proof of continuous-time convergence for a class of online 152 subspace descent algorithms, however, its analysis depends on the availability of true gradients rather 153 than the stochastic gradients that are more practical in LLM training. To the best of our knowledge, this work offers the *first* analysis of the discrete-time convergence rate for memory-efficient LLM 154 training algorithms in stochastic settings. 155

Convergence for lossy algorithms. Many optimization algorithms utilize lossy compression on training dynamics, such as gradients, particularly in the realm of distributed optimization with communication compression. Researchers have established convergence properties for these algorithms based on either unbiased (Li et al., 2020; Li & Richtárik, 2021; Condat et al., 2024; He et al., 2024b;a; Mishchenko et al., 2019; Gorbunov et al., 2021; Alistarh et al., 2017; He et al., 2023) or contractive (Richtárik et al., 2021; Xie et al., 2020; Fatkhullin et al., 2024; He et al., 2023) compressibility. Kozak et al. (2019) provides a convergence analysis for subspace compression under

Polyak-Lojasiewicz or convex conditions, where the subspace compression adheres contractive compressibility at each iteration. Despite these extensive findings, analyzing the convergence properties of subspace descent algorithms like GaLore remains challenging, as the compressions used can be neither unbiased nor contractive due to the reuse of projection matrices.

2 PRELIMINARIES AND ASSUMPTIONS

Full-parameter training. Training an N_L -layer neural network can be formulated as the following optimization problem:

170

166

167

168

176 177

181 182

199 200 201

211

 $\min_{\boldsymbol{x}} f(\boldsymbol{x}) := \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{D}} F(\boldsymbol{x}; \boldsymbol{\xi}).$

172 Here, $\boldsymbol{x} = (\operatorname{vec}(\boldsymbol{X}_1)^\top, \cdots, \operatorname{vec}(\boldsymbol{X}_{N_L})^\top)^\top$ collects all trainable parameters in the model, where N_L 173 is the number of layers, $\boldsymbol{X}_{\ell} \in \mathbb{R}^{m_{\ell} \times n_{\ell}}$ denotes the weight matrix in the ℓ -th layer, $\ell = 1, \cdots, N_L$. 174 $F(\boldsymbol{x}; \boldsymbol{\xi})$ computes the loss with respective to data point $\boldsymbol{\xi}, \mathcal{D}$ denotes the training data distribution. 175 In full-parameter training, we directly apply the optimizer to the full-parameter \boldsymbol{x} :

$$\boldsymbol{G}_{\ell}^{(t)} = \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \xi^{(t)}), \quad \boldsymbol{X}_{\ell}^{(t+1)} = \boldsymbol{X}_{\ell}^{(t)} + \rho_{\ell}^{(t)}(\boldsymbol{G}_{\ell}^{(t)}), \quad \ell = 1, \cdots, N_{L};$$

where ∇_{ℓ} computes the gradient with respective to the ℓ -th weight matrix X_{ℓ} , superscript (t) denotes the variable in the *t*-th iteration, and $\rho_{\ell}^{(t)}$ is an entry-wise stateful gradient operator, such as Adam or Momentum SGD (MSGD). Specifically, using MSGD leads to the following $\rho_{\ell}^{(t)}(\cdot)$:

$$\boldsymbol{M}_{\ell}^{(t)} = (1 - \beta_1) \boldsymbol{M}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)}; \quad \rho_{\ell}^{(t)}(\boldsymbol{G}_{\ell}^{(t)}) = -\eta \boldsymbol{M}_{\ell}^{(t)};$$

where η is the learning rate, $\beta_1 \in (0, 1]$ is the momentum coefficient, and $M_{\ell}^{(t)}$ is the momentum retained in the optimizer state. In full-parameter pre-training or fine-tuning of LLMs, the memory requirements for storing momentum in MSGD and the additional variance state in Adam are highly demanding. According to Zhao et al. (2024), pre-training a LLaMA 7B model with a single batch size requires 58 GB of memory, with 42 GB allocated to Adam optimizer states and weight gradients.

188 GaLore algorithm. To address the memory challenge, Zhao et al. (2024) proposes a Gradient Low-189 Rank Projection (GaLore) approach that allows full-parameter learning but is much more memory-190 efficient. The key idea is to project each stochastic gradient $G_{\ell} \in \mathbb{R}^{m_{\ell} \times n_{\ell}}$ onto a low-rank subspace, yielding a low-dimensional gradient approximation. Specifically, GaLore performs SVD on $G_\ell^{(t)}$ = 191 $U\Sigma V^{\top}$ and obtains rank- r_{ℓ} projection matrices $P_{\ell}^{(t)} = U[:, :r_{\ell}] \in \mathbb{R}^{m_{\ell} \times r_{\ell}}$ and $Q_{\ell}^{(t)} = V[:, :r_{\ell}] \in \mathbb{R}^{n_{\ell} \times r_{\ell}}$, where [:, :r] denotes the selection of the matrix's first r columns. When $m_{\ell} \leq n_{\ell}$, 192 193 194 GaLore projects G_{ℓ} onto P_{ℓ} , yielding a low-rank gradient representation $(P_{\ell}^{(t)})^{\top}G_{\ell}^{(t)} \in \mathbb{R}^{r_{\ell} \times n_{\ell}}$. 195 Conversely, when $m_{\ell} > n_{\ell}$, GaLore projects G_{ℓ} onto Q_{ℓ} , resulting in $G_{\ell}^{(t)}Q_{\ell}^{(t)} \in \mathbb{R}^{m_{\ell} \times r_{\ell}}$. In 196 either scenarios, the memory cost of optimizer states associated with these low-rank representations 197 can be significantly reduced, leading to memory-efficient LLMs pre-training or fine-tuning:

$$\boldsymbol{X}_{\ell}^{(t+1)} = \begin{cases} \boldsymbol{X}_{\ell}^{(t)} + \boldsymbol{P}_{\ell}^{(t)} \rho_{\ell}^{(t)} ((\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{G}_{\ell}^{(t)}), & \text{if } m_{\ell} \leq n_{\ell}; \\ \boldsymbol{X}_{\ell}^{(t)} + \rho_{\ell}^{(t)} (\boldsymbol{G}_{\ell}^{(t)} \boldsymbol{Q}_{\ell}^{(t)}) (\boldsymbol{Q}_{\ell}^{(t)})^{\top}, & \text{if } m_{\ell} > n_{\ell}. \end{cases}$$

Typically, GaLore selects $\rho_{\ell}(\cdot)$ as the Adam gradient operator, as illustrated in Alg. 1. However, GaLore can also choose $\rho_{\ell}(\cdot)$ to be gradient operators in either vanilla SGD or MSGD. Since SVD decomposition is computationally expensive, GaLore updates $P_{\ell}^{(t)}$ or $Q_{\ell}^{(t)}$ periodically. In other words, GaLore computes $P_{\ell}^{(t)}$ or $Q_{\ell}^{(t)}$ when iteration step $t \neq 0 \pmod{\tau}$ where $\tau > 0$ is the period, otherwise $P_{\ell}^{(t)} = P_{\ell}^{(t-1)}$ and $Q_{\ell}^{(t)} = Q_{\ell}^{(t-1)}$ remain unchanged. Both the gradient subspace projection and periodic switches between different low-rank subspaces pose significant challenges to the convergence analysis for GaLore-like algorithms.

209 210 Stiefel manifold. An $m \times r$ Stiefel manifold $(r \le m)$ is defined as

$$\mathrm{St}_{m,r} = \{ \boldsymbol{P} \in \mathbb{R}^{m \times r} \mid \boldsymbol{P}^{\top} \boldsymbol{P} = I_r \}.$$

212 Stiefel manifold is the set of low-rank projection matrices to use in subspace optimization. Typically, 213 in GaLore we have $P_{\ell}^{(t)} \in \operatorname{St}_{m_{\ell},r_{\ell}}$ and $Q_{\ell}^{(t)} \in \operatorname{St}_{n_{\ell},r_{\ell}}$.

Basic assumptions. We introduce the basic assumptions used throughout our theoretical analysis. Each of these assumptions is standard for stochastic optimization.

Assumption 1 (Lower boundedness). The objective function $f: \mathbb{R}^d \to \mathbb{R}$ satisfies $\inf_{x \in \mathbb{R}^d} f(x) > 0$ $-\infty$, where $d = \sum_{\ell=1}^{N_{\ell}} m_{\ell} n_{\ell}$ is the total number of parameters in the model.

Assumption 2 (*L*-smoothness). The objective function $f : \mathbb{R}^d \to \mathbb{R}$ satisfies $\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|_2 < \infty$ $L \| \boldsymbol{x} - \boldsymbol{y} \|_2$, for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$.

Assumption 3 (Stochastic gradient). *The gradient oracle* (F, \mathcal{D}) *satisfies*

$$\mathbb{E}_{\xi \sim \mathcal{D}}[\nabla_{\ell} F(\boldsymbol{x}; \xi)] = \nabla_{\ell} f(\boldsymbol{x}), \quad and \quad \mathbb{E}_{\xi \sim \mathcal{D}}[\|\nabla_{\ell} F(\boldsymbol{x}; \xi) - \nabla_{\ell} f(\boldsymbol{x})\|_{F}^{2}] \leq \sigma_{\ell}^{2}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{d}$$

where $\sigma_{\ell} > 0$ is a scalar. Summing all weight matrices we obtain

$$\mathbb{E}_{\xi \sim \mathcal{D}}[\nabla F(\boldsymbol{x};\xi)] = \nabla f(\boldsymbol{x}), \quad and \quad \mathbb{E}_{\xi \sim \mathcal{D}}[\|\nabla F(\boldsymbol{x};\xi) - \nabla f(\boldsymbol{x})\|_{2}^{2}] \leq \sigma^{2}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{d},$$

where $\sigma = \sqrt{\sum_{\ell=1}^{N_{\ell}} \sigma_{\ell}^{2}}.$

NON-CONVERGENCE OF GALORE: INTUITION AND COUNTER-EXAMPLE

In this section, we demonstrate why GaLore cannot guarantee exact convergence under Assumptions 1-3. We first illustrate the insight behind the result, then present its formal description.

Figure 2: An illustration of the insight on why GaLore fails to converge in small-gradient scenarios. We use color green for true gradient and red for gradient noise.

Insight behind non-convergence. As reviewed in Sec. 2, GaLore performs SVD on stochastic gra-dient $G = U\Sigma V^{\top}$ and obtains rank-*r* projection matrices $P = U[:, :r] \in \mathbb{R}^{m \times r}$. Galore projects G onto P, yielding a low-rank gradient representation $P^{\top}G \in \mathbb{R}^{r \times n}$. In other words, GaLore projects the stochastic gradient matrix onto a low-rank subspace spanned by the top r singular vec-tors, capturing the dominant components of the stochastic gradient matrix. However, the stochastic gradient comprises two components: the true gradient and gradient noise, as shown in Fig. 2. When the true gradient significantly exceeds the gradient noise, typically at the start of training, the low-rank subspace obtained via SVD effectively preserves the true gradient information. As training progresses and the true gradient diminishes to zero, especially near a local minimum, the subspace may become increasingly influenced by gradient noise. In the extreme case, this noise-dominated subspace can become orthogonal to the true gradient subspace, leading to non-convergence.

Counter-Example. We consider the following quadratic problem with gradient noise:

$$f(\boldsymbol{X}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{X}\|_{F}^{2} + \langle \boldsymbol{B}, \boldsymbol{X} \rangle_{F}, \quad \nabla F(\boldsymbol{X}; \xi) = \nabla f(\boldsymbol{X}) + \xi \sigma \boldsymbol{C}, \tag{1}$$

where $\boldsymbol{A} = (\boldsymbol{I}_{n-r} \quad 0) \in \mathbb{R}^{(n-r) \times n}, \, \boldsymbol{B} = \begin{pmatrix} \boldsymbol{D} & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{n \times n} \text{ with } \boldsymbol{D} \in \mathbb{R}^{(n-r) \times (n-r)} \text{ generated}$

randomly, $C = \begin{pmatrix} 0 & 0 \\ 0 & I_r \end{pmatrix} \in \mathbb{R}^{n \times n}$, ξ is a random variable uniformly sampled from $\{1, -1\}$ per iteration, and σ is used to control the gradient noise. It is straightforward to verify that problem (1) satisfies Assumptions 1-3. Moreover, as X approaches the global minimum of f(X), the true

gradient $\nabla f(X) \to 0$, while the gradient noise persists with a variance on the order of σ^2 . Fig. 1

illustrates the performance of GaLore when solving problem (1). It is observed that GaLore fails to converge to the optimal solution, regardless of whether the AdamW or MSGD optimizer is used.

273 Non-convergence of GaLore. Based on the aforementioned insight, we establish the following
 274 theorem regarding the non-convergence of GaLore.

Theorem 1 (Non-convergence of GaLore). There exists an objective function $f : \mathbb{R}^d \to \mathbb{R}$ satisfying Assumptions 1, 2, a stochastic gradient oracle (F, D) satisfying Assumption 3, an initial point $x^{(0)} \in \mathbb{R}^d$, a constant $\epsilon_0 > 0$ such that for any rank $r_{\ell} < \min\{m_{\ell}, n_{\ell}\}$, subspace changing frequency τ , any subspace optimizer ρ inputting subspace gradient of shape $r_{\ell} \times n_{\ell}$ and outputting subspace update direction of shape $r_{\ell} \times n_{\ell}$ with arbitrary hyperparameters and any t > 0, it holds that

$$\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 \ge \epsilon_0.$$

4 CONDITIONS UNDER WHICH GALORE CAN CONVERGE

GaLore provably converges in the noise-free setting. According to the insight presented in Sec. 3, GaLore fails to converge when gradient noise dominates the true gradient in magnitudes. This motivates us to examine the deterministic scenario where the true gradient $\nabla f(x)$ can be accessed without any gradient noise. The GaLore algorithm with noise-free gradients is presented in Alg. 1 (or Alg. 2 in Appendix B.3), where the true gradient oracle is highlighted with the label (deterministic).

Since no gradient noise exists, the projection matrix $P_{\ell}^{(t)}$ obtained by SVD can effectively capture the true gradient even when the algorithm approaches a local minimum. For simplicity, we analyze GaLore with MSGD and the following momentum updating mechanism:

292 293

295 296

306 307 308

280 281

283 284

285

286

287

288

289

290

291

$$\boldsymbol{M}_{\ell}^{(t)} = \begin{cases} (1-\beta_1)(\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{P}_{\ell}^{(t-1)} \boldsymbol{M}_{\ell}^{(t-1)} + \beta_1(\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{G}_{\ell}^{(t)}, & \text{if } m_{\ell} \le n_{\ell}, \\ (1-\beta_1) \boldsymbol{M}_{\ell}^{(t-1)} (\boldsymbol{Q}_{\ell}^{(t-1)})^{\top} \boldsymbol{Q}_{\ell}^{(t)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} \boldsymbol{Q}_{\ell}^{(t)}, & \text{if } m_{\ell} > n_{\ell}. \end{cases}$$
(2)

If the subspace does not change at iteration t, $(\boldsymbol{P}_{\ell}^{(t)})^{\top}\boldsymbol{P}_{\ell}^{(t-1)} = (\boldsymbol{Q}_{\ell}^{(t-1)})^{\top}\boldsymbol{Q}_{\ell}^{(t)} = \boldsymbol{I}_{r_{\ell}}$ and (2) reduces to regular momentum updates. If the subspace changes at iteration t, we inherit $\boldsymbol{M}_{\ell}^{(t-1)}$ by first projecting back to the previous space and then to the new subspace. For convenience, we use *momentum projection (MP)* to refer to mechanism (2). When MP is used in the algorithm, we label the corresponding with (with MP) in Alg. 1 otherwise (without MP). The following theorem provides convergence guarantees for GaLore using deterministic gradients and MSGD with MP.

Theorem 2 (Convergence rate of deterministic GaLore). Under Assumptions 1-2, if the number of iterations $T \ge 64/(3\delta)$ and we choose

$$\beta_1 = 1, \quad \tau = \left\lceil \frac{64}{3\underline{\delta}\beta_1} \right\rceil, \quad \text{and} \quad \eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2L^2}{3\underline{\delta}}} + \sqrt{\frac{16\tau L^2}{3\beta_1}} \right)^{-1}$$

GaLore using deterministic gradients and MSGD with MP converges as

$$\frac{1}{T}\sum_{t=0}^{T-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T}\right),$$

314 where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$ and $\underline{\delta} := \min_{\ell} \frac{r_{\ell}}{\min\{m_{\ell}, n_{\ell}\}}$. 315

Remark. In fact, *MSGD* here reduces to momentum gradient descent by using deterministic gradients. Theorem 2 demonstrates that GaLore converges at a rate of O(1/T) in the deterministic scenario, which is on the same order as full-parameter training. A more detailed result is presented in Theorem 6 in Appendix B.3, where we established convergence for more general hyperparameter choices However, in deep learning tasks with exceptionally large training datasets, computing the true gradient becomes impractical due to significant computational and memory costs. Therefore, we will next focus on the stochastic setting.

Galore provably converges with large-batch stochastic gradients. Inspired by the insight presented in Sec. 3, Galore converges in cases where the true gradient dominates the gradient noise.

324 Algorithm 1 GaLore / GoLore algorithm using stochastic / deterministic / large-batch gra-325 326 dients with / without momentum projection 327 **Input:** Initial point $x^{(0)}$, data distribution \mathcal{D} , learning rate η , subspace changing frequency τ , rank 328 $\{r_{\ell}\}_{\ell=1}^{N_L}$, optimizer hyperparameters $\beta_1, \beta_2, \epsilon$, large batch size \mathcal{B} . **Output:** $\{x^{(t)}\}_{t=0}^{T}$. 330 Initialize optimizer state $\{M_{\ell}^{(-1)}\}_{\ell=1}^{N_L}$ and $\{V_{\ell}^{(-1)}\}_{\ell=1}^{N_L}$ to zero; for $t = 0, 1, \dots, T - 1$ do 332 for $\ell = 1, 2, \cdots, N_L$ do 333 if $t \equiv 0 \pmod{\tau}$ then 334 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)}); \quad \text{(stochastic)}$ 335 336 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} f(\boldsymbol{x}^{(t)}); \quad (\text{deterministic})$ 337 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \frac{1}{B} \sum_{b=1}^{B} \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t,b)}); \quad (\text{large-batch})$ 338 339 $\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V} \leftarrow \operatorname{SVD}(\boldsymbol{G}_{\ell}^{(t)}), \boldsymbol{P}_{\ell}^{(t)} \leftarrow \boldsymbol{U}[:,:r_{\ell}], \boldsymbol{Q}_{\ell}^{(t)} \leftarrow \boldsymbol{V}[:,:r_{\ell}];$ (GaLore) 340 341 Sample $\boldsymbol{P}_{\ell}^{(t)} \sim \mathcal{U}(\operatorname{St}_{m_{\ell},r_{\ell}}), \quad \boldsymbol{Q}_{\ell}^{(t)} \sim \mathcal{U}(\operatorname{St}_{n_{\ell},r_{\ell}}); \quad (\text{GoLore})$ 342 else 343 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)}); \quad \text{(stochastic)}$ 345 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} f(\boldsymbol{x}^{(t)}); \quad (\text{deterministic})$ $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)}); \quad (\text{large-batch})$ 347 $oldsymbol{P}_{\ell}^{(t)} \leftarrow oldsymbol{P}_{\ell}^{(t-1)}, oldsymbol{Q}_{\ell}^{(t)} \leftarrow oldsymbol{Q}_{\ell}^{(t-1)};$ 349 350 $\boldsymbol{R}_{\ell}^{(t)} \leftarrow \begin{cases} (\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{G}_{\ell}^{(t)}, & \text{ if } m_{\ell} \leq n_{\ell}; \\ \boldsymbol{G}_{\ell}^{(t)} \boldsymbol{Q}_{\ell}^{(t)}, & \text{ if } m_{\ell} > n_{\ell}; \end{cases}$ 351 352 $M_{\ell}^{(t)} \leftarrow \begin{cases} (1-\beta_1) (\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{P}_{\ell}^{(t-1)} \boldsymbol{M}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{R}_{\ell}^{(t)}, & \text{if } m_{\ell} \leq n_{\ell}; \\ (1-\beta_1) \boldsymbol{M}_{\ell}^{(t-1)} (\boldsymbol{Q}_{\ell}^{(t-1)})^{\top} \boldsymbol{Q}_{\ell}^{(t)} + \beta_1 \boldsymbol{R}_{\ell}^{(t)}, & \text{if } m_{\ell} > n_{\ell}; \end{cases}$ (with MP) 354 355 $\boldsymbol{M}_{\ell}^{(t)} \leftarrow (1-\beta_1)\boldsymbol{M}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{R}_{\ell}^{(t)}; \quad \text{(without MP)}$ 357 $\overline{V_{\ell}^{(t)} \leftarrow (1 - \beta_2) V_{\ell}^{(t-1)} + \beta_2 \overline{R}_{\ell}^{(t)} \odot \overline{R}_{\ell}^{(t)}};$ if using Adam then $\boldsymbol{M}_{\ell}^{(t)} \leftarrow \boldsymbol{M}_{\ell}^{(t)}/(1-\beta_1^t), \quad \boldsymbol{V}_{\ell}^{(t)} \leftarrow \boldsymbol{V}_{\ell}^{(t)}/(1-\beta_2^t), \quad \boldsymbol{N}_{\ell}^{(t)} \leftarrow \boldsymbol{M}_{\ell}^{(t)}/(\sqrt{\boldsymbol{V}_{\ell}^{(t)}}+\epsilon);$ 360 361 else if using MSGD then $oldsymbol{N}_\ell^{(t)} \leftarrow oldsymbol{M}_\ell^{(t)};$ end if 362 $oldsymbol{X}_{\ell}^{(t+1)} \leftarrow egin{cases} oldsymbol{X}_{\ell}^{(t)} - \eta oldsymbol{P}_{\ell}^{(t)} oldsymbol{N}_{\ell}^{(t)}, & ext{if } m_{\ell} \leq n_{\ell}; \ oldsymbol{X}_{\ell}^{(t)} - \eta oldsymbol{N}_{\ell}^{(t)} (oldsymbol{Q}_{\ell}^{(t)})^{ op}, & ext{if } m_{\ell} > n_{\ell}; \end{cases}$ 366 end for 367 end for 368 369 370

This convergence can be ensured by reducing the gradient noise through an increased batch size, particularly as the algorithm approaches a local minimum. Specifically, we replace the stochastic gradient $G_{\ell}^{(t)} = \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)})$ with large-batch gradient $G_{\ell}^{(t)} = \frac{1}{B} \sum_{b=1}^{B} \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t,b)})$, which reduces the variance of gradient noise by \mathcal{B} times. The GaLore algorithm with large-batch stochastic gradients is presented in Alg. 1 (or Alg. 3 in Appendix B.4), where the large-batch stochastic gradient oracle is highlighted with the label (large-batch). It is worth noting that the non-convergence of GaLore primarily stems from the erroneous subspace dominated by gradient noise. Therefore, we compute a large-batch gradient only for the SVD step while maintaining a smaller batch size for other computations, see Alg. 1. As the batch size \mathcal{B} increases with iteration T, GaLore provably converge to stationary solutions, as established in the following theorem: 380 Theorem 2 (Computer solutions, as established in the following theorem:

Theorem 3 (Convergence rate of large-batch GaLore). Under Assumptions 1-3, if $T \ge 2 + 256/(3\underline{\delta}) + (256\sigma)^2/(9\sqrt{\underline{\delta}}L\Delta)$ and we choose $\tau = \lceil 128/(3\underline{\delta}\beta_1) \rceil$, $\mathcal{B} = \lceil 1/(\underline{\delta}\beta_1) \rceil$,

$$\beta_1 = \left(1 + \sqrt{\frac{\underline{\delta}^{3/2} \sigma^2 T}{L\Delta}}\right)^{-1}, \quad \text{and} \quad \eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{40\tau^2 L^2}{\underline{\delta}}} + \sqrt{\frac{32\tau L^2}{3\beta_1}}\right)^{-1},$$

GaLore using large-batch gradients and MSGD with MP converges as

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^{2}}{\underline{\delta}^{7/2}T}}\right),$$

where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$ and $\underline{\delta} := \min_{\ell} \frac{r_{\ell}}{\min\{m_{\ell}, n_{\ell}\}}$.

Remark. A more detailed result is presented in Theorem 7 in Appendix B.4, where we established convergence for more general hyperparameter choices. The batch size $\mathcal{B} = \Theta(\sqrt{T})$ in large-batch GaLore grows with iteration T, leading to increased memory overhead, making it less practical than small-batch GaLore. With gradient accumulation, an additional variable is needed to track the gradient, complicating compatibility with per-layer weight updates. Otherwise, larger batch sizes raise the memory required for activation values. Therefore, exploring algorithms that can converge with standard small-batch stochastic gradients becomes essential.

Empirical validation. Fig. 1 illustrates the convergence of large-batch GaLore (blue curve) in
 solving problem (1). It demonstrates that large-batch GaLore effectively corrects the bias present in
 small-batch stochastic GaLore (green curve), achieving convergence to stationary solutions.

GaLore provably converges with isotropic noise assumptions. In Appendix G, we further prove that under some additional isotropic noise assumptions, GaLore with small-batch stochastic gradients can also be guaranteed to converge at a rate of $O(1/\sqrt{T})$.

5 GOLORE: GRADIENT RANDOM LOW-RANK PROJECTION

GoLore algorithm. The main issue with SVD-based projection in GaLore is that it aims to capture the dominant component in the stochastic gradient matrix. Consequently, when gradient noise overshadows the true gradient as the algorithm approaches a local minimum, the SVD-based projection fails to identify valuable gradient information.

To address this, we propose replacing the SVD-based projection with a random projection, which captures components of the stochastic gradient matrix randomly without any preference. This results in the GoLore algorithm presented in Alg. 1 (or Alg. 4 in Appendix B.5). In Alg. 1, the GaLore method highlighted with the label (GaLore) samples the projection matrix $P_{\ell}^{(t)}$ via SVD decomposition. In contrast, the GoLore method highlighted with the label (GoLore) samples $P_{\ell}^{(t)}$

418 from $\mathcal{U}(\operatorname{St}_{m_{\ell},r_{\ell}})$, a uniform distribution on the $m_{\ell} \times r_{\ell}$ Stiefel manifold. The following proposition 419 provides a practical strategy to sample from distribution $\mathcal{U}(\operatorname{St}_{m,r})$. 420

Proposition 1 (Chikuse (2012), Theorem 2.2.1). A random matrix X uniformly distributed on St_{m,r} is expressed as $X = Z(Z^{\top}Z)^{-1/2}$, where the elements of an $m \times r$ random matrix Z are independent and identically distributed as normal $\mathcal{N}(0, 1)$.

