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Abstract

Dialogue intent classification aims to identify001
the underlying purpose or intent of a user’s002
input in a conversation. Current intent classi-003
fication systems encounter considerable chal-004
lenges, primarily due to the vast number of005
possible intents and the significant semantic006
overlap among similar intent classes. In this007
paper, we propose a novel approach to few-008
shot dialogue intent classification through in-009
context learning, incorporating dynamic label010
refinement to address these challenges. Our011
method retrieves relevant examples for a test012
input from the training set and leverages a large013
language model to dynamically refine intent la-014
bels based on semantic understanding, ensuring015
that intents are clearly distinguishable from one016
another. Experimental results demonstrate that017
our approach effectively resolves confusion be-018
tween semantically similar intents, resulting019
in significantly enhanced performance across020
multiple datasets compared to baselines. We021
also show that our method generates more inter-022
pretable intent labels, and has a better semantic023
coherence in capturing underlying user intents024
compared to baselines.025

1 Introduction026

Dialogue intent classification identifies the under-027

lying intent or purpose of a user’s input in a con-028

versation. It is a key component of task-oriented029

dialogue systems (Degand and Muller, 2020), en-030

abling accurate understanding of user utterances031

and generation of appropriate responses. How-032

ever, current intent classification systems face chal-033

lenges, particularly in managing a large number034

of intent classes and resolving semantic ambigu-035

ity between similar intents (Sung et al., 2023; Cho036

et al., 2024; Lu et al., 2024). Recent work explores037

few-shot learning approaches, including retrieval-038

augmented methods (Milios et al., 2023; Gao et al.,039

2024; Abdullahi et al., 2024) and prompt-based040

techniques (Loukas et al., 2023; Parikh et al., 2023;041
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Figure 1: An example illustrating how ambiguous and
similar label names can confuse the model, while refined
label names enable clearer decision-making.

Zhang et al., 2024; Rodriguez et al., 2024), which 042

enable models to learn from limited examples per 043

intent. While retrieval-augmented methods effec- 044

tively narrow down candidate intents by retrieving 045

examples similar to the input query, these methods 046

also introduce a critical challenge: the retrieved 047

examples often show significant semantic overlap 048

across different intent categories. 049

As shown in Figure 1, even with just three sim- 050

ilar intents (‘Verify PAN’, ‘Bank verification de- 051

tails’, and ‘Account not verified’), the model strug- 052

gles to make accurate predictions due to their se- 053

mantic similarity, as indicated by the cosine sim- 054

ilarity score of 0.91 at the embedding space. We 055

observe that this high semantic similarity between 056

intent labels makes it challenging for models to 057

distinguish between different intents accurately. 058

We find that these issues can be mitigated by re- 059

fining the label names to forms that more distinctly 060

differentiate them from other labels. As illustrated 061
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in Figure 1, by mapping the label ‘Verify PAN’ to062

