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Abstract
Tensor regression has emerged as a powerful
framework for modeling linear relationships
among multi-dimensional variables by effectively
capturing inherent cross-mode interactions within
tensor-structured data. In this paper, we introduce
a high-dimensional tensor-response tensor regres-
sion model under low-dimensional structural as-
sumptions, such as sparsity and low-rankness.
Specifically, we assume that the underlying re-
gression tensor lies within an unknown low-
dimensional subspace and propose a general least
squares estimation framework with non-convex
penalties. Theoretically, we establish rigorous risk
bounds for the resulting estimators, demonstrating
that they attain the oracle statistical rates under
mild technical conditions. To ensure computa-
tional efficiency, we introduce a proximal gradient
algorithm for solving the proposed non-convex op-
timization problem. Extensive experiments con-
ducted on both synthetic and real-world datasets
validate the effectiveness of the proposed regres-
sion model and showcase the practical utility of
the theoretical findings.

1. Introduction
The tensor, a multi-dimensional array generalizing the ma-
trix to higher dimensions, has become a useful tool in
many data analysis areas (Kolda & Bader, 2009; Abraham
et al., 2012; McConnell, 2014; McCullagh, 2018), including
image analysis (Zhou et al., 2013; Li et al., 2018), biol-
ogy (Hore et al., 2016), spectroscopy data (Amini et al.,
2017), economics and finance (Li et al., 2015a; Wang et al.,
2022), business (Hao et al., 2021; Bi et al., 2018), etc.
Among tensor-based methods, the tensor regression is espe-
cially useful for revealing linear relationships among high-
dimensional variable sets and has been successfully applied
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in many domains (Han et al., 2022; Liu et al., 2022; Wang
et al., 2024). For example, in image processing, tensor re-
gression techniques have addressed critical tasks such as
denoising (Zhang et al., 2021a), image inpainting (Bertalmio
et al., 2001), and medical image analysis (Zhou et al., 2013;
Li & Zhang, 2017). In recommendation systems, tensor
regression leverages shared item information, substantially
enhancing prediction accuracy and outperforming models
that treat items independently (Zhang et al., 2021b). Addi-
tionally, in spatio-temporal analysis, tensor regression has
been developed to handle both forecasting and cokriging
tasks (Bahadori et al., 2014; Yu & Liu, 2016; Yu et al., 2018;
Su et al., 2020).

Despite their wide applications, tensor regression models
encounter significant challenges in estimation. This problem
is more prominent in high-dimensional settings, where the
number of parameters substantially exceeds the number of
observations, which makes the model estimation ill-posed
(Raskutti et al., 2019; Chen et al., 2019). To address such
challenges, imposing structural assumptions that capture the
underlying low-dimensional structures is critical, such as
sparsity or low-rankness (Rabusseau & Kadri, 2016). Spar-
sity refers to the phenomenon where most entries are either
exactly zero or near zero, which is commonly leveraged
in fields such as recommendation systems (Lee, 2001) and
compressed sensing (Chen et al., 2023). On the other hand,
low-rankness indicates the rank is significantly smaller than
its informative dimensions, which is frequently applied in
areas like image compression (Li & Li, 2010) and collab-
orative filtering (Li et al., 2017). However, defining these
low-dimensional structures for tensors is a key challenge,
as the concepts of sparsity and low-rankness have multiple
nontrivial extensions in the tensor setting (Kolda & Bader,
2009). For instance, tensor sparsity can be defined either
entry-wise or group-wise, such as at the fiber level (Raskutti
et al., 2019) or the slice level (Zhang et al., 2019). Similarly,
low-rankness can be imposed on different forms of tensors,
such as mode-wise (Chen et al., 2019) and slice-wise (Farias
& Li, 2017; Luo & Zhang, 2024). Raskutti et al. (2019) in-
vestigated all of the previously mentioned sparsity and low-
rankness structures, establishing both general risk bounds
and specific upper bounds in various scenarios. Alterna-
tively, tensor decomposition techniques, such as Canonical
Polyadic (CP) decomposition (Carroll & Chang, 1970) and
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Tucker decomposition (Tucker, 1966), offer another way to
enforce structure. However, these methods often face chal-
lenges due to their nonconvex nature of the optimization
problems involved (Luo & Zhang, 2023). To further reduce
the number of estimated parameters and improve model
performance, several studies argue for decomposition-based
estimators with regularizers (He et al., 2018; Ahmed et al.,
2020; Xu, 2020).

In this paper, we investigate a high-dimensional tensor-on-
tensor regression model and propose to estimate the coeffi-
cient with penalty regularizers. While convex methods, such
as Lasso (Tibshirani, 1996) and nuclear norm minimization
(Recht et al., 2010; Candes & Recht, 2012), are widely em-
ployed due to their strong theoretical guarantees (Zhang
et al., 2019; Raskutti et al., 2019), nonconvex approaches
have recently garnered attention for their advantages in unbi-
ased estimation and improved theoretical properties in high-
dimensional settings. Although nonconvex regularizers are
widely used, their benefits for high-dimensional tensor re-
gression problems remain unclear. This paper closes this
gap by proposing a general and unifying estimation frame-
work. In particular, we discuss a class of decomposable non-
convex penalty functions, including the smoothly clipped
absolute deviation (SCAD) (Fan & Li, 2001) and the min-
imax concave penalty (MCP) (Zhang, 2010). Leveraging
these univariate penalty functions, we impose distinct low-
dimensional structures—sparsity or low-rank constraints—
on the regression coefficient tensor. To effectively solve
the resulting optimization problems, we present a proximal
gradient algorithm. Our analysis shows that these estimators
enjoy oracle properties under mild assumptions which is
faster than the estimators (Raskutti et al., 2019). Extensive
numerical experiments on both synthetic data and real-world
datasets validate the theoretical results and demonstrate the
practical advantages and breadth of the proposed methods.
Proofs are deferred to the Supplementary Materials.

2. Preliminary
Throughout the paper, we use boldface calligraphy letters
for tensors, such as A, boldface uppercase letters for matri-
ces, such as A, and standard lowercase letters for scalars,
such as x. The order (or degree) of a tensor is defined as
the number of modes it has; hence, matrices, vectors, and
scalars are order-2, order-1, and order-0 tensors, respec-
tively. For an order-N tensor A ∈ Rd1×···×dN , where the
mode-i dimension is di, i ∈ {1, . . . , N}, the entry of A at
position (i1, . . . , iN ) is denoted by ai1,...,iN or [A]i1,...,iN .

Fibers and Slices By fixing all indices of a tensor A
except for the k-th mode, we obtain mode-(k) fibers, which
are vectors. Mode-(j, k) slices are obtained by fixing all
indices except for the j-th and k-th modes, resulting in

matrices.

Tensor Unfolding A tensor A with order higher than
3 can be unfolded into an order-3 tensor along the
(j, k)-th mode, denoted as A(j,k) ∈ Rdj×dk×

∏
s ̸=j,k ds .

This unfolding arranges the mode-(j, k) slices of A
as the frontal slices of A(j,k). Specifically, its en-
try satisfy

[
A(j,k)

]
ij ,ik,l

= ai1,...,iN , where l = 1 +∑N
s=1,s̸=j,s̸=k (is − 1)

∏s−1
m=1,m ̸=j,m̸=k dm. A tensor can

also be unfolded into a matrix, which is also known as
tensor matricization or flattening. The mode-(k) unfold-
ing of A is denoted by A(k) ∈ Rdk×

∏
i̸=k di , where each

column corresponds to a mode-(k) fiber of A. Specifi-
cally, the entries of A(k) satisfy

[
A(k)

]
ik,l

= ai1,...,ik,...,iN ,

where l = 1 +
∑N

s=1,s̸=k (is − 1)
∏s−1

m=1,m ̸=k dm. Finally,
a tensor can also be reshaped into a vector, an operation
commonly known as tensor vectorization. We denote the
vectorization of A as vec (A), which is equivalent to vec-
torizing its mode-1 unfolding: vec (A) = vec

(
A(1)

)
.

We use calligraphic letters to represent sets, such as S . The
support of a set S is denoted by |S|. ΠS (·) denotes the
projection onto the set S. For a function f , f ′ denotes its
derivative, ∇f represents its gradient, and ∇2f denotes its
Hessian. For functionals f (x) and g (x), we denote f (x) ≳
g (x) if f (x) ≥ cg (x), f (x) ≲ g (x) if f (x) ≤ Cg (x),
and f (x) ≍ g (x) if cg (x) ≤ f (x) ≤ Cg (x) for some
positive constants c and C.

3. Problem Formulation
In this section, we present a unified framework for high-
dimensional tensor regression with nonconvex regularizers.

3.1. Tensor Regression

We consider the following generic tensor-on-tensor regres-
sion model (Lock, 2018; Raskutti et al., 2019; Miao et al.,
2022) with tensor coefficient A⋆ ∈ Rd1×···×dN :

Y = ⟨X ,A⋆⟩+ E, (1)

where X ∈ Rd1×···×dM is the predictor variable with M ≤
N , Y ∈ RdM+1×···×dN is the response variable, and E ∈
RdM+1×···×dN is the noise. ⟨·, ·⟩ is the tensor contraction
product between two tensors, where its (iM+1, . . . , iN )-th
entry is defined as

[⟨X ,A⋆⟩]iM+1,...,iN

=

d1∑
i1=1

· · ·
dM∑

iM=1

xi1,...,iMa⋆i1,...,iM ,iM+1,...,iN .