424 Convergence guarantee. Unlike SVD used in GaLore, the random sampling strategy in GoLore
 425 prevents the subspace from being dominated by gradient noise. The theorem below provides con 426 vergence guarantees for GoLore when using small-batch stochastic gradients and MSGD with MP.

Theorem 4 (Convergence rate of GoLore). Under Assumptions 1-3, for any $T \ge 2 + 128/(3\underline{\delta}) + (128\sigma)^2/(9\sqrt{\underline{\delta}}L\Delta)$, if we choose $\tau = \lceil 64/(3\underline{\delta}\beta_1) \rceil$,

429 430

431

381

382

384 385 386

391

402

403

404

405 406

$$\beta_1 = \left(1 + \sqrt{\frac{\underline{\delta}^{3/2} \sigma^2 T}{L\Delta}}\right)^{-1}, \quad and \quad \eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2 L^2}{3\underline{\delta}}} + \sqrt{\frac{16\tau L^2}{3\beta_1}}\right)^{-1},$$

432	Table 1: Memory and computation comparison between GaLore's original implementation and our ReLoRA-
433	like version, both utilizing MSGD with batch size b. We assume the weight $W \in \mathbb{R}^{m \times n}$ satisfies $m \le n$.

GaLore Implementation	Memory	Computation
(Zhao et al., 2024)	mn + rm + rn + bm	6bmn + 4rmn + 2mn + 3rn
Our ReLoRA-like version	mn + rm + 2rn + bm + br	4bmn + 4brm + 6brn + 5rn

GoLore using small-batch stochastic gradients and MSGD with MP converges as

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^2}{\underline{\delta}^{7/2}T}}\right)$$

443 where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$ and $\underline{\delta} := \min_{\ell} \frac{r_{\ell}}{\min\{m_{\ell}, n_{\ell}\}}$.

Remark. Theorem 4 demonstrates that GaLore converges at a rate of $\mathcal{O}(1/\sqrt{T})$, which is consistent with the convergence rate of full-parameter pre-training using standard MSGD. A more detailed result is presented in Theorem 8 in Appendix B.5, where we established convergence for more general hyperparameter choices. Unlike deterministic GaLore and low-rank GaLore discussed in Sec. 4, the newly-proposed GoLore algorithm converges in the non-convex stochastic setting with regular batch sizes, making it far more suitable for LLM pre-training and fine-tuning.

Practical application of GoLore in LLMs. While GoLore have theoretical convergence guarantees, directly applying GoLore in LLM tasks may not be ideal. The advantage of using randomly sampled projection matrices becomes evident in the later stages of training, where stochastic gradients are primarily dominated by gradient noise. However, in the early stages, projection matrices derived from SVD retain more gradient information, leading to more effective subspaces. Therefore, we recommend a *hybrid* approach: initially using GaLore to converge toward the neighborhood of the solution, then switching to GoLore for refinement and achieving more accurate results.

Empirical validation. Fig. 1 shows the convergence of the hybrid algorithm (red curve) applied to
 problem (1), which employs GaLore during the early training phase and switches to GoLore in the
 later stage. It is observed that the hybrid algorithm successfully converges to stationary solutions.

6 CONNECTION WITH OTHER SUBSPACE OPTIMIZATION METHODS

Connection with ReLoRA. Algorithms like GaLore/GoLore that optimizes in periodically recom-462 puted subspaces can be implemented in an equivalent yet potentially more computational efficient, 463 ReloRA-like way. Consider a linear layer y = Wx with $W \in \mathbb{R}^{m \times n}$, where $m \leq n$, GaLore first 464 computes the full-parameter gradient $\nabla_W \mathcal{L} = (\nabla_y \mathcal{L}) x^{+}$ via back propagation and update W in 465 the subspace as $W \leftarrow W + P\rho(P^{\top}(\nabla_W \mathcal{L}))$, where $P \in \mathbb{R}^{m \times r}$ is a low-rank projection matrix. 466 If we use LoRA adaptation $W = W_0 + BA$ with $B \in \mathbb{R}^{m \times r}$ and $A \in \mathbb{R}^{r \times n}$, we compute A's 467 gradient $\nabla_{\boldsymbol{A}} \mathcal{L} = (\nabla_{\boldsymbol{z}} \mathcal{L}) \boldsymbol{x}^{\top} = \boldsymbol{B}^{\top} (\nabla_{\boldsymbol{y}} \mathcal{L}) \boldsymbol{x}^{\top}$, where $\boldsymbol{z} = \boldsymbol{B} \boldsymbol{x}$ is the additional activation. If we fix 468 B = P, update $A \leftarrow A + \rho(\nabla_A \mathcal{L})$ is equivalent to $W \leftarrow W + P\rho(P^{\top}(\nabla_W \mathcal{L}))$. The memory 469 and computational costs of the two implementations are compared in Table 1, showing the potential 470 of our ReLoRA-like implementation to reduce computation with little memory overhead. Detailed 471 algorithm descriptions and calculations are in Appendix D.

472 473 474 474 475 476 **Connection with FLORA.** Aware of the equivalence of the two (GaLore/ReLoRA-like) implementations, the main difference between GoLore and FLORA lies in the choice of projection matrices. Though both algorithms sample $P \in \mathbb{R}^{m \times r}$ randomly, GoLore uses a uniform distribution on the Stiefel manifold $\mathcal{U}(St_{m,r})$, while FLORA uses a random Gaussian distribution where each element in P is independently sampled from $\mathcal{N}(0, 1/r)$, and thus P may not belongs to $St_{m,r}$.

Connection with SIFT. SIFT fine-tunes LLMs with sparsified gradients, which can also be viewed as subspace descent. While GaLore projects gradient G to $P^{\top}G$ via a projection matrix P, SIFT projects gradient G to $S \odot G$ via a sparse mask matrix S. Our theoretical analysis can be directly transferred to sparse subspace descent with little effort, implying similar results as in low-rank subspace descent, see Appendix C.

482 483 484

444

445

446

447

448

449

7 EXPERIMENTS

We evaluate GaLore and GoLore on several different tasks, including solving a counter-example problem (1), pre-training and fine-tuning LLMs with real benchmarks. Throughout our experi-

Figure 3: Pre-training curves of various approaches using AdamW with BF16 precision.

Figure 4: Fine-tuning curves of various approaches using MSGD with BF16 precision.

Table 2: Fine-tuning results on GLUE benchmark using pre-trained RoBERTa-Base.

Algorithm	CoLA	STS-B	MRPC	RTE	SST2	MNLI	QNLI	QQP	Avg
Full Params.	62.07	90.18	92.25	78.34	94.38	87.59	92.46	91.90	86.15
GaLore	61.32	90.24	92.55	77.62	94.61	86.92	92.06	90.84	85.77
FLORA	57.71	89.59	91.96	76.17	94.50	85.42	91.93	90.49	84.72
GoLore@20%	61.66	90.55	92.93	78.34	94.61	87.02	92.20	90.91	86.03

ments, GoLore@x% uses GaLore in the first (100 - x)% iterations and GoLore in the last x% iterations, *L.B. GaLore* denotes large-batch GaLore, and *Full Params*. denotes full-parameter training. Further results and detailed experimental specifications including the hyperparameter choices and computing resources are deferred to Appendix E.

GaLore's non-convergence. To validate the non-convergence of GaLore and the convergence properties of GoLore and large-batch GaLore, we compare them with full-parameter training on the constructed quadratic problem defined in (1). Fig. 1 shows that, regardless of whether AdamW or MSGD is employed as the subspace optimizer, GaLore does not converge to the desired solution. In contrast, both GoLore and large-batch GaLore, along with full-parameter training, achieve exact convergence, thereby validating our theoretical results.

Pre-training. To validate the efficiency of GoLore in LLM pre-training tasks, we pre-trained LLaMA-60M on the C4 (Raffel et al., 2020) dataset for 10,000 iterations using various algorithms, including GaLore, GoLore and full-parameter training. All implementations utilized the AdamW optimizer in BF16 format. As illustrated in Fig. 3, there is a noticeable performance gap between GaLore/GoLore and full-parameter training, indicating that the parameters are away from local minima. However, GoLore still demonstrates slightly better training performance compared to GaLore.

Fine-tuning. To validate the efficiency of GoLore in LLM fine-tuning tasks, we fine-tuned pre-trained LLaMA2-7B models (Touvron et al., 2023) on the WinoGrande dataset (Sakaguchi et al., 2021) and pre-trained RoBERTa models (Liu, 2019) on the GLUE benchmark (Wang, 2018) with AdamW optimizers. Fig. 4 displays the fine-tuning loss curves for GaLore and GoLore with rank 1024, while Table 2 presents the task scores for GaLore/GoLore and FLORA with rank 4. In both experiments, GoLore outperforms GaLore.

8 CONCLUSION AND LIMITATIONS

This paper investigates subspace optimization approaches for LLM pre-training and fine-tuning. We demonstrate that GaLore fails to converge to the desired solution under regular assumptions, as the SVD-based projection often generates noise-dominated subspaces when the true gradient is relatively small. However, we establish that GaLore can achieve exact convergence when using deterministic or large-batch stochastic gradients. We further introduce GoLore-a variant of Ga-Lore employing randomly sampled projection matrices—and establish its convergence rate even with small-batch stochastic gradients. A limitation of this paper is that convergence guarantees for GoLore are currently provided only when using MSGD as the subspace optimizer. Although GoLore with AdamW performs well empirically, as shown in Table 2, its theoretical convergence guarantees remain unknown and will be addressed in future work.

540 REFERENCES

- 542 Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
 543 Communication-efficient sgd via gradient quantization and encoding. Advances in neural information processing systems, 30, 2017.
- Massimo Bini, Karsten Roth, Zeynep Akata, and Anna Khoreva. Ether: Efficient finetuning of
 large-scale models with hyperplane reflections. *arXiv preprint arXiv:2405.20271*, 2024.
- Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order finetuning for language models with low-rank structures. *arXiv preprint arXiv:2410.07698*, 2024.
- Yasuko Chikuse. *Statistics on special manifolds*, volume 174. Springer Science & Business Media, 2012.
- Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint arXiv:1905.10044*, 2019.
- Laurent Condat, Artavazd Maranjyan, and Peter Richtárik. Locodl: Communication-efficient dis tributed learning with local training and compression. *arXiv preprint arXiv:2403.04348*, 2024.
- Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error feedback! Advances in Neural Information Processing Systems, 36, 2024.
- Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster non-convex distributed learning with compression. In *International Conference on Machine Learning*, pp. 3788–3798. PMLR, 2021.
- Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and Bamdev Mishra. Sltrain: a sparse plus low-rank approach for parameter and memory efficient pretraining. *arXiv preprint arXiv:2406.02214*, 2024.
- Filip Hanzely, Konstantin Mishchenko, and Peter Richtárik. Sega: Variance reduction via gradient
 sketching. Advances in Neural Information Processing Systems, 31, 2018.
- Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient compressors. *arXiv preprint arXiv:2402.03293*, 2024.
- Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
 arXiv preprint arXiv:2402.12354, 2024.
- 575
 576
 576
 577
 578
 578
 578
 579
 578
 579
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
- Yutong He, Jie Hu, Xinmeng Huang, Songtao Lu, Bin Wang, and Kun Yuan. Distributed bilevel op timization with communication compression. In *Forty-first International Conference on Machine Learning*, 2024a.
- 582
 583
 584
 584
 585
 585
 586
 587
 588
 588
 588
 589
 580
 580
 581
 581
 582
 583
 584
 585
 584
 585
 584
 585
 585
 584
 585
 585
 585
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
 586
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.
- Kun Huang and Shi Pu. Cedas: A compressed decentralized stochastic gradient method with improved convergence. *arXiv preprint arXiv:2301.05872*, 2023.
- Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny Zhou, and Zhangyang Wang. Back
 razor: Memory-efficient transfer learning by self-sparsified backpropagation. Advances in neural information processing systems, 35:29248–29261, 2022.

602

621

- Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. Stochastic subspace descent.
 arXiv preprint arXiv:1904.01145, 2019.
- Zhize Li and Peter Richtárik. Canita: Faster rates for distributed convex optimization with communication compression. *Advances in Neural Information Processing Systems*, 34:13770–13781, 2021.
- Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient descent in distributed and federated optimization. *arXiv preprint arXiv:2002.11364*, 2020.
- Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High rank training through low-rank updates. In *The Twelfth International Conference on Learning Representations*, 2023.
- Kaizhao Liang, Bo Liu, Lizhang Chen, and Qiang Liu. Memory-efficient llm training with online subspace descent. *arXiv preprint arXiv:2408.12857*, 2024.
- Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. *arXiv preprint arXiv:2402.09353*, 2024.
- 4 Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
- Sebastian Loeschcke, Mads Toftrup, Michael J Kastoryano, Serge Belongie, and Vésteinn Snæbjarnarson. Loqt: Low rank adapters for quantized training. *arXiv preprint arXiv:2405.16528*, 2024.
- ⁶²⁰ I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
- Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. Came: Confidence guided adaptive memory efficient optimization. *arXiv preprint arXiv:2307.02047*, 2023.
- Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
 Arora. Fine-tuning language models with just forward passes. *Advances in Neural Information Processing Systems*, 36:53038–53075, 2023.
- Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019.
- Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Compute efficient low-memory llm training with structured sparse gradients. *arXiv preprint arXiv:2406.17660*, 2024.
- Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layer wise importance sampling for memory-efficient large language model fine-tuning. *arXiv preprint arXiv:2403.17919*, 2024.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- Amrutha Varshini Ramesh, Vignesh Ganapathiraman, Issam H Laradji, and Mark Schmidt. Block Ilm: Memory-efficient adaptation of llms by selecting and optimizing the right coordinate blocks.
 arXiv preprint arXiv:2406.17296, 2024.
- Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and practically faster error feedback. *Advances in Neural Information Processing Systems*, 34: 4384–4396, 2021.
- 647 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

- Weixi Song, Zuchao Li, Lefei Zhang, Hai Zhao, and Bo Du. Sparse is enough in fine-tuning pretrained large language model. *arXiv preprint arXiv:2312.11875*, 2023.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- Nikhil Vyas, Depen Morwani, and Sham M Kakade. Adamem: Memory efficient momentum for
 adafactor. In 2nd Workshop on Advancing Neural Network Training: Computational Efficiency,
 Scalability, and Resource Optimization (WANT@ ICML 2024), 2024.
 - Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461, 2018.
- Yilong Wang, Haishan Ye, Guang Dai, and Ivor Tsang. Can gaussian sketching converge faster on
 a preconditioned landscape? In *Forty-first International Conference on Machine Learning*, 2024.
- Cong Xie, Shuai Zheng, Sanmi Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. Cser:
 Communication-efficient sgd with error reset. Advances in Neural Information Processing Systems, 33:12593–12603, 2020.
- Zhiyuan Yu, Li Shen, Liang Ding, Xinmei Tian, Yixin Chen, and Dacheng Tao. Sheared back propagation for fine-tuning foundation models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5883–5892, 2024.
- Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero: dimension independent and differentially private zeroth-order optimization. In *International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023*, 2023.
- Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
 Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
 Opt: Open pre-trained transformer language models, 2022.
- Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. *arXiv preprint arXiv:2403.03507*, 2024.

APPENDIX

A CHALLENGES IN THEORETICAL ANALYSIS

Gradient projection onto a low-rank subspace poses two significant challenges for the convergence analysis of (momentum) stochastic gradient descent:

• Neither unbiased nor contractive compression. gradient projection onto this subspace can be viewed as gradient compression. Traditional analyses of optimization algorithms with lossy compression typically rely on either unbiased (Li et al., 2020; Li & Richtárik, 2021; Huang & Pu, 2023; He et al., 2024a;b; Condat et al., 2024) compressibility, *i.e.*, the compressor C satisfies

$$\mathbb{E}[\mathcal{C}(oldsymbol{x})] = oldsymbol{x}, \quad \mathbb{E}[\|\mathcal{C}(oldsymbol{x}) - oldsymbol{x}\|_2^2] \leq \omega \|oldsymbol{x}\|_2^2, \quad orall oldsymbol{x} \in \mathbb{R}^d,$$

for some $\omega \ge 0$, or contractive (Richtárik et al., 2021; Xie et al., 2020; Fatkhullin et al., 2024; He et al., 2023) compressibility, *i.e.*,

$$\mathbb{E}[\|\mathcal{C}(\boldsymbol{x}) - \boldsymbol{x}\|_2^2] \le (1 - \delta) \|\boldsymbol{x}\|_2^2, \quad \forall \boldsymbol{x} \in \mathbb{R}^d,$$

for some $\delta \in (0, 1]$. However, GaLore's subspace compression is neither unbiased nor contractive due to the reuse of projection matrices. For example, consider a pre-computed projection matrix $P \in \mathbb{R}^{m \times r}$. There exists a full-parameter gradient $G \in \mathbb{R}^{m \times n}$ such that $G \neq 0$ and $C(G) := PP^{\top}G = 0$, violating both unbiased and contractive compressibility.

• **Periodically projected optimizer states.** When GaLore changes the subspace, the retained momentum terms must be adjusted to track the gradients in the new subspace. Since these momentum terms were initially aligned with the gradients in the original subspace, such adjustments inevitably introduce additional errors, especially when the two subspaces differ significantly. In the extreme case where the two subspaces are entirely orthogonal, the momentum from the previous subspace becomes largely irrelevant for optimization in the new one.

B THEORETICAL PROOFS

B.1 NOTATIONS AND USEFUL LEMMAS

733 We assume the model parameters consist of N_L weight matrices. We use $X_\ell \in \mathbb{R}^{m_\ell \times n_\ell}$ to denote 734 the ℓ -th weight matrix and $x \in \mathbb{R}^d = (\operatorname{vec}(X_1)^\top, \cdots, \operatorname{vec}(X_{N_L})^\top)^\top$ to denote the vector collect-735 ing all the parameters, $d = \sum_{\ell=1}^{N_L} m_\ell n_\ell$. We assume GaLore/GoLore applies rank- r_ℓ projection to 736 the ℓ -th weight matrix and denote

$$\delta_{\ell} = \frac{r_{\ell}}{\min\{m_{\ell}, n_{\ell}\}}, \quad \underline{\delta} = \min_{1 \le \ell \le N_L} \delta_{\ell}, \quad \overline{\delta} = \max_{1 \le \ell \le N_l} \delta_{\ell}.$$

We define $ilde{M}_{\ell}^{(t)}$ as

$$\tilde{\boldsymbol{M}}_{\ell}^{(t)} = \begin{cases} \boldsymbol{P}_{\ell}^{(t)} \boldsymbol{M}_{\ell}^{(t)}, & \text{ if } m_{\ell} \leq n_{\ell}, \\ \boldsymbol{M}_{\ell}^{(t)} (\boldsymbol{Q}_{\ell}^{(t)})^{\top}, & \text{ if } m_{\ell} > n_{\ell}, \end{cases}$$

and $\tilde{\boldsymbol{m}} = (\operatorname{vec}(\tilde{\boldsymbol{M}}_1)^{\top}, \cdots, \operatorname{vec}(\tilde{\boldsymbol{M}}_{N_L})^{\top})^{\top}$. While using Alg. 1 with MSGD and MP, it holds for $m_{\ell} \leq n_{\ell}$ that

$$\tilde{\boldsymbol{M}}_{\ell}^{(t)} = \begin{cases} \beta_1 \boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top} \boldsymbol{G}_{\ell}^{(0)}, & t = 0; \\ \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top} \left((1 - \beta_1) \tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} \right), & t = k\tau, \ k \in \mathbb{N}^*; \\ (1 - \beta_1) \tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{G}_{\ell}^{(t)}, & t = k\tau + r, \ k \in \mathbb{N}, \ 1 \le r < \tau; \end{cases}$$

for $m_{\ell} > n_{\ell}$ that

$$\tilde{\boldsymbol{M}}_{\ell}^{(t)} = \begin{cases} \beta_1 \boldsymbol{G}_{\ell}^{(0)} \boldsymbol{Q}_{\ell}^{(0)} (\boldsymbol{Q}_{\ell}^{(0)})^{\top}, & t = 0; \\ \left((1 - \beta_1) \tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} \right) \boldsymbol{Q}_{\ell}^{(t)} (\boldsymbol{Q}_{\ell}^{(t)})^{\top}, & t = k\tau, \ k \in \mathbb{N}^*; \\ (1 - \beta_1) \tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} \boldsymbol{Q}_{\ell}^{(t)} (\boldsymbol{Q}_{\ell}^{(t)})^{\top}, & t = k\tau + r, \ k \in \mathbb{N}, \ 1 \le r < \tau; \end{cases}$$

and for both cases that

$$oldsymbol{X}_\ell^{(t+1)} = oldsymbol{X}_\ell^{(t)} - \eta ilde{oldsymbol{M}}_\ell^{(t)}$$

Lemma 1 (Error of GaLore's projection). Let $G = U\Sigma V^{\top}$ be the SVD of $G \in \mathbb{R}^{m \times n}$, projection matrix P = U[:,:r], Q = V[:,:r], $r < \min\{m,n\}$. It holds for $m \le n$ that

$$\|\boldsymbol{P}\boldsymbol{P}^{ op}\boldsymbol{G} - \boldsymbol{G}\|_{F}^{2} \leq \left(1 - rac{r}{m}
ight)\|\boldsymbol{G}\|_{F}^{2}$$

and for m > n that

$$\|\boldsymbol{G}\boldsymbol{Q}\boldsymbol{Q}^{ op}-\boldsymbol{G}\|_{F}^{2}\leq\left(1-rac{r}{n}
ight)\|\boldsymbol{G}\|_{F}^{2}$$

Proof. Without loss of generality assume $m \leq n$ (the other case can be proved similarly). Let Q = U[:, (r+1):], It holds that $I = UU^{\top} = PP^{\top} + QQ^{\top}$. Thus,

$$\|\boldsymbol{P}\boldsymbol{P}^{\mathsf{T}}\boldsymbol{G} - \boldsymbol{G}\|_{F}^{2} = \|(\boldsymbol{I} - \boldsymbol{P}\boldsymbol{P}^{\mathsf{T}})\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathsf{T}}\|_{F}^{2}$$
$$= \operatorname{tr}(\boldsymbol{V}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{U}^{\mathsf{T}}(\boldsymbol{I} - \boldsymbol{P}\boldsymbol{P}^{\mathsf{T}})^{2}\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathsf{T}})$$
$$= \operatorname{tr}(\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{U}^{\mathsf{T}}\boldsymbol{Q}\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{U}\boldsymbol{\Sigma}), \qquad (3)$$

where the second equation uses $\|X\|_F^2 = \operatorname{tr}(X^\top X)$ and the last equation uses $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, $V^\top V = I$ and $Q^\top Q = I$. By $Q^\top P = 0$ and $P^\top Q = 0$, we have

$$\boldsymbol{U}^{\top}\boldsymbol{Q}\boldsymbol{Q}^{\top}\boldsymbol{U} = \begin{pmatrix} \boldsymbol{P}^{\top} \\ \boldsymbol{Q}^{\top} \end{pmatrix} \boldsymbol{Q}\boldsymbol{Q}^{\top} (\boldsymbol{P} \quad \boldsymbol{Q}) = \begin{pmatrix} \boldsymbol{0}_{r \times r} & \boldsymbol{0}_{r \times (m-r)} \\ \boldsymbol{0}_{(m-r) \times r} & \boldsymbol{I}_{m-r} \end{pmatrix}.$$
 (4)

Let $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_m \ge 0$ denote the eigenvalues of G, (4) implies

$$\boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top} \boldsymbol{Q} \boldsymbol{Q}^{\top} \boldsymbol{U} \boldsymbol{\Sigma} = \begin{pmatrix} 0_{r \times r} & 0_{r \times (m-r)} & 0_{r \times (n-m)} \\ 0_{(m-r) \times r} & \text{diag}(\sigma_{r+1}, \cdots, \sigma_m) & 0_{(m-r) \times (n-m)} \\ 0_{(n-m) \times r} & 0_{(n-m) \times (m-r)} & 0_{(n-m) \times (n-m)} \end{pmatrix}.$$
 (5)

Applying (5) to (3) yields

$$\|\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{G}-\boldsymbol{G}\|_{F}^{2} = \operatorname{tr}(\boldsymbol{\Sigma}^{\top}\boldsymbol{U}^{\top}\boldsymbol{Q}\boldsymbol{Q}^{\top}\boldsymbol{U}\boldsymbol{\Sigma}) = \sum_{i=r+1}^{m} \sigma_{i}^{2} \leq \frac{m-r}{m} \|\boldsymbol{G}\|_{F}^{2},$$

where the inequality uses $\|\boldsymbol{G}\|_F^2 = \operatorname{tr}(\boldsymbol{G}^\top \boldsymbol{G}) = \operatorname{tr}(\boldsymbol{\Sigma}^\top \boldsymbol{\Sigma}) = \sum_{i=1}^m \sigma_i^2$.

Lemma 2 (Gradient connections). It holds for any $t, \tau > 0$ that

$$\|\nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2} \leq \frac{2}{\tau} \sum_{r=0}^{\tau-1} \|\nabla_{\ell} f(\boldsymbol{x}^{(t+r)})\|_{F}^{2} + (\tau-1) \sum_{r=0}^{\tau-2} \|\nabla_{\ell} f(\boldsymbol{x}^{(t+r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t+r)})\|_{F}^{2}.$$
 (6)

Proof. For any $r = 1, \dots, \tau - 1$, it holds that

$$\begin{aligned} \|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} &= \|\nabla_{\ell} f(\boldsymbol{x}^{(t+r)}) - (\nabla_{\ell} f(\boldsymbol{x}^{(t+r)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))\|_{F}^{2} \\ &\leq 2 \|\nabla_{\ell} f(\boldsymbol{x}^{(t+r)})\|_{F}^{2} + 2 \|\nabla_{\ell} f(\boldsymbol{x}^{(t+r)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}. \end{aligned}$$
(7)

For any $r = 2, \dots, \tau - 1$, it holds that

$$\|\nabla_{\ell} f(\boldsymbol{x}^{(t+r)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} = \left\|\sum_{i=1}^{r} \nabla_{\ell} f(\boldsymbol{x}^{(t+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t+i-1)})\right\|_{F}^{2}$$

808
809
$$\leq r \sum_{i=1}^{r} \|\nabla_{\ell} f(\boldsymbol{x}^{(t+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t+i-1)})\|_{F}^{2}, \tag{8}$$

where the inequality uses Cauchy's inequality. Summing (7) from r = 1 to $\tau - 1$ and applying (8) yields

$$\tau \|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} \leq 2\sum_{r=0}^{\tau-1} \|\nabla_{\ell} f(\boldsymbol{x}^{(t+r)})\|_{F}^{2} + 2\sum_{i=1}^{\tau-1} \sum_{j=1}^{i} i \|\nabla_{\ell} f(\boldsymbol{x}^{(t+j)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t+j-1)})\|_{F}^{2}$$

$$\leq 2\sum_{r=0}^{\tau-1} \|\nabla_{\ell} f(\boldsymbol{x}^{(t+r)})\|_{F}^{2} + 2\sum_{j=1}^{\tau-1} \sum_{i=1}^{\tau-1} i \|\nabla_{\ell} f(\boldsymbol{x}^{(t+j)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t+j-1)})\|_{F}^{2}$$

$$=2\sum_{r=0}^{\tau-1} \|\nabla_{\ell} f(\boldsymbol{x}^{(t+r)})\|_{F}^{2} + \tau(\tau-1)\sum_{j=1}^{\tau-1} \|\nabla_{\ell} f(\boldsymbol{x}^{(t+j)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t+j-1)})\|_{F}^{2},$$
(6).

which is exactly (6).