a more descriptive form, such as ‘Verify PAN card063

details’, it becomes easier to differentiate it from064

general bank verification intents. This refinement065

establishes clearer semantic boundaries between066

intent categories, resulting in more accurate classi-067

fications.068

In this paper, we present a novel approach that069

combines dynamic label refinement with similarity-070

based example selection. Our method involves071

retrieving semantically similar examples and dy-072

namically refining their intent labels to create073

more meaningful distinctions between related in-074

tents. Through extensive experiments across vari-075

ous model scales and diverse datasets, we achieve076

significant improvements. Our analysis shows that077

the improvements are particularly pronounced in078

datasets with high semantic overlap between in-079

tents, with accuracy gains ranging from 2.07% to080

7.51% across different model scales.081

2 Method082

Following the recent works in dialogue intent clas-083

sification (Milios et al., 2023; Chen et al., 2024;084

Chandra et al., 2024), our approach leverages085

retrieval-based in-context learning (ICL) with large086

language models (LLMs), which has demonstrated087

effectiveness in tasks involving large label spaces.088

This approach allows models to dynamically lever-089

age relevant few-shot examples for prediction from090

the training set.091

We introduce a retrieval ICL method for intent092

classification with dynamic label re-naming, which093

comprises three steps: (1) retrieving semantically094

similar examples, (2) refining intent labels using 095

an LLM to generate more descriptive labels, and 096

(3) conducting the final classification with these 097

refined examples. 098

2.1 Retrieving In-Context Examples 099

We start by retrieving relevant examples in the 100

dataset for each input query. To retrieve such se- 101

mantically similar examples, we use a pre-trained 102

SentenceTransformer model (Reimers, 2019). For 103

each input query, we retrieve the top-20 most sim- 104

ilar examples. These retrieved examples are then 105

grouped by their original intents to provide com- 106

prehensive context for the subsequent steps. 107

2.2 Dynamic Label Re-naming 108

Our proposed dynamic label refinement process 109

combines retrieval-based example selection with 110

label generation guided by an LLM, as shown in 111

Figure 2. For each of the specified intent groups, 112

we design tailored instructions for the LLM to ana- 113

lyze these groups and refine the labels accordingly. 114

(see Appendix F for full prompt) Specifically, we 115

design intent label refinement as a process where 116

the model evaluates whether to retain the original 117

label or propose an enhanced version while pre- 118

serving the domain-specific semantics. During this 119

process, the model assesses the semantic relation- 120

ship between the label and its associated examples, 121

deciding either to maintain the original intent name 122

or to generate a more descriptive alternative. For 123

instance, as shown in Figure 2, when analyzing 124

examples like “Verify my PAN card” and “Pan card 125

verification”, the model recognizes that the origi- 126

nal label ‘verify_pan’ could be more descriptive 127

and refines it to ‘verify_pan_card_details’ to 128

better capture the specific verification intent. 129

2.3 ICL for Intent Classification 130

After obtaining the new labels for each sample, we 131

leverage ICL with the refined labels and examples 132

for final classification. This two-step process where 133

the same LLM both refines the labels and makes 134

the final classification decision helps ensure consis- 135

tency between the refined semantic understanding 136

and the ultimate intent prediction. Consequently, 137

the overall process involves constructing a prompt 138

that includes: 1) The retrieved examples with their 139

refined intent labels 2) The test query requiring 140

classification 3) Clear instructions for the model to 141

select the most appropriate intent 142
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Dataset
Llama3-8b-inst Qwen2.5-7b-inst Qwen2.5-1.5b-inst

Raw CoT Refined Raw CoT Refined Raw CoT Refined
HWU64 88.10 87.17 (-0.93) 89.03 (+0.93) 87.08 86.71 (-0.37) 88.38 (+1.30) 78.90 78.72 (-0.18) 80.76 (+1.86)

BANKING77 85.88 85.48 (-0.40) 87.95 (+2.07) 85.68 87.05 (+1.37) 87.30 (+1.62) 73.31 72.63 (-0.68) 77.34 (+4.03)

CLINC150 95.03 95.13 (+0.10) 95.51 (+0.48) 95.36 95.42 (+0.06) 95.58 (+0.22) 82.29 81.90 (-0.39) 84.02 (+1.73)

CUREKART 89.76 89.76 (+0.00) 91.94 (+2.18) 90.02 89.98 (-0.04) 90.40 (+0.38) 82.78 82.35 (-0.43) 84.10 (+1.32)

POWERPLAY11 70.87 67.00 (-3.87) 76.10 (+5.23) 71.20 70.06 (-1.14) 74.76 (+3.56) 60.84 58.83 (-2.01) 63.10 (+2.26)

SOFMATTRESS 82.61 81.10 (-1.51) 85.40 (+2.79) 83.79 84.46 (+0.67) 87.40 (+3.61) 73.12 73.70 (+0.58) 80.63 (+7.51)

Table 1: Performance comparison of our dynamic label refinement approach across different models. Raw represents
the baseline performance using original intent labels, CoT shows results with chain-of-thought prompting, and
Refined shows the results after applying our dynamic label refinement method.