Specifically, when M = N , the output is a scalar, in which
case (1) becomes a scalar-on-tensor regression model (Zhou
et al., 2013; Gui et al., 2016).
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3.2. Proposed Problem

Given a collection of n samples
{(

Y(i),X (i)
)}n

i=1
, which

is assumed to be generated from the observation model (1),
our goal is to estimate the unknown coefficient tensor A⋆ by
solving the following regularized least squares estimation
problem:

min
A∈Rd1×···×dN

{
1

2n

n∑
i=1

∥∥∥Y(i) −
〈
X (i),A

〉∥∥∥2
F
+Rλ (A)

}
,

(2)
where Rλ (A) is a structural regularization term. For a
tensor A, ∥A∥F = ⟨A,A⟩

1
2 .

3.3. Nonconvex Regularization

In this paper, we consider a class of regularizers Rλ (A),
which is defined based on a nonconvex penalty function
pλ(·) with parameter λ ≥ 0. Prototype examples of such
regularizers include the SCAD (Fan & Li, 2001) and MCP
(Zhang, 2010), and we introduce them in the following.

The SCAD penalty function, proposed by (Fan & Li, 2001),
is defined as

pλ (t) =


λ|t|, for|t| ≤ λ,

− t2−2aλ|t|+λ2

2(a−1) , forλ < |t| ≤ aλ,
(a+1)λ2

2 , for|t| > aλ,

where a > 2 is a tuning parameter. The MCP penalty,
introduced by (Zhang, 2010), is defined as

pλ (t) =

{
λ|t| − t2

2a , |t| ≤ aλ,
aλ2

2 , t > aλ,

for some constant a > 1. Note that both the above non-
convex functions pλ (t) can be decomposed as pλ (t) =
λ |t|+ qλ (t), where |t| denotes the absolute value of t and
qλ (t) is a concave function. Specifically, for SCAD, qλ (t)
is given by

qλ (t) =
− (|t|+ λ)

2

2 (a− 1)
1 (λ ≤ |t| ≤ aλ)

+

(
1

2 (a+ 1)λ2
− λ|t|

)
1 (|t| ≥ aλ) ,

where 1 (·) denotes the indicator function; for MCP, qλ (t)
is

qλ (t) = − t2

2a
1 (|t| ≤ aλ) +

(
aλ2

2
− λ|t|

)
1 (|t| ≥ aλ) .

Furthermore, we impose the following regularity conditions
on pλ (·) and qλ (·), as detailed in Assumption 1.

Assumption 1. The functions pλ (t) and qλ (t) satisfy the
following conditions:

• There exists a constant ν > 0 such that the penalty
function satisfies p′λ (t) = 0 for all t ≥ ν;

• qλ (t) is symmetric, i.e., qλ (−t) = qλ (t) for all t;

• q′λ (t) is monotone and Lipschitz continuous, i.e., for
t2 ≥ t1, there exists a nonnegative constant ζ such that
−ζ ≤ q′λ(t2)−q′λ(t1)

t2−t1
≤ 0;

• qλ (t) and q′λ (t) pass through the origin, i.e. qλ(0) =
q′λ(0) = 0;

• There exists a positive constant λ such that |q′λ (t)| ≤ λ
for all t.

Such conditions are commonly employed in the analysis
of nonconvex statistical estimation problems (Wang et al.,
2014; Gui et al., 2016; Fan et al., 2018). The third condition
introduces a curvature property that governs the degree of
concavity of qλ (·), and consequently, the level of noncon-
vexity of pλ (·). For SCAD, these conditions are satisfied
with ν = aλ and ζ = 1

a−1 , while for MCP, we have ν = aλ

and ζ = 1
a .

3.3.1. SPARSITY REGULARIZATION

A straightforward approach to induce sparsity within a ten-
sor A is to enforce entry-wise sparsity. This strategy draws
inspiration from the well-known Lasso regression (Tibshi-
rani, 1996) and has been extensively studied using convex
regularization methods (Zhang et al., 2019; Raskutti et al.,
2019). In contrast to prior works, we employ a nonconvex
penalty. Specifically, the entry-wise sparsity regularizer is
defined as

Rλ (A) =

d1∑
i1=1

· · ·
dN∑

iN=1

pλ (ai1,...,iN ) .

In addition to promoting entry-wise sparsity, this regulariza-
tion framework can be extended to incorporate other forms
of sparsity in a general N -mode tensor, such as fiber-wise
sparsity and slice-wise sparsity. Further formulations and
discussions of these alternative sparsity-inducing regulariza-
tions are presented in Appendix A.

3.3.2. LOW-RANKNESS REGULARIZATION

In addition to promoting sparsity, encouraging low-rank
structure in tensors has demonstrated significant benefits in
various applications (Nion & Sidiropoulos, 2010; Li & Li,
2010; Collins & Cohen, 2012; Semerci et al., 2014). There
are multiple notions of rank for higher-order tensors (Kolda
& Bader, 2009). In this section, we focus on mode-wise
low-rankness, which involves penalizing the singular values
of the mode-(k) unfoldings. However, the commonly used
tensor nuclear norm penalty, which applies the ℓ1 norm
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to the singular values of the unfolded matrices, inevitably
introduces a non-negligible bias (Raskutti et al., 2019). To
alleviate this issue, we propose using a nonconvex penalty
applied to each singular value. Specifically, the mode-wise
low-rankness regularizer is defined as

Rλ (A) =

min{dk,
∏

j ̸=k dj}∑
i=1

pλ
(
σi

(
A(k)

))
,

where σi

(
A(k)

)
denotes the i-th singular value of A(k).

Additionally, this framework can be extended to accom-
modate alternative forms of low-rankness regularization.
Further problem formulations and theoretical analyses of
these extensions are provided in Appendix A.

4. Main Theory
In this section, we present the theoretical results for the
estimators from (2) under different scenarios and derive
their corresponding estimation error bounds. We begin by
presenting some preliminary assumptions.

4.1. Preliminaries

To facilitate the subsequent discussion, we define a local
region as

C =
{
B ∈ Rd1×···×dN | D (B,A⋆) ≤ r

}
,

where D (·) denotes a distance function. For example, in
the discussion of entry-wise sparsity,

D (B,A⋆) := ∥B −A⋆∥F ;

and in the discussion of mode-wise low-rankness, we define

D (B,A⋆) :=

∥∥∥ΠF⊥
A⋆

(B)
∥∥∥
nuc

∥ΠFA⋆ (B)∥nuc
,

where FA⋆ is a subspace associated with the unfolding of
A⋆ (to be defined explicitly later), F⊥

A⋆ is its orthogonal
complement, and ∥ · ∥nuc denotes the nuclear norm, i.e.,
∥ · ∥nuc =

∑
i σi(·).

Define the empirical loss function as L (A) =

1
2n

∑n
i=1

∥∥∥Y(i) −
〈
X (i),A

〉∥∥∥2
F

. We make the following
assumptions on this loss function.
Assumption 2 (Restricted strong convexity (RSC)). For
any A,B ∈ C, there exists a constant µ satisfying µ > 0
such that

L (B) ≥ L (A) + ⟨∇L (A) ,B −A⟩+ µ

2
∥B −A∥2F.

Assumption 3 (Restricted smoothness (RSM)). For any
A,B ∈ C, there exists a constant L satisfying L > 0 such
that

L (B) ≤ L (A) + ⟨∇L (A) ,B −A⟩+ L

2
∥B −A∥2F.

Assumptions 2 and 3, which characterize the curvature prop-
erties of the empirical loss function L, are analogous to the
classical RSC and RSM conditions commonly used in the
literature on linear regression problems (Wang et al., 2014;
Gui et al., 2016; Elenberg et al., 2018). If Assumptions 2
and 3 hold at the same time, it implies that L ≥ µ. Lever-
aging the methodology of (Candes & Tao, 2007), it can be
proven that the empirical loss function L satisfies both the
RSC and RSM conditions with high probability.

Assumption 4. Assume that the concatenation of
vectorized covariates from n samples, denoted as
[vec(X (1))⊤, . . . , vec(X (n))⊤], follows a multivariate
Gaussian distribution with zero mean and covariance matrix
Σ. We assume that there exist constants κ ≥ 1 such that
the eigenvalues of Σ satisfy:

κ−1 ≤ σmin (Σ) ≤ σmax (Σ) ≤ κ.

Assumption 4 ensures that the covariance matrix Σ is posi-
tive definite and well-conditioned, which is crucial for avoid-
ing degeneracies in the parameter space. Such conditions
are commonly met in a range of statistical estimation prob-
lems (Liu et al., 2014; Raskutti et al., 2019; Wei & Zhao,
2023). If the covariates

{
X (i)

}n

i=1
are independent and

identically distributed, the covariance matrix Σ is block-
diagonal, and Assumption 4 reduces to similar conditions
on the covariance matrix of each individual sample.

4.2. Statistical Error Analysis

In the following, we establish statistical error bounds for
different regularizers Rλ (·), providing insights into their
performance under different conditions.