Lemma 3 (Projection orthogonality). If $P \in St_{m,r}$, it holds for any $A, B \in \mathbb{R}^{m \times n}$ that

$$\|PP^{\top}A + (I - PP^{\top})B\|_{F}^{2} = \|PP^{\top}A\|_{F}^{2} + \|(I - PP^{\top})B\|_{F}^{2}.$$
(9)

Proof. By definition we have $P^{\top}P = I$. It suffices to note that

$$\langle \boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{A}, (\boldsymbol{I}-\boldsymbol{P}\boldsymbol{P}^{\top})\boldsymbol{B}\rangle_{F} = \operatorname{tr}(\boldsymbol{A}^{\top}\boldsymbol{P}\boldsymbol{P}^{\top}(\boldsymbol{I}-\boldsymbol{P}\boldsymbol{P}^{\top})\boldsymbol{B}) = \operatorname{tr}(0) = 0.$$

Lemma 4 (Descent lemma). Under Assumption 2, for update

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} - \eta \tilde{\boldsymbol{m}}^{(t)},$$

it holds that

$$f(\boldsymbol{x}^{(t+1)}) \leq f(\boldsymbol{x}^{(t)}) - \left(\frac{1}{2\eta} - \frac{L}{2}\right) \|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_{2}^{2} + \frac{\eta}{2} \|\tilde{\boldsymbol{m}}^{(t)} - \nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2} - \frac{\eta}{2} \|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}.$$
(10)

Proof. By L-smoothness of f (Assumption 2) we have

$$\begin{split} f(\boldsymbol{x}^{(t+1)}) &- f(\boldsymbol{x}^{(t)}) \\ \leq \langle \nabla f(\boldsymbol{x}^{(t)}), \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \rangle + \frac{L}{2} \| \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \|_{2}^{2} \\ &= \left\langle \frac{\tilde{\boldsymbol{m}}^{(t)}}{2}, \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \right\rangle + \left\langle \nabla f(\boldsymbol{x}^{(t)}) - \frac{\tilde{\boldsymbol{m}}^{(t)}}{2}, \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \right\rangle + \frac{L}{2} \| \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \|_{2}^{2} \\ &= -\left(\frac{1}{2\eta} - \frac{L}{2}\right) \| \boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)} \|_{2}^{2} + \frac{\eta}{2} \| \nabla f(\boldsymbol{x}^{(t)}) - \tilde{\boldsymbol{m}}^{(t)} \|_{2}^{2} - \frac{\eta}{2} \| \nabla f(\boldsymbol{x}^{(t)}) \|_{2}^{2}, \end{split}$$
hich is exactly (10).

which is exactly (10).

Lemma 5 (Error of GoLore's projection). Let $P \sim \mathcal{U}(St_{m,r})$, $Q \sim \mathcal{U}(St_{n,r})$, it holds for all $\boldsymbol{G} \in \mathbb{R}^{m \times n}$ that

$$\mathbb{E}[\boldsymbol{P}\boldsymbol{P}^{\top}] = \frac{r}{m} \cdot \boldsymbol{I}, \quad \mathbb{E}[\boldsymbol{Q}\boldsymbol{Q}^{\top}] = \frac{r}{n} \cdot \boldsymbol{I}, \tag{11}$$

and

$$\mathbb{E}[\|\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{G}-\boldsymbol{G}\|_{F}^{2}] = \left(1-\frac{r}{m}\right)\|\boldsymbol{G}\|_{F}^{2}, \quad \mathbb{E}[\|\boldsymbol{G}\boldsymbol{Q}\boldsymbol{Q}^{\top}-\boldsymbol{G}\|_{F}^{2}] = \left(1-\frac{r}{n}\right)\|\boldsymbol{G}\|_{F}^{2}.$$
(12)

Proof. We refer the proof of (11) to Theorem 2.2.2 in Chikuse (2012). By $P^{\top}P = I$, we have

$$\mathbb{E}[\|PP^{\top}G - G\|_{F}^{2}] = \mathbb{E}[\operatorname{tr}(G^{\top}(I - PP^{\top})^{2}G)]$$

$$= \mathbb{E}[\operatorname{tr}(G^{\top}(I - PP^{\top})G)]$$

$$= \operatorname{tr}(G^{\top}(I - \mathbb{E}[PP^{\top}])G). \quad (13)$$

Applying (11) to (13) yields

$$\mathbb{E}[\|\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{G} - \boldsymbol{G}\|_{F}^{2}] = \operatorname{tr}\left(\boldsymbol{G}^{\top}\left(\boldsymbol{I} - \frac{r}{m}\boldsymbol{I}\right)\boldsymbol{G}\right)$$
$$= \left(1 - \frac{r}{m}\right)\operatorname{tr}(\boldsymbol{G}^{\top}\boldsymbol{G})$$
$$= \left(1 - \frac{r}{m}\right)\|\boldsymbol{G}\|_{F}^{2}.$$

The other part of (12) can be proved similarly.

B.2 NON-CONVERGENCE OF GALORE

In this subsection, we present the proof for Theorem 1. We first restate Theorem 1 as follows:

Theorem 5 (Non-convergence of GaLore). There exists an objective function $f : \mathbb{R}^d \to \mathbb{R}$ satisfying Assumptions 1, 2, a stochastic gradient oracle (F, D) satisfying Assumption 3, an initial point $\mathbf{x}^{(0)} \in \mathbb{R}^d$, a constant $\epsilon_0 > 0$ such that for GaLore with any rank $r_\ell < \min\{m_\ell, n_\ell\}$, subspace changing frequency τ , any subspace optimizer ρ with arbitrary hyperparameters and any t > 0, it holds that

 $\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 \ge \epsilon_0.$

Proof. Consider target function $f(\mathbf{X}) = \frac{L}{2} \operatorname{tr}(\mathbf{X}^{\top} \boldsymbol{p} \boldsymbol{p}^{\top} \mathbf{X})$ where $L > 0, \mathbf{X} \in \mathbb{R}^{n \times n}$ with n > 1 and $\boldsymbol{p} = (1, 0, \dots, 0)^{\top} \in \mathbb{R}^{n}$. It holds that

$$f(\boldsymbol{X}) = \frac{L}{2} \|\boldsymbol{p}^{\top}\boldsymbol{X}\|_{2}^{2} \ge 0,$$

thus f satisfies Assumption 1. Since $\nabla f(\mathbf{X}) = L \mathbf{p} \mathbf{p}^{\top} \mathbf{X}$, it holds that

$$\|\nabla f(\boldsymbol{X}) - \nabla f(\boldsymbol{Y})\|_{F} = L \|\boldsymbol{p}\boldsymbol{p}^{\top}(\boldsymbol{X} - \boldsymbol{Y})\|_{F} \le L \|\boldsymbol{p}\boldsymbol{p}^{\top}\|_{2} \|\boldsymbol{X} - \boldsymbol{Y}\|_{F} = L \|\boldsymbol{X} - \boldsymbol{Y}\|_{F},$$

thus *f* satisfies Assumption 2.

Consider the following stochastic gradient oracle:

$$F(\boldsymbol{X};\boldsymbol{\xi}) = f(\boldsymbol{X}) + \boldsymbol{\xi} \tilde{\boldsymbol{\sigma}} \cdot \operatorname{tr}(\boldsymbol{Q} \boldsymbol{Q}^{\top} \boldsymbol{X}), \quad \text{and} \quad \mathbb{P}_{\boldsymbol{\xi} \sim \mathcal{D}}[\boldsymbol{\xi} = 1] = \mathbb{P}_{\boldsymbol{\xi} \sim \mathcal{D}}[\boldsymbol{\xi} = -1] = 0.5,$$

where $\tilde{\sigma} = \sigma / \sqrt{(n-1)n/2}$ and

$$\boldsymbol{Q} = \begin{pmatrix} 0 \\ \operatorname{diag}\left(1, \sqrt[4]{2}, \cdots, \sqrt[4]{n-1}\right) \end{pmatrix} \in \mathbb{R}^{n \times (n-1)}.$$

Note that $\nabla F(X;\xi) = \nabla f(X) + \xi \tilde{\sigma} Q Q^{\top}$, it holds for any $X \in \mathbb{R}^{n \times n}$ that

 $\mathbb{E}_{\boldsymbol{\xi}\sim\mathcal{D}}[\nabla F(\boldsymbol{X};\boldsymbol{\xi})] = \nabla f(\boldsymbol{X})$

$$\mathbb{E}_{\boldsymbol{\xi}\sim\mathcal{D}}[\|\nabla F(\boldsymbol{X};\boldsymbol{\xi})-\nabla f(\boldsymbol{X})\|_{F}^{2}] = \tilde{\sigma}^{2} \|\boldsymbol{Q}\boldsymbol{Q}^{\top}\|_{F}^{2} = \frac{\sigma^{2}}{(n-1)n/2} \cdot \sum_{i=1}^{n-1} i = \sigma^{2},$$

905 thus oracle (F, \mathcal{D}) satisfies Assumption 3.

906 Consider the following initial point:

$$\mathbf{X}^{(0)} = \begin{pmatrix} \lambda \boldsymbol{p}^{\top} \ \boldsymbol{\Lambda} \end{pmatrix},$$

910 where $0 < \lambda < \tilde{\sigma}/L$ is a scalar and $\Lambda \in \mathbb{R}^{(n-1)\times n}$ is an arbitrary matrix. We show that GaLore 911 with the above objective function f, stochastic gradient oracle (F, D), initial point $X^{(0)}$, arbitrary 912 rank 0 < r < n, arbitrary subspace changing frequency τ and arbitrary subspace optimizer ρ , can 913 only output points $X^{(t)}$ with $\|\nabla f(X^{(t)})\|_F^2 \ge \epsilon_0$ for $\epsilon_0 = L^2 \lambda^2 > 0$.

When $\tau \mid t$, GaLore recomputes the subspace projection matrix at iteration t. If the first row of $X^{(t)}$ equals λp^{\top} , *i.e.*, $X^{(t)}[1, :] = \lambda p^{\top}$, the stochastic gradient is given by

917
$$\boldsymbol{G}^{(t)} = L\boldsymbol{p}\boldsymbol{p}^{\top}\boldsymbol{X} + \boldsymbol{\xi}^{(t)}\tilde{\boldsymbol{\sigma}}\boldsymbol{Q}\boldsymbol{Q}^{\top} = \operatorname{diag}\left(L\lambda,\boldsymbol{\xi}^{(t)}\tilde{\boldsymbol{\sigma}},\sqrt{2}\boldsymbol{\xi}^{(t)}\tilde{\boldsymbol{\sigma}},\cdots,\sqrt{n-1}\boldsymbol{\xi}^{(t)}\tilde{\boldsymbol{\sigma}}\right)$$

since $L\lambda < \tilde{\sigma}$, computing SVD yields

. . .

 $(L\lambda)$

$$\mathbf{G}^{(t)} = \begin{pmatrix} 0 & \xi^{(t)}\tilde{\sigma} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{n-1}\xi^{(t)}\tilde{\sigma} \end{pmatrix} \\
= \underbrace{\begin{pmatrix} 0 & \cdots & 0 & \zeta_1 \\ 0 & \cdots & \zeta_2 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \zeta_n & \cdots & 0 & 0 \end{pmatrix}}_{:=U} \underbrace{\begin{pmatrix} \sqrt{n-1}\tilde{\sigma} & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \tilde{\sigma} & 0 \\ 0 & \cdots & 0 & L\lambda \end{pmatrix}}_{:=\Sigma} \underbrace{\begin{pmatrix} 0 & 0 & \cdots & \zeta_n\xi^{(t)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \zeta_2\xi^{(t)} & \cdots & 0 \\ \zeta_1 & 0 & \cdots & 0 \end{pmatrix}}_{:=V^{\top}}$$

where $\zeta_1, \dots, \zeta_n \in \{-1, 1\}$. For any rank r < n, the projection matrix is thus

	$\int 0$	0	•••	0)	
		:	[.]	:	
	0	0		0	
$P^{(t)} =$	0	0	•••	ζ_{n-r+1}	$\in \mathbb{R}^{n \times r}.$
	:	÷	··	÷	
	0	ζ_{n-1}		0	
	$\backslash \zeta_n$	0	•••	0 /	

Using this projection matrix, the subspace updates in the following τ iterations is as

$$\boldsymbol{X}^{(t+\Delta_t)} = \boldsymbol{X}^{(t)} + \boldsymbol{P}^{(t)} \sum_{s=0}^{\Delta_t - 1} \rho^{(t+s)} ((\boldsymbol{P}^{(t)})^\top \boldsymbol{G}^{(t)}) \quad \Rightarrow \quad \boldsymbol{X}^{(t+\Delta_t)}[1,:] = \boldsymbol{X}^{(t)}[1,:] = \lambda \boldsymbol{p}^\top,$$

for $\Delta_t = 1, 2, \cdots, \tau$. Since $\boldsymbol{X}^{(0)}[1, :] = \lambda \boldsymbol{p}^{\top}$, it holds for all t > 0 that $\boldsymbol{X}^{(t)}[1, :] = \lambda \boldsymbol{p}^{\top}$ and thus

$$\|\nabla f(\boldsymbol{X}^{(t)})\|_F^2 = L^2 \lambda^2 = \epsilon_0.$$

Remark. When setting B = 0 in the quadratic problem setting (Sec. 7), the quadratic problem is equivalent to the counter-example we construct in the proof of Theorem 5. The illustration in Fig. 5 displays the loss curves for this problem.

B.3 CONVERGENCE OF DETERMINISTIC GALORE

In this subsection, we present the proof for Theorem 2. GaLore using deterministic gradients andMSGD with MP is specified as Alg. 2.

Lemma 6 (Momentum contraction). In deterministic GaLore using MSGD with MP (Alg. 2), if $0 < \beta_1 \leq 1$, term $\tilde{M}_{\ell}^{(t)}$ has the following contraction properties:

• When t = 0, it holds that

$$\begin{split} \|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{X}^{(0)})\|_{F}^{2} \leq & (\tau - 1)(1 - \delta_{\ell}\beta_{1}) \sum_{r=0}^{\tau-2} \|\nabla_{\ell} f(\boldsymbol{x}^{(r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2} \\ &+ \frac{2(1 - \delta_{\ell}\beta_{1})}{\tau} \sum_{r=0}^{\tau-1} \|\nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2}; \end{split}$$
(14)

$$\begin{split} \|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} \\ &= \|\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top} [(1-\beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_{1}\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})] - (\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} \\ &= \|\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top} [(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))]\|_{F}^{2} + \|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} \\ &\leq \|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))\|_{F}^{2} + (1-\delta_{\ell})\|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}, \end{split}$$
(18)

1026	Algorithm 2 GaLore using deterministic gradients and MSGD with MP
1027	Input: Initial point $x^{(0)}$, learning rate η , subspace changing frequency τ , rank $\{r_{\ell}\}_{\ell=1}^{N_L}$, momentum
1020	parameter β_1 .
1020	Output: $\{x^{(t)}\}_{t=0}^{T}$.
1031	Initialize optimizer state $\{M_{\ell}^{(-1)}\}_{\ell=1}^{N_L}$ to zero;
1032	for $t = 0, 1, \cdots, T-1$ do
1033	for $\ell = 1, 2, \cdots, N_L$ do
1034	$oldsymbol{G}_\ell^{(au)} \leftarrow abla_\ell f(oldsymbol{x}^{(t)});$
1035	if $t \equiv 0 \pmod{\tau}$ then
1036	$oldsymbol{U}, oldsymbol{\Sigma}, oldsymbol{V} \leftarrow \mathrm{SVD}(oldsymbol{G}_\ell^{(t)});$
1037	if $m_{\ell \leq n_{\ell}} \leq n_{\ell}$ then
1038	$\boldsymbol{P}_{\ell}^{(\iota)} \leftarrow \boldsymbol{U}[:,:r_{\ell}]; \tag{1}$
1039	$M_{\ell}^{(t)} \leftarrow (1 - \beta_1) (P_{\ell}^{(t)})^{ op} P_{\ell}^{(t-1)} M_{\ell}^{(t-1)} + \beta_1 (P_{\ell}^{(t)})^{ op} G_{\ell}^{(t)};$
1040	$oldsymbol{X}_{\ell}^{(t+1)} \leftarrow oldsymbol{X}_{\ell}^{(t)} - \eta oldsymbol{P}_{\ell}^{(t)} oldsymbol{M}_{\ell}^{(t)};$
1041	else
1042	$oldsymbol{Q}_\ell^{(t)} \leftarrow oldsymbol{V}[:,:r_\ell];$
1043	$\boldsymbol{M}_{\ell}^{(t)} \leftarrow (1-\beta_1) \boldsymbol{M}_{\ell}^{(t-1)} (\boldsymbol{Q}_{\ell}^{(t-1)})^{\top} \boldsymbol{Q}_{\ell}^{(t)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} \boldsymbol{Q}_{\ell}^{(t)};$
1044	$oldsymbol{X}_{e}^{(t+1)} \leftarrow oldsymbol{X}_{e}^{(t)} - noldsymbol{M}_{e}^{(t)}(oldsymbol{Q}_{e}^{(t)})^{ op}$:
1045	end if
1046	else
1047	if $m_{\ell} \leq n_{\ell}$ then
1048	$P_\ell^{(t)} \leftarrow P_\ell^{(t-1)};$
1049	$oldsymbol{M}_{\ell}^{(t)} \leftarrow (1-eta_1)oldsymbol{M}_{\ell}^{(t-1)} + eta_1(oldsymbol{P}_{\ell}^{(t)})^{ op}oldsymbol{G}_{\ell}^{(t)};$
1050	$\boldsymbol{X}^{(t+1)}_{e} \leftarrow \boldsymbol{X}^{(t)}_{e} - n \boldsymbol{P}^{(t)}_{e} \boldsymbol{M}^{(t)}_{e}$:
1051	else $(1 - \ell)$
1052	$oldsymbol{Q}_{\ell}^{(t)} \leftarrow oldsymbol{Q}_{\ell}^{(t-1)};$
1053	$\boldsymbol{M}_{e}^{(t)} \leftarrow (1-eta_1) \boldsymbol{M}_{e}^{(t-1)} + eta_1 \boldsymbol{G}_{e}^{(t)} \boldsymbol{Q}_{e}^{(t)};$
1054	$\mathbf{X}^{(t+1)} \leftarrow \mathbf{X}^{(t)} - n \mathbf{M}^{(t)} (\mathbf{O}^{(t)})^{ op}$
1055	end if
1057	end if
1058	end for
1059	end for
1060	

where the second equality uses Lemma 3 and $G_{\ell}^{(t)} = \nabla_{\ell} f(\boldsymbol{x}^{(t)})$, the inequality uses Lemma 1 and $\|\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}\|_{2} = 1$. By Young's inequality, we have

$$\begin{split} \|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} \\ &= \|(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})) - (\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2} \\ &\leq \left(1 + \frac{\delta_{\ell} \beta_{1}}{4}\right) \|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2} + \left(1 + \frac{4}{\delta_{\ell} \beta_{1}}\right) \|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}. \end{split}$$

$$(19)$$

Applying Lemma 2 and (19) to (18) yields (15).

When $t = k\tau + r, k \in \mathbb{N}, 1 \le r < \tau$, we have

 $\|\tilde{\boldsymbol{M}}_{\boldsymbol{\alpha}}^{(t)} - \nabla_{\boldsymbol{\alpha}} f(\boldsymbol{x}^{(t)})\|_{\boldsymbol{n}}^2$

$$= \| (1 - \beta_1) (\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})) + \beta_1 (\boldsymbol{P}_{\ell}^{(t)} (\boldsymbol{P}_{\ell}^{(t)})^{\top} - \boldsymbol{I}) \nabla_{\ell} f(\boldsymbol{x}^{(t)}) \|_F^2$$

$$\leq (1 - \beta_1) \| \tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}) \|_F^2 + \beta_1 \| (\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)} (\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}) \nabla_{\ell} f(\boldsymbol{x}^{(t)}) \|_F^2, \qquad (20)$$

where the inequality uses Jensen's inequality and $P_{\ell}^{(t)} = P_{\ell}^{(t-1)} = \cdots = P_{\ell}^{(k\tau)}$. The first term can be similarly upper bounded as (19). For the second term, we have

$$\leq \left(1 + \frac{\delta_{\ell}}{4}\right) \| (\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)} (\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}) \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)}) \|_{F}^{2}$$

 $(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)} (\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}) \nabla_{\ell} f(\boldsymbol{x}^{(t)}) \|_{F}^{2}$

$$+ \left(1 + \frac{4}{\delta_{\ell}}\right) \| (\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)} (\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}) (\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)}) \|_{F}^{2} \\ \leq \left(1 + \frac{\delta_{\ell}}{4}\right) (1 - \delta_{\ell}) \| \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)}) \|_{F}^{2} + \frac{5}{\delta_{\ell}} \| \nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)}) \|_{F}^{2},$$
(21)

where the first inequality uses Young's inequality and the second inequality uses Lemma 1. By Young's inequality, we have

$$\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2} \leq \left(1 + \frac{\delta_{\ell}}{4}\right) \|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} + \left(1 + \frac{4}{\delta_{\ell}}\right) \|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}.$$
(22)

1097 Note that $t = k\tau + r$, we further have

$$\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2} = \left\|\sum_{i=1}^{r} \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\right\|_{F}^{2}$$

$$\leq r \sum_{i=1}^{r} \|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\|^{2}$$
(22)

$$\leq r \sum_{i=1}^{r} \|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2},$$
(23)

where the inequality uses Cauchy's inequality. Applying (22)(23) to (21) yields

$$(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}) \nabla_{\ell} f(\boldsymbol{x}^{(t)}) \|_{F}^{2} \\ \leq \left(1 - \frac{\delta_{\ell}}{2}\right) \|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} + \frac{10r}{\delta_{\ell}} \sum_{i=1}^{r} \|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}.$$
(24)

 1110
 Applying (19)(24) to (20) yields (16).

Lemma 7 (Momentum error). Under Assumption 2, if $0 < \beta_1 \le 1$ in deterministic GaLore using MSGD and MP (Alg. 2), it holds for any $K \ge 1$ that

$$\sum_{t=0}^{K\tau-1} \|\tilde{\boldsymbol{m}}^{(t)} - \nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2} \leq \left(\frac{5(1-\beta_{1})}{(1-\underline{\delta}/4)\underline{\delta}\beta_{1}^{2}} + \frac{5\tau(\tau-1)}{(1-\underline{\delta}/4)\underline{\delta}} + \frac{\tau-1}{(1-\overline{\delta}/4)\beta_{1}}\right) L^{2} \sum_{t=0}^{K\tau-2} \|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_{2}^{2} + \left(\frac{1-\underline{\delta}/2}{1-\underline{\delta}/4} + \frac{2}{(1-\overline{\delta}/4)\tau\beta_{1}}\right) \sum_{t=0}^{K\tau-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}.$$
(25)

Proof. By Lemma 6 we have

$$\sum_{t=0}^{K\tau-1} \|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right) \sum_{t=0}^{K\tau-2} \|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}$$

$$\leq \left(\frac{5(1-\beta_1)}{\delta_{\ell}\beta_1} + \frac{5\tau(\tau-1)\beta_1}{\delta_{\ell}} + (\tau-1)\right) \sum_{t=0}^{K\tau-2} \|\nabla_{\ell}f(\boldsymbol{x}^{(t+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_F^2$$

1132
1133
$$+ \left(\frac{2}{\tau} + \left(1 - \frac{\delta_{\ell}}{2}\right)\beta_1\right) \sum_{t=0}^{K\tau-1} \|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2$$

which implies

 $\sum_{\ell=1}^{N_\ell-1} \| ilde{oldsymbol{M}}_\ell^{(t)} -
abla_\ell f(oldsymbol{x}^{(t)})\|_F^2$ $\leq \left(\frac{5(1-\beta_1)}{(1-\delta_{\ell}/4)\delta_{\ell}\beta_1^2} + \frac{5\tau(\tau-1)}{(1-\delta_{\ell}/4)\delta_{\ell}} + \frac{\tau-1}{(1-\delta_{\ell}/4)\beta_1}\right)\sum_{\ell=1}^{K\tau-2} \|\nabla_{\ell}f(\boldsymbol{x}^{(t+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_F^2$ $+ \left(\frac{1 - \delta_{\ell}/2}{1 - \delta_{\ell}/4} + \frac{2}{(1 - \delta_{\ell}/4)\tau\beta_{1}}\right) \sum_{\ell}^{K\tau-1} \|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}.$ Summing (26) for $\ell = 1, \dots, N_L$ and applying Assumption 2 yields (25). Now we are ready to prove the convergence of Alg. 2. **Theorem 6** (Convergence of deterministic GaLore). Under Assumptions 1-2, if hyperparameters $0 < \beta_1 \le 1, \quad \tau \ge \frac{64}{3\beta_1 \underline{\delta}}, \quad 0 < \eta \le \min\left\{\frac{1}{4L}, \sqrt{\frac{3\underline{\delta}\beta_1^2}{80L^2}}, \sqrt{\frac{3\underline{\delta}}{80\tau^2L^2}}, \sqrt{\frac{3\beta_1}{16\tau L^2}}\right\},$ GaLore using deterministic gradients and MSGD with MP (Alg. 2) converges as $\frac{1}{K\tau} \sum_{k=0}^{K\tau-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 \leq \frac{16\Delta}{\underline{\delta}\eta K\tau}$ for any $K \geq 1$, where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$. Proof. By Lemma 4 we have $\sum_{t=0}^{N_{\tau-1}} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 \leq \frac{2[f(\boldsymbol{x}^{(0)}) - f(\boldsymbol{x}^{(K\tau)})]}{\eta} + \sum_{t=0}^{K_{\tau-1}} \|\tilde{\boldsymbol{m}}^{(t)} - \nabla f(\boldsymbol{x}^{(t)})\|_2^2$ $-\left(\frac{1}{\eta^2} - \frac{L}{\eta}\right) \sum_{i=1}^{K\tau-1} \|\bm{x}^{(t+1)} - \bm{x}^{(t)}\|_2^2.$ Applying Lemma 7 to (29) and using $\underline{\delta} \leq \overline{\delta} < 1$ yields $\left(\frac{\delta}{4} - \frac{8}{3\tau\beta_1}\right) \sum_{i=1}^{K\tau-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2$ $\leq \frac{2}{-}f(\boldsymbol{x}^{(0)}) - f(\boldsymbol{x}^{(K\tau)})$ $-\left(\frac{1}{n^2} - \frac{L}{n} - \frac{20(1-\beta_1)L^2}{3\delta\beta_1^2} - \frac{20\tau(\tau-1)L^2}{3\delta} - \frac{4(\tau-1)L^2}{3\beta_1}\right)\sum_{i=1}^{K\tau-1} \|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_2^2.$ (30) By (27) we have $\frac{\delta}{4} - \frac{8}{3\tau\beta_1} \ge \frac{\delta}{8}, \quad \text{and} \quad \frac{1}{4\eta^2} \ge \max\left\{\frac{L}{\eta}, \frac{20(1-\beta_1)L^2}{3\delta\beta_1^2}, \frac{20\tau(\tau-1)L^2}{3\delta}, \frac{4(\tau-1)L^2}{3\beta_1}\right\}.$ (31) Applying (31) to (30) yields (28)We now prove Theorem 2, which is restated as follows. **Corollary 1** (Convergence complexity of deterministic GaLore). Under Assumptions 1-2, if $T \ge 1$ $64/(3\delta)$ and we choose $\beta_1 = 1$ $\tau = \left[\frac{64}{2\delta e}\right]$

(26)

(27)

(28)

(29)

1186
1187
$$\eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2L^2}{3\underline{\delta}}} + \sqrt{\frac{16\tau L^2}{3\beta_1}}\right) \quad ,$$

GaLore using deterministic gradients and MSGD with MP (Alg. 2) converges as

 $\frac{1}{T}\sum_{t=0}^{T-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T}\right),\tag{32}$

1194 where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$. Consequently, the computation complexity to reach an ε -accurate 1195 solution \boldsymbol{x} such that $\|\nabla f(\boldsymbol{x})\|_2^2 \leq \varepsilon$ is $\mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}\varepsilon} + \frac{1}{\underline{\delta}}\right)$.