3 Experiment143

3.1 Experimental Setup144

Datasets We evaluate our method on two groups145

of datasets: DialoGLUE benchmark datasets146

(Mehri et al., 2020) (BANKING77, HWU64,147

CLINC150) and HINT3 datasets (Arora et al.,148

2020) (CUREKART, POWERPLAY11, SOFMAT-149

TRESS). We provide more details in Appendix A.150

Models We conduct experiments with three dif-151

ferent sizes of LLMs to evaluate the effective-152

ness of our approach. We employ Llama3-8b-153

inst. (Dubey et al., 2024), Qwen2.5-7b-inst. (Yang154

et al., 2024), and Qwen2.5-1.5b-inst. as our back-155

bone models.156

Baselines We compare our approach with the fol-157

lowing baselines: 1) Raw: A standard in-context158

learning approach where we retrieve similar ex-159

amples and perform intent classification using the160

original intent labels without any refinement. 2)161

Chain-of-Thought (CoT) (Wei et al., 2023): An162

enhanced prompting method that guides the model163

to break down the intent classification process into164

steps, analyzing the user query and retrieved exam-165

ples before making a prediction.166

Implementation Details Following (Milios et al.,167

2023), we order examples from least to most sim-168

ilar in the prompt, which demonstrated higher ac-169

curacy across our datasets. We use this retrieval-170

based in-context learning setup as our baseline,171

where the LLM directly performs classification us-172

ing the original intent labels. While a static label173

refinement might seem simpler, we opt for dynamic174

refinement as it enables context-specific label ad-175

justments based on each test query and its retrieved176

examples. We also confirm this through the experi-177

ment in Appendix B.178

3.2 Main Results 179

Table 1 presents a comprehensive analysis of our 180

dynamic label refinement approach across different 181

experimental setups. We structure the investiga- 182

tion around several critical dimensions to clearly 183

demonstrate the effectiveness and implications of 184

our method. 185

Semantic Disambiguation through Label Re- 186

finement We first confirm that while both Raw 187

and CoT approaches show reasonable performance, 188

they often struggle with semantically ambiguous 189

intents. For example, CoT misclassifies “Please 190

keep delivery service to the pin code 7021” as 191

‘modify_address’ instead of ‘check_pincode’, 192

and "Hey I didn’t receive the ordered product its in- 193

complete" as ‘refunds_returns_replacements’ 194

instead of ‘delay_in_parcel’. These examples 195

show how structured reasoning often struggles 196

when similar intents have overlapping semantics. 197

Our refinement process tackles this issue by ana- 198

lyzing the semantic relationships between labels 199

and examples, leading to consistent performance 200

improvements over both Raw and CoT baselines 201

across all datasets as shown in Table 1. For ex- 202

ample, in BANKING77, this approach achieves 203

notable improvements of +2.07%, +1.62% and 204

+4.03% for Llama3-8b-inst., Qwen2.5-7b-inst., and 205

Qwen2.5-1.5b-inst. respectively, demonstrating 206

the effectiveness of semantic-aware label refine- 207

ment. The improvements are particularly notable 208

in datasets with complex domain-specific termi- 209

nology, such as BANKING77, where the model 210

effectively leverages existing semantic information 211

in the labels. 212

Performance Across Model Scales Our exper- 213

iments with different model sizes reveal several 214

interesting patterns about the scalability of our ap- 215

proach. The larger models (Llama3-8b-inst. and 216

Qwen2.5-7b-inst.) demonstrate robust baseline 217
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performance with moderate improvements (2.07%218

and 1.62% on BANKING77, 3.61% and 3.56% on219

SOFMATTRESS respectively). Notably, even the220

smaller Qwen2.5-1.5b-inst. Model achieves signifi-221

cant improvements, particularly on domain-specific222

datasets (+7.51% on SOFMATTRESS, +4.03% on223

BANKING77), suggesting that our approach effec-224

tively enhances performance regardless of model225

scale. These results demonstrate that our proposed226

method effectively enhances intent classification227

performance across various datasets and model ar-228

chitectures.229

3.3 Analysis230

Semantic Similarity Analysis To validate our231

hypothesis about semantic relationships between232

intent labels, we conduct an embedding-based simi-233

larity analysis comparing original and refined intent234

labels across all datasets. Specifically, we lever-235

age the last hidden layer representations from our236

LLMs to capture the semantic characteristics of237

each intent label. For each intent, we extracte the238

final hidden state representation and computed pair-239

wise cosine similarities between these representa-240

tions within each label set.241

Model Original Refined
Llama3-8b-inst. 0.86 0.74
Qwen2.5-7b-inst. 0.83 0.80
Qwen2.5-1.5b-inst. 0.95 0.91

Table 2: Average pairwise semantic similarity between
original and refined intent labels across various model
scales.