4.2.1. SPARSITY REGULARIZATION

Before presenting a detailed analysis of the convergence
rates associated with the entry-wise sparsity regularizer, we
first introduce the notion of the oracle rate. The oracle rate
refers to the statistical convergence rate achieved by the
oracle estimator, which serves as an idealized benchmark
under the assumption that the true parameter support is
known a priori. This assumption allows the oracle estimator
to attain the best possible theoretical performance.

Assuming the true parameter support set for the entry-wise
sparsity is S1, the entry-wise sparse oracle estimator is de-
fined as

Â
O
= arg min

A:AS1
=0

L (A) ,

where S1 denotes the complement of the support set S1 ={
(i1, . . . , iN ) | a⋆i1,...,iN ̸= 0

}
. By the mean value theorem,

it is easy to obtain that Â
O

satisfies ∥Â
O

− A⋆∥F ≲
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∥∥
F

≲
√

|S1|
n . Now, we have the following

result.

Theorem 5 (Entry-wise sparsity). Suppose that Assump-

tions 1∼4 hold. If µ > ζ, λ ≍
√

log(d1d2···dM )
n , and the

true parameter tensor A⋆ satisfies

min
(i1,...,iN )∈S1

∣∣a⋆i1,...,iN ∣∣ ≥ ν, (3)

then the optimal solution Â to problem (2) satisfies∥∥∥Â−A⋆
∥∥∥
F
≲

√
|S1|
n

.

Theorem 5 implies that the proposed estimator achieves the
oracle rate under relatively mild assumptions. This perfor-
mance is superior to that of the existing estimator, which
uses an ℓ1 norm penalty (Raskutti et al., 2019). In fact,
condition (3) is referred to as the minimum signal strength
condition, and ν denotes the minimum signal strength. This
condition is commonly employed in the analysis of noncon-
vex penalized regression problems (Fan & Li, 2001; Zhang,
2010; Fan et al., 2018), and it is considered rather mild
because in our analysis, we take ν ≍ λ to be of the order√

log(d1d2···dM )
n , which can be very small as the sample size

n increases.

4.2.2. LOW-RANKNESS REGULARIZATION

Consider the matrix X ∈ Rm×n of rank r. Its sin-
gular value decomposition is given by X = UΣV ⊤,
where U ∈ Rm×r contains the left singular vectors,
V ∈ Rn×r contains the right singular vectors, and Σ =
Diag (σ1 (X) , . . . , σr (X)) ∈ Rr×r is a diagonal matrix
of the singular values. We further define a subspace F (X)
and its orthogonal complement F⊥ (X) as follows:1

F (X) =
{
W | span (W ) ⊆ U , span

(
W⊤

)
⊆ V

}
,

F⊥ (X) =
{
W | span (W ) ⊥ U , span

(
W⊤

)
⊥ V

}
.

where span(W ) denotes the subspace spanned by the
columns of W . The projection operators onto the sub-
space F and its orthogonal complement F⊥ are defined as
follows:

ΠF (X) = UU⊤XV V ⊤,

ΠF⊥ (X) =
(
I −UU⊤

)
X
(
I − V V ⊤

)
,

where I denotes the identity matrix with contextually ap-
propriate dimensions. Additionally, we introduce the linear

1For brevity, we adopt the shorthand notations F and F⊥ when
the dependence on X is clear from the context.

operator X (A) : Rd1×···×dN → Rn×dM+1×···×dN , defined
as

X(A) =
[
⟨X (1),A⟩, . . . , ⟨X (n),A⟩

]
,

along with its adjoint operator X∗
(
E(1:n)

)
:

Rn×dM+1×···×dN → Rd1×···×dN , which is de-
fined as X∗

(
E(1:n)

)
=

∑n
i=1 E

(i) ⊗ X (i), where
(E ⊗X )i1,...,iM ,iM+1,...,iN = Ei1,...,iMX iM+1,...,iN .

Then, we introduce the oracle statistical convergence
rate of the mode-wise low-rank estimator, which is as-
sumed to know the true singular value support S2 ={
i | σi

(
ΠF

(
A⋆

(k)

))
̸= 0
}

in advance. Specifically, the
mode-wise low-rank oracle estimator is defined as

Â
O
= arg min

A:AS2
=0

L (A) .

By the mean value theorem, it is easy to obtain that Â
O

satisfies ∥Â
O
−A⋆∥F ≲

∥∥∇L (A⋆)S2

∥∥
F
≲
√

|S2|
n . Then,

we have the following result.

Theorem 6 (Mode-wise low-rankness). Suppose that
Assumptions 1∼4 hold. If µ > ζ, λ ≳√

|S2|
n

∥∥∥∥[X∗
(
E(1:n)

)]
(k)

∥∥∥∥
sp

, where ∥ · ∥sp is the spectral

norm, and the true parameter tensor A⋆ satisfies

min
i

σi(A
⋆
(k)) ≥ ν +

2
√

|S2|
nµ

∥[X∗(E)](k)∥sp,

then the optimal solution Â to problem (2) satisfies

∥∥∥Â−A⋆
∥∥∥
F
≲

τk
√

|S2|
n

≍
√
|S2|
n

,

where τk =

∥∥∥∥ΠF

([
X∗
(
E(1:n)

)]
(k)

)∥∥∥∥
sp

.

This result suggests that, with an appropriately chosen
regularization parameter λ and provided that the smallest
nonzero singular value is sufficiently large, the estimator
will achieve the same rate as the oracle estimator.

5. Optimization Algorithm
In this section, we present an accelerated proximal gradient
algorithm to solve the proposed estimators (2). The core
idea is to combine a gradient descent step on L(A) with a
proximal step on Rλ(A). We further incorporate an extrap-
olation step to accelerate convergence, a well-known tech-
nique in Nesterov’s accelerated method (Nesterov, 2013).
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Accelerated Proximal Gradient Algorithm. Define the
proximal operator associated with Rλ(·) as

proxλ (V) = argmin
X

1

2
∥X − V∥22 +Rλ (X ) .

Let {X t} be the sequence of iterates. At the iteration t, the
algorithm updates X t+1 through the following steps:

Yt = X t + θt (X t −X t−1) ,

X t+1 = proxλ (Yt − η∇L (Yt)) ,

where θt = t−1
t+2 and η is the stepsize (Beck & Teboulle,

2009; Nesterov, 2013). When θt = 0, the algorithm re-
duces to the standard proximal gradient algorithm. To ef-
fectively implement the algorithm, we need to choose an
appropriate step size η. The parameter η is related to the Lip-
schitz constant L of L (·) (i.e., ∥∇L (X )−∇L (Y)∥F ≤
L ∥X −Y∥F). Choosing η ≤ 1/L ensures that the gradient
step does not overshoot, which is critical for the convergence
of the algorithm. The complete procedure is provided in
Algorithm 1.

Optimality Conditions. Recall that the non-convex
penalty pλ(t) can be decomposed as the sum of a convex
term λ|t| and a concave component qλ(t). Hence, the prob-
lem (2) can be reformulated as

min
A

L(A) +Qλ(A) + λ ∥A∥ ,

where Qλ(A) is the concave component of the Rλ(A),
and ∥A∥ is a generic convex norm. For instance, in the
entry-wise sparsity regularizer case,

Qλ(A) =

d1∑
i1=1

· · ·
dN∑

iN=1

qλ (ai1,...,iN )

and ∥A∥ is the ℓ1 norm. In the mode-wise low-rankness
regularizer case,

Qλ(A) =

min{Ik,
∏

j ̸=k dj}∑
i=1

pλ(σi(A(k)))

and ∥A∥ is the nuclear norm of mode-(k) unfolded matrix.

After this decomposition, the optimization task simplifies
considerably if the term Qλ(A) is omitted, reducing to the
classical linear programming problem. Motivated by this
observation, the objective function can be reformulated as

min
A

L̃(A) + ∥A∥,

where L̃(A) = L(A)+Qλ(A) can be served as a surrogate
function and ∥A∥ as a new convex penalty.

Algorithm 1 Accelerated Proximal Gradient Algorithm
Require: η ∈ (0, 1

L ), δ ∈ (0, 1
η − L), λ;

1 A0 = A1 = 0;
2 t = 1;
3 repeat
4 Vt = At +

t−1
t+2 (At −At−1);

5 Zt = Vt − η∇L (Vt);
6 At = proxλ (Zt)

7 until ωλ(At) ≤ ϵ;
Output: AT+1

Since Â is the exact global solution to the optimization prob-
lem (2). By the Karush-Kuhn-Tucker (KKT) conditions, Â
satisfies the following first-order optimal condition:

∇L̃(Â) + λĜ = 0, (4)

where Ĝ ∈ ∂∥Â∥ is a subgradient of ∥ · ∥. Equivalently, for
all A ∈ Rd1×···×dN ,

⟨Â−A,∇L̃(Â) + λĜ⟩ ≤ 0. (5)

Based on the optimality condition in (5), we measure the
suboptimality of a A ∈ Rd1×···×dN using

ωλ(A) = min
G∈∂∥Â∥∗

∥∥∥∇L̃(A) + λG
∥∥∥
∗
,

where ∥·∥∗ denote the dual norm of ∥·∥. We say A is an
ϵ-optimal solution to (2) if ωλ(A) ≤ ϵ. Intuitively, when
A is the exact global optimum, ωλ(A) ≤ 0 by the KKT
condition (4); otherwise, if A is near-optimal, then ωλ(A)
remains small but slightly positive.