1198 Proof. $T \ge 1 + 64/(3\underline{\delta})$ guarantees $T \ge \tau$. Let $T = K\tau + r$, where $K \in \mathbb{N}^*$ and $0 \le r < \tau$. If 1199 r = 0, (32) is a direct result of Theorem 6. If r > 0, applying Theorem 6 to $\tilde{K} := K + 1$ yields

$$\frac{1}{T}\sum_{t=0}^{T-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2} \leq \frac{\tilde{K}\tau}{T} \cdot \frac{1}{\tilde{K}\tau} \sum_{t=0}^{\tilde{K}\tau-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2} = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T}\right).$$

1207 B.4 CONVERGENCE OF LARGE-BATCH GALORE

In this subsection, we present the proof for Theorem 3. GaLore using large-batch stochastic gradients and MSGD with MP is specified as Alg. 3.

1211 Lemma 8 (Momentum contraction). Under Assumption 3, in large-batch GaLore using MSGD with 1212 MP (Alg. 3), if $0 < \beta_1 \leq 1$, term $\tilde{M}_{\ell}^{(t)}$ has the following contraction properties:

• When
$$t = 0$$
, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{X}^{(0)})\|_{F}^{2}] \leq 2(\tau - 1)(1 - \delta_{\ell}\beta_{1})\sum_{r=0}^{\tau - 2} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2}]$$

$$+ \frac{4(1 - \delta_{\ell}\beta_1)}{\tau} \sum_{r=0}^{\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(r)})\|_F^2] + \frac{4\beta_1\sigma_{\ell}^2}{\mathcal{B}}; \qquad (33)$$

• When $t = k\tau$, $k \in \mathbb{N}^*$, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$$

$$\leq \frac{4(1-\delta_{\ell})}{\tau} \sum_{r=0}^{\tau-1} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \frac{5(1-\beta_{1})}{\delta_{\ell}\beta_{1}} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$$

$$+ 2(\tau-1)(1-\delta_{\ell}) \sum_{r=0}^{\tau-2} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \frac{5\sigma_{\ell}^{2}}{\epsilon}.$$

$$+2(\tau-1)(1-\delta_{\ell})\sum_{r=0}^{\infty}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+r+1)})-\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}]+\frac{5\sigma_{\ell}^{2}}{\mathcal{B}};$$
(34)

• When
$$t = k\tau + r$$
, $k \in \mathbb{N}$, $1 \le r < \tau$, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$$

$$\leq \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{\ell}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{5(1 - \beta_{1})\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$$

$$\leq \left(1 - \frac{\delta_{\ell}}{2}\right) \beta_{1} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{5(1 - \beta_{1})}{\delta_{\ell}\beta_{1}} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\ + \frac{15r\beta_{1}}{\delta_{\ell}} \sum_{i=1}^{r} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}] + \left(\frac{11\beta_{1}}{\delta_{\ell}\mathcal{B}} + \beta_{1}^{2}\right)\sigma_{\ell}^{2}.$$
(35)

Ā	lgorithm 3 GaLore using large-batch stochastic gradients and MSGD with MP
L	put: Initial point $\boldsymbol{x}^{(0)}$, data distribution \mathcal{D} , learning rate <i>n</i> , subspace changing frequency τ , rank
	$\{r_{\ell}\}_{\ell=1}^{N_L}$, momentum parameter β_1 , large batch size \mathcal{B} .
0	utput: $\{x^{(t)}\}_{t=0}^{T}$
	Initialize optimizer state $\{M^{(-1)}\}_{L}^{N_L}$ to zero:
	for $t = 0, 1, \dots, T - 1$ do
	if $t \equiv 0 \pmod{\tau}$ then
	Sample $\int \xi(t,b) \setminus \mathcal{B}$ i.i.d. \mathcal{D}
	else $\int_{D} \int_{D} \int_{D}$
	Sample $\xi^{(t)} \sim \mathcal{D}$;
	end if
	for $\ell=1,2,\cdots,N_L$ do
	if $t \equiv 0 \pmod{\tau}$ then
	$oldsymbol{G}_\ell^{(t)} = rac{1}{\mathcal{B}}\sum_{b=1}^{\mathcal{B}} abla_\ell F(oldsymbol{x}^{(t)};\xi^{(t,b)});$
	$oldsymbol{U}, oldsymbol{\Sigma}, oldsymbol{V} \leftarrow \mathrm{SVD}(oldsymbol{G}_{\ell}^{(t)});$
	if $m_\ell \leq n_\ell$ then
	$oldsymbol{P}_{\ell}^{(t)} \leftarrow oldsymbol{U}[:,:r_{\ell}];$
	$\mathbf{M}_{e}^{(t)} \leftarrow (1-eta_1)(\mathbf{P}_{e}^{(t)})^{\top}\mathbf{P}_{e}^{(t-1)}\mathbf{M}_{e}^{(t-1)} + eta_1(\mathbf{P}_{e}^{(t)})^{\top}\mathbf{G}_{e}^{(t)}$
	$\mathbf{Y}^{(t+1)} \stackrel{\mathbf{Y}^{(t-1)}}{\longrightarrow} \mathbf{Y}^{(t)} \stackrel{\mathbf{Y}^{(t-1)}}{\longrightarrow} \mathbf{P}^{(t)} \mathbf{M}^{(t)}.$
	$\mathbf{x}_{\ell} \forall \mathbf{x}_{\ell} = \mathbf{y}_{\ell} \mathbf{x}_{\ell} \mathbf{y}_{\ell} \mathbf{y}_{\ell} \mathbf{y}_{\ell}$
	$oldsymbol{Q}_{\ell}^{(t)} \leftarrow V[:,:r_{\ell}];$
	$\mathbf{M}^{(t)} \leftarrow (1 - \beta_t) \mathbf{M}^{(t-1)} (\mathbf{O}^{(t-1)})^{\top} \mathbf{O}^{(t)} \pm \beta_t \mathbf{C}^{(t)} \mathbf{O}^{(t)}$
	$ \begin{array}{c} \mathbf{v}_{\ell} \leftarrow (1 - \rho_1) \mathbf{v}_{\ell} \\ \mathbf{v}_{\ell}^{(t+1)} \\ \mathbf{v}_{\ell}^{(t)} \\ \mathbf{v}_{\ell}^{(t$
	$\mathbf{A}_{\hat{\ell}} \land \leftarrow \mathbf{A}_{\hat{\ell}} \land - \eta \mathcal{M}_{\hat{\ell}} \land (\mathbf{Q}_{\hat{\ell}} \land)^+;$
	enu n else
	$G_{e}^{(t)} = \nabla_{e} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)});$
	if $m_{\ell} \leq n_{\ell}$ then
	$P_{\ell}^{(t)} \leftarrow P_{\ell}^{(t-1)}$:
	$\boldsymbol{M}^{(t)}_{\boldsymbol{\lambda}} \leftarrow (1-eta_1) \boldsymbol{M}^{(t-1)}_{\boldsymbol{\lambda}} + eta_1 (\boldsymbol{P}^{(t)}_{\boldsymbol{\lambda}})^{ op} \boldsymbol{G}^{(t)}$
	$\mathbf{v}_{\ell} (\mathbf{i} \beta_{1}) \mathbf{v}_{\ell} + \beta_{1} (\mathbf{i} \ell) \mathbf{v}_{\ell},$ $\mathbf{v}_{\ell}^{(t+1)} \mathbf{v}_{\ell}^{(t)} \mathbf{v}_{\ell}^{(t)} \mathbf{M}_{\ell}^{(t)}.$
	$\mathbf{A}_{\hat{\ell}} \leftarrow \mathbf{A}_{\hat{\ell}} -\eta \mathbf{F}_{\hat{\ell}} \eta \mathbf{V}_{\hat{\ell}} \gamma$
	$oldsymbol{Q}^{(t)}_{\epsilon} \leftarrow oldsymbol{Q}^{(t-1)}_{\epsilon}$:
	$\mathbf{M}^{(t)} \leftarrow (1 - eta_t) \mathbf{M}^{(t-1)} \pm eta_t \mathbf{C}^{(t)} \mathbf{O}^{(t)}$
	$\mathbf{v}_{\ell} \leftarrow (1 - \rho_1) \mathbf{v}_{\ell} + \rho_1 \mathbf{G}_{\ell} \mathbf{G}_{\ell} \mathbf{G}_{\ell},$ $\mathbf{v}_{\ell+1} = \mathbf{v}_{\ell} \mathbf{v}_{\ell} + \mathbf{v}_{\ell+1} \mathbf{G}_{\ell} \mathbf{G}_{\ell} \mathbf{G}_{\ell} \mathbf{G}_{\ell} \mathbf{G}_{\ell},$
	\mathbf{X}_{ℓ}^{i} $\overset{\frown}{\leftarrow}$ \mathbf{X}_{ℓ}^{i} $\overset{\frown}{-}$ ηM_{ℓ}^{i} $(\mathbf{Q}_{\ell}^{i})^{i}$;
	ena n end if
	end for
	end for
ת	moof Without loss of generality assume mark on the other asso can be moved similarly. When
Р +	<i>rooj.</i> without loss of generality assume $m_{\ell} \leq n_{\ell}$ (the other case can be proved similarly). When -0 we have
ι	- 0, we have
	$\mathbb{E}\left[\ \tilde{\boldsymbol{\mathcal{M}}}^{(0)}_{\boldsymbol{\mathcal{M}}} - \nabla_{\boldsymbol{\mathcal{J}}} f(\boldsymbol{\boldsymbol{\mathcal{m}}}^{(0)})\ ^{2}\right]$
	$\mathbb{E}[\ \mathcal{W}_{\ell} - \nabla_{\ell} J(\mathcal{X}^{(1)})\ _{F}]$
	$\mathbf{\nabla} [[\boldsymbol{\alpha} \cdot \mathbf{p}(0) \setminus \mathbf{p}(0) \setminus \top \boldsymbol{\alpha}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \mathbf{p}(0) - \boldsymbol{\nabla} \cdot \boldsymbol{\beta}(-(0) \setminus [\boldsymbol{\alpha} \cdot \boldsymbol{\beta}(-(0)$

where the inequality uses Jensen's inequality. For the first term we have

$$\begin{split} \mathbb{E}[\|(\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top} - \boldsymbol{I})\boldsymbol{G}_{\ell}^{(0)} + \boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\ \leq & 2\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top})\boldsymbol{G}_{\ell}^{(0)}\|_{F}^{2}] + 2\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \end{split}$$

$$\leq 2\mathbb{E}[\|(\mathbf{I} - \mathbf{F}_{\ell} - (\mathbf{F}_{\ell}))^{*}\mathbf{G}_{\ell} - \|_{F}] + 2\mathbb{E}[\|\mathbf{G}_{\ell} - \nabla_{\ell}f(\mathbf{x}^{(1)})\|_{F}]$$

$$\leq 2(1 - \delta_{\ell})\mathbb{E}[\|\mathbf{G}_{\ell}\|_{F}^{2}] + 2\mathbb{E}[\|\mathbf{G}_{\ell}^{(0)} - \nabla_{\ell}f(\mathbf{x}^{(0)})\|_{F}^{2}]$$

$$\leq 2(1 - \delta_{\ell})\|\nabla_{\ell}f(\mathbf{x}^{(0)})\|_{F}^{2} + \frac{(4 - 2\delta_{\ell})\sigma_{\ell}^{2}}{\mathcal{B}},$$

$$(37)$$

where the first inequality uses Cauchy's inequality, the second inequality uses Lemma 1, the third inequality uses
$$\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \leq \sigma_{\ell}^{2}/\mathcal{B}$$
 (Assumption 3). Applying (37) and Lemma 2 to (36) yields (33).

When $t = k\tau$, $k \in \mathbb{N}^*$, we have

$$\begin{aligned}
& \mathbb{E}[\|\tilde{M}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
& = \mathbb{E}[\|P_{\ell}^{(t)}(P_{\ell}^{(t)})^{\top}[(1-\beta_{1})\tilde{M}_{\ell}^{(t-1)} + \beta_{1}G_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})] - (I - P_{\ell}^{(t)}(P_{\ell}^{(t)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
& = \mathbb{E}[\|P_{\ell}^{(t)}(P_{\ell}^{(t)})^{\top}[(1-\beta_{1})\tilde{M}_{\ell}^{(t-1)} + \beta_{1}G_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})]\|_{F}^{2}] \\
& = \mathbb{E}[\|P_{\ell}^{(t)}(P_{\ell}^{(t)})^{\top}[(1-\beta_{1})\tilde{M}_{\ell}^{(t-1)} + \beta_{1}G_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})]\|_{F}^{2}] \\
& + \mathbb{E}[\|(I - P_{\ell}^{(t)}(P_{\ell}^{(t)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}],
\end{aligned}$$
(38)

where the second equality uses Lemma 3. By $\|\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}\|_{2} = 1$, we have

$$\mathbb{E}[\|\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}[(1-\beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}+\beta_{1}\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})]\|_{F}^{2}] \\
\leq \mathbb{E}[\|(1-\beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}+\beta_{1}\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
= \mathbb{E}[\|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)}))+\beta_{1}(\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\\leq \mathbb{E}[\|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}]+\beta_{1}^{2}\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}], \quad (39)$$

where the last inequality uses the unbiasedness of $G_{\ell}^{(t)}$ (Assumption 3). By Young's inequality, we have $\sim (t-1)$

$$\begin{aligned} & \mathbb{E}[\|\boldsymbol{M}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ & = \mathbb{E}[\|(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})) - (\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\ & = \mathbb{E}[\|(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})) - (\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\ & \leq \left(1 + \frac{\delta_{\ell}\beta_{1}}{4}\right) \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}\beta_{1}}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]. \end{aligned}$$

$$(40)$$

Applying (40) to (39) yields

$$\mathbb{E}[\|\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}[(1-\beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}+\beta_{1}\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})]\|_{F}^{2}] \\
\leq \left(1-\left(1-\frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}-\nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]+\frac{\beta_{1}^{2}\sigma^{2}}{\mathcal{B}} \\
+\frac{5(1-\beta_{1})}{\delta_{\ell}\beta_{1}}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})-\nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}].$$
(41)

For the second term in (38), we have

$$\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
\leq 2\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})\boldsymbol{G}_{\ell}^{(t)}\|_{F}^{2}] + 2\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})(\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\
\leq 2(1 - \delta_{\ell})\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)}\|_{F}^{2}] + 2\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
\leq 2(1 - \delta_{\ell})\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{4\sigma_{\ell}^{2}}{\mathcal{B}},$$
(42)

where the first inequality uses Cauchy's inequality, the second inequality uses Lemma 1 and ||I - $P_{\ell}^{(t)}(P_{\ell}^{(t)})^{\top}\|_{2} = 1$, the third inequality uses Assumption 3. Applying (41)(42) to (38) and using Lemma 2 yields (34).

When $t = k\tau + r, k \in \mathbb{N}, 1 \le r < \tau$, we have $\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$ $= \mathbb{E}[\|(1-\beta_1)(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_1(\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_F^2]$ $= \mathbb{E}[\|(1-\beta_1)(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_1(\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top} - \boldsymbol{I})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_F^2]$ $+ \beta_1^2 \mathbb{E}[\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top} (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})) \|_F^2]$ $\leq (1 - \beta_1) \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2] + \beta_1 \mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}) \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2]$ + $\beta_1^2 \mathbb{E}[\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}(\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_F^2],$ (43)

where the second equality uses the unbiasedness of $G_\ell^{(t)}$ and the independence implied by $P_\ell^{(t)}=$ $P_{\ell}^{(t-1)}$, the inequality uses Jensen's inequality. The first term is similarly bounded as (40). For the second term, we have

$$\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
\leq \left(1 + \frac{\delta_{\ell}}{4}\right)\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top})\boldsymbol{G}_{\ell}^{(k\tau)}\|_{F}^{2}] \\
+ \left(1 + \frac{4}{\delta_{\ell}}\right)\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top})(\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \boldsymbol{G}_{\ell}^{(k\tau)})\|_{F}^{2}] \\
\leq \left(1 - \frac{3\delta_{\ell}}{4}\right)\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(k\tau)}\|_{F}^{2}] + 2\left(1 + \frac{4}{\delta_{\ell}}\right)\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(k\tau)} - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] \\
+ 2\left(1 + \frac{4}{\delta_{\ell}}\right)\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}],$$
(44)

where the first inequality uses Young's inequality, the second inequality uses Lemma 1 and Cauchy's inequality. We further have

$$\begin{pmatrix} 1 - \frac{3\delta_{\ell}}{4} \end{pmatrix} \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(k\tau)}\|_{F}^{2}] + 2\left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(k\tau)} - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}]$$

$$\leq \left(1 - \frac{3\delta_{\ell}}{4}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] + \frac{11}{\delta_{\ell}} \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(k\tau)} - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}]$$

$$\leq \left(1 - \frac{3\delta_{\ell}}{4}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] + \frac{11\sigma_{\ell}^{2}}{\delta_{\ell}\mathcal{B}}$$

$$\leq \left(1 - \frac{\delta_{\ell}}{2}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] + \frac{11\sigma_{\ell}^{2}}{\delta_{\ell}\mathcal{B}}, \quad (45)$$

where the first inequality uses unbiasedness of $G_{\ell}^{(k\tau)}$, the second inequality uses Assumption 3, the third inequality uses Young's inequality.

Applying (45) to (44) and applying Cauchy's inequality yields

$$\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
\leq \left(1 - \frac{\delta_{\ell}}{2}\right)\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{11\sigma_{\ell}^{2}}{\delta_{\ell}\mathcal{B}} + \frac{15r}{\delta_{\ell}}\sum_{i=1}^{r}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}].$$
(46)

For the third term, we have

$$\mathbb{E}[\|\boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}(\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \leq \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \leq \sigma_{\ell}^{2},$$
(47)

where the first inequality uses $\|\boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}\|_{2} = 1$, the second inequality uses Assumption 3. Applying (40)(46)(47) to (43) yields (35). $\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{\boldsymbol{m}}^{(t)} - \nabla f(\boldsymbol{x}^{(t)})\|_2^2]$

1406 Lemma 9 (Momentum error). Under Assumption 2-3, if $0 < \beta_1 \le 1$ in large-batch GaLore using MSGD and MP (Alg. 3), it holds for any $K \ge 1$ that

 $+ \left(\frac{1-\underline{\delta}/2}{1-\underline{\delta}/4} + \frac{4}{(1-\overline{\delta}/4)\tau\beta_1}\right) \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2]$

 $+\left(\frac{5K}{(1-\overline{\delta}/4)\beta_1\mathcal{B}}+\frac{11K\tau}{(1-\overline{\delta}/4)\overline{\delta}\mathcal{B}}+\frac{K\tau\beta_1}{1-\overline{\delta}/4}\right)\sigma^2.$

 $\leq \left(\frac{5(1-\beta_1)}{(1-\underline{\delta}/4)\underline{\delta}\beta_1^2} + \frac{15\tau(\tau-1)}{2(1-\underline{\delta}/4)\underline{\delta}} + \frac{2(\tau-1)}{(1-\overline{\delta}/4)\beta_1}\right) L^2 \sum_{t=0}^{K\tau-2} \mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_2^2]$

(48)

Proof. By Lemma 8 we have

$$\begin{split} \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ \leq \left(\frac{5(1-\beta_{1})}{\delta_{\ell}\beta_{1}} + \frac{15\tau(\tau-1)\beta_{1}}{2\delta_{\ell}} + 2(\tau-1)\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ + \left(\frac{4}{\tau} + \left(1 - \frac{\delta_{\ell}}{2}\right)\beta_{1}\right)\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \left(\frac{5K}{\mathcal{B}} + \frac{11K\tau\beta_{1}}{\delta_{\ell}\mathcal{B}} + K\tau\beta_{1}^{2}\right)\sigma_{\ell}^{2}, \end{split}$$

which implies

$$\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{M}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ \leq \left(\frac{5(1-\beta_{1})}{(1-\delta_{\ell}/4)\delta_{\ell}\beta_{1}^{2}} + \frac{15\tau(\tau-1)}{2(1-\delta_{\ell}/4)\delta_{\ell}} + \frac{2(\tau-1)}{(1-\delta_{\ell}/4)\beta_{1}}\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ + \left(\frac{1-\delta_{\ell}/2}{1-\delta_{\ell}/4} + \frac{4}{(1-\delta_{\ell}/4)\tau\beta_{1}}\right)\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ + \left(\frac{5K}{(1-\delta_{\ell}/4)\beta_{1}\mathcal{B}} + \frac{11K\tau}{(1-\delta_{\ell}/4)\delta_{\ell}\mathcal{B}} + \frac{K\tau\beta_{1}}{1-\delta_{\ell}/4}\right)\sigma_{\ell}^{2}.$$
(49)

Summing (49) for $\ell = 1, \dots, N_L$ and applying Assumption 2-3 yields (48).

1446 Now we are ready to prove the convergence of Alg. 3.

Theorem 7 (Convergence of large-batch GaLore). Under Assumptions 1-3, if hyperparameters

$$0 < \beta_1 \le 1, \quad \tau \ge \frac{128}{3\beta_1 \underline{\delta}}, \quad 0 < \eta \le \min\left\{\frac{1}{4L}, \sqrt{\frac{3\underline{\delta}\beta_1^2}{80L^2}}, \sqrt{\frac{\underline{\delta}}{40\tau^2 L^2}}, \sqrt{\frac{3\beta_1}{32\tau L^2}}\right\}, \tag{50}$$

1452
1453GaLore using large-batch stochastic gradients and MSGD with MP (Alg. 3) converges as

$$\frac{1454}{1455} \qquad \qquad \frac{1}{K\tau} \sum_{t=0}^{K\tau-1} \mathbb{E} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 \le \frac{16\Delta}{\underline{\delta}\eta K\tau} + \left(\frac{160}{3\beta_1 \underline{\delta}\tau \mathcal{B}} + \frac{352}{3\underline{\delta}^2 \mathcal{B}} + \frac{32\beta_1}{3\underline{\delta}}\right) \sigma^2$$
(51)

for any $K \geq 1$, where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$.

Proof. By Lemma 4 we have

$$\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] \leq \frac{2[f(\boldsymbol{x}^{(0)}) - \mathbb{E}[f(\boldsymbol{x}^{(K\tau)})]}{\eta} + \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{\boldsymbol{m}}^{(t)} - \nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] - \left(\frac{1}{\eta^{2}} - \frac{L}{\eta}\right) \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_{2}^{2}].$$
(52)

Applying Lemma 9 to (52) and using $\underline{\delta} \leq \overline{\delta} < 1$ yields

$$\left(\frac{\delta}{4} - \frac{16}{3\tau\beta_1}\right) \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] \\
\leq \frac{2}{\eta} \mathbb{E}[f(\boldsymbol{x}^{(0)}) - f(\boldsymbol{x}^{(K\tau)})] + \left(\frac{20K}{3\beta_1\mathcal{B}} + \frac{44K\tau}{3\underline{\delta}\mathcal{B}} + \frac{4K\tau\beta_1}{3}\right)\sigma^2 \\
- \left(\frac{1}{\eta^2} - \frac{L}{\eta} - \frac{20(1-\beta_1)L^2}{3\underline{\delta}\beta_1^2} - \frac{10\tau(\tau-1)L^2}{\underline{\delta}} - \frac{8(\tau-1)L^2}{3\beta_1}\right) \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_2^2].$$
(53)

By (50) we have

$$\frac{\delta}{4} - \frac{16}{3\tau\beta_1} \ge \frac{\delta}{8}, \quad \text{and} \quad \frac{1}{4\eta^2} \ge \max\left\{\frac{L}{\eta}, \frac{20(1-\beta_1)L^2}{3\underline{\delta}\beta_1^2}, \frac{10\tau(\tau-1)L^2}{\underline{\delta}}, \frac{8(\tau-1)L^2}{3\beta_1}\right\}.$$
(54)
Applying (54) to (53) yields (51).

¹⁴⁸² We now prove Theorem 3, which is restated as follows.