We observe that refined labels consistently242

achieve lower average pairwise similarities than243

original labels across all datasets and model scales.244

With Llama3-8b-inst., the average similarity drops245

from 0.86 for original intent labels to 0.74 for246

refined labels. Qwen2.5-7b-inst. and Qwen2.5-247

1.5b-inst. follow a similar trend, with reductions248

from 0.83 to 0.80 and 0.95 to 0.91, respectively,249

although the decrease is less significant compared250

to Llama3-8b-inst. This decrease in semantic over-251

lap directly correlates with improved classification252

performance. For instance, on the BANKING77253

dataset, Llama3-8b-inst. achieves a 2.07% accu-254

racy improvement along with a 0.1 reduction in255

label similarity. The performance gains become es-256

pecially noticeable when the model creates more se-257

mantically distinct labels, indicating that reducing258

label overlap enables clearer distinctions between259

Dataset
Q2.5-7B Q2.5-1.5B

Q2.5-7B Q2.5-1.5B Q2.5-1.5B Q2.5-7B
HWU64 88.38 81.22 80.76 88.01
BANKING77 87.30 80.81 77.34 85.95
CLINC150 95.58 87.31 84.02 95.22
CUREKART 90.40 82.78 84.10 88.90
POWERPLAY11 74.76 64.10 63.10 74.43
SOFMATTRESS 87.40 78.30 80.63 85.08

Table 3: Performance comparison across different
model combinations. The top row means the model used
for re-naming, and the second row denotes the models
used for classification. Models used: Qwen2.5-7B-inst.
(Q2.5-7B) and Qwen2.5-1.5B-inst. (Q2.5-1.5B).

different intents. We also provide the detailed simi- 260

larity analysis for each dataset in Appendix D. 261

Model Combination To validate the effective- 262

ness of labeling refinement itself of each model, 263

we employ two separate LLMs for intent refine- 264

ment and classification tasks. We experiment with 265

various combinations of Qwen2.5-7B-inst. and 266

Qwen2.5-1.5B-inst. As in Table 3, using a larger 267

model for refinement followed by a smaller model 268

for classification yields the best performance. For 269

example, using Qwen2.5-7B-inst. for refinement 270

and Qwen2.5-1.5B-inst. for answering achieves 271

notable improvements: +3.31% on CLINC150 and 272

+4.10% on POWERPLAY11 compared to single- 273

model baselines. 274

Interestingly, even reverse combinations (small 275

model refinement + large model classification) 276

show improvements over the non-refinement base- 277

line, though to a lesser extent. For instance, using 278

Qwen2.5-1.5B-inst. for refinement and Qwen2.5- 279

7B-inst. for answering still achieves improvements 280

on the datasets. This suggests that our label re- 281

finement approach is robust across different model 282

scales and configurations. 283

4 Conclusion 284

We propose a dynamic label refinement method 285

for few-shot dialogue intent classification that mit- 286

igates the issues of significant semantic overlap 287

between intent labels. Using the retrieved exam- 288

ples, we refine labels via LLMs to create more 289

semantically distinct intent categories. Experimen- 290

tal results demonstrate that our method consistently 291

improves performance across multiple datasets for 292

various models. We also confirme that our method 293

reduces semantic similarities between intent labels, 294

creating more distinct and interpretable categories. 295
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Limitations296

While our approach demonstrates significant im-297

provements in intent classification performance, it298

requires additional computational overhead com-299

pared to traditional methods. The need to run the300

model once for label refinement and once for clas-301

sification - increases the computational cost per302

query. However, we believe this trade-off is justi-303

fied by the substantial improvements in classifica-304

tion accuracy, particularly for semantically ambigu-305

ous intents.306
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A Dataset Details433