6. Numerical Experiments
In this section, we evaluate the performance of the proposed
tensor regression model with various regularization schemes,
as well as the optimization algorithm. In all experiments,
the SCAD penalty is employed as the nonconvex regular-
izer. The estimation performance is measured by the Mean
Squared Frobenius norm Error (MSFE) and the Root Mean
Square Error (RMSE). Specifically, the MSFE is defined as

MSFE =
1∏M

i=1 di

∥∥∥A⋆ − Â
∥∥∥2
F
,

where Â2 is the estimated results and A⋆ is the true value,
and the RMSE is defined as

RMSE =

√√√√ 1

n

n∑
i=1

∥∥∥Y(i) −
〈
X (i), Â

〉∥∥∥2
F
.

2In the whole section, we use Â to denote a generic tensor
estimator, which can be the estimation results obtained by various
algorithms and estimators.
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Figure 1: Entry-wise sparsity regularizer with the error bars of MSFE ± standard deviation.
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Figure 2: Mode-wise lowrankness regularizer with the error bars of MSFE ± standard deviation.

The tuning parameter λ and the hyperparameter within the
SCAD penalty are selected via ten-fold cross-validation,
aiming to minimize the estimation error. All the reported
results are averaged on 100 Monte Carlo realizations to
ensure statistical robustness.

6.1. Synthetic Data

We first evaluate our proposed estimator through compre-
hensive synthetic experiments. We generate a set of indepen-
dent covariate tensors {X (i)}ni=1, each entry independently
drawn from a standard Gaussian distribution. The response
variables are obtained according to model (1), with additive
independent Gaussian noise having zero mean and variance
parameterized by η2. For all synthetic experiments, we em-
ploy 3rd-order tensors A ∈ Rd×d×d. For Figures 1 and 2,
the noise parameter η is set to 0.1.

Figure 1 shows the estimation performance when employing
the entry-wise sparsity regularizer, varying the dimension
d, the number of nonzero entries |S1| and the sample size
n, respectively. In Figure 1a and 1b, three lines correspond
to sample size n = {1000, 2000, 3000}. The proportion of
non-zero entries s⋆/d3 is set to 0.5 for Figures 1a and 1c.
Figure 1a demonstrates that a large sample size n consis-

tently lower estimation error. In contrast, Figure 1b shows
that higher sparsity levels raise estimation error.

Figure 2 illustrates the performance of the mode-wise low-
rankness penalty. In Figure 2b, the x-axis |S2| represent the
rank of the mode-(k) unfolded matrix. Figures 2a and 2c set
the rank of at 5, while Figure 2b and 2c fix the dimension
of each mode to 16. Each figure displays three distinct lines
that correspond to the estimation errors for sample sizes of
n = {1000, 2000, 3000}.

In Figure 3, we plot each point in the matrix using its indices
as coordinates, with the corresponding value on the z-axis.
A threshold color points to blue if their absolute error is
below this threshold, and red indicates otherwise. Figure 3a
and 3b compare nonconvex and convex methods on the
tensor slice based on the mode-wise low-rank structure,
where the size is 10× 10, the sample number n = 1000 and
the noise parameter η = 0.1. Figure 3c shows the contour
of the original tensor slice, with the estimation threshold set
to 10−2. Figures 3d and 3e visualize the thresholded results
of the estimation in 2D, and Figure 3f illustrates average
counts of values above or below the threshold.

Table 1 compares the performance of our proposed non-
convex regularizers against traditional convex regularizers
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Figure 3: Visualization of the estimated tensors with nonconvex and convex methods.

Table 1: Comparisons between proposed nonconvex regularizers and convex regularizers.

Structures Methods Synthetic Data Real-world Data

size |S| η MSFE RMSE MSFE MPRE

entry-wise sparsity Nonconvex
16× 16× 16 2048 0.1 0.4042 ± 0.0201 0.0992± 0.0021 134.5864 ± 11.2950 7.6072 ± 0.0301

Convex 0.6938± 0.0297 0.1004± 0.0023 144.7160± 14.9947 7.7498± 0.0457

mode-wise low-rankness Nonconvex
16× 16× 16 5 1 0.5482 ± 0.0395 0.1002 ± 0.0012 35.5536 ± 1.4889 1.0330 ± 0.0022

Convex 1.7411± 0.0953 0.1096± 0.0020 41.2719± 3.5079 1.1027± 0.0024

(Raskutti et al., 2019). For sparsity, we set the η = 0.1,
and for low-rankness, η = 1. We configure the tensor di-
mension such A ∈ Rd×d×s or A ∈ Rd×d×d, with d = 16,
s = 20. In all settings, our proposed regularizers achieve
lower MSFE and RMSE than convex methods, aligning with
our theoretical analysis.

6.2. Real-world Datasets

We validate our method on ImageNet 2012 dataset (Rus-
sakovsky et al., 2015) for image denoising using a 3rd-
order tensor A ∈ R64×64×3 with n = 4000 samples. In
addition to MSFE, we also report Mean Prediction Rela-

tive Error (MPRE), defined as 1
n

∑n
i=1

∥∥∥Y⋆−Ŷ(i)
∥∥∥
F

∥Y⋆∥F
, where

Y⋆ = ⟨A⋆,X ⟩ and Ŷ
(i)

is the i-th prediction. Figure 4
shows the estimated image, and Table 1 presents the com-
parative results.

7. Conclusions and Future Work
In this paper, we propose a comprehensive framework for
tensor regression estimation using nonconvex regularizers.
Our findings demonstrate that estimators employing noncon-
vex regularizers exhibit faster convergence rates compared
to those with convex regularizers. Furthermore, we show
that under several mild conditions, our proposed estima-
tor possesses the oracle property. Extensive experimental
results validate our theoretical claims, showcasing a close
alignment between the theoretical predictions and the ob-
served numerical performance of our estimators. Currently,
we are limited to applying regularization regularizers to
tensor regression models. It would be desirable to derive
some theoretical guarantees for alternative methods that
capture structure in the tensor regression models, such as
tensor decomposition; this is the aim of our future work.
To conclude, our work effectively bridges the gap between

8



High-Dimensional Tensor Regression with Oracle Properties

(a) original (b) noisy (c) convex (d) nonconvex (prop.)

Figure 4: The original image, noisy image, and denoised images using convex and nonconvex methods.

practical applications and theoretical analysis of tensor-on-
tensor regression with nonconvex regularizers. To the best
of our knowledge, this is the first work to obtain the ora-
cle statistical rate of convergence for the tensor regression
problem.

Impact Statement
Tensor regression provides substantial advantages over tradi-
tional regression methods, particularly in settings involving
multi-way data such as video analysis, multi-modal sig-
nals, or high-dimensional biological datasets. This work
aims to advance the field of tensor regression by developing
more effective and scalable models tailored to such com-
plex data structures. While the proposed methods may have
broad societal implications in various domains (e.g., health-
care, environmental monitoring, and multimedia), we do not
identify any specific foreseeable consequences that require
explicit attention at this time.
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A. More Low-Dimensional Structures
In many applications, tensor coefficients exhibit structures beyond the aforementioned. For instance, an entire fiber or slice
of a tensor might be zero, or a slice might be low-rank (Li et al., 2015b; Raskutti et al., 2019; Chen et al., 2019). Below, we
introduce several penalties that promote these more intricate structures, followed by a corresponding theoretical analysis.

We now provide oracle-style guarantees for estimators employing these penalties. Our analysis parallels that of Section 4
and leverages similar assumptions.

A.1. Fiber-wise sparsity

Consider unfolding the tensor A along mode-(k), the fiber-wise sparsity regularizer is defined as

Rλ (A) =

∏
j ̸=k dj∑
l=1

pλ

(∥∥∥[A(k)

]
·,l

∥∥∥
2

)
,

where the [X]·,j denotes the j-th column of X and ∥·∥2 is the vector 2-norm. This penalty encourages entire fibers to be
zero—analogous to the group Lasso (Yuan & Lin, 2006)

The oracle rate refers to the statistical convergence rate of the fiber-wise sparse oracle estimator, which is assumed to know
the true support set S3 in advance, where S3 =

{
i |
∥∥∥[A(k)

]
·,i

∥∥∥
2
̸= 0
}

. Specifically, the fiber-wise sparse oracle estimator
is defined as

Â
O
= arg min

A:AS3
=0

L (A) .

Theorem 7 (Fiber-wise sparsity). Suppose that Assumptions 1∼4 hold. If µ > ζ, λ ≍
√

dk

n , and
[
A(k)

]
·,l satisfies the

condition that
min
l∈S3

∥∥∥[A(k)

]
·,l

∥∥∥
2
≥ ν,

the estimator Â to problem (2) satisfies ∥∥∥Â−A⋆
∥∥∥
F
≲

√
|S3| dk

n
.