Corollary 2 (Convergence complexity of large-batch GaLore). Under Assumptions 1-3, if $T \ge 2 + 256/(3\underline{\delta}) + (256\sigma)^2/(9\sqrt{\underline{\delta}}L\Delta)$ and we choose

$$\beta_1 = \left(1 + \sqrt{\frac{\underline{\delta}^{3/2} \sigma^2 T}{L\Delta}}\right)^{-1},$$
$$\tau = \left\lceil \frac{128}{3\delta\beta_1} \right\rceil,$$

$$\eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{40\tau^2L^2}{\underline{\delta}}} + \sqrt{\frac{32\tau L^2}{3\beta_1}}\right)^{-1},$$

1493
$$\eta = \left(4L + \sqrt{\frac{3\delta\beta_1^2}{3\delta\beta_1^2}} + \sqrt{\frac{1}{3\delta\beta_1^2}}\right)$$

 $\mathcal{B} = \left| \frac{1}{\underline{\delta}\beta_1} \right|,$

 1497
 GaLore using large-batch stochastic gradients and MSGD with MP (Alg. 3) converges as

 1498
 T

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^{2}}{\underline{\delta}^{7/2}T}}\right),$$
(55)

1502 where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$. Consequently, the computation complexity to reach an ε -accurate 1503 solution \boldsymbol{x} such that $\|\nabla f(\boldsymbol{x})\|_2^2 \leq \varepsilon$ is $\mathcal{O}\left(\frac{L\Delta\sigma^2}{\underline{\delta}^{7/2}\varepsilon^2} + \frac{L\Delta}{\underline{\delta}^{5/2}\varepsilon} + \frac{\sigma^2}{\underline{\delta}^{1/2}L\Delta} + \frac{1}{\underline{\delta}}\right)$.

1505 Proof. $T \ge 2 + \frac{128}{(3\delta)} + \frac{(128\sigma)^2}{(9\sqrt{\delta}L\Delta)}$ guarantees $T \ge \tau$. Let $T = K\tau + r$, where 1506 $K \in \mathbb{N}^*$ and $0 \le r < \tau$. If r = 0, (55) is a direct result of Theorem 7. If r > 0, applying Theorem 1507 7 to $\tilde{K} := K + 1$ yields

$$\frac{1}{1509} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] \leq \frac{\tilde{K}\tau}{T} \cdot \frac{1}{\tilde{K}\tau} \sum_{t=0}^{\tilde{K}\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^{2}}{\underline{\delta}^{7/2}T}}\right).$$

$$\square$$

1512 Algorithm 4 GoLore using small-batch stochastic gradients and MSGD with MP 1513 **Input:** Initial point $x^{(0)}$, data distribution \mathcal{D} , learning rate η , subspace changing frequency τ , rank 1514 $\{r_{\ell}\}_{\ell=1}^{N_L}$, momentum parameter β_1 . 1515 **Output:** $\{x^{(t)}\}_{t=0}^{T}$. 1516 Initialize optimizer state $\{M_{\ell}^{(-1)}\}_{\ell=1}^{N_L}$ to zero; 1517 for $t = 0, 1, \cdots, T - 1$ do 1518 Sample $\xi^{(t)} \sim \mathcal{D};$ $G_{\ell}^{(t)} = \nabla_{\ell} F(x^{(t)}; \xi^{(t)});$ for $\ell = 1, 2, \cdots, N_L$ do 1520 1521 if $t \equiv 0 \pmod{\tau}$ then 1522 if $m_{\ell} \leq n_{\ell}$ then 1523
$$\begin{split} & \underset{\substack{M_{\ell} \subseteq n_{\ell} \text{ there} \\ \text{Sample } \boldsymbol{P}_{\ell}^{(t)} \sim \mathcal{U}(\text{St}_{m_{\ell},r_{\ell}}); \\ \boldsymbol{M}_{\ell}^{(t)} \leftarrow (1-\beta_{1})(\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{P}_{\ell}^{(t-1)} \boldsymbol{M}_{\ell}^{(t-1)} + \beta_{1}(\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{G}_{\ell}^{(t)}; \\ \boldsymbol{X}_{\ell}^{(t+1)} \leftarrow \boldsymbol{X}_{\ell}^{(t)} - \eta \boldsymbol{P}_{\ell}^{(t)} \boldsymbol{M}_{\ell}^{(t)}; \end{split}$$
1525 else 1527 $\begin{aligned} & \text{Sample } \boldsymbol{Q}_{\ell}^{(t)} \sim \mathcal{U}(\text{St}_{n_{\ell}, r_{\ell}}); \\ & \boldsymbol{M}_{\ell}^{(t)} \leftarrow (1 - \beta_1) \boldsymbol{M}_{\ell}^{(t-1)} (\boldsymbol{Q}_{\ell}^{(t-1)})^{\top} \boldsymbol{Q}_{\ell}^{(t)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} \boldsymbol{Q}_{\ell}^{(t)}; \\ & \boldsymbol{X}_{\ell}^{(t+1)} \leftarrow \boldsymbol{X}_{\ell}^{(t)} - \eta \boldsymbol{M}_{\ell}^{(t)} (\boldsymbol{Q}_{\ell}^{(t)})^{\top}; \end{aligned}$ 1528 1529 1531 end if 1532 else 1533 if $m_{\ell} \leq n_{\ell}$ then $P_{\ell}^{(t)} \leftarrow P_{\ell}^{(t-1)};$ 1534
$$\begin{split} & \stackrel{\sim}{\boldsymbol{M}_{\ell}^{(t)}} \leftarrow (1-\beta_1) \boldsymbol{M}_{\ell}^{(t-1)} + \beta_1 (\boldsymbol{P}_{\ell}^{(t)})^{\top} \boldsymbol{G}_{\ell}^{(t)}; \\ & \boldsymbol{X}_{\ell}^{(t+1)} \leftarrow \boldsymbol{X}_{\ell}^{(t)} - \eta \boldsymbol{P}_{\ell}^{(t)} \boldsymbol{M}_{\ell}^{(t)}; \end{split}$$
1535 1537 else $\boldsymbol{Q}_{\ell}^{(t)} \leftarrow \boldsymbol{Q}_{\ell}^{(t-1)};$ 1538 1539
$$\begin{split} & \boldsymbol{M}_{\ell}^{(t)} \leftarrow (1-\beta_1) \boldsymbol{M}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} \boldsymbol{Q}_{\ell}^{(t)}; \\ & \boldsymbol{X}_{\ell}^{(t+1)} \leftarrow \boldsymbol{X}_{\ell}^{(t)} - \eta \boldsymbol{M}_{\ell}^{(t)} (\boldsymbol{Q}_{\ell}^{(t)})^{\top}; \end{split}$$
1540 1541 end if 1542 end if 1543 end for 1544 end for 1545 1546 1547 1548 1549 B.5 **CONVERGENCE OF GOLORE** 1550 1551 In this subsection, we present the proof for Theorem 4. GoLore using small-batch stochastic gradi-1552 ents and MSGD with MP is specified as Alg. 4. 1554 Lemma 10 (Momentum contraction). Under Assumption 3, in large-batch GoLore using MSGD 1555 with MP (Alg. 4), if $0 < \beta_1 \leq 1$, term $\tilde{M}_{\ell}^{(t)}$ has the following contraction properties: 1556 1557 1558 • When t = 0, it holds that 1560 1561 $\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{X}^{(0)})\|_{F}^{2}] \leq (\tau - 1)(1 - \delta_{\ell}\beta_{1}) \sum_{r=0}^{\tau-2} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2}]$ 1562 1563 1564 1565

$$+ \frac{2(1 - \delta_{\ell}\beta_1)}{\tau} \sum_{r=0}^{\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(r)})\|_F^2] + \delta_{\ell}\beta_1^2\sigma_{\ell}^2; \qquad (56)$$

• When $t = k\tau$, $k \in \mathbb{N}^*$, it holds that $\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \delta_{\ell} \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right) \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$ $\leq \frac{2(1-\delta_{\ell})}{\tau} \sum_{j=0}^{\tau-1} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \frac{5(1-\beta_{1})}{\beta_{1}} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$ + $(\tau - 1)(1 - \delta_{\ell}) \sum_{r=0}^{\tau-2} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \delta_{\ell}\beta_{1}^{2}\sigma_{\ell}^{2};$ (57)• When $t = k\tau + r$, $k \in \mathbb{N}$, $1 \le r < \tau$, it holds that $\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$ $\leq \left(1 - \frac{\delta_{\ell}}{2}\right) \beta_1 \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2] + \frac{5(1 - \beta_1)}{\delta_{\ell}\beta_1} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_F^2]$ + $\frac{10r\beta_1}{\delta_\ell} \sum_{i=1}^r \mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_\ell f(\boldsymbol{x}^{(k\tau+i-1)})\|_F^2] + \beta_1^2 \sigma_\ell^2.$ (58)*Proof.* Without loss of generality assume $m_{\ell} \leq n_{\ell}$ (the other case can be proved similarly). When t = 0, we have

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
= \mathbb{E}[\|\beta_{1}\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top}\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
= \mathbb{E}[\|(\beta_{1}\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top} - \boldsymbol{I})\nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] + \beta_{1}^{2}\mathbb{E}[\|\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top}(\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)}))\|_{F}^{2}] \\
= \operatorname{tr}((\nabla_{\ell}f(\boldsymbol{x}^{(0)}))^{\top}\mathbb{E}[(\beta_{1}\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top} - \boldsymbol{I})^{2}]\nabla_{\ell}f(\boldsymbol{x}^{(0)})) \\
+ \beta_{1}^{2}\operatorname{tr}(\mathbb{E}_{\xi^{(0)}\sim\mathcal{D}}[(\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)}))^{\top}\mathbb{E}_{\boldsymbol{P}\sim\mathcal{U}(\operatorname{St}_{m_{\ell},r_{\ell}})}[(\boldsymbol{P}\boldsymbol{P}^{\top})^{2}](\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)}))]), \quad (59)$$

where the second equality uses unbiasedness of $m{G}_\ell^{(0)}$. By Lemma 5 we have

$$\mathbb{E}[(\beta P_{\ell}^{(0)} (P_{\ell}^{(0)})^{\top} - I)^{2}] = I - (2\beta_{1} - \beta_{1}^{2})\mathbb{E}[P_{\ell}^{(0)} (P_{\ell}^{(0)})^{\top}] \\ = I - (2\beta_{1} - \beta_{1}^{2})\delta_{\ell}I,$$

thus

$$\operatorname{tr}((\nabla_{\ell} f(\boldsymbol{x}^{(0)}))^{\top} \mathbb{E}[(\beta_{1} \boldsymbol{P}_{\ell}^{(0)} (\boldsymbol{P}_{\ell}^{(0)})^{\top} - \boldsymbol{I})^{2}] \nabla_{\ell} f(\boldsymbol{x}^{(0)})) = (1 - \delta_{\ell} (2\beta_{1} - \beta_{1}^{2})) \|\nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2} \leq (1 - \delta_{\ell} \beta_{1}) \|\nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}.$$
(60)

Similarly, by Lemma 5 we have

$$\operatorname{tr}(\mathbb{E}_{\xi^{(0)}\sim\mathcal{D}}[(\boldsymbol{G}_{\ell}^{(0)}-\nabla_{\ell}f(\boldsymbol{x}^{(0)}))^{\top}\mathbb{E}_{\boldsymbol{P}\sim\mathcal{U}(\operatorname{St}_{m_{\ell},r_{\ell}})}[(\boldsymbol{P}\boldsymbol{P}^{\top})^{2}](\boldsymbol{G}_{\ell}^{(0)}-\nabla_{\ell}f(\boldsymbol{x}^{(0)}))])$$

=
$$\operatorname{tr}\left(\mathbb{E}\left[(\boldsymbol{G}_{\ell}^{(0)}-\nabla_{\ell}f(\boldsymbol{x}^{(0)}))^{\top}\left(\frac{r_{\ell}}{m_{\ell}}\cdot\boldsymbol{I}\right)(\boldsymbol{G}_{\ell}^{(0)}-\nabla_{\ell}f(\boldsymbol{x}^{(0)}))\right]\right)$$

=
$$\delta_{\ell}\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(0)}-\nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}]$$

$$\leq \delta_{\ell}\sigma_{\ell}^{2},$$
(61)

where the inequality uses Assumption 3. Applying (60)(61) and Lemma 2 to (59) yields (56).

 $\begin{aligned} & \text{for } t = k\tau, k \in \mathbb{N}^*, \text{ we have} \\ & \text{for } t = k\tau, k \in \mathbb{N}^*, \text{ for } t = k\tau, k \in \mathbb{N}^*,$

where the second equality uses Lemma 3 and Lemma 5. For the first term, we have

$$\begin{split} & \mathbb{E}[\|(1-\beta_1)\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2] \\ = & \mathbb{E}[\|(1-\beta_1)(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})) + \beta_1 (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))\|_F^2] \\ \leq & \mathbb{E}[\|(1-\beta_1)(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))\|_F^2] + \beta_1^2 \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2] \end{split}$$

$$\leq (1-\beta_1)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_F^2]+\beta_1^2\sigma_{\ell}^2,$$

where both inequalities use Assumption 3. By Young's inequality, we have

$$\begin{aligned} & \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ & = \mathbb{E}[\|(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})) - (\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\ & = \mathbb{E}[\|(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})) - (\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\ & \leq \left(1 + \frac{\delta_{\ell}\beta_{1}}{4}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}\beta_{1}}\right)\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]. \end{aligned}$$

$$(64)$$

(63)

Applying (63)(64) and Lemma 2 to (62) yields (57).

> When $t = k\tau + r$, $k \in \mathbb{N}$, $1 \le r \le \tau$, we have $\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\boldsymbol{\ell}}^{(t)} - \nabla_{\boldsymbol{\ell}} f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$

$$= \mathbb{E}[\|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_{1}(\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top} - \boldsymbol{I})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ + \beta_{1}^{2}\mathbb{E}[\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}(\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\ \leq (1-\beta_{1})\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \beta_{1}\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2} \\ + \beta_{1}^{2}\mathbb{E}[\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}(\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}],$$
(65)

 $= \mathbb{E}[\|(1-\beta_1)(\tilde{M}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_1(\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}]$

where the second equality uses the unbiasedness of $m{G}_\ell^{(t)}$ and the independence implied by $m{P}_\ell^{(t)}=$ $P_{\ell}^{(t-1)}$, the inequality uses Jensen's inequality. The first term is similarly bounded as (64). For the second term, we have

$$+ \left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top})(\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)}))\|_{F}^{2}]$$

$$\leq \left(1 - \frac{3\delta_{\ell}}{4}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}], \quad (66)$$

where the first inequality uses Young's inequality, the second inequality uses Lemma 5 and ||I - $P_{\ell}^{(k\tau)}(P_{\ell}^{(k\tau)})^{\top} \|_{2} = 1.$ By Young's inequality, we have

$$\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] \leq \left(1 + \frac{\delta_{\ell}}{4}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}].$$
(67)

Applying (67) to (66) and applying Cauchy's inequality yields

 $\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$

 $\leq \left(1 + \frac{\delta_{\ell}}{4}\right) \mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)} (\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}) \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}]$

$$\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \leq \left(1 - \frac{\delta_{\ell}}{2}\right)\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{10r}{\delta_{\ell}}\sum_{i=1}^{r}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}].$$
(68)

For the third term, we have

$$\mathbb{E}[\|\boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}(\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \leq \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \leq \sigma_{\ell}^{2}, \tag{69}$$

where the first inequality uses $\|P_{\ell}^{(\kappa\tau)}(P_{\ell}^{(\kappa\tau)})^{\top}\|_{2} = 1$, the second inequality uses Assumption 3. Applying (64)(68)(69) to (65) yields (58). $\sum_{i=1}^{K\tau-1} \mathbb{E}[\|\tilde{\boldsymbol{m}}^{(t)} - \nabla f(\boldsymbol{x}^{(t)})\|_2^2]$

Lemma 11 (Momentum error). Under Assumption 2-3, if $0 < \beta_1 \leq 1$ in GoLore using MSGD and *MP* (Alg. 4), it holds for any $K \ge 1$ that

 $+\left(\frac{1-\underline{\delta}/2}{1-\underline{\delta}/4}+\frac{2}{(1-\overline{\delta}/4)\tau\beta_1}\right)\sum_{t=0}^{K\tau-1}\mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2]+\frac{K\tau\beta_1\sigma^2}{1-\overline{\delta}/4}.$

 $\leq \left(\frac{5(1-\beta_1)}{(1-\underline{\delta}/4)\underline{\delta}\beta_1^2} + \frac{5\tau(\tau-1)}{(1-\underline{\delta}/4)\underline{\delta}} + \frac{\tau-1}{(1-\overline{\delta}/4)\beta_1}\right) L^2 \sum_{t=0}^{K\tau-2} \mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_2^2]$

 Proof. By Lemma 10 we have

$$\begin{split} &\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ &\leq \left(\frac{5(1-\beta_{1})}{\delta_{\ell}\beta_{1}} + \frac{5\tau(\tau-1)\beta_{1}}{\delta_{\ell}} + (\tau-1)\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ &+ \left(\frac{2}{\tau} + \left(1 - \frac{\delta_{\ell}}{2}\right)\beta_{1}\right)\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + K\tau\beta_{1}^{2}\sigma_{\ell}^{2}, \end{split}$$

which implies

$$\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{M}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ \leq \left(\frac{5(1-\beta_{1})}{(1-\delta_{\ell}/4)\delta_{\ell}\beta_{1}^{2}} + \frac{5\tau(\tau-1)}{(1-\delta_{\ell}/4)\delta_{\ell}} + \frac{\tau-1}{(1-\delta_{\ell}/4)\beta_{1}}\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ + \left(\frac{1-\delta_{\ell}/2}{1-\delta_{\ell}/4} + \frac{2}{(1-\delta_{\ell}/4)\tau\beta_{1}}\right)\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{K\tau\beta_{1}\sigma_{\ell}^{2}}{1-\delta_{\ell}/4}.$$
(71)

$$+\left(\frac{1-\delta_{\ell}/2}{1-\delta_{\ell}/4}+\frac{2}{(1-\delta_{\ell}/4)\tau\beta_{1}}\right)\sum_{t=0}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]+\frac{1+\beta_{1}\delta_{\ell}}{1-\delta_{\ell}/4}.$$
(71)

Summing (71) for $\ell = 1, \dots, N_L$ and applying Assumption 2-3 yields (70).

$$\square$$

(70)

Now we are ready to prove the convergence of Alg. 4.

Theorem 8 (Convergence of Golore). Under Assumptions 1-3, if hyperparameters

$$0 < \beta_1 \le 1, \quad \tau \ge \frac{64}{3\beta_1 \underline{\delta}}, \quad 0 < \eta \le \min\left\{\frac{1}{4L}, \sqrt{\frac{3\underline{\delta}\beta_1^2}{80L^2}}, \sqrt{\frac{3\underline{\delta}}{80\tau^2 L^2}}, \sqrt{\frac{3\beta_1}{16\tau L^2}}\right\}, \tag{72}$$

GoLore using small-batch stochastic gradients and MSGD with MP (Alg. 4) converges as

$$\frac{1}{K\tau} \sum_{t=0}^{K\tau-1} \mathbb{E} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] \le \frac{16\Delta}{\underline{\delta}\eta K\tau} + \frac{32\beta_1 \sigma^2}{3\underline{\delta}}$$
(73)

for any $K \geq 1$, where $\Delta = f(\mathbf{x}^{(0)}) - \inf_{\mathbf{x}} f(\mathbf{x})$.

Proof. By Lemma 4 we have

$$\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] \leq \frac{2[f(\boldsymbol{x}^{(0)}) - \mathbb{E}[f(\boldsymbol{x}^{(K\tau)})]}{\eta} + \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{\boldsymbol{m}}^{(t)} - \nabla f(\boldsymbol{x}^{(t)})\|_2^2]$$

1725
$$t=0$$

1726
1727 $-\left(\frac{1}{\eta^2} - \frac{L}{\eta}\right)\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_2^2].$ (74)

Applying Lemma 11 to (74) and using $\delta \leq \overline{\delta} < 1$ yields $\left(\frac{\frac{\delta}{4}}{4} - \frac{8}{3\tau\beta_1}\right)\sum_{i=1}^{K\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2]$ $\leq \frac{2}{n} \mathbb{E}[f(\boldsymbol{x}^{(0)}) - f(\boldsymbol{x}^{(K\tau)})] + \frac{4K\tau\beta_1\sigma^2}{2}$ $-\left(\frac{1}{\eta^2} - \frac{L}{\eta} - \frac{20(1-\beta_1)L^2}{3\underline{\delta}\beta_1^2} - \frac{20\tau(\tau-1)L^2}{3\underline{\delta}} - \frac{4(\tau-1)L^2}{3\beta_1}\right)\sum_{t=0}^{K\tau-1}\mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_2^2].$ (75)By (72) we have $\frac{\delta}{4} - \frac{8}{3\tau\beta_1} \ge \frac{\delta}{8}, \quad \text{and} \quad \frac{1}{4\eta^2} \ge \max\left\{\frac{L}{\eta}, \frac{20(1-\beta_1)L^2}{3\delta\beta_1^2}, \frac{20\tau(\tau-1)L^2}{3\delta}, \frac{4(\tau-1)L^2}{3\beta_1}\right\}.$ (76) Applying (76) to (75) yields (73). We now prove Theorem 4, which is restated as follows. **Corollary 3** (Convergence complexity of GoLore). Under Assumptions 1-3, if $T \ge 2 + 128/(3\delta) + 128/(3\delta)$ $(128\sigma)^2/(9\sqrt{\delta}L\Delta)$ and we choose $\beta_1 = \left(1 + \sqrt{\frac{\underline{\delta}^{3/2} \sigma^2 T}{L\Delta}}\right) \quad ,$ $\tau = \left[\frac{64}{3\delta\beta_1}\right],$ $\eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2L^2}{3\delta}} + \sqrt{\frac{16\tau L^2}{3\beta_1}}\right)^{-1},$ GoLore using small-batch stochastic gradients and MSGD with MP (Alg. 4) converges as $\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] = \mathcal{O}\left(\frac{L\Delta}{\delta^{5/2}T} + \sqrt{\frac{L\Delta\sigma^2}{\delta^{7/2}T}}\right),$ (77)where $\Delta = f(\mathbf{x}^{(0)}) - \inf_{\mathbf{x}} f(\mathbf{x})$. Consequently, the computation complexity to reach an ε -accurate solution \boldsymbol{x} such that $\|\nabla f(\boldsymbol{x})\|_2^2 \leq \varepsilon$ is $\mathcal{O}\left(\frac{L\Delta\sigma^2}{\delta^{7/2}\varepsilon^2} + \frac{L\Delta}{\delta^{5/2}\varepsilon} + \frac{\sigma^2}{\delta^{1/2}L\Lambda} + \frac{1}{\delta}\right)$. *Proof.* $T \geq 2 + \frac{128}{(3\delta)} + \frac{(128\sigma)^2}{(9\sqrt{\delta}L\Delta)}$ guarantees $T \geq \tau$. Let $T = K\tau + r$, where $K \in \mathbb{N}^*$ and $0 \le r < \tau$. If r = 0, (77) is a direct result of Theorem 8. If r > 0, applying Theorem 8 to K := K + 1 yields $\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] \leq \frac{\tilde{K}\tau}{T} \cdot \frac{1}{\tilde{K}\tau}\sum_{t=0}^{K\tau-1}\mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] = \mathcal{O}\left(\frac{L\Delta}{\lambda^{5/2}T} + \sqrt{\frac{L\Delta\sigma^{2}}{\lambda^{7/2}T}}\right).$

С **RESULTS FOR SPARSE SUBSPACE OPTIMIZATION**

In this section, we illustrate how to transfer the main results of this paper to sparse subspace opti-mization algorithms. We first present the detailed algorithm formulation, then present the theoretical results corresponding to GaLore/GoLore. Although it only requires little effort to transfer results in GaLore/GoLore to sparse subspace optimization, we still include proofs for completeness.