We evaluate our approach using two different434

groups of datasets. The first group consists of435

DialoGLUE benchmark datasets (BANKING77:436

77 intents focused on banking domain (Casanueva437

et al., 2020), HWU64: 64 intents spanning across438

21 domains (Casanueva et al., 2020), CLINC150:439

150 intents covering 10 domains (Larson et al.,440

2019)), which are widely used for evaluating task-441

oriented dialogue systems. For these datasets, we442

follow the standard 10-shot setting where each in-443

tent class has only 10 examples for training, re-444

flecting real-world scenarios where collecting large445

amounts of labeled data is challenging.446

The second group includes HINT3447

datasets (Arora et al., 2020) (CUREKART:448

28 intents in fitness supplements retail domain,449

POWERPLAY11: 59 intents in online gaming450

domain, SOFMATTRESS: 21 intents in mattress451

products retail domain), which contain real user452

queries from live chatbots. We exclude the453

NO_NODES_DETECTED label from the test set as it454

represents out-of-scope queries irrelevant to our455

task.456

B Dynamic vs Static Label Refinement457

Dataset
Llama3-8b-inst. Qwen2.5-1.5b-inst.

Baseline Static Dynamic Baseline Static Dynamic

HWU64 88.10 84.10 (-4.00) 89.03 (+0.93) 78.90 74.90 (-4.00) 80.76 (+1.86)

BANKING77 85.88 81.65 (-4.23) 87.95 (+2.07) 73.31 69.18 (-4.13) 77.34 (+4.03)

CLINC150 95.03 87.60 (-7.43) 95.51 (+0.48) 82.29 83.42 (+1.13) 84.02 (+1.73)

CUREKART 89.76 85.47 (-4.29) 91.94 (+2.18) 82.78 86.27 (+3.49) 84.10 (+1.32)

POWERPLAY11 70.87 68.61 (-2.26) 76.10 (+5.23) 60.84 55.66 (-5.18) 63.10 (+2.26)

SOFMATTRESS 82.61 83.00 (+0.39) 84.60 (+1.99) 73.12 73.91 (+0.79) 80.63 (+7.51)

Table 4: Performance comparison of baseline, static
and dynamic refinement approaches (%). All changes
are computed relative to baseline. Best results for each
dataset are marked in bold, improvements are shown in
red, and decreases are shown in blue.

We conduct a detailed comparison between dy-458

namic and static label refinement approaches to459

validate our method choice. In the static approach,460

intent labels are refined once before training using461

all training examples collectively, following the462

same refinement rules as our dynamic approach.463

While this might seem advantageous in terms of464

computational efficiency and consistency, our ex-465

perimental results demonstrate that the dynamic466

refinement approach consistently outperforms the467

static baseline across all datasets and model archi-468

tectures.469

Using Llama3-8b-inst., the dynamic approach 470

achieves +2.07% improvement on BANKING77, 471

while static refinement shows a -4.23% decrease. 472

Similarly on CLINC150, dynamic refinement 473

yields +0.48% improvement, compared to -7.43% 474

with static refinement. Even with smaller mod- 475

els like Qwen2.5-1.5b-inst., dynamic refinement 476

shows consistent gains (+4.03% on BANKING77) 477

while static refinement often leads to performance 478

degradation. 479

The superior performance of dynamic refine- 480

ment can be attributed to several factors. Dynamic 481

refinement considers the specific context of each 482

test query and its retrieved examples, allowing for 483

more nuanced label adjustments. By refining labels 484

based on retrieved similar examples, the model can 485

better capture the semantic relationships specific 486

to the current query context. Additionally, the dy- 487

namic approach can adjust its refinement strategy 488

based on the semantic similarity patterns observed 489

in the retrieved examples, rather than using fixed 490

refined labels. 491

C Impact of the Number of Retrieved 492

Examples 493

We conduct additional experiments to analyze the 494

impact of the number of retrieved examples on 495

model performance. Figure 3 shows the perfor- 496

mance comparison between different model con- 497

figurations across varying numbers of retrieved ex- 498

amples (10, 20, 30, and 40) on BANKING77 and 499

POWERPLAY11 datasets. 500

From these results, we observe several key pat- 501

terns: 502

• The performance gap between the baseline and 503

refined versions tends to be more pronounced with 504

larger numbers of examples, particularly in BANK- 505

ING77. 506

• The larger model (Llama3-8b-inst.) shows 507

more stable performance across different example 508

counts, while the smaller model (Qwen2.5-1.5b- 509

inst.) shows greater variance in performance. 510

• POWERPLAY11 shows relatively consistent 511

improvement patterns across different example 512

counts, suggesting that the benefits of label refine- 513

ment are robust across different dataset characteris- 514

tics. 515

These findings suggest that our label refinement 516

approach is effective across different numbers of 517

retrieved examples. 518
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BANKING77

POWERPLAY11

Figure 3: Performance comparison with different num-
bers of retrieved examples. Solid lines represent perfor-
mance with label refinement, while dashed lines repre-
sent baseline performance without refinement.