A.2. Slice-wise sparsity

In other scenarios, one may expect entire tensor slices to be zero (Raskutti et al., 2019). To promote such slice-wise sparsity,
we introduce the slice-wise sparsity regularizer, defined as

Rλ (A) =

∏
s ̸=j,k ds∑
l=1

pλ

(∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F

)
.

The oracle rate refers to the statistical convergence rate of the slice-wise sparse oracle estimator, which is assumed to
know the true support set S4 in advance, where S4 =

{
l |
∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F
̸= 0
}

. Specifically, the slice-wise sparse oracle
estimator is defined as

Â
O
= arg min

A:AS4
=0

L (A) .

Theorem 8 (Slice-wise sparsity). Suppose that Assumptions 1∼4 hold. If µ > ζ , λ ≍
√

djdk

n , and
[
A(j,k)

]
·,·,l satisfies the

condition that
min
l∈S4

∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F
≥ ν,

the estimator Â to problem (2) satisfies ∥∥∥Â−A⋆
∥∥∥
F
≲

√
|S4| djdk

n
.
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A.3. Slice-wise low-rankness

Beyond mode-wise low-rankness, some applications benefit from low-rankness within individual slices (Lock, 2018; Raskutti
et al., 2019). To capture and exploit this structure, we introduce the slice-wise low-rankness regularizer, defined as

Rλ (A) =

∏
m ̸=j,k dm∑
l=1

min{djdk,
∏

l ̸=j,k dl}∑
s=1

pλ

(
σs

([
A(j,k)

]
·,·,l

))
.

The oracle rate refers to the statistical convergence rate of the slice-wise low-rank oracle estimator, which is assumed to

know the true rank S5 =

{
s | σs

(
ΠF

([
A⋆

(j,k)

]
·,·,l

))
̸= 0

}
in advance. Specifically, the slice-wise low-rank oracle

estimator is defined as
Â

O
= arg min

A:AS5
=0

L (A) .

Theorem 9 (Slice-wise low-rankness). Suppose that Assumptions 1∼4 hold. If µ > ζ , λ ≳ 1
n

√
|S5|

∥∥∥∥[[X⋆ (E)](j,k)
]
·,·,l

∥∥∥∥
sp

,

and σs

([
A⋆

(j,k)

]
·,·,l

)
satisfies the condition

∣∣∣∣σs

([
A⋆

(j,k)

]
·,·,l

)∣∣∣∣ ≥ ν +
2
√

|S5|
nµ

∥∥∥∥[[X⋆ (E)](j,k)
]
·,·,l

∥∥∥∥
sp

,

the estimator Â to problem (2) satisfies ∥∥∥Â−A⋆
∥∥∥
F
≲

τ(j,k)
√
|S5|

n
,

where τ(j,k) = max
l

∥∥∥∥ΠF

(
[X⋆ (E)](j,k)

)
·,·,l

∥∥∥∥
sp

.

B. Proofs of the Theoretical Results
B.1. Proof of Theorem 5

We begin by demonstrating that the entry-wise sparsity regularizer can be reformulated as the sum of the ℓ1 penalty and a
concave part. Specifically, we have

Rλ (A) =

d1∑
i1=1

· · ·
dN∑

iN=1

pλ (ai1,...,iN ) = λ i1,...,iN ∥1 +Qλ (A) ,

where i1,...,iN ∥1 :=
∑d1

i1=1 · · ·
∑dN

iN=1 |ai1,...,iN | is the ℓ1 norm and Qλ (A) =
∑d1

i1=1 · · ·
∑dN

iN=1 qλ (ai1,...,iN ) .

Lemma 1. Under Assumptions 2 and 3, the loss function L̃ (A) satisfies the restricted strong convexity

L̃
(
A′) ≥ L̃ (A) +

〈
∇L̃ (A) ,A′ −A

〉
+

µ− ζ

2

∥∥A′ −A
∥∥2
F
,

and the restricted smoothness

L̃
(
A′) ≤ L̃ (A) +

〈
∇L̃ (A) ,A′ −A

〉
+

L

2

∥∥A′ −A
∥∥2
F
.

Proof. Recall that Qλ (A) represents the concave component of the non-convex penalty Rλ (ai1,...,iN ), imply-
ing that −Qλ (A) is convex. Specifically, Qλ (A) can be expressed as a sum over its entries Qλ (A) =∑d1

i1=1 · · ·
∑dN

iN=1 qλ (ai1,...,iN ), where qλ (ai1,...,iN ) satisfies the third regularity condition specified in Assumption 1.
From this assumption, we have

−ζ
(
a′i1,...,iN − ai1,...,iN

)2 ≤
(
q′λ
(
a′i1,...,iN

)
− q′λ (ai1,...,iN )

) (
a′i1,...,iN − ai1,...,iN

)
≤ 0.

14



High-Dimensional Tensor Regression with Oracle Properties

By aggregating over all entries, we deduce that the convex function −Qλ (A) satisfies the following inequality〈(
∇
(
−Qλ

(
A′))−∇ (−Qλ (A))

)⊤
,A′ −A

〉
≤ ζ

∥∥A′ −A
∥∥2
F
, (6)〈(

∇
(
−Qλ

(
A′))−∇ (−Qλ (A))

)⊤
,A′ −A

〉
≥ 0. (7)

Inequalities (6) and (7) correspond to the definitions of RSC and RSM for the function −Qλ (A), respectively. Specifically,
they imply that −Qλ (A) is both ζ-smooth and 0-strongly convex. Consequently, we have the following

−Qλ

(
A′) ≤ −Qλ (A)−

〈
∇Qλ (A) ,A′ −A

〉
+

ζ

2

∥∥A′ −A
∥∥2
F
,

−Qλ

(
A′) ≥ −Qλ (A)−

〈
∇Qλ (A) ,A′ −A

〉
.

For the loss function L (A), applying Taylor’s theorem and the mean value theorem yields

L
(
A′) = L (A) +

〈
∇L (A) ,A′ −A

〉
+

1

2

〈
∇2L

(
βA′ + (1− β)A

)
,
(
A′ −A

)
⊗
(
A′ −A

)〉
,

for some β ∈ [0, 1]. Here, ⊗ denotes the Kronecker product. Given two tensors A,A′ ∈ Rd1×···×dN , their Kronecker
product results in a tensor A′′ of dimension (d1d1)× . . . (dNdN ). Each entry a′′i1j1,i2j2,...,iN jN

is defined as ai1,i2,...,iN ×
a′j1,j2,...,jN .

Under Assumptions 2 and 3, we have

L (B)− L (A) ≥ ⟨∇L (A) ,B −A⟩+ µ

2
∥B −A∥2F,

L (B)− L (A) ≤ ⟨∇L (A) ,B −A⟩+ L

2
∥B −A∥2F.

Recall that L̃ (A) = L (A) +Qλ (A). Thus, we obtain

L̃
(
A′) ≥ L̃ (A) +

〈
∇L̃ (A) ,A′ −A

〉
+

µ− ζ

2

∥∥A′ −A
∥∥2
F
,

L̃
(
A′) ≤ L̃ (A) +

〈
∇L̃ (A) ,A′ −A

〉
+

L

2

∥∥A′ −A
∥∥2
F
,

Lemma 2. Suppose there exists an integer s̃1 > C |S1|, where C is a constant, and that A satisfies
∥∥AS1

∥∥
0
≤ s̃1,

ω (A) ≤ λ
2 , and ∥∇L (A⋆)∥max ≤ λ/8, where ∥ · ∥max denotes the maximal element of the tensor. Under Assumptions 2

and 3, A satisfies

∥A−A⋆∥F ≤ 21/8

µ− ζ
λ
√
|S1|.

Proof. Given that
∥∥AS1

∥∥
0
≤ s̃1 and

∥∥∥A⋆
S1

∥∥∥
0
= 0, it follows that

∥∥(A−A⋆)S1

∥∥
0
≤ s̃1. Based on Lemma 1, we can

derive the following inequalities

L̃ (A⋆) ≥ L̃ (A) +
〈
∇L̃ (A) ,A⋆ −A

〉
+

µ− ζ

2
∥A⋆ −A∥2F , (8)

L̃ (A) ≥ L̃ (A⋆) +
〈
∇L̃ (A⋆) ,A−A⋆

〉
+

µ− ζ

2
∥A−A⋆∥2F . (9)

Adding (8) and (9), we obtain〈
∇L̃ (A) ,A⋆ −A

〉
≥
〈
∇L̃ (A⋆) ,A−A⋆

〉
+ (µ− ζ) ∥A⋆ −A∥2F . (10)
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Let G ∈ ∂ ∥A∥1 denote the sub-gradient and S be a set. According to the Karush-Kuhn-Tucker (KKT) condition, we have

∇L̃ (A) + λG = 0.

Determining the optimal solution is challenging, therefore, we introduce a measure of sub-optimality

ω (A) = min
G′∈∂∥A∥1

max
A′∈S

{
1∥∥A−A′∥∥

1

〈
A−A′,∇L̃ (A) + λG′

〉}
.

We define our algorithm’s stopping criterion as ω (A) ≤ ε. Consequently, the sub-optimality can be expressed as

ω (A) = max
A′∈S

{
1∥∥A−A′∥∥

1

〈
A−A′,∇L̃ (A) + λG

〉}
.