1782 Algorithm 5 GaSare / GoSare algorithms using stochastic / deterministic / large-batch gra-1783 dients 1784 **Input:** Initial point $x^{(0)}$, data distribution \mathcal{D} , learning rate η , subspace changing frequency τ , rank 1785 $\{r_{\ell}\}_{\ell=1}^{N_L}$, optimizer hyperparameters $\beta_1, \beta_2, \epsilon$, large batch size \mathcal{B} . 1786 **Output:** $\{x^{(t)}\}_{t=0}^{T}$. 1787 Initialize optimizer state $\{M_{\ell}^{(-1)}\}_{\ell=1}^{N_L}$ and $\{V_{\ell}^{(-1)}\}_{\ell=1}^{N_L}$ to zero; 1788 for $t = 0, 1, \cdots, T - 1$ do 1789 for $\ell = 1, 2, \cdots, N_L$ do 1790 if $t \equiv 0 \pmod{\tau}$ then 1791 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)}); \quad \text{(stochastic)}$ 1792 1793 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} f(\boldsymbol{x}^{(t)}); \quad (\text{deterministic})$ 1795 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \frac{1}{B} \sum_{b=1}^{B} \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t,b)}); \quad (\text{large-batch})$ 1797 $\boldsymbol{S}_{\ell}^{(t)} \leftarrow \operatorname{Top}_{k}(\boldsymbol{G}_{\ell}^{(t)}); \quad (\text{GaSare})$ Sample $S_{\ell}^{(t)} \sim \mathcal{U}(\operatorname{Sp}_{m_{\ell},n_{\ell}}^{k_{\ell}});$ (GoSare) 1799 else 1801 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)}); \quad (\text{stochastic})$ $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} f(\boldsymbol{x}^{(t)}); \quad (\text{deterministic})$ 1803 1804 $\boldsymbol{G}_{\ell}^{(t)} \leftarrow \nabla_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)}); \quad \text{(large-batch)}$ $oldsymbol{S}_\ell^{(t)} \leftarrow oldsymbol{S}_\ell^{(t-1)};$ end if 1806 $\begin{array}{l} \underset{\ell}{\operatorname{end}} \underset{\ell}{\operatorname{II}} \\ \boldsymbol{R}_{\ell}^{(t)} \leftarrow \boldsymbol{S}_{\ell}^{(t)} \odot \boldsymbol{G}_{\ell}^{(t)}; \\ \boldsymbol{M}_{\ell}^{(t)} \leftarrow (1-\beta_1) \boldsymbol{S}_{\ell}^{(t)} \odot \boldsymbol{M}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{R}_{\ell}^{(t)}; \\ \boldsymbol{V}_{\ell}^{(t)} \leftarrow (1-\beta_2) \boldsymbol{S}_{\ell}^{(t)} \odot \boldsymbol{V}_{\ell}^{(t-1)} + \beta_2 \boldsymbol{R}_{\ell}^{(t)} \odot \boldsymbol{R}_{\ell}^{(t)}; \\ \text{if using Adam then} \end{array}$ 1808 1810 1811 1812 $\boldsymbol{M}_{\ell}^{(t)} \leftarrow \boldsymbol{M}_{\ell}^{(t)} / (1 - \beta_1^t), \quad \boldsymbol{V}_{\ell}^{(t)} \leftarrow \boldsymbol{V}_{\ell}^{(t)} / (1 - \beta_2^t), \quad \boldsymbol{N}_{\ell}^{(t)} \leftarrow \boldsymbol{M}_{\ell}^{(t)} / (\sqrt{\boldsymbol{V}_{\ell}^{(t)}} + \epsilon);$ 1813 else if using MSGD then 1814 $\begin{array}{c} \boldsymbol{N}_{\ell}^{(t)} \leftarrow \boldsymbol{M}_{\ell}^{(t)};\\ \text{end if}\\ \boldsymbol{X}_{\ell}^{(t+1)} \leftarrow \boldsymbol{X}_{\ell}^{(t)} - \eta \boldsymbol{S}_{\ell}^{(t)} \odot \boldsymbol{N}_{\ell}^{(t)}; \end{array}$ 1815 1816 1817 end for 1818 end for 1819 1820 1821

C.1 ALGORITHM DESIGN

1824 While low-rank subspace optimization algorithms like GaLore/GoLore project full-parameter gra-1825 dient $G \in \mathbb{R}^{(m \times n)}$ into low-rank subspaces via projection like $P^{\top}G$, sparse subspace optimization 1826 algorithms use a sparse mask S to get $S \odot G$. Specifically, consider the following set

$$\operatorname{Sp}_{m,n}^{k} = \{ \boldsymbol{S} \in \{0,1\}^{m \times n} \mid \|\boldsymbol{S}\|_{F}^{2} = k \},\$$

1830 *i.e.*, a set of $m \times n$ matrices contains k ones and (mn - k) zeros. Corresponding to the subspace 1831 selecting strategy in GaLore, we consider a Top-k strategy which places the k ones at indices cor-1832 responding to G's elements with the k largest absolute values. We also consider a Rand-k strategy 1833 which samples the sparse mask matrix S from the uniform distribution on $SP_{m,n}^k$ corresponding to 1834 GoLore. For convenience, we name the algorithm using Top-k strategy as GaSare (Gradient Sparse 1835 projection), and the one using Rand-k strategy as GoSare (Gradient random Sparse projection). The 1836 concerned sparse subspace descent algorithms are described as in Alg. 5

C.2 NOTATIONS AND USEFUL LEMMAS

We assume the model parameters consist of N_L weight matrices. We use $X_\ell \in \mathbb{R}^{m_\ell \times n_\ell}$ to denote the ℓ -th weight matrix and $x \in \mathbb{R}^d = (\operatorname{vec}(X_1)^\top, \cdots, \operatorname{vec}(X_{N_L})^\top)^\top$ to denote the vector collect-ing all the parameters, $d = \sum_{\ell=1}^{N_L} m_\ell n_\ell$. We assume GaSare/GoSare applies sparse mask in $\operatorname{Sp}_{m_\ell, n_\ell}^{k_\ell}$ to the ℓ -th weight matrix and denote

$$\delta_{\ell} = \frac{k_{\ell}}{m_{\ell}n_{\ell}}, \quad \underline{\delta} = \min_{1 \le \ell \le N_L} \delta_{\ell}, \quad \overline{\delta} = \max_{1 \le \ell \le N_l} \delta_{\ell}.$$

We define $\tilde{M}_{\ell}^{(t)} = S_{\ell}^{(t)} \odot M_{\ell}^{(t)}$ and $\tilde{m} = (\operatorname{vec}(\tilde{M}_1)^{\top}, \cdots, \operatorname{vec}(\tilde{M}_{N_L})^{\top})^{\top}$. While using Alg. 5 with MSGD, it holds that

$$\tilde{\boldsymbol{M}}_{\ell}^{(t)} = \begin{cases} \beta_1 \boldsymbol{S}_{\ell}^{(0)} \odot \boldsymbol{G}_{\ell}^{(0)}, & t = 0; \\ \boldsymbol{S}_{\ell}^{(t)} \odot \left((1 - \beta_1) \tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} \right), & t = k\tau, \ k \in \mathbb{N}^*; \\ (1 - \beta_1) \tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{S}_{\ell}^{(t)} \odot \boldsymbol{G}_{\ell}^{(t)}, & t = k\tau + r, \ k \in \mathbb{N}, \ 1 \le r < \tau; \end{cases}$$

and that

$$\boldsymbol{X}_{\ell}^{(t+1)} = \boldsymbol{X}_{\ell}^{(t)} - \eta \tilde{\boldsymbol{M}}_{\ell}^{(t)}$$

We use $E_{m,n}$ to denote the all-one $m \times n$ matrix, *i.e.*,

$$oldsymbol{E}_{m,n}=egin{pmatrix} 1&1&\cdots&1\ 1&1&\cdots&1\ dots&dots&dots\ dots&dots&dots\ dots\ dots&dots&dots\ dots\ d$$

Lemma 12 (Error of GaSare's projection). Let S be the Top-k mask of $G \in \mathbb{R}^{m \times n}$, it holds that

$$\| \boldsymbol{S} \odot \boldsymbol{G} - \boldsymbol{G} \|_F^2 \leq \left(1 - rac{k}{mn}
ight) \| \boldsymbol{G} \|_F^2$$

Proof. Let g_1, g_2, \dots, g_{mn} be elements of G such that $|g_1| \ge |g_2| \ge \dots \ge |g_{mn}|$. It holds that

1870
1871
1872
1873
1874

$$\|\boldsymbol{S} \odot \boldsymbol{G} - \boldsymbol{G}\|_{F}^{2} = \sum_{i=1}^{k} (g_{k} - g_{k})^{2} + \sum_{i=k+1}^{mn} (0 - g_{k})^{2}$$

$$= \sum_{i=k+1}^{mn} g_{k}^{2}$$

$$\leq \left(1 - \frac{k}{mn}\right) \sum_{i=1}^{mn} g_k^2$$

$$= \left(1 - \frac{k}{mn}\right) \|G\|_F^2,$$

$$= \left(1 - \frac{\kappa}{m}\right)$$
1879

where the inequality uses $\frac{1}{mn-k}\sum_{i=k+1}^{mn}g_i^2 \leq \frac{1}{k}\sum_{i=1}^kg_i^2$.

Lemma 13 (Error of GoSare's projection). Let $S \sim \mathcal{U}(\operatorname{Sp}_{m,n}^k)$, it holds for all $G \in \mathbb{R}^{m \times n}$ that

$$\mathbb{E}[\boldsymbol{S}] = \frac{k}{mn} \cdot \boldsymbol{E}_{m,n},\tag{78}$$

and

$$\mathbb{E}[\|\boldsymbol{S} \odot \boldsymbol{G} - \boldsymbol{G}\|_{F}^{2}] = \left(1 - \frac{k}{mn}\right) \|\boldsymbol{G}\|_{F}^{2}.$$
(79)

1890 *Proof.* To prove (78), it suffices to note that for any element $S_{i,j}$ in S, it holds that

$$\mathbb{E}[S_{i,j}] = \mathbb{P}[S_{i,j} = 1] = \frac{(mn-1)!/[(mn-k)!(k-1)!]}{(mn)!/[(mn-k)!k!]} = \frac{k}{mn}$$

To prove (79), we have

$$\mathbb{E}[\|\boldsymbol{S} \odot \boldsymbol{G} - \boldsymbol{G}\|_{F}^{2}] = \sum_{1 \leq i \leq m, 1 \leq j \leq n} \mathbb{P}[S_{i,j} = 0]\boldsymbol{G}_{i,j}^{2} = \left(1 - \frac{k}{mn}\right) \|\boldsymbol{G}\|_{F}^{2}.$$

1897 1898 1899

1908

1909 1910

1911

1912 1913 1914

1917

1921

1892

1894

1895

1900 C.3 NON-CONVERGENCE OF GASARE

In this subsection, we present the non-convergence result of GaSare, similar to that of GaLore. Theorem 9 (Non-convergence of GaSare). There exists an objective function $f : \mathbb{R}^d \to \mathbb{R}$ satisfying Assumptions 1, 2, a stochastic gradient oracle (F, D) satisfying Assumption 3, an initial point $x^{(0)}$, a constant $\epsilon_0 > 0$ such that for GaSare with any sparsity level $k_{\ell} < m_{\ell}n_{\ell}$, subspace changing frequency τ and any subspace optimizer ρ with arbitrary hyperparameters and any t > 0, it holds that

$$\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 \ge \epsilon_0.$$

Proof. Consider target function $f(\mathbf{X}) = \frac{L}{2} ||(\mathbf{p}\mathbf{p}^{\top}) \odot \mathbf{X}||_F^2$ where $L > 0, \mathbf{X} \in \mathbb{R}^{n \times n}$ with n > 1 and $\mathbf{p} = (1, 0, \dots, 0)^{\top} \in \mathbb{R}^n$. It holds that

$$f(\boldsymbol{X}) = \frac{LX_{1,1}^2}{2} \ge 0$$

thus f satisfies Assumption 1. Since $\nabla f(\mathbf{X}) = L(\mathbf{p}\mathbf{p}^{\top}) \odot \mathbf{X}$, it holds that

$$\|
abla f(\boldsymbol{X}) -
abla f(\boldsymbol{Y})\|_F = L\|(\boldsymbol{p}\boldsymbol{p}^{ op}) \odot (\boldsymbol{X} - \boldsymbol{Y})\|_F \le L\|\boldsymbol{X} - \boldsymbol{Y}\|_F$$

thus *f* satisfies Assumption 2.

Consider the following stochastic gradient oracle:

$$F(\boldsymbol{X};\boldsymbol{\xi}) = f(\boldsymbol{X}) + \boldsymbol{\xi} \tilde{\boldsymbol{\sigma}} \cdot \operatorname{tr}(\boldsymbol{Q}\boldsymbol{X}), \quad \text{and} \quad \mathbb{P}_{\boldsymbol{\xi} \sim \mathcal{D}}[\boldsymbol{\xi} = 1] = \mathbb{P}_{\boldsymbol{\xi} \sim \mathcal{D}}[\boldsymbol{\xi} = -1] = 0.5,$$

where $\tilde{\sigma} = \sigma / \sqrt{n^2 (n^2 - 1)/2}$ and

$$\boldsymbol{Q} = \begin{pmatrix} 0 & \sqrt{n} & \cdots & \sqrt{n^2 - n} \\ \sqrt{1} & \sqrt{n+1} & \cdots & \sqrt{n^2 - n} + 1 \\ \vdots & \vdots & \ddots & \vdots \\ \sqrt{n-1} & \sqrt{2n-1} & \cdots & \sqrt{n^2 - 1} \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

1929 Note that $\nabla F(X;\xi) = \nabla f(X) + \xi \tilde{\sigma} Q$, it holds for any $X \in \mathbb{R}^{n \times n}$ that

1930 1931 1932

1933 1934

1943

$$\mathbb{E}_{\xi \sim \mathcal{D}}[\nabla F(\boldsymbol{X}; \xi)] = \nabla f(\boldsymbol{X})$$

$$\mathbb{E}_{\xi \sim \mathcal{D}}[\|\nabla F(\boldsymbol{X};\xi) - \nabla f(\boldsymbol{X})\|_{F}^{2}] = \tilde{\sigma}^{2} \|\boldsymbol{Q}\|_{F}^{2} = \frac{\sigma^{2}}{n^{2}(n^{2}-1)/2} \cdot \sum_{i=1}^{n^{2}-1} i = \sigma^{2}$$

thus oracle (F, \mathcal{D}) satisfies Assumption 3.

1936 1937 Consider the initial point $X^{(0)}$ with $X_{1,1}^{(0)} = \lambda$, where $0 < \lambda < \tilde{\sigma}/L$ is a scalar. We show that 1938 GaSare with the above objective function f, stochastic gradient oracle (F, D), initial point $X^{(0)}$, arbitrary sparsity level $0 < k < n^2$, arbitrary subspace changing frequency τ and arbitrary subspace optimizer ρ , can only output points $X^{(t)}$ with $\|\nabla f(X^{(t)})\|_F^2 \ge \epsilon_0$ for $\epsilon_0 = L^2\lambda^2 > 0$.

1941 When $\tau \mid t$, GaSare recomputes the sparse mask matrix at iteration t. If $X_{1,1}^{(t)} = \lambda$, the stochastic 1942 gradient is given by

$$\boldsymbol{G}^{(t)} = L(\boldsymbol{p}\boldsymbol{p}^{\top}) \odot \boldsymbol{X} + \xi^{(t)} \tilde{\sigma} \boldsymbol{Q}.$$

1944 since $L\lambda < \tilde{\sigma}$, the Top-k mask $S \in \mathbb{R}^{n \times n}$ satisfies

$$\operatorname{vec}(\boldsymbol{S}) = (\underbrace{0, 0, \cdots, 0}_{(n^2 - k) \times}, \underbrace{1, 1, \cdots, 1}_{k \times})^{\top} \in \mathbb{R}^{n^2}$$

¹⁹⁴⁹ Using this mask matrix, the subspace updates in the following τ iterations is as

$$\boldsymbol{X}^{(t+\Delta_t)} = \boldsymbol{X}^{(t)} + \boldsymbol{S}^{(t)} \odot \left(\sum_{s=0}^{\Delta_t - 1} \rho^{(t+s)} (\boldsymbol{S}^{(t)} \odot \boldsymbol{G}^{(t)}) \right) \quad \Rightarrow \quad X_{1,1}^{(t+\Delta_t)} = X_{1,1}^{(t)} = \lambda,$$

,

for $\Delta_t = 1, 2, \dots, \tau$. Since $X_{1,1}^{(0)} = \lambda$, it holds for all t > 0 that $X_{1,1}^{(t)} = \lambda$ and thus

$$\|\nabla f(\boldsymbol{X}^{(t)})\|_F^2 = L^2 \lambda^2 = \epsilon_0.$$

C.4 CONVERGENCE OF DETERMINISTIC GASARE

In this subsection, we prove the convergence properties of GaSare with deterministic gradients. The results and proofs are similar to those of deterministic GaLore in Appendix B.3.

Lemma 14 (Momentum contraction). In deterministic GaSare using MSGD (Alg. 5), if $0 < \beta_1 \le 1$, term $\tilde{M}_{\ell}^{(t)}$ has the following contraction properties:

• When
$$t = 0$$
, it holds that

$$\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{X}^{(0)})\|_{F}^{2} \leq (\tau - 1)(1 - \delta_{\ell}\beta_{1}) \sum_{r=0}^{\tau-2} \|\nabla_{\ell} f(\boldsymbol{x}^{(r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2} + \frac{2(1 - \delta_{\ell}\beta_{1})}{\tau} \sum_{r=0}^{\tau-1} \|\nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2};$$
(80)

• When $t = k\tau$, $k \in \mathbb{N}^*$, it holds that

$$\begin{split} \|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right) \|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2} \\ \leq & \frac{2(1 - \delta_{\ell})}{\tau} \sum_{r=0}^{\tau-1} \|\nabla_{l} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2} + \frac{5(1 - \beta_{1})}{\delta_{\ell}\beta_{1}} \|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2} \\ &+ (\tau - 1)(1 - \delta_{\ell}) \sum_{r=0}^{\tau-2} \|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}; \end{split}$$
(81)

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\
\leq \left(1 - \frac{\delta_{\ell}}{2}\right)\beta_{1}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{5(1 - \beta_{1})}{\delta_{\ell}\beta_{1}}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\
+ \frac{10r\beta_{1}}{\delta_{\ell}}\sum_{i=1}^{r}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}].$$
(82)

Proof. For convenience we use E to denote $E_{m_{\ell},n_{\ell}}$. When t = 0, we have

• When $t = k\tau + r$, $k \in \mathbb{N}$, $1 \le r < \tau$, it holds that

$$\begin{split} \|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2} = & \|\beta_{1}(\boldsymbol{S}_{\ell}^{(0)} - \boldsymbol{E}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(0)}) - (1 - \beta_{1}) \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2} \\ \leq & \beta_{1}(1 - \delta_{\ell}) \|\nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2} + (1 - \beta_{1}) \|\nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2} \\ = & (1 - \delta_{\ell}\beta_{1}) \|\nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}, \end{split}$$
(83)

where the inequality uses Lemma 12 and Jensen's inequality. Applying Lemma 2 to (83) yields (80). When $t = k\tau$, $k \in \mathbb{N}^*$, we have $\|\tilde{M}_{\ell}^{(t)} - \nabla_{\ell} f(x^{(t)})\|_{F}^{2}$ $= \|\boldsymbol{S}_{\ell}^{(t)} \odot [(1-\beta_1) \tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})] - (\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2$ $= \|\boldsymbol{S}_{\ell}^{(t)} \odot [(1-\beta_1)(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))]\|_{F}^{2} + \|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}$ $< \|(1-\beta_1)(\tilde{M}_{\ell}^{(t-1)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{E}^{2}+(1-\delta_{\ell})\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{E}^{2},$ (84)where the inequality uses Lemma 12. By Young's inequality, we have $\|\tilde{M}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}$ $= \| (\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})) - (\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)}) \|_{F}^{2}$ $\leq \left(1 + \frac{\delta_{\ell}\beta_1}{4}\right) \|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_F^2 + \left(1 + \frac{4}{\delta_{\ell}\beta_1}\right) \|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_F^2.$ (85)Applying Lemma 2 and (85) to (84) yields (81). When $t = k\tau + r, k \in \mathbb{N}, 1 \le r \le \tau$, we have $\|\tilde{M}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}$ $= \|(1 - \beta_1)(\tilde{M}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})) + \beta_1(\boldsymbol{S}_{\ell}^{(t)} - \boldsymbol{E}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}$ $\leq (1-\beta_1) \|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} + \beta_1 \|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2},$ (86)

where the inequality uses Jensen's inequality and $S_{\ell}^{(t)} = S_{\ell}^{(t-1)} = \cdots = S_{\ell}^{(k\tau)}$. The first term can be similarly upper bounded as (85). For the second term, we have

$$(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)}) \|_{F}^{2}$$

$$\leq \left(1 + \frac{\delta_{\ell}}{4}\right) \|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}$$

$$+ \left(1 + \frac{4}{\delta_{\ell}}\right) \|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot (\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}$$

$$\leq \left(1 + \frac{\delta_{\ell}}{4}\right) (1 - \delta_{\ell}) \|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2} + \frac{5}{\delta_{\ell}} \|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}, \quad (87)$$

where the first inequality uses Young's inequality and the second inequality uses Lemma 12. By
 Young's inequality, we have

$$\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2} \leq \left(1 + \frac{\delta_{\ell}}{4}\right) \|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} + \left(1 + \frac{4}{\delta_{\ell}}\right) \|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}.$$
 (88)

Note that $t = k\tau + r$, we further have

$$\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2} = \left\|\sum_{i=1}^{r} \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\right\|_{F}^{2}$$
$$\leq r \sum_{i=1}^{r} \|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}, \tag{89}$$

where the inequality uses Cauchy's inequality. Applying (88)(89) to (87) yields

$$(oldsymbol{E}-oldsymbol{S}_\ell^{(k au)})\odot
abla_\ell f(oldsymbol{x}^{(t)})\|_F^2$$

$$\leq \left(1 - \frac{\delta_{\ell}}{2}\right) \|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} + \frac{10r}{\delta_{\ell}} \sum_{i=1}^{r} \|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}.$$
(90)

Applying (85)(90) to (86) yields (82).

Based on Lemma 14, we can prove the convergence properties of deterministic GaSare similarly as the proofs of Lemma 7, Theorem 6 and Corollary 1. Below we directly present the final convergence results.
The proofs of Lemma 7, Theorem 6 and Corollary 1. Below we directly present the final convergence results.

Theorem 10 (Convergence of deterministic GaSare). Under Assumptions 1-2, if hyperparameters

$$0 < \beta_1 \le 1, \quad \tau \ge \frac{64}{3\beta_1 \underline{\delta}}, \quad 0 < \eta \le \min\left\{\frac{1}{4L}, \sqrt{\frac{3\underline{\delta}\beta_1^2}{80L^2}}, \sqrt{\frac{3\underline{\delta}}{80\tau^2 L^2}}, \sqrt{\frac{3\beta_1}{16\tau L^2}}\right\},$$

2060 GaSare using deterministic gradients and MSGD (Alg. 5) converges as

$$\frac{1}{K\tau} \sum_{t=0}^{K\tau-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 \le \frac{16\Delta}{\underline{\delta}\eta K\tau}$$

for any $K \ge 1$, where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$. If $T \ge \frac{64}{(3\delta)}$ and we further choose

$$\beta_1 = 1$$

$$\tau = \begin{bmatrix} \frac{64}{3\underline{\delta}\beta_1} \end{bmatrix}$$

$$(\sqrt{20L^2} \sqrt{20-2L^2} \sqrt{16-L})$$

$$\eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2L^2}{3\underline{\delta}}} + \sqrt{\frac{16\tau L^2}{3\beta_1}}\right)^{-1},$$

2074 GaSare using deterministic gradients and MSGD (Alg. 5) converges as

$$\frac{1}{T}\sum_{t=0}^{T-1} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T}\right)$$

2079 Consequently, the computation complexity to reach an ε -accurate solution x such that $\|\nabla f(x)\|_2^2 \le \varepsilon$ is $\mathcal{O}\left(\frac{L\Delta}{\delta^{5/2}\varepsilon} + \frac{1}{\delta}\right)$.

C.5 CONVERGENCE OF LARGE-BATCH GASARE

In this subsection, we present the convergence properties of GaSare with large-batch stochastic gradients. The results and proofs are similar to those of large-batch GaLore in Appendix B.4.

Lemma 15 (Momentum contraction). Under Assumption 3, in large-batch GaSare using MSGD (Alg. 5), if $0 < \beta_1 \le 1$, term $\tilde{M}_{\ell}^{(t)}$ has the following contraction properties:

• When t = 0, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{X}^{(0)})\|_{F}^{2}] \leq 2(\tau - 1)(1 - \delta_{\ell}\beta_{1}) \sum_{r=0}^{\tau-2} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2}]$$

$$+ \frac{4(1 - \delta_{\ell}\beta_{1})}{\tau} \sum_{r=0}^{\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(r)})\|_{F}^{2}] + \frac{4\beta_{1}\sigma_{\ell}^{2}}{\mathcal{B}}; \qquad (91)$$

• When $t = k\tau$, $k \in \mathbb{N}^*$, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$$

$$\leq \frac{4(1-\delta_{\ell})}{\tau} \sum_{r=0}^{\tau-1} \mathbb{E}[\|\nabla_{l} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \frac{5(1-\beta_{1})}{\delta_{\ell}\beta_{1}} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$$

$$+2(\tau-1)(1-\delta_{\ell})\sum_{r=0}^{\tau-2}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+r+1)})-\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}]+\frac{5\sigma_{\ell}^{2}}{\mathcal{B}};$$
(92)

• When $t = k\tau + r$, $k \in \mathbb{N}$, $1 \le r < \tau$, it holds that $\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$ $\leq \left(1 - \frac{\delta_\ell}{2}\right) \beta_1 \mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(t)})\|_F^2] + \frac{5(1 - \beta_1)}{\delta_\ell \beta_1} \mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(t)}) - \nabla_\ell f(\boldsymbol{x}^{(t-1)})\|_F^2]$ $+\frac{15r\beta_1}{\delta_\ell}\sum_{i=1}^r \mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_\ell f(\boldsymbol{x}^{(k\tau+i-1)})\|_F^2] + \left(\frac{11\beta_1}{\delta_\ell \mathcal{B}} + \beta_1^2\right)\sigma_\ell^2.$ (93)*Proof.* For convenience we use E to denote $E_{m_{\ell},n_{\ell}}$. When t = 0, we have $\mathbb{E}[\|\tilde{M}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}]$ $= \mathbb{E}[\|\beta_1 \boldsymbol{S}_{\ell}^{(0)} \odot \boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}]$ $= \mathbb{E}[\|\beta_1(\boldsymbol{S}_{\ell}^{(0)} - \boldsymbol{E}) \odot \boldsymbol{G}_{\ell}^{(0)} + \beta_1(\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)})) - (1 - \beta_1)\nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_F^2]$ $\leq \beta_1 \mathbb{E}[\|(\boldsymbol{S}_{\ell}^{(0)} - \boldsymbol{E}) \odot \boldsymbol{G}_{\ell}^{(0)} + \boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_F^2] + (1 - \beta_1) \|\nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_F^2,$ (94)where the inequality uses Jensen's inequality. For the first term we have $\mathbb{E}[\|(\boldsymbol{S}_{\ell}^{(0)} - \boldsymbol{E}) \odot \boldsymbol{G}_{\ell}^{(0)} + \boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}]$ $\leq 2\mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(0)}) \odot \boldsymbol{G}_{\ell}^{(0)}\|_{F}^{2}] + 2\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}]$ $< 2(1 - \delta_{\ell})\mathbb{E}[\|\boldsymbol{G}_{\ell}\|_{F}^{2}] + 2\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}]$ $\leq 2(1-\delta_{\ell}) \|\nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2} + \frac{(4-2\delta_{\ell})\sigma_{\ell}^{2}}{2},$ (95)where the first inequality uses Cauchy's inequality, the second inequality uses Lemma 12, the third inequality uses $\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \leq \sigma_{\ell}^{2}/\mathcal{B}$ (Assumption 3). Applying (95) and Lemma 2 to (94) yields (91). When $t = k\tau, k \in \mathbb{N}^*$, we have $\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\boldsymbol{\ell}}^{(t)} - \nabla_{\boldsymbol{\ell}} f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$ $= \mathbb{E}[\|\boldsymbol{S}_{\ell}^{(t)} \odot [(1-\beta_1)\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})] - (\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2]$

2144 We further have

$$\mathbb{E}[\|\boldsymbol{S}_{\ell}^{(t)} \odot [(1-\beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_{1}\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})]\|_{F}^{2}] \\
\leq \mathbb{E}[\|(1-\beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_{1}\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
= \mathbb{E}[\|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_{1}(\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\
\leq \mathbb{E}[\|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] + \beta_{1}^{2}\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}], \quad (97)$$

 $=\mathbb{E}[\|\boldsymbol{S}_{\ell}^{(t)} \odot [(1-\beta_1)\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})]\|_F^2] + \mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_F^2].$ (96)

where the last inequality uses the unbiasedness of $G_{\ell}^{(t)}$ (Assumption 3). By Young's inequality, we have

Applying (98) to (97) yields

$$\mathbb{E}[\|\boldsymbol{S}_{\ell}^{(t)} \odot [(1-\beta_1)\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})]\|_F^2]$$

 $\leq \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_1\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_F^2] + \frac{\beta_1^2\sigma^2}{\mathcal{B}}$ $+\frac{5(1-\beta_1)}{\delta_\ell\beta_1}\mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(t)})-\nabla_\ell f(\boldsymbol{x}^{(t-1)})\|_F^2].$

(102)

For the second term in (96), we have

 $\mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$ $\leq 2\mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot \boldsymbol{G}_{\ell}^{(t)}\|_{F}^{2}] + 2\mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))\|_{F}^{2}]$ $\leq 2(1-\delta_{\ell})\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)}\|_{F}^{2}] + 2\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$

 $\leq 2(1-\delta_{\ell})\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{4\sigma_{\ell}^{2}}{\mathcal{B}},$ (100)

where the first inequality uses Cauchy's inequality, the second inequality uses Lemma 12, the third inequality uses Assumption 3. Applying (99)(100) to (96) and using Lemma 2 yields (92).