D Dataset-wise Similarity Analysis519

To provide a detailed view of semantic similar-520

ity patterns, we analyze the pairwise similarities521

between intent labels for each dataset. Table 8522

shows the average pairwise similarity scores for523

both original and refined intent labels across differ-524

ent datasets and models.525

As shown in Table 6, the reduction in se-526

mantic similarity is consistent across all datasets527

for both models, though the magnitude of re-528

duction varies. For Llama3-8b-inst., POWER-529

PLAY11 shows the largest reduction in similar-530

ity (0.156), while CUREKART shows the small-531

est (0.079). Similarly, for Qwen2.5-1.5b-inst.,532

CLINC150 shows a notable reduction (0.045)533

while BANKING77 shows a relatively smaller534

change (0.017). These variations might reflect dif-535

Dataset Recall@20 Avg. Intents

HWU64 97.77 7.54
BANKING77 98.93 7.04
CLINC150 99.33 6.31
CUREKART 98.91 4.31
SOFMATTRESS 98.81 5.86
POWERPLAY11 96.44 6.93

Table 5: Retrieval analysis with 20 examples

Dataset
Llama3-8b-inst. Qwen2.5-7b-inst. Qwen2.5-1.5b-inst.

Original Refined Original Refined Original Refined
HWU64 0.835 0.721 0.772 0.760 0.948 0.910
BANKING77 0.889 0.786 0.852 0.838 0.955 0.938
CLINC150 0.834 0.705 0.780 0.764 0.946 0.901
CUREKART 0.881 0.802 0.800 0.833 0.956 0.925
SOFMATTRESS 0.849 0.761 0.752 0.748 0.943 0.911
POWERPLAY11 0.844 0.688 0.838 0.812 0.945 0.903
Mean 0.856 0.744 0.799 0.793 0.949 0.915

Table 6: Detailed semantic similarity analysis across
datasets and models. Values represent the average pair-
wise cosine similarity between all intent labels within
each dataset. Lower values indicate more semantically
distinct intent categories.

ferences in the initial intent label structures across 536

datasets and the models’ ability to refine them ef- 537

fectively. 538

E Semantic vs Generic Label Refinement 539

While our main experiments focus on semantic- 540

aware refinement that preserves domain context, 541

we also explore an alternative approach using 542

generic identifiers (w/o ori). In this setting, all 543

original intent labels are first replaced with generic 544

identifiers (e.g., Intent_1, Intent_2) before refine- 545

ment. During refinement, the model generates new 546

labels without any influence from the original in- 547

tent names. 548

The effectiveness of each approach varies with 549

model size. Larger models (Llama3-8b-inst. and 550

Qwen2.5-7b-inst.) generally perform better with 551

original name preservation (w ori), particularly 552

in BANKING77 where domain-specific terminol- 553

ogy provides valuable semantic context. However, 554

smaller models (Qwen2.5-1.5b-inst.) often show 555

improved performance with generic identifiers (w/o 556

ori), suggesting that they may benefit from the sim- 557

plified label space. This performance pattern in- 558

dicates that the choice between preserving or ab- 559

stracting intent names should consider the model’s 560

capacity to leverage domain-specific terminology. 561

Complete results comparing both approaches 562
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Dataset
Llama3-8b-inst Qwen2.5-7b-inst Qwen2.5 -1.5b-inst

Raw Refined Refined Raw Refined Refined Raw Refined Refined
w/o ori w ori w/o ori w ori w/o ori w ori

HWU64 88.10 87.17 (-0.93) 89.03 (+0.93) 87.08 85.97 (-1.11) 88.38 (+1.30) 78.90 79.27 (+0.37) 80.76 (+1.86)