Adding λ
〈
A−A⋆,G′〉 to the both sides of (10), we obtain〈

A−A⋆,∇L̃ (A) + λG
〉
≥
〈
A−A⋆,∇L̃ (A)

〉
+ (µ− ζ) ∥A⋆ −A∥2F + λ ⟨A−A⋆,G⟩ .

Since A⋆ ∈ S, we have

1

∥A−A⋆∥1

〈
A−A⋆,∇L̃ (A) + λG

〉
≤ max

A′∈S

{
1∥∥A−A′∥∥

1

〈
A−A′,∇L̃ (A) + λG

〉}
= v (A) .

Recall that we assume v (A) ≤ λ
2 , we obtain〈
A−A⋆,∇L̃ (A) + λG

〉
≤ v (A) ≤ λ

2
∥A−A⋆∥1 . (11)

Combining (10) and (11), we obtain

λ

2
∥A−A⋆∥1 ≥

〈
A−A⋆,∇L̃ (A⋆)

〉
︸ ︷︷ ︸

I

+ (µ− ζ) ∥A⋆ −A∥2F + λ ⟨A−A⋆,G⟩︸ ︷︷ ︸
II

.

For term I, separating the support of A−A⋆ into S1 and S1, we have〈
A−A⋆,∇L̃ (A⋆)

〉
=
〈
A−A⋆,∇L̃ (A⋆)

〉
+ ⟨A−A⋆,∇Qλ (A⋆)⟩

≥ − ∥A−A⋆∥1 ∥∇L (A⋆)∥max + ⟨A−A⋆,∇Qλ (A⋆)⟩
=−

∥∥(A−A⋆)S1

∥∥
1
∥∇L (A⋆)∥max −

∥∥(A−A⋆)S1

∥∥
1
∥∇L (A⋆)∥max

+
〈
(A−A⋆)S1

, (∇Qλ (A⋆))S1

〉
+
〈
(A−A⋆)S1

, (∇Qλ (A⋆))S1

〉
≥−

∥∥(A−A⋆)S1

∥∥
1
∥∇L (A⋆)∥max −

∥∥(A−A⋆)S1

∥∥
1
∥∇L (A⋆)∥max

−
∥∥(A−A⋆)S1

∥∥
1
∥∇Qλ (A⋆)∥max .

For term II, separating the support of A−A⋆ into S1 and S1, we have

λ ⟨A−A⋆,G⟩ =λ
〈
(A−A⋆)S1

,GS1

〉
+ λ

〈
(A−A⋆)S1

,GS1

〉
≥− λ

∥∥(A−A⋆)S1

∥∥
1
∥GS1∥max + λ

〈
AS1

,GS1

〉
≥− λ

∥∥(A−A⋆)S1

∥∥
1
+ λ

∑
(i1,...,iN∈S1)

|ai1,...,iN |

=− λ
∥∥(A−A⋆)S1

∥∥
1
+ λ

∥∥(A−A⋆)S1

∥∥
1
.
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Thus, we obtain

λ

2
∥A−A⋆∥1 ≥−

∥∥(A−A⋆)S1

∥∥
1
∥∇L (A⋆)∥max −

∥∥(A−A⋆)S1

∥∥
1
∥∇L (A⋆)∥max (12)

−
∥∥(A−A⋆)S1

∥∥
1
∥∇Qλ (A⋆)∥max + (µ− ζ) ∥A⋆ −A∥2F

− λ
∥∥(A−A⋆)S1

∥∥
1
+ λ

∥∥(A−A⋆)S1

∥∥
1
.

We separate the left-hand side of (12) as

λ

2
∥A−A⋆∥1 =

λ

2

∥∥(A−A⋆)S1

∥∥
1
+

λ

2

∥∥(A−A⋆)S1

∥∥
1
.

Rearranging the terms, we obtain

(µ− ζ) ∥A⋆ −A∥2F +

(
λ

2
− ∥∇L (A⋆)∥max

)∥∥(A−A⋆)S1

∥∥
1

≤
(
3λ

2
+ ∥∇L (A⋆)∥max + ∥∇Qλ (A⋆)∥max

)∥∥(A−A⋆)S1

∥∥
1
.

Recall that ∥∇L (A⋆)∥max ≤ λ
8 , we have

(µ− ζ) ∥A⋆ −A∥2F ≤
(
3λ

2
+ ∥∇L (A⋆)∥max + ∥∇Qλ (A⋆)∥max

)∥∥(A−A⋆)S1

∥∥
1

≤
(
3λ

2
+

λ

8
+ λ

)∥∥(A−A⋆)S1

∥∥
1

≤ 21λ

8

√
|S1|

∥∥(A−A⋆)S1

∥∥
F

≤ 21λ

8

√
|S1| ∥A−A⋆∥F .

Given that µ− ζ > 0, we have

∥A−A⋆∥F ≤ 21/8

µ− ζ
λ
√
|S1|.

Lemma 3. Consider the regularization parameter λ and assume that the derivative of the non-convex penalty satisfies
p′λ (ai1,...,iN ) = 0 whenever |ai1,...,iN | ≥ ν for some ν > 0. Let SI

1 ∪ SII
1 = S1. For indices (i1, . . . , iN ) ∈ SI

1 ⊆ S1, we
assume

∣∣a⋆i1,...,iN ∣∣ ≥ ν, and for indices (i1, . . . , iN ) ∈ SII
1 ⊆ S1, we assume

∣∣a⋆i1,...,iN ∣∣ ≤ ν. Under Assumptions 2∼4, we
derive the following bound ∥∥∥Â−A⋆

∥∥∥
F
≤ 1

µ− ζ

∥∥∥(∇L (A⋆))SI
1

∥∥∥
F
+

3

µ− ζ
λ
√∣∣SII

1

∣∣.
Proof. Define the sub-gradients G⋆ ∈ ∂ ∥A⋆∥1 and Ĝ ∈ ∂

∥∥∥Â∥∥∥
1
.

Note that Â satisfies the optimality condition that ω
(
Â
)
≤ 0, we have

max
A′∈S

{〈
Â−A′,∇L̃

(
Â
)
+ λĜ

〉}
≤ 0. (13)
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Given that
∥∥∥ÂS1

∥∥∥
0
≤ s̃1, since

∥∥∥∥(Â−A⋆
)
S1

∥∥∥∥
0

≤ s̃1, according to Lemma 1, we obtain

L̃
(
Â
)
≥L̃ (A⋆) +

〈
∇L̃ (A⋆) , Â−A⋆

〉
+

µ− ζ

2
∥Â−A⋆∥2F, (14)

L̃ (A⋆) ≥L̃
(
Â
)
+
〈
∇L̃

(
Â
)
,A⋆ − Â

〉
+

µ− ζ

2
∥A⋆ − Â∥2F.

By the convexity of ℓ1 norm, we have

λ
∥∥∥Â∥∥∥

1
≤ λ ∥A⋆∥1 + λ

〈
Â−A⋆,G⋆

〉
,

λ ∥A⋆∥1 ≤ λ
∥∥∥Â∥∥∥

1
+ λ

〈
A⋆ − Â, Ĝ

〉
. (15)

Adding (14) ∼ (15), we obtain

0 ≥
〈
∇L (A⋆) +∇Qλ

(
a⋆i1...iN

)
+ λG⋆, Â−A⋆

〉
︸ ︷︷ ︸

(i)

+
〈
∇L̃

(
Â
)
+ λG⋆,A⋆ − Â

〉
︸ ︷︷ ︸

(ii)

+(µ− ζ)
∥∥∥Â−A⋆

∥∥∥2
F
. (16)

From the optimality condition (13), we have〈
∇L̃

(
Â
)
+ λĜ,A⋆ − Â

〉
≤ max

A′∈S

{〈
Â−A′,∇L̃

(
Â
)
+ λĜ

〉}
≤ 0,

which implies the term (ii) in (16) is non-negative. Consequently, we can arrange (16) to obtain

(µ− ζ)
∥∥∥Â−A⋆

∥∥∥2
F

≤
〈
∇L (A⋆) +∇Qλ (A⋆) + λtG⋆, Â−A⋆

〉
≤ min

G⋆∈∂∥A⋆∥1

{
I1∑

i1=1

· · ·
IN∑

iN=1

∣∣(∇L (A⋆) +∇Qλ (A⋆) + λtG⋆)i1...iN

∣∣ · ∣∣∣∣(A⋆ − Â
)
i1...iN

∣∣∣∣
}
. (17)

We proceed by decomposing the summation on the right-hand side of (17) into three distinct parts

• (i1, . . . , iN ) ∈ S1,

• (i1, . . . , iN ) ∈ SI
1,

• (i1, . . . , iN ) ∈ SII
1 .

Here, SI
1 = {(i1, . . . , iN ) | |ai1,...,iN | ≥ ν}, SI

1 = {(i1, . . . , iN ) | |ai1,...,iN | < ν}, and ν > 0 is defined in Assumption 1.

(i) For any index (i1, . . . , iN ) ∈ S1, the regularity condition yields

∇Qλ (A⋆)i1...iN = q′λ
(
a⋆i1...iN

)
= q′λ (0) , for j ∈ S1.