When
$$t = k\tau + r, k \in \mathbb{N}, 1 \le r < \tau$$
, we have

$$\mathbb{E}[\| ilde{oldsymbol{M}}_{\ell}^{(t)} -
abla_{\ell}f(oldsymbol{x}^{(t)})\|_F^2]$$

$$= \mathbb{E}[\|(1-\beta_{1})(\tilde{M}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_{1}(\boldsymbol{S}_{\ell}^{(t)} \odot \boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\ = \mathbb{E}[\|(1-\beta_{1})(\tilde{M}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_{1}(\boldsymbol{S}_{\ell}^{(t)} - \boldsymbol{E}) \odot \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ + \beta_{1}^{2}\mathbb{E}[\boldsymbol{S}_{\ell}^{(t)} \odot (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\ \leq (1-\beta_{1})\mathbb{E}[\|\tilde{M}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \beta_{1}\mathbb{E}[\|(\boldsymbol{E}-\boldsymbol{S}_{\ell}^{(t)}) \odot \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ + \beta_{1}^{2}\mathbb{E}[\boldsymbol{S}_{\ell}^{(t)} \odot (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}],$$
(101)

> where the second equality uses the unbiasedness of $G_\ell^{(t)}$ and the independence implied by $S_\ell^{(t)}$ = $S_{a}^{(t-1)}$, the inequality uses Jensen's inequality. The first term is similarly bounded as (98). For the second term, we have

$$egin{aligned} \mathbb{E}[\|(oldsymbol{E}-oldsymbol{S}_\ell^{(k au)})\odot
abla_\ell f(oldsymbol{x}^{(t)})\|_F^2]\ &\leq \left(1+rac{\delta_\ell}{4}
ight)\mathbb{E}[\|(oldsymbol{E}-oldsymbol{S}_\ell^{(k au)})\odotoldsymbol{G}_\ell^{(k au)}\|_F^2] \end{aligned}$$

2195
$$\left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot (\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \boldsymbol{G}_{\ell}^{(k\tau)})\|_{F}^{2}]$$
2197

$$+ \left(1 + \frac{1}{\delta_{\ell}}\right) \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(k\tau)}\|_{F}^{2}] + 2\left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(k\tau)} - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}]$$

$$+ 2\left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}],$$

where the first inequality uses Young's inequality, the second inequality uses Lemma 12 and Cauchy's inequality. We further have

$$\begin{aligned}
2205 \\
2206 \\
2206 \\
2207 \\
2208 \\
2209 \\
2209 \\
2209 \\
2209 \\
2210 \\
2210 \\
2210 \\
2211 \\
2212 \\
2213 \\
2213 \\
2213 \\
2213 \\
2215 \\
2215 \\
2215 \\
2215 \\
2215 \\
2215 \\
2216 \\
2216 \\
2217 \\
2217 \\
2218 \\
2218 \\
2218 \\
2218 \\
2218 \\
2218 \\
2218 \\
2218 \\
2219 \\
2219 \\
2219 \\
2219 \\
2219 \\
2219 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210 \\
2210$$

where the first inequality uses unbiasedness of $G_{\ell}^{(k\tau)}$, the second inequality uses Assumption 3, the third inequality uses Young's inequality.

Applying (103) to (102) and applying Cauchy's inequality yields

$$\mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
\leq \left(1 - \frac{\delta_{\ell}}{2}\right) \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{11\sigma_{\ell}^{2}}{\delta_{\ell}\mathcal{B}} + \frac{15r}{\delta_{\ell}} \sum_{i=1}^{r} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}].$$
(104)

For the third term, we have

2224 2225 2226

2233

2239 2240 2241

$$\mathbb{E}[\|\boldsymbol{S}_{\ell}^{(k\tau)} \odot (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \le \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \le \sigma_{\ell}^{2},$$
(105)

where the second inequality uses Assumption 3.

Applying (98)(104)(105) to (101) yields (93).

Based on Lemma 15, we can prove the convergence properties of large-batch GaSare similarly as
 the proofs of Lemma 9, Theorem 7 and Corollary 2. Below we directly present the final convergence
 results.

Theorem 11 (Convergence of large-batch GaSare). Under Assumptions 1-3, if hyperparameters

$$0 < \beta_1 \le 1, \quad \tau \ge \frac{128}{3\beta_1 \underline{\delta}}, \quad 0 < \eta \le \min\left\{\frac{1}{4L}, \sqrt{\frac{3\underline{\delta}\beta_1^2}{80L^2}}, \sqrt{\frac{\underline{\delta}}{40\tau^2 L^2}}, \sqrt{\frac{3\beta_1}{32\tau L^2}}\right\},$$

2238 GaSare using large-batch stochastic gradients and MSGD (Alg. 5) converges as

$$\frac{1}{K\tau} \sum_{t=0}^{K\tau-1} \mathbb{E} \|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] \leq \frac{16\Delta}{\underline{\delta}\eta K\tau} + \left(\frac{160}{3\beta_{1}\underline{\delta}\tau\mathcal{B}} + \frac{352}{3\underline{\delta}^{2}\mathcal{B}} + \frac{32\beta_{1}}{3\underline{\delta}}\right)\sigma^{2}$$

for any $K \ge 1$, where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$. If $T \ge 2 + 256/(3\underline{\delta}) + (256\sigma)^2/(9\sqrt{\underline{\delta}}L\Delta)$ and we further choose

$$\beta_{1} = \left(1 + \sqrt{\frac{\delta^{3/2} \sigma^{2} T}{L\Delta}}\right)^{-1},$$

$$\gamma = \left[\frac{128}{3\underline{\delta}\beta_{1}}\right],$$

$$\gamma = \left(4L + \sqrt{\frac{80L^{2}}{3\underline{\delta}\beta_{1}^{2}}} + \sqrt{\frac{40\tau^{2}L^{2}}{\underline{\delta}}} + \sqrt{\frac{32\tau L^{2}}{3\beta_{1}}}\right)^{-1},$$

$$\beta = \left[\frac{1}{\underline{\delta}\beta_{1}}\right],$$

$$\mathcal{B} = \left[\frac{1}{\underline{\delta}\beta_{1}}\right],$$

2257 GaSare using large-batch stochastic gradients and MSGD (Alg. 5) converges as

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^2}{\underline{\delta}^{7/2}T}}\right)$$

2261 2262 Consequently, the computation complexity to reach an ε -accurate solution x such that $\|\nabla f(x)\|_2^2 \le \varepsilon$ is $\mathcal{O}\left(\frac{L\Delta\sigma^2}{\delta^{7/2}\varepsilon^2} + \frac{L\Delta}{\delta^{5/2}\varepsilon} + \frac{\sigma^2}{\delta^{1/2}L\Delta} + \frac{1}{\delta}\right)$.

2258 2259 2260

C.6 CONVERGENCE OF GOSARE

In this subsection, we present the convergence properties of GoSare with small-batch stochastic gradients. The results and proofs are similar to those of GoLore in Appendix B.5.

Lemma 16 (Momentum contraction). Under Assumption 3, in GoSare using MSGD (Alg. 5), if 0 < $\beta_1 \leq 1$, term $\tilde{M}_{\ell}^{(t)}$ has the following contraction properties:

• When t = 0, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{X}^{(0)})\|_{F}^{2}] \leq (\tau - 1)(1 - \delta_{\ell}\beta_{1})\sum_{r=0}^{\tau-2}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(r+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(r)})\|_{F}^{2}] \\ + \frac{2(1 - \delta_{\ell}\beta_{1})}{\tau}\sum_{r=0}^{\tau-1}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(r)})\|_{F}^{2}] + \delta_{\ell}\beta_{1}^{2}\sigma_{\ell}^{2}; \quad (106)$$

• When $t = k\tau$, $k \in \mathbb{N}^*$, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \delta_{\ell}\left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\
\leq \frac{2(1 - \delta_{\ell})}{\tau} \sum_{r=0}^{\tau-1} \mathbb{E}[\|\nabla_{l}f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \frac{5(1 - \beta_{1})}{\beta_{1}}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\
+ (\tau - 1)(1 - \delta_{\ell}) \sum_{r=0}^{\tau-2} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+r+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \delta_{\ell}\beta_{1}^{2}\sigma_{\ell}^{2}; \quad (107)$$

• When $t = k\tau + r$, $k \in \mathbb{N}$, $1 \le r < \tau$, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\
\leq \left(1 - \frac{\delta_{\ell}}{2}\right)\beta_{1}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{5(1 - \beta_{1})}{\delta_{\ell}\beta_{1}}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\
+ \frac{10r\beta_{1}}{\delta_{\ell}}\sum_{i=1}^{r}\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}] + \beta_{1}^{2}\sigma_{\ell}^{2}.$$
(108)

Proof. For convenience we use E to denote $E_{m_{\ell},n_{\ell}}$. When t = 0, we have

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
= \mathbb{E}[\|\beta_{1} \boldsymbol{S}_{\ell}^{(0)} \odot \boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
= \mathbb{E}[\|(\beta_{1} \boldsymbol{S}_{\ell}^{(0)} - \boldsymbol{E}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] + \beta_{1}^{2} \mathbb{E}[\|\boldsymbol{S}_{\ell}^{(0)} \odot (\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)}))\|_{F}^{2}], \quad (109)$$

where the second equality uses unbiasedness of $m{G}_\ell^{(0)}$. By Lemma 5 we have

$$\begin{aligned}
\mathbf{2306} & \mathbf{F} = \sum_{1 \le i \le m_{\ell}, 1 \le j \le n_{\ell}} \mathbb{E}[\|(\beta_1 S_{\ell}^{(0)} - \mathbf{E}) \odot \nabla_{\ell} f(\mathbf{x}^{(0)})\|_F^2 \\
= \sum_{1 \le i \le m_{\ell}, 1 \le j \le n_{\ell}} \mathbb{E}[(\beta_1 [S_{\ell}^{(0)}]_{i,j} - 1)^2] [\nabla_{\ell} f(\mathbf{x}^{(0)})]_{i,j}^2 \\
= \sum_{1 \le i \le m_{\ell}, 1 \le j \le n_{\ell}} (1 - 2\beta_1 \delta_{\ell} + \beta_1^2 \delta_{\ell}) [\nabla_{\ell} f(\mathbf{x}^{(0)})]_{i,j}^2 \\
= \sum_{1 \le i \le m_{\ell}, 1 \le j \le n_{\ell}} (1 - 2\beta_1 \delta_{\ell} + \beta_1^2 \delta_{\ell}) [\nabla_{\ell} f(\mathbf{x}^{(0)})]_{i,j}^2 \\
= \sum_{1 \le i \le m_{\ell}, 1 \le j \le n_{\ell}} (1 - 2\beta_1 \delta_{\ell} + \beta_1^2 \delta_{\ell}) [\nabla_{\ell} f(\mathbf{x}^{(0)})]_{i,j}^2 \\
= \sum_{1 \le i \le m_{\ell}, 1 \le j \le n_{\ell}} (1 - \delta_{\ell} \beta_1) \|\nabla_{\ell} f(\mathbf{x}^{(0)})\|_F^2.
\end{aligned}$$
(110)

Similarly, by Lemma 5 we have

$$\begin{aligned}
 2316 & \mathbb{E}[\|\boldsymbol{S}_{\ell}^{(0)} \odot (\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)}))\|_{F}^{2}] \\
 2317 & = \sum_{1 \leq i \leq m_{\ell}, 1 \leq j \leq n_{\ell}} \mathbb{E}[[\boldsymbol{S}_{\ell}^{(0)}]_{i,j}^{2}][\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})]_{i,j}^{2} \\
 2319 & = \delta_{\ell} \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
 2320 & = \delta_{\ell} \sigma_{\ell}^{2},
 \end{aligned}$$
(111)

 where the inequality uses Assumption 3. Applying (110)(111) and Lemma 2 to (109) yields (106).

When $t = k\tau$, $k \in \mathbb{N}^*$, we have

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
= \mathbb{E}[\|\boldsymbol{S}_{\ell}^{(t)} \odot [(1 - \beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_{1}\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})] - (\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
= \delta_{\ell} \mathbb{E}[\|(1 - \beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_{1}\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + (1 - \delta_{\ell})\mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}], \quad (112)$$

$$=\mathbb{E}[\|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)}))+\beta_{1}(\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}]$$

$$\leq\mathbb{E}[\|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}]+\beta_{1}^{2}\mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$$

$$\leq(1-\beta_{1})\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]+\beta_{1}^{2}\sigma_{\ell}^{2},$$
(113)

where both inequalities use Assumption 3. By Young's inequality, we have

where the second equality uses Lemma 13. For the first term, we have

 $\mathbb{E}[\|(1-\beta_1)\tilde{\boldsymbol{M}}_{\ell}^{(t-1)}+\beta_1\boldsymbol{G}_{\ell}^{(t)}-\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_F^2]$

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] = \mathbb{E}[\|(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})) - (\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] \\ \leq \left(1 + \frac{\delta_{\ell}\beta_{1}}{4}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}\beta_{1}}\right)\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}].$$
(114)

Applying (113)(114) and Lemma 2 to (112) yields (107).

When $t = k\tau + r, k \in \mathbb{N}, 1 \le r < \tau$, we have

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
= \mathbb{E}[\|(1 - \beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_{1}(\boldsymbol{S}_{\ell}^{(t)} \odot \boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\
= \mathbb{E}[\|(1 - \beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})) + \beta_{1}(\boldsymbol{S}_{\ell}^{(t)} - \boldsymbol{E}) \odot \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
+ \beta_{1}^{2}\mathbb{E}[\boldsymbol{S}_{\ell}^{(t)} \odot (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\
\leq (1 - \beta_{1})\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \beta_{1}\mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(t)}) \odot \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2} \\
+ \beta_{1}^{2}\mathbb{E}[\boldsymbol{S}_{\ell}^{(t)} \odot (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}],$$
(115)

where the second equality uses the unbiasedness of $G_\ell^{(t)}$ and the independence implied by $S_\ell^{(t)}$ = $S_{\ell}^{(t-1)}$, the inequality uses Jensen's inequality. The first term is similarly bounded as (114). For the second term, we have

$$\mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
\leq \left(1 + \frac{\delta_{\ell}}{4}\right) \mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] \\
+ \left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|(\boldsymbol{E} - \boldsymbol{S}_{\ell}^{(k\tau)}) \odot (\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)}))\|_{F}^{2}] \\
\leq \left(1 - \frac{3\delta_{\ell}}{4}\right) \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}], \quad (116)$$

where the first inequality uses Young's inequality, the second inequality uses Lemma 13. By Young's inequality, we have

2373
2374
$$\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}] \leq \left(1 + \frac{\delta_{\ell}}{4}\right)\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}}\right)\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}].$$
(117)

Applying (117) to (116) and applying Cauchy's inequality yields

$$\mathbb{E}[\|(oldsymbol{E}-oldsymbol{S}_\ell^{(k au)})\odot
abla_\ell f(oldsymbol{x}^{(t)})\|_F^2]$$

$$\leq \left(1 - \frac{\delta_{\ell}}{2}\right) \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{10r}{\delta_{\ell}} \sum_{i=1}^{r} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+i-1)})\|_{F}^{2}].$$
(118)

For the third term, we have

$$\mathbb{E}[\|\boldsymbol{S}_{\ell}^{(k\tau)} \odot (\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \le \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \le \sigma_{\ell}^{2},$$
(119)

where the second inequality uses Assumption 3.

2386 Applying (114)(118)(119) to (115) yields (108).

Based on Lemma 16, we can prove the convergence properties of GoSare similarly as the proofs of Lemma 11, Theorem 8 and Corollary 3. Below we directly present the final convergence results.
Theorem 12 (Convergence of GoSare). Under Assumptions 1-3, if hyperparameters

$$0 < \beta_1 \le 1, \quad \tau \ge \frac{64}{3\beta_1 \underline{\delta}}, \quad 0 < \eta \le \min\left\{\frac{1}{4L}, \sqrt{\frac{3\underline{\delta}\beta_1^2}{80L^2}}, \sqrt{\frac{3\underline{\delta}}{80\tau^2 L^2}}, \sqrt{\frac{3\beta_1}{16\tau L^2}}\right\},$$

2394 GoSare using small-batch stochastic gradients and MSGD (Alg. 5) converges as

$$\frac{1}{K\tau} \sum_{t=0}^{K\tau-1} \mathbb{E} \|\nabla f(\boldsymbol{x}^{(t)})\|_2^2 \le \frac{16\Delta}{\underline{\delta}\eta K\tau} + \frac{32\beta_1 \sigma^2}{3\underline{\delta}}$$

for any $K \ge 1$, where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$. If $T \ge 2 + \frac{128}{(3\underline{\delta})} + \frac{(128\sigma)^2}{(9\sqrt{\underline{\delta}}L\Delta)}$ and we further choose

$$\beta_1 = \left(1 + \sqrt{\frac{\underline{\delta}^{3/2} \sigma^2 T}{L\Delta}}\right)^{-1}$$

$$\tau = \left| \frac{64}{3\underline{\delta}\beta_1} \right|$$

2407
2408
2409
$$\eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2L^2}{3\underline{\delta}}} + \sqrt{\frac{16\tau L^2}{3\beta_1}}\right)^{-1}$$

2410 GoSare using small-batch stochastic gradients and MSGD (Alg. 5) converges as

$$\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^2}{\underline{\delta}^{7/2}T}}\right)$$

2414 Consequently, the computation complexity to reach an ε -accurate solution x such that $\|\nabla f(x)\|_2^2 \le \varepsilon$ is $\mathcal{O}\left(\frac{L\Delta\sigma^2}{\delta^{7/2}\varepsilon^2} + \frac{L\Delta}{\delta^{5/2}\varepsilon} + \frac{\sigma^2}{\delta^{1/2}L\Delta} + \frac{1}{\delta}\right)$.

D THE RELORA-LIKE IMPLEMENTATION

An equivalent, ReLoRA-like implementation of Alg. 1 is as illustrated in Alg. 6, where we only present the case with small-batch stochastic gradients for convenience. In fact, applying ReLoRA with a fixed A or B is not our contribution, as it has already been used in several previous works(Hao et al., 2024; Loeschcke et al., 2024). While leading to the same results, this ReLoRA-like imple-mentation (Alg. 6) can potentially save computation as it computes the subspace gradient directly without computing the full-parameter one. Consider the case where $m \leq n$ and we use MSGD and a batch size of b. The computation complexity of GaLore's original implementation is 2bmn for forward propagation, 4bmn for backward propagation, 4rmn for projection, 3rn for momentum update and 2mn for weight update. The computational complexity of our ReLoRA-like implementation is 2bmn + 2brm + 2brn for forward propagation, 2bmn + 2brm + 2brn for backward propagation, 3rn for momentum updates and 2rn for weight updates. As illustrated in Table 1, our implementation can potentially reduce computation with little memory overhead.

A d	Igorithm 6 ReLoRA-like implementation of GaLore / GoLore algorithm using stochastic gra- ents with / without momentum projection
n	put: Initial point $x^{(0)}$, data distribution \mathcal{D} , learning rate n , subspace changing frequency τ , rank
$\{r$	$\beta_{\ell=1}^{N_L}$, optimizer hyperparameters $\beta_1, \beta_2, \epsilon$, large batch size \mathcal{B} .
Jutput	$ x_{t-1}^{(t)} ^T_{t=0}$
Initia	alize LoRA adaptation $X_{\ell} = W_{\ell} + B_{\ell}A_{\ell}$ for $\ell = 1, 2, \cdots, N_L$, where $W_{\ell}^{(0)} = X_{\ell}^{(0)}$,
$A^{(}$	$B_{a}^{(0)} = 0$ and $B_{a}^{(0)} = 0$:
Ini	tialize optimizer state $\{M_{\ell}^{(-1)}\}_{\ell=1}^{N_L}$ and $\{V_{\ell}^{(-1)}\}_{\ell=1}^{N_L}$ to zero:
for	that the optimizer state $(\mathbf{v}_{\ell}) = \int_{\ell=1}^{\ell} d\mathbf{u} d\mathbf{v}_{\ell} + \int_{\ell=1}^{\ell} d\mathbf{v} d\mathbf{v}_{\ell}$
f	or $\ell=1,2,\cdots,N_L$ do
	if $t \equiv 0 \pmod{\tau}$ then
	$oldsymbol{G}_\ell^{(\iota)} \leftarrow abla_\ell F(oldsymbol{x}^{(t)}; \xi^{(t)});$
	$\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V} \leftarrow \operatorname{SVD}(\boldsymbol{G}_{\ell}^{(t)}), \boldsymbol{P}_{\ell}^{(t)} \leftarrow \boldsymbol{U}[:,:r_{\ell}], \boldsymbol{Q}_{\ell}^{(t)} \leftarrow \boldsymbol{V}[:,:r_{\ell}]; (\text{GaLore})$
	Sample $\boldsymbol{P}_{\ell}^{(t)} \sim \mathcal{U}(\operatorname{St}_{m_{\ell}, r_{\ell}}), \boldsymbol{Q}_{\ell}^{(t)} \sim \mathcal{U}(\operatorname{St}_{n_{\ell}, r_{\ell}}); (\text{GoLore})$
	$(\mathbf{p}^{(t)})^{T} \mathbf{C}^{(t)} \text{if } m < m :$
	$oldsymbol{R}_\ell^{(t)} \leftarrow \left\{egin{array}{ccc} (I_\ell^{-}) & \mathcal{G}_\ell^{-}, & \Pi & m_\ell \geq n_\ell, \ \mathcal{G}_\ell^{(t)} & \mathcal{G}_\ell^{(t)} & ec m_\ell > n_\ell, \ \mathcal{G}_\ell^{(t)} & \mathcal{G}_\ell^{(t)} & ec m_\ell > n_\ell, \ \mathcal{G}_\ell^$
	$\left(\mathbf{G}_{\ell}, \mathbf{Q}_{\ell}^{*}, \dots, \mathbf{n}_{\ell} > n_{\ell};\right)$
	$\nabla \boldsymbol{A}_{\ell} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)}), \text{if } m_{\ell} < n_{\ell};$
	$\boldsymbol{R}_{\ell}^{(\circ)} \leftarrow \begin{cases} \nabla_{\boldsymbol{R}_{\ell}} F(\boldsymbol{x}^{(t)}; \boldsymbol{\xi}^{(t)}), & \text{if } m_{\ell} > n_{\ell}; \end{cases}$
	end if
	$\int ((1 - \beta_1) (\boldsymbol{P}_{e}^{(t)})^{\top} \boldsymbol{B}_{e}^{(t)} \boldsymbol{M}_{e}^{(t-1)} + \beta_1 \boldsymbol{R}_{e}^{(t)}, \text{if } m_{\ell} \leq n_{\ell}; \dots \dots \dots$
	$M_{\ell}^{(t)} \leftarrow \begin{cases} (1-\beta_1) \mathcal{M}_{\ell}^{(t-1)} \mathcal{A}_{\ell}^{(t)} \mathcal{O}_{\ell}^{(t)} + \beta_1 \mathcal{R}_{\ell}^{(t)} & \text{if } m_{\ell} > n_{\ell} \end{cases} \text{ (with MP)}$
	$\left((1 \beta_1) m_\ell + m_\ell + \beta_1 m_\ell \right), m_\ell > m_\ell,$
	$\boldsymbol{M}_{\ell}^{(t)} \leftarrow (1-\beta_1) \boldsymbol{M}_{\ell}^{(t-1)} + \beta_1 \boldsymbol{R}_{\ell}^{(t)}; \hspace{0.2cm} ext{(without MP)}$
	$V_{e}^{(t)} \leftarrow (1 - \beta_2) V_{e}^{(t-1)} + \beta_2 \boldsymbol{R}_{e}^{(t)} \odot \boldsymbol{R}_{e}^{(t)}$:
	if using Adam then
	$\boldsymbol{M}_{\epsilon}^{(t)} \leftarrow \boldsymbol{M}_{\epsilon}^{(t)}/(1-\beta_{1}^{t}), \boldsymbol{V}_{\epsilon}^{(t)} \leftarrow \boldsymbol{V}_{\epsilon}^{(t)}/(1-\beta_{2}^{t}), \boldsymbol{N}_{\epsilon}^{(t)} \leftarrow \boldsymbol{M}_{\epsilon}^{(t)}/(\sqrt{\boldsymbol{V}_{\epsilon}^{(t)}}+\epsilon).$
	else if using MSGD then
	$N_{\epsilon}^{(t)} \leftarrow M_{\epsilon}^{(t)}$:
	end if $(1 + 1) = \frac{1}{\ell}$
	if $t \equiv 0 \pmod{\tau}$ then
	$oldsymbol{W}_\ell^{(t+1)} \leftarrow oldsymbol{W}_\ell^{(t)} + oldsymbol{B}_\ell^{(t)} oldsymbol{A}_\ell^{(t)};$
	$ \int -\eta \boldsymbol{N}_{\ell}^{(t+1)}, \text{if } m_{\ell} \leq n_{\ell}; $
	$\mathbf{A}_{\ell} \leftarrow \int (\mathbf{Q}_{\ell}^{(t)})^{\top}, \text{if } m_{\ell} > n_{\ell};$
	$(\mathbf{p}^{(t)}) \text{if } m_{t} \leq m_{t}$
	$B_\ell^{(t+1)} \leftarrow egin{cases} \mathbf{I}_\ell &, & ext{if } m\ell \geq n\ell, \ \mathbf{N}^{(t)} & ext{if } m \geq m\ell, \ \mathbf{if } m \geq m\ell$
	$(-\eta I \mathbf{v}_{\ell})^{*}, \text{if } m_{\ell} > n_{\ell};$
	$\mathbf{W}^{(t+1)}_{\circ} \leftarrow \mathbf{W}^{(t)}_{\circ}$:
	$(\mathbf{u}_{\ell}) = \begin{pmatrix} \mathbf{u}_{\ell} \\ \mathbf{A}^{(t)} \\ \mathbf{N} \\ \mathbf{N}^{(t)} \\ \mathbf{N}^{($
	$A_{\ell}^{(t+1)} \leftarrow \left\{ egin{array}{c} \mathbf{A}_{\ell}^{(t)} & \cdots & \mathbf{H} & \mathcal{H}_{\ell} \\ \mathbf{A}^{(t)} & \cdots & \mathbf{H} & \mathbf{H}_{\ell} \\ \end{array} ight.$
	$ \begin{pmatrix} \mathbf{A}_{\ell} \\ \mathbf{C}_{\ell} \end{pmatrix}, \qquad $
	$\boldsymbol{B}_{\ell}^{(t+1)} \leftarrow \begin{cases} \boldsymbol{B}_{\ell}^{(\iota)}, & \text{if } m_{\ell} \leq n_{\ell}; \end{cases}$
	$ \left(\boldsymbol{B}_{\ell}^{(\iota)} - \eta \boldsymbol{N}_{\ell}^{(\iota)}, \text{if } m_{\ell} > n_{\ell}; \right. $
	end if
e	ena ior and for
_	

2484 Ε **EXPERIMENTAL SPECIFICATIONS** 2485

2486

2489

2490

2491

2493

2497

2510 2511

2512

2513 2514

2529

In this section, we elaborate on the missing details concerned with the experiments we present in 2487 Sec. 7. 2488

GaLore's non-convergence. We compared Galore, large-batch GaLore, GoLore and full-parameter training on the constructed quadratic problem defined in (1). We used a batch size of 128 for largebatch GaLore and a batch size of 1 for the others.