BANKING77 85.88 87.27 (+1.39) 87.95 (+2.07) 85.68 86.33 (+0.65) 87.30 (+1.62) 73.31 79.12 (+5.81) 77.34 (+4.03)

CLINC150 95.03 93.73 (-1.30) 95.51 (+0.48) 95.36 93.73 (-1.63) 95.58 (+0.22) 82.29 86.38 (+4.09) 84.02 (+1.73)

CUREKART 89.76 91.94 (+2.18) 91.94 (+2.18) 90.02 90.40 (+0.38) 90.40 (+0.38) 82.78 86.27 (+3.49) 84.10 (+1.32)

POWERPLAY11 70.87 76.05 (+5.18) 76.10 (+5.23) 71.20 74.43 (+3.23) 74.76 (+3.56) 60.84 66.99 (+6.15) 63.10 (+2.26)

SOFMATTRESS 82.61 83.40 (+0.79) 85.40 (+2.79) 83.79 82.60 (-1.19) 87.40 (+3.61) 73.12 79.44 (+6.32) 80.63 (+7.51)

Table 7: Complete performance comparison including refinement without original name preservation (Refined w/o
ori). Results show that while both refinement approaches generally improve over the baseline (Raw), preserving
original names during refinement (Refined w ori) tends to yield better or comparable results.

across all datasets and models are shown in Ta-563

ble 7.564

F Full Prompt Template565

F.1 Re-naming Prompt Template566

Examples by intent:
Intent 1: account_not_verified
- How to Verify my Account?
- Account Verification
- Need to Verify my account

Intent 2: delete_pan_card
- Pan card remove
- Delete PAN card
- I want to delete my pan card

Intent 3: bank_verification_details
...
Intent 4: pan_verification_failed
...
Rules for intent mapping:
1. If the current intent name accurately represents
its examples, map it to itself
2. If the intent name needs improvement, create
a new descriptive name that better represents the
examples
3. For new names:
- Use lowercase letters only
- Use underscores between words

INTENT MAPPINGS:
account_not_verified ->
delete_pan_card ->
...
pan_verification_failed ->

Table 8: Re-naming prompt template.

The re-naming prompt takes groups of exam-567

ples organized by their original intent labels and568

analyzes their semantic meaning. Based on this569

You are an AI assistant specialized in intent classi-
fication. Your task is to determine
the single most likely intent of a given query based
on the examples provided.
Provide only the name of the most probable intent,
without any additional text or explanation.

...

Text: "Details for Bank Account Verification"
Intent: bank_verification_details

Text: "Getting error while verifying PAN Card"
Intent: pan_verification_failure

Text: "My PAN card needs to be verified"
Intent: verify_pan_card_details

Query: "My PAN card bank account verification
please"
The top 1 most likely intent is:

Table 9: Classification prompt template.

analysis, it either keeps the original label if it accu- 570

rately represents the examples, or generates a new 571

more descriptive label while maintaining consistent 572

formatting rules. The prompt enforces lowercase 573

letters and underscores in label names to ensure 574

standardization. 575

F.2 Classification Prompt Template 576

The classification prompt presents example pairs 577

of text queries and their corresponding refined in- 578

tents to establish the task context. It instructs the 579

model to determine the most likely intent for a 580

new query based solely on these examples. The 581

prompt explicitly requires only the intent name as 582

output, without any additional explanation or text, 583

to ensure consistent and clean predictions. 584
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You are an AI assistant specialized in intent classi-
fication. Your task is to determine
the single most likely intent of a given query based
on the examples provided.
For each query:
1. Analyze the key elements and meaning
2. Provide an explanation of your reasoning
3. Extract the most likely intent

Text: "Details for Bank Account Verification"
Intent: bank_verification_details

Text: "Getting error while verifying PAN Card"
Intent: pan_verification_failure

Text: "My PAN card needs to be verified"
Intent: verify_pan_card_details

Query: "My PAN card bank account verification
please"
Provide your explanation and intent:

Table 10: Chain-of-Thought prompt template.