Assuming that ∥∇L (A⋆)∥max ≤ λ
8 , it follows that

max
(i1,...,iN )∈S1

∣∣∣(∇L (A⋆))i1,...,iN

∣∣∣ ≤ ∥∇L (A⋆)∥max ≤ λ

8
≤ λ.

Therefore,

max
(i1,...,iN )∈S1

∣∣∣(∇L (A⋆) +Qλ (A⋆))i1,...,iN

∣∣∣ ≤ λ.

18



High-Dimensional Tensor Regression with Oracle Properties

Moreover, since G⋆ ∈ ∂ ∥A⋆∥1, it holds that λG⋆
i1,...,iN ∈ [−λ, λ]. Consequently, for each (i1, . . . , iN ) ∈ S1, we can select

G⋆
i1,...,iN such that

∣∣(∇L (A⋆) +∇Qλ (A⋆))i1...iN + λG⋆
i1...iN

∣∣ = 0.

This implies

min
G⋆∈∂∥A⋆∥1

{∣∣(∇L (A⋆) +∇Qλ (A⋆) + λG⋆)i1...iN

∣∣} = 0, for (i1 . . . iN ) ∈ S1.

Therefore, we obtain

min
G⋆∈∂∥A⋆∥1

 ∑
(i1,...,iN )∈S1

∣∣(∇L (A⋆) +∇Qλ (A⋆) + λG⋆)i1...iN

∣∣ · ∣∣∣∣(A⋆ − Â
)
i1...iN

∣∣∣∣
 = 0. (18)

(ii) For indices (i1, . . . , iN ) ∈ SI
1 , we have

∣∣A⋆
i1,...,iN

∣∣ ≥ ν. Given that R (A) = λ ∥A∥1 +Qλ (Ai1...iN ), our assumption
on R (A) ensures that

(∇Qλ (A⋆) + λG⋆)i1...iN = p′λ
(
A⋆

i1...iN

)
= 0, for (i1 . . . iN ) ∈ SI

1.

This leads to

min
G⋆∈∂∥A⋆∥1

 ∑
(i1...iN )∈SI

1

∣∣(∇L (A⋆) +∇Qλ (A⋆) + λG⋆)i1...iN

∣∣ · ∣∣∣∣(A⋆ − Â
)
i1...iN

∣∣∣∣


=
∑

(i1...iN )∈SI
1

∣∣(∇L (A⋆))i1...iN

∣∣ · ∣∣∣∣(A⋆ − Â
)
i1...iN

∣∣∣∣
≤
∥∥∥(∇L (A⋆))SI

1

∥∥∥
F
·
∥∥∥A⋆ − Â

∥∥∥
F
.

(iii) For indices (i1, . . . , iN ) ∈ SII
1 , we have

∣∣a⋆i1,...,iN ∣∣ < ν. Given that ∥∇L (A⋆)∥max ≤ λ
8 , we have

max
(i1...iN )∈SII

1

∣∣(∇L (A⋆))i1...iN

∣∣ ≤ ∣∣(∇L (A⋆))i1...iN

∣∣
max

≤ λ/8.

Meanwhile, we have

max
(i1...iN )∈SII

1

∣∣(∇Qλ (A⋆))i1...iN

∣∣ = max
(i1...iN )∈SII

1

∣∣q′λ ((A⋆)i1...iN
)∣∣ ≤ max

∣∣q′λ ((A⋆)i1...iN
)∣∣ ≤ λ,

Additionally, since G⋆ ∈ ∂ ∥A⋆∥1, it follows that
∣∣G⋆

i1,...,iN

∣∣ ≤ 1. Therefore, for each (i1, . . . , iN ) ∈ SII
1 , we obtain

∣∣(∇L (A⋆) +∇Qλ (A⋆) + λG⋆)i1...iN

∣∣ ≤ max
(i1...iN )∈SII

1

∣∣(∇L (A⋆))i1...iN

∣∣+ max
(i1...iN )∈SII

1

∣∣(∇Qλ (A⋆))i1...iN

∣∣+ λ

≤ 3λ,
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which implies

min
G⋆∈∂∥A⋆∥1

 ∑
(i1...iN )∈SII

1

∣∣(∇L (A⋆) +∇Qλ (A⋆) + λG⋆)i1...iN

∣∣ · ∣∣∣∣(A⋆ − Â
)
i1...iN

∣∣∣∣


≤ 3λ

∣∣∣∣(A⋆ − Â
)
i1...iN

∣∣∣∣
= 3λ

∥∥∥∥(A⋆ − Â
)
SII
1

∥∥∥∥
F

≤ 3λ
√
|S1|

∥∥∥∥(A⋆ − Â
)
SII
1

∥∥∥∥
F

≤ 3λ
√
|S1|

∥∥∥A⋆ − Â
∥∥∥
F
. (19)

Substituting the bounds from (18) to (19) into the right-hand side of (17), we obtain∥∥∥A⋆ − Â
∥∥∥
F
≤ 1

µ− ζ

(∥∥∥(∇L (A⋆))SI
1

∥∥∥
F
+ 3λ

√∣∣SII
1

∣∣) .

Lemma 4. For least-squares regression with sub-Gaussian noise, we assume that the columns of X̃ are normalized

in such a way that maxj∈{1,...,d1×d2×···×dN}

∥∥∥X̃ ·j

∥∥∥
2
≤

√
n, where X̃ =

(
vec
(
X (1)

)
, . . . , vec

(
X (n)

))⊤
. If λ ≍√

log(d1d2···dN )
n , then we have

∥∇L (A⋆)∥F ≲

√
|S1|
n

.

Proof. We begin by establishing an upper bound on the probability that the maximum entry of the gradient

P
(
∥∇L (A)∥max ≥ λ

8

)
, where ∇L (A) = 1

n

〈
X̃ , Ẽ

〉
and Ẽ =

(
vec
(
E(1)

)
, . . . , vec

(
E(n)

))⊤
.

For λ ≍
√

log(d1d2···dN )
n , using the union bound, we obtain

P
(
∥∇L (A)∥max ≥ λ

8

)
≤ P

(∥∥∥∥ 1n 〈X̃ , Ẽ
〉∥∥∥∥

max

≥
c
√
log d/n

8

)

≤
d1×d2×···×dN∑

j=1

P

(∣∣∣∣ 1n 〈X̃ , Ẽ
〉∣∣∣∣

j

≥
c
√
log d/n

8

)
.

Let’s define θk =
∣∣∣〈X̃ , Ẽ

〉∣∣∣
k
, where k is composite coordinate. Since Ẽj is sub-Gaussian

(
0, η2

)
, it follows that for any

t0 > 0,

E (exp {t0θk}+ exp {−t0θk}) ≤ 2 exp

{
1

n2

∥∥∥X̃ ·k

∥∥∥2 η2t20/2} .

Taking t0 = tn2

∥X̃ ·k∥2
η2t20

yields that

P (|θk| ≥ t) ≤ 2 exp

− n2t2

2
∥∥∥X̃ ·k

∥∥∥2 η2
 .
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Further taking t = λ
8 results

P
(
∥∇L (A)∥max ≥ λ

8

)
≤ 2 (d1 × · · · × dN )

−c2/(128η2) .

Applying the Hanson-Wright inequality yields that

P (|⟨E, ⟨A,E⟩⟩ − E ⟨E, ⟨A,E⟩⟩| > E ⟨E, ⟨A,E⟩⟩)

≤2 exp

[
−Cmin

{
E ⟨E, ⟨A,E⟩⟩
η2 ∥A∥F

,

(
E ⟨E, ⟨A,E⟩⟩
η2 ∥A∥F

)2
}]

,

where C is a universal constant.

Combining the above two inequalities, we have

∥∇L (A⋆)∥F =

√√√√〈Ẽ, X̃〉
n

≤

√√√√2E
〈
Ẽ, X̃

〉
n

≤
√
2Lη

√
|S1|
n

. (20)

Building upon Lemma 1 through Lemma 4, we derive Theorem 5.

B.2. Proof of Theorem 7

We begin by demonstrating that the fiber-wise sparsity regularizer can be reformulated as the sum of the ℓ1 penalty and a
concave part. Specifically, we have:

Rλ (A) =

∏
j ̸=k dj∑
l=1

pλ

(∥∥∥[A(k)

]
·,l

∥∥∥
2

)
=

∏
j ̸=k dj∑
l=1

λ
∥∥∥[A(k)

]
·,l

∥∥∥
2
+Qλ

(∥∥∥[A(k)

]
·,l

∥∥∥
2

)
,

where Qλ

(∥∥∥[A(k)

]
·,l

∥∥∥
2

)
=
∑∏

j ̸=k dj

l=1 qλ

(∥∥∥[A(k)

]
·,l

∥∥∥
2

)
.

Lemma 5. Under Assumptions 2 and 3, the loss function L̃ (A) satisfies the restricted strong convexity

L̃
(
A′) ≥ L̃ (A) +

〈
∇L̃ (A) ,A′ −A

〉
+

µ− ζ

2

∥∥A′ −A
∥∥2
F
,

and the restricted smoothness

L̃
(
A′) ≤ L̃ (A) +

〈
∇L̃ (A) ,A′ −A

〉
+

L

2

∥∥A′ −A
∥∥2
F
.

Proof. Since the proof closely mirrors that of Lemma 1, it is omitted here for brevity.