2492 Pre-training tasks on C4 dataset. We pre-trained LLaMA-60M on C4 dataset for 10,000 iterations on 4 NVIDIA A100 40G GPUs. We use batch size 128, learning rate 1.0e-3, rank 128, scaling factor 2494 $\alpha = 1$, subspace changing frequency $\tau = 200$, and a max sequence length of 256. Results under 8-bit training are shown in Fig. 6. Fig. 7 presents the results of different algorithms after trained on 2495 more tokens. 2496

Figure 6: Pre-training curves of algorithms using 8-bit AdamW.

Figure 7: Pre-training curves of algorithms using AdamW.

GoLore@20%

20.0

Fine-tuning tasks on WinoGrande dataset. We fine-tune pre-trained LLaMA2-7B model on the 2515 WinoGrande dataset for 30 epochs on 4 NVIDIA A100 80G GPUs. We use batch size 1, rank 1024, 2516 subspaces changing frequency $\tau = 500$ and a max sequence length of 2048. The learning rate and 2517 scaling factor are set as 1.0e-4 and $\alpha = 4$ for GaLore/GoLore, thus corresponds to a learning rate 2518 of 4.0e-4 in full-parameter fine-tuning. The test accuracy is presented in Table 3, where GoLore 2519 performs similarly to GaLore due to overfitting. 2520

Fine-tuning tasks on BoolQ dataset. We fine-tune pre-trained LLaMA2-7B model on the BoolQ 2521 (Clark et al., 2019) dataset on 4 NVIDIA A100 80G GPUs. We use batch size 1, rank 1024, sub-2522 spaces changing frequency $\tau = 500$ and a max sequence length of 2048. We use MSGD as the 2523 subspace optimizer, where the learning rate and scaling factor are set as 1.0e-4 and $\alpha = 4$ for 2524 GaLore/GoLore, corresponding to a learning rate of 4.0e-4 in full-parameter fine-tuning. Table 3 2525 presents the test accuracy of different algorithms, where GoLore outperforms GaLore. We further 2526 fine-tune pre-trained OPT-13B (Zhang et al., 2022) for 1 epoch using the same experimental setup, 2527 whose results are shown in Table 4. 2528

2530 Table 3: Evaluating GaLore/GoLore for fine-tuning on WinoGrande and BoolO using pre-trained LLaMA2-7B. 2531

2532				
2533	Algorithm	BoolQ (1 epoch)	BoolQ (3 epochs)	WinoGrande (80 epochs)
2534	Full Params.	86.48	87.43	69.85
2535	Gal ore	84 89	86 79	68 51
2536	Gol ore@20%	85 81	86.88	68 51
2537	001010@20%	05.01	00.00	00.51

Algorithm	Memory	Accuracy
Full Params.	OOM	-
GaLore GoLore@30%	77.68 GB 77.68 GB	79.79 81.96

Table 4: Results for fine-tuning pre-trained OPT-13B models on BoolQ. *OOM* stands for "out of memory".

Fine-tuning tasks on GLUE benchmark. We fine-tune pre-trained RoBERTa-Base model on the GLUE benchmark for 30 epochs on a single GeForce RTX 4090. Training details including batch size, learning rate, rank, scaling factor α and max sequence length are illustrated in Table 5.

Table 5: Hyperparameters used in fine-tuning pre-trained RoBERTa-Base model on the GLUE benchmark.

Hyperparameter	CoLA	STS-B	MRPC	RTE	SST2	MNLI	QNLI	QQP
batch size	32	16	16	16	16	16	16	16
Learning Rate	2.5e-5	2.0e-5	3.5e-5	7.0e-6	1.0e-5	1.0e-5	1.0e-5	1.0e-5
Rank	4	4	4	4	4	4	4	4
GaLore's α	4	4	4	4	4	4	4	4
Flora's $lpha$	4	4	4	4	4	4	4	4
GoLore's α	4	4	4	4	4	4	4	4
Frequency τ	500	500	500	500	500	500	500	500
Max Seq. Len.	512	512	512	512	512	512	512	512

F CONNECTIONS WITH OTHER ALGORITHMS

Connection with zero-th order methods. Zero-th order methods (Malladi et al., 2023; Zhang et al., 2023; Chen et al., 2024) are another line of works on memory-efficient training. While these algorithms randomly select a direction to estimate the directional derivatives by finite difference, GoLore computes subspace gradients via back propagation. The directions used in zero-th order methods change every iteration, while GoLore applies a more lazily strategy changing its subspace every τ iterations.

2574 Connection with gradient sketching methods. Gradient sketching methods like Hanzely et al.
 (2018) and Wang et al. (2024) uses gradient sketches in algorithm iterates. These methods recover
 gradient estimates from projected gradients and retains full-size gradients and optimizer states. In
 comparison, GoLore directly updates with projected gradients and retains compressed gradients and
 optimizer states, which is more memory-efficient.

G CONVERGENCE OF GALORE UNDER ISOTROPIC NOISE ASSUMPTIONS

Based on the anisotropic gradient noise we use to construct the counter-example in the proof of
GaLore's non-convergence under standard assumptions, an interesting open question is whether
GaLore is guaranteed to converge if the noise are further assumed isotropic. In this section, we
consider the following additional assumption:

Assumption 4 (Isotropic noise). The distribution of stochastic noise for each gradient matrix is invariant under orthogonal transformations, i.e., it holds for any layer $\ell = 1, \dots, N_L$, parameter $x \in \mathbb{R}^d$ and orthogonal matrix $O_1 \in \mathbb{R}^{m_\ell \times m_\ell}, O_2 \in \mathbb{R}^{n_\ell \times n_\ell}$ that

2589
2590
$$\nabla_{\ell} F(\boldsymbol{x};\xi) - \nabla_{\ell} f(\boldsymbol{x}) \stackrel{\text{dist}}{=} \boldsymbol{O}_1[\nabla_{\ell} F(\boldsymbol{x};\xi) - \nabla_{\ell} f(\boldsymbol{x})]\boldsymbol{O}_2,$$

where $A \stackrel{\text{dist}}{=} B$ represents A and B shares the same distribution.

2644
2645
$$\mathbb{E}[\|\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{G} - \boldsymbol{G}\|_{F}^{2}] \leq \left(1 - \frac{r_{\ell}}{m_{\ell}}\right) \|\boldsymbol{G}\|_{F}^{2}$$

and for $m_{\ell} > n_{\ell}$ that

$$\mathbb{E}[\|\boldsymbol{G}\boldsymbol{Q}\boldsymbol{Q}^{\top} - \boldsymbol{G}\|_{F}^{2}] \leq \left(1 - \frac{r_{\ell}}{n_{\ell}}\right) \|\boldsymbol{G}\|_{F}^{2}$$

Proof. We only consider the case where $m_{\ell} < n_{\ell}$, as the proof for the other case is similar. We first conduct SVD of G and get $G = U_0 \Sigma_0 V_0^{\top}$. It holds that

$$\|\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{G}\|_{F}^{2} = \operatorname{tr}(\boldsymbol{G}^{\top}\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{G})$$

$$= \operatorname{tr}(\boldsymbol{V}_{0}\boldsymbol{\Sigma}_{0}^{\top}\boldsymbol{U}_{0}^{\top}\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{U}_{0}\boldsymbol{\Sigma}_{0}\boldsymbol{V}_{0}^{\top})$$
$$= \operatorname{tr}(\boldsymbol{\Sigma}_{0}\boldsymbol{\Sigma}_{0}^{\top}\boldsymbol{U}_{0}^{\top}\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{U}_{0}).$$
(120)

Denote $\tilde{\boldsymbol{U}} = \boldsymbol{U}_0^\top \boldsymbol{U}$ and $\tilde{\boldsymbol{V}} = \boldsymbol{V}_0^\top \boldsymbol{V}$, it holds that $\tilde{\boldsymbol{U}} \boldsymbol{\Sigma}_0 \tilde{\boldsymbol{V}}^\top = (\boldsymbol{U}_0^\top \boldsymbol{U}) \boldsymbol{\Sigma}_0 (\boldsymbol{V}_0^\top \boldsymbol{V})^\top$ is SVD of $\boldsymbol{U}_0^\top (\boldsymbol{G} + \boldsymbol{E}) \boldsymbol{V}_0 = \boldsymbol{U}_0^\top \boldsymbol{E} \boldsymbol{V}_0 + \boldsymbol{\Sigma}_0 \stackrel{\text{dist}}{=} \boldsymbol{E} + \boldsymbol{\Sigma}_0$. By Assumption 5 we have

$$\frac{1}{r_{\ell}} \sum_{i=1}^{k} \sum_{j=1}^{r_{\ell}} \mathbb{E}[\tilde{U}_{ij}^2] \ge \frac{k}{m_{\ell}}, \quad k = 1, 2, \cdots, m_{\ell}.$$
(121)

Let $\sigma_1 \geq \sigma_2 \geq \cdots \sigma_{m_\ell} \geq 0$ represent the singular values of G, taking expectations of (120) yields $\mathbb{E}[\|\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{G}\|_{F}^{2}] = \mathrm{tr}(\boldsymbol{\Sigma}_{0}\boldsymbol{\Sigma}_{0}^{\top}\mathbb{E}[\boldsymbol{U}_{0}^{\top}\boldsymbol{P}\boldsymbol{P}^{\top}\boldsymbol{U}_{0}])$

2722
2723
2724
$$= \sum_{i=1}^{m_{\ell}} \sigma_i^2 \sum_{j=1}^{r_{\ell}} \mathbb{E}[\tilde{U}_{ij}^2]$$

2725
2726
2727
$$\geq \sum_{i=1}^{m_{\ell}} \sigma_i^2 \cdot \frac{r_{\ell}}{m_{\ell}} = \frac{r_{\ell}}{m_{\ell}} \cdot \|\boldsymbol{G}\|_F^2,$$
(122)

where the inequality applies $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \sigma_{m_\ell}^2$ and (121). Based on (122), we have

$$\mathbb{E}[\|oldsymbol{P}oldsymbol{P}^{ op}oldsymbol{G} - oldsymbol{G}\|_F^2] = \|oldsymbol{G}\|_F^2 - \mathbb{E}[\|oldsymbol{P}oldsymbol{P}^{ op}oldsymbol{G}\|_F^2] \leq \left(1 - rac{r_\ell}{m_\ell}
ight)\|oldsymbol{G}\|_F^2,$$

which completes the proof.

Lemma 18 (Momentum contraction). Under Assumption 3-5, in GaLore using MSGD with MP, if $0 < \beta_1 \leq 1$, term $\tilde{M}_{\ell}^{(t)}$ has the following contraction properties:

• When t = 0, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{X}^{(0)})\|_{F}^{2}] \leq (\tau - 1)(2 - \delta_{\ell}) \sum_{r=0}^{\tau-2} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2}] \\ + \frac{2(2 - \delta_{\ell})}{\tau} \sum_{r=0}^{\tau-1} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(r)})\|_{F}^{2}] + \beta_{1}^{2} \sigma_{\ell}^{2};$$
(123)

• When $t = k\tau$, $k \in \mathbb{N}^*$, it holds that

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$$

$$\leq \frac{2(1-\delta_{\ell})}{\tau} \sum_{r=0}^{\tau-1} \mathbb{E}[\|\nabla_{l} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \frac{5(1-\beta_{1})}{\delta_{\ell}\beta_{1}} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}]$$

+
$$(\tau - 1)(1 - \delta_{\ell}) \sum_{r=0}^{\tau-2} \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r+1)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau+r)})\|_{F}^{2}] + \beta_{1}^{2} \sigma_{\ell}^{2};$$
 (124)

Proof. Without loss of generality assume $m_{\ell} \leq n_{\ell}$ (the other case can be proved similarly). When t = 0, (123) is direct result of Lemma 8 by letting $\mathcal{B} = 1$. When t = 0, we have

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
= \mathbb{E}[\|\beta_{1} \boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top} \boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
= \mathbb{E}[\|(\beta_{1} \boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top} - \boldsymbol{I}) \nabla_{\ell} f(\boldsymbol{x}^{(0)})\|_{F}^{2}] + \beta_{1}^{2} \mathbb{E}[\|\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top} (\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell} f(\boldsymbol{x}^{(0)}))\|_{F}^{2}], \quad (126)$$

For the first term, we have

$$\mathbb{E}[\|(\beta_{1}\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top} - \boldsymbol{I})\nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
= (1 - \beta_{1})^{2}\mathbb{E}[\|\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top}\nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] + \mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \\
\leq ((1 - \beta_{1})^{2} + (1 - \delta_{\ell}))\|\nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2} \leq (2 - \delta_{\ell})\|\nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2},$$
(127)

where the first inequality uses Lemma 17. For the second term, we have

$$\mathbb{E}[\|\boldsymbol{P}_{\ell}^{(0)}(\boldsymbol{P}_{\ell}^{(0)})^{\top}(\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)}))\|_{F}^{2}] \leq \mathbb{E}[\|\boldsymbol{G}_{\ell}^{(0)} - \nabla_{\ell}f(\boldsymbol{x}^{(0)})\|_{F}^{2}] \leq \sigma_{\ell}^{2}.$$
 (128)

Applying (127)(128) to (126) and using Lemma 2 yields (123).

 $\mathbb{E}[\|\tilde{\boldsymbol{M}}^{(t)} - \nabla_{\boldsymbol{x}} f(\boldsymbol{x}^{(t)})\|_{T}^{2}]$

2783 When $t=k au,\,k\in\mathbb{N}^*,$ according to the proof of Lemma 8, we have

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \leq \left(1 + \frac{\delta_{\ell}\beta_{1}}{4}\right) \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}] + \left(1 + \frac{4}{\delta_{\ell}\beta_{1}}\right) \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(t-1)})\|_{F}^{2}],$$
(129)

and

$$= \mathbb{E}[\|\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}[(1-\beta_{1})\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} + \beta_{1}\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})]\|_{F}^{2}] \\ + \mathbb{E}[\|(\boldsymbol{I}-\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\ \leq \mathbb{E}[\|(1-\beta_{1})(\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] + \beta_{1}^{2}\sigma_{\ell}^{2} + (1-\delta_{\ell})\mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}], \quad (130)$$

where the last inequality applies Lemma 17. Applying (129) to (130) and using Lemma 2 yields (124).

2802 When $t = k\tau + r, k \in \mathbb{N}, 1 \le r < \tau$, we have the following results according to the proof of Lemma 8:

$$\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] \\
\leq (1 - \beta_{1})\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \beta_{1}\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} \\
+ \beta_{1}^{2}\mathbb{E}[\boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top}(\boldsymbol{G}_{\ell}^{(t)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)}))\|_{F}^{2}] \\
\leq (1 - \beta_{1})\mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t-1)} - \nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \beta_{1}\mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(t)}(\boldsymbol{P}_{\ell}^{(t)})^{\top})\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2} + \beta_{1}^{2}\sigma_{\ell}^{2}, \quad (131)$$

For the second term, we have

 $\mathbb{E}[\|(\boldsymbol{I}-\boldsymbol{P}_{\boldsymbol{\ell}}^{(k\tau)}(\boldsymbol{P}_{\boldsymbol{\ell}}^{(k\tau)})^{\top})\nabla_{\boldsymbol{\ell}}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$ $\leq \left(1 + \frac{\delta_\ell}{4}\right) \mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top}) \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}]$ $+ \left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|(\boldsymbol{I} - \boldsymbol{P}_{\ell}^{(k\tau)}(\boldsymbol{P}_{\ell}^{(k\tau)})^{\top})(\nabla_{\ell}f(\boldsymbol{x}^{(t)}) - \nabla_{\ell}f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}]$ $\leq \left(1 - \frac{3\delta_\ell}{4}\right) \mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(k\tau)})\|_F^2] + \left(1 + \frac{4}{\delta_\ell}\right) \mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(t)}) - \nabla_\ell f(\boldsymbol{x}^{(k\tau)})\|_F^2]$ $\leq \left(1 - \frac{\delta_{\ell}}{2}\right) \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + 2\left(1 + \frac{4}{\delta_{\ell}}\right) \mathbb{E}[\|\nabla_{\ell} f(\boldsymbol{x}^{(t)}) - \nabla_{\ell} f(\boldsymbol{x}^{(k\tau)})\|_{F}^{2}]$ $\leq \left(1 - \frac{\delta_\ell}{2}\right) \mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(t)})\|_F^2] + \frac{10r}{\delta_\ell} \sum_{i=1}^r \mathbb{E}[\|\nabla_\ell f(\boldsymbol{x}^{(k\tau+i)}) - \nabla_\ell f(\boldsymbol{x}^{(k\tau+i-1)})\|_F^2],$ (132)

where the first inequality applies Young's inequality, the second inequality applies Lemma 17, the third inequality applies Young's inequality, the last inequality applies Cauchy's inequality. Applying (129)(132) to (131) yields (125).

Lemma 19 (Momentum error). Under Assumption 2-5, if $0 < \beta_1 \le 1$ in GaLore using MSGD and *MP*, it holds for any $K \ge 1$ that

$$\sum_{t=0}^{K au-1} \mathbb{E}[\| ilde{oldsymbol{m}}^{(t)} -
abla f(oldsymbol{x}^{(t)})\|_2^2]$$

$$\leq$$

$$\leq \left(\frac{5(1-\beta_{1})}{(1-\underline{\delta}/4)\underline{\delta}\beta_{1}^{2}} + \frac{5\tau(\tau-1)}{(1-\underline{\delta}/4)\underline{\delta}} + \frac{2(\tau-1)}{(1-\overline{\delta}/4)\beta_{1}}\right) L^{2} \sum_{t=0}^{K\tau-2} \mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_{2}^{2}] \\ + \left(\frac{1-\underline{\delta}/2}{1-\underline{\delta}/4} + \frac{4}{(1-\overline{\delta}/4)\tau\beta_{1}}\right) \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] + \frac{K\tau\beta_{1}\sigma^{2}}{1-\overline{\delta}/4}.$$
(133)

v

(134)

Proof. By Lemma 18 we have

$$\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] - \left(1 - \left(1 - \frac{\delta_{\ell}}{4}\right)\beta_{1}\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\tilde{\boldsymbol{M}}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$$

$$\leq \left(\frac{5(1-\beta_{1})}{\delta_{\ell}\beta_{1}} + \frac{5\tau(\tau-1)\beta_{1}}{\delta_{\ell}} + 2(\tau-1)\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$$

$$+ \left(\frac{4}{\tau} + \left(1 - \frac{\delta_{\ell}}{2}\right)\beta_{1}\right)\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + K\tau\beta_{1}^{2}\sigma_{\ell}^{2},$$

which implies

$$\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{M}_{\ell}^{(t)} - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$$

$$\leq \left(\frac{5(1-\beta_{1})}{(1-\delta_{\ell}/4)\delta_{\ell}\beta_{1}^{2}} + \frac{5\tau(\tau-1)}{(1-\delta_{\ell}/4)\delta_{\ell}} + \frac{2(\tau-1)}{(1-\delta_{\ell}/4)\beta_{1}}\right)\sum_{t=0}^{K\tau-2} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t+1)}) - \nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}]$$

$$+ \left(\frac{1-\delta_{\ell}/2}{1-\delta_{\ell}/4} + \frac{4}{(1-\delta_{\ell}/4)\tau\beta_{1}}\right)\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla_{\ell}f(\boldsymbol{x}^{(t)})\|_{F}^{2}] + \frac{K\tau\beta_{1}\sigma_{\ell}^{2}}{1-\delta_{\ell}/4}.$$
(134)

Summing (134) for $\ell = 1, \dots, N_L$ and applying Assumption 2-3 yields (133).

Now we are ready to prove the convergence of GaLore with small-batch stochastic gradients under isotropic noise assumptions.

Theorem 13 (Convergence of Galore under isotropic noise assumptions). Under Assumptions 1-5, if hyperparameters

$$0 < \beta_1 \le 1, \quad \tau \ge \frac{128}{3\beta_1 \underline{\delta}}, \quad 0 < \eta \le \min\left\{\frac{1}{4L}, \sqrt{\frac{3\underline{\delta}\beta_1^2}{80L^2}}, \sqrt{\frac{3\underline{\delta}}{80\tau^2 L^2}}, \sqrt{\frac{3\beta_1}{32\tau L^2}}\right\}, \tag{135}$$

GaLore using small-batch stochastic gradients and MSGD with MP converges as

$$\frac{1}{K\tau} \sum_{t=0}^{K\tau-1} \mathbb{E} \|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2} \leq \frac{16\Delta}{\underline{\delta}\eta K\tau} + \frac{32\beta_{1}\sigma^{2}}{3\underline{\delta}}$$
(136)

for any $K \geq 1$, where $\Delta = f(\boldsymbol{x}^{(0)}) - \inf_{\boldsymbol{x}} f(\boldsymbol{x})$.

Proof. By Lemma 4 we have

$$\sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] \leq \frac{2[f(\boldsymbol{x}^{(0)}) - \mathbb{E}[f(\boldsymbol{x}^{(K\tau)})]}{\eta} + \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\tilde{\boldsymbol{m}}^{(t)} - \nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] - \left(\frac{1}{\eta^{2}} - \frac{L}{\eta}\right) \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_{2}^{2}].$$
(137)

Applying Lemma 19 to (137) and using $\underline{\delta} \leq \overline{\delta} < 1$ yields

$$\begin{pmatrix} \frac{\delta}{4} - \frac{16}{3\tau\beta_1} \end{pmatrix} \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] \\
\leq \frac{2}{\eta} \mathbb{E}[f(\boldsymbol{x}^{(0)}) - f(\boldsymbol{x}^{(K\tau)})] + \frac{4K\tau\beta_1\sigma^2}{3} \\
- \left(\frac{1}{\eta^2} - \frac{L}{\eta} - \frac{20(1-\beta_1)L^2}{3\underline{\delta}\beta_1^2} - \frac{20\tau(\tau-1)L^2}{3\underline{\delta}} - \frac{8(\tau-1)L^2}{3\beta_1} \right) \sum_{t=0}^{K\tau-1} \mathbb{E}[\|\boldsymbol{x}^{(t+1)} - \boldsymbol{x}^{(t)}\|_2^2].$$
(138)

By (135) we have

$$\frac{\delta}{4} - \frac{16}{3\tau\beta_1} \ge \frac{\delta}{8}, \quad \text{and} \quad \frac{1}{4\eta^2} \ge \max\left\{\frac{L}{\eta}, \frac{20(1-\beta_1)L^2}{3\underline{\delta}\beta_1^2}, \frac{20\tau(\tau-1)L^2}{3\underline{\delta}}, \frac{8(\tau-1)L^2}{3\beta_1}\right\}.$$
(139)
Applying (139) to (138) yields (136).

Applying (139) to (138) yields (136).

Corollary 4 (Convergence complexity of GaLore under isotropic noise assumptions). Under Assumptions 1-5, if $T \ge 2 + 256/(3\underline{\delta}) + (256\sigma)^2/(9\sqrt{\underline{\delta}}L\Delta)$ and we choose

$$\beta_1 = \left(1 + \sqrt{\frac{\underline{\delta}^{3/2} \sigma^2 T}{L\Delta}}\right)^{-1},$$

$$\tau = \left\lceil \frac{128}{3\underline{\delta}\beta_1} \right\rceil,$$

$$\eta = \left(4L + \sqrt{\frac{80L^2}{3\underline{\delta}\beta_1^2}} + \sqrt{\frac{80\tau^2 L^2}{3\underline{\delta}}} + \sqrt{\frac{32\tau L^2}{3\beta_1}}\right)^{-1}$$

GaLore using small-batch stochastic gradients and MSGD with MP converges as

2911
2912
2913
$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_{2}^{2}] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^{2}}{\underline{\delta}^{7/2}T}}\right),$$
(140)

where $\Delta = f(\mathbf{x}^{(0)}) - \inf_{\mathbf{x}} f(\mathbf{x})$. Consequently, the computation complexity to reach an ε -accurate solution \boldsymbol{x} such that $\|\nabla f(\boldsymbol{x})\|_2^2 \leq \varepsilon$ is $\mathcal{O}\left(\frac{L\Delta\sigma^2}{\underline{\delta}^{7/2}\varepsilon^2} + \frac{L\Delta}{\underline{\delta}^{5/2}\varepsilon} + \frac{\sigma^2}{\underline{\delta}^{1/2}L\Delta} + \frac{1}{\underline{\delta}}\right)$.

Proof. $T \geq 2+256/(3\underline{\delta})+(256\sigma)^2/(9\sqrt{\underline{\delta}}L\Delta)$ guarantees $T \geq \tau$. Let $T = K\tau + r$, where $K \in \mathbb{N}^*$ and $0 \le r < \tau$. If r = 0, (140) is a direct result of Theorem 13. If r > 0, applying Theorem 13 to $\tilde{K} := K + 1$ yields $\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] \leq \frac{\tilde{K}\tau}{T} \cdot \frac{1}{\tilde{K}\tau}\sum_{t=0}^{\tilde{K}\tau-1}\mathbb{E}[\|\nabla f(\boldsymbol{x}^{(t)})\|_2^2] = \mathcal{O}\left(\frac{L\Delta}{\underline{\delta}^{5/2}T} + \sqrt{\frac{L\Delta\sigma^2}{\underline{\delta}^{7/2}T}}\right).$