F.3 Chain-of-Thought Prompt Template585

The Chain-of-Thought prompt extends the basic586

classification prompt by requiring the model to ex-587

plain its reasoning process. For each query, the588

model must analyze the key elements, provide rea-589

soning, and then determine the intent. This struc-590

tured approach aims to help the model make more591

informed decisions by breaking down the classifi-592

cation process into steps.593

G Related Work594

G.1 Dialogue Intent Classification595

Dialogue intent classification aims to identify users’596

intentions from natural language utterances. Tra-597

ditional approaches relied on supervised learning598

with large labeled datasets (Chen et al., 2019;599

Larson et al., 2019). The advent of large lan-600

guage models (LLMs) transforms this landscape,601

enabling effective few-shot learning approaches602

where only limited labeled data is available (Brown603

et al., 2020). This shift has been particularly sig-604

nificant as LLMs demonstrate strong few-shot ca-605

pabilities through in-context learning, reducing the606

need for extensive labeled datasets (Loukas et al.,607

2023; Parikh et al., 2023; Chen et al., 2024).608

G.2 Retrieval-based In-Context Learning609

Retrieval-based approaches have emerged as a pow-610

erful paradigm for improving few-shot learning per-611

formance. Key developments in this area include: 612

(Milios et al., 2023) propose effective retrieval 613

strategies for in-context learning with many labels, 614

demonstrating significant performance improve- 615

ments through careful example selection. How- 616

ever, while this approach successfully retrieves se- 617

mantically similar examples for classification, it 618

introduces new challenges when dealing with in- 619

tent labels that have high semantic overlap. (Lu 620

et al., 2024) This ambiguity between similar in- 621

tents creates unnecessary complexity in the clas- 622

sification task, particularly when multiple intents 623

share similar contextual meanings but require dif- 624

ferent downstream processing. Our work addresses 625

this challenge by introducing a dynamic label re- 626

finement approach that helps distinguish between 627

semantically similar intents while maintaining the 628

benefits of retrieval-based example selection. 629

H Case Study 630

H.1 Label Refinement Pattern Analysis 631

Our analysis revealed interesting patterns in how 632

the model refines intent labels, particularly high- 633

lighting some suboptimal refinement behaviors: 634

H.1.1 Verbatim Query-to-Intent Conversion 635

We observed cases where the model simply con- 636

verted user queries directly into intent labels: 637

• Original_text: “I want to return my mattress” 638

• Refined_intent: 639

i_want_to_return_my_mattress 640

This pattern indicates a potential limitation in our 641

refinement approach where the model sometimes 642

fails to abstract the core intent, instead creating 643

overly specific labels that mirror the input text. 644

H.1.2 Overly Descriptive Intent Labels 645

Another pattern emerged where the model gener- 646

ated unnecessarily verbose intent labels: 647

• Original_intent: size_customization 648

• Refined_intent: 649

how_can_i_order_a_custom_sized_ 650

mattress 651

These findings highlight the need for more sophis- 652

ticated label refinement strategies that maintain a 653

balance between descriptiveness and practical util- 654

ity. 655
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I Performance comparison across656

different model combinations.657

Dataset
L3-8B Q2.5-1.5B

L3-8B Q2.5-1.5B Q2.5-1.5B L3-8B
HWU64 89.03 80.95 80.76 88.48
BANKING77 87.95 80.09 77.34 88.47
CLINC150 95.51 86.82 84.02 94.79
CUREKART 91.94 84.96 84.10 91.07
POWERPLAY11 76.10 65.69 63.10 74.11
SOFMATTRESS 85.40 79.44 80.63 85.38

Table 11: Performance comparison across different
model combinations. The top row shows the model
used for re-naming, while the models listed in the sec-
ond row are used for answering (classification).

Based on Table 3, we conduct additional experi-658

ments employing two separate large language mod-659

els (LLMs) for intent segmentation and classifica-660

tion tasks in order to verify the effectiveness of la-661

bel segmentation for each model. In particular, for662

the two models used in the experiment, we report663

the accuracy of both the model that generates the664

intents and the model that generates the responses.665

Consistent with the results shown in Table 3, we666

find that using a larger model for response gener-667

ation is effective. Furthermore, we observe that668

label re-naming, even when performed using labels669

derived from a smaller model, still yields strong670

performance.671
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