Lemma 6. Suppose there exists an integer s̃3 > C |S3|, where C is a constant, and that A satisfies
∥∥AS3

∥∥
0
≤ s̃3,

ω (A) ≤ λ
2 , where ω (A) = min

G∈∂
∥∥∥[A(k)]·,l

∥∥∥
2

{∥∥∥∇L̃ (A) + λG
∥∥∥
max

}
, and ∥∇L (A∗)∥max ≤ λ/8. Under Assumptions 2

and 3, A satisfies

∥A−A⋆∥F ≤ 21/8

µ− ζ
λ
√
|S3|.

Proof. We omit the proof here for brevity, as it closely mirrors that of Lemma 2.
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Lemma 7. Consider the regularization parameter λ and assume that the derivative of the non-convex penalty satisfies
p′λ

(∥∥∥[A(k)

]
·,l

∥∥∥
2

)
= 0 whenever

∥∥∥[A(k)

]
·,l

∥∥∥
2
≥ ν for some ν > 0. Let SI

3 ∪ SII
3 = S3. For indices (i1, . . . , iN ) ∈

SI
3 ⊆ S3, we assume min

l

[
A⋆

(k)

]
·,l

≥ ν, and for indices (i1, . . . , iN ) ∈ SII
3 ⊆ S3, we assume min

l

[
A⋆

(k)

]
·,l

≤ ν. Under

Assumptions 2∼4, we derive the following bound:∥∥∥Â−A⋆
∥∥∥
F
≤ 1

µ− ζ

∥∥∥(∇L (A⋆))SI
3

∥∥∥
F
+

3

µ− ζ
λ
√∣∣SII

3

∣∣.
Proof. For brevity, we omit the proof here, as it closely resembles that of Lemma 3.

Lemma 8. For least-squares regression with sub-Gaussian noise, we assume that the columns of X̃ are normalized in such

a way that maxj∈{1,...,d1d2...dN}

∥∥∥X̃ ·j

∥∥∥
2
≤

√
n, where X̃ =

(
vec
(
X (1)

)
, . . . , vec

(
X (n)

))⊤
. If λ ≍

√
log dk

n , then we
have

∥∇L (A⋆)∥F ≲

√
|S3|
n

.

Proof. For brevity, the proof is omitted here as it closely follows the methodology established in Lemma 4.

B.3. Proof of Theorem 8

We begin by demonstrating that the fiber-wise sparsity regularizer can be reformulated as the sum of the ℓ1 penalty and a
concave part. Specifically, we have:

Rλ (A) =

∏
s ̸=j,k ds∑
i=1

pλ

(∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F

)
=

∏
s ̸=j,k ds∑
i=1

λ
∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F
+Qλ

(∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F

)
,

where Qλ

(∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F

)
=
∑∏

s ̸=j,k ds

i=1 qλ

(∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F

)
.

Lemma 9. Under Assumptions 2 and 3, the loss function L̃ (A) satisfies the restricted strong convexity

L̃
(
A′) ≥ L̃ (A) +

〈
∇L̃ (A) ,A′ −A

〉
+

µ− ζ

2

∥∥A′ −A
∥∥2
F
,

and the restricted smoothness

L̃
(
A′) ≤ L̃ (A) +

〈
∇L̃ (A) ,A′ −A

〉
+

L

2

∥∥A′ −A
∥∥2
F
.

Proof. The proof can be demonstrated similarly to the proof in Lemma 1. Hence, we omit it here.

Lemma 10. Suppose there exists an integer s̃4 > C |S4|, where C is a constant, and that A satisfies
∥∥AS4

∥∥
0
≤ s̃4,

ω (A) ≤ λ
2 , where ω (A) = min

G∈∂
∥∥∥[A(j,k)]·,·,l

∥∥∥
F

{∥∥∥∇L̃ (A) + λG
∥∥∥
max

}
, and ∥∇L (A∗)∥max ≤ λ/8. Under Assumptions 2

and 3, A satisfies

∥A−A⋆∥F ≤ 21/8

µ− ζ
λ
√
|S4|.

Proof. For the sake of brevity, we omit the proof here, as it closely follows that of Lemma 2.

Lemma 11. Consider the regularization parameter λ and assume that the derivative of the non-convex penalty satisfies
p′λ

(∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F

)
= 0 whenever

∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F
≥ ν for some ν > 0. Let SI

4 ∪ SII
4 = S4. For indices (i1, . . . , iN ) ∈

SI
4 ⊆ S4, we assume min

l

∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F
≥ ν, and for indices (i1, . . . , iN ) ∈ SII

4 ⊆ S4, we assume min
l

∥∥∥[A(j,k)

]
·,·,l

∥∥∥
F
≤

ν. Under Assumptions 2∼4, we derive the following bound:∥∥∥Â−A⋆
∥∥∥
F
≤ 1

µ− ζ

∥∥∥(∇L (A⋆))SI
4

∥∥∥
F
+

3

µ− ζ
λ
√∣∣SII

4

∣∣.
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Proof. For brevity, we omit the proof here, as it closely resembles that of Lemma 3.

Lemma 12. For least-squares regression with sub-Gaussian noise, we assume that the columns of X̃ are normalized in

such a way that maxj∈{1,...,d1d2...dN}

∥∥∥X̃ ·j

∥∥∥
2
≤

√
n, where X̃ =

(
vec
(
X (1)

)
, . . . , vec

(
X (n)

))⊤
. If λ ≍

√
log(djdk)

n ,
then we have

∥∇L (A⋆)∥F ≲

√
|S4|
n

.

Proof. For brevity, the proof is omitted here as it closely follows the methodology established in Lemma 4.

B.4. Proof of Theorem 6

The proposed mode-wise low-rankness penalty can be reformulated as the sum of a scaled norm and a concave function.
Specifically, we have

Rλ (A) =

min{dk,
∏

j ̸=k dj}∑
i=1

pλ
(
σi

(
A(k)

))
= λ

∥∥A(k)

∥∥
nuc

+Qλ

(
A(k)

)
,

where σi

(
A(k)

)
denotes the i-th singular value of the mode-(k) unfolding A(k). For the estimation problem, we define

L̃ (A) = L (A) +Qλ

(
A(k)

)
,

where Qλ

(
A(k)

)
=
∑min{Ik,∏j ̸=k dj}

i=1 qλ
(
σi

(
A(k)

))
.

Based on the restrict strongly convexity of L (·) in Assumption 2 and the parameter for regularity condition in Assumption 1,
if µ > ζ, we have the restrict strongly convexity of L̃ (·).

Besides, for the RSC and RSM assumption, we define the following cone of directions

C =
{
B ∈ Rd1···dN | ∥ΠF⊥ (B)∥nuc ≤ 5 ∥ΠF (B)∥nuc

}
Lemma 13. Under Assumption 2, if B ∈ C,we have

L̃ (A+B) ≥ L̃ (A) +
〈
∇L̃ (A) ,B

〉
+

µ− ζ

2
∥B∥2F .

Proof. Based on Assumption 2, we have

L (A+B) ≤ L (A) + ⟨∇L (A) ,B⟩+ µ

2
∥B∥F . (21)

Moreover, considering the singular values of the unfolded matrices A(k) and B(k), we obtain

−ζ ≤
q′λ
(
σi

(
A(k)

))
− q′λ

(
σi

(
[A+B](k)

))
σi

(
A(k)

)
− σi

(
[A+B](k)

) ,

which is similar to the proof for Lemma 1. This inequality leads to〈(
−∇Qλ

(
A(k)

))
−
(
−∇Qλ

(
[A+B](k)

))
,B(k)

〉
≤ ζ

∥∥B(k)

∥∥
F
.

This inequality characterizes the smoothness of −Q(·), which is equivalent to

Qλ

(
[A+B](k)

)
= Qλ

(
A(k) +B(k)

)
≥ Qλ

(
A(k)

)
+
〈
∇Qλ

(
A(k)

)
,B(k)

〉
− ζ

2

∥∥B(k)

∥∥2
F
. (22)
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Noting that the Frobenius norm satisfies ∥B(k)∥2F = ∥B∥2F. Let A′ = A+B, adding (21) and (22), we have

L̃
(
A′) = L

(
A′)+Qλ

(
A′

(k)

)
≥ L (A) +Qλ

(
A(k)

)
+ ⟨∇L (A) ,B⟩+

〈
∇Qλ

(
A(k)

)
,B(k)

〉
+

µ− ζ

2
∥B∥2F

= L̃ (A) + ⟨∇L (A) ,B⟩+
〈
∇Qλ

(
A(k)

)
,B(k)

〉
+

µ− ζ

2
∥B∥2F .

Lemma 14. Under Assumption 2, if µ > ζ and the regularization parameter λ ≥
∥X⋆(E)(k)∥sp

2n , we have∥∥∥ΠF⊥

(
Â(k) −A⋆

(k)

)∥∥∥
nuc

≤ 5
∥∥∥ΠF

(
Â(k) −A⋆

(k)

)∥∥∥
nuc

.

Proof. By Lemma 13 , we have

L̃(Â)− L̃ (A⋆) ≥
〈
∇L (A⋆) , Â−A⋆

〉
+

〈
∇Qλ

(
A⋆

(k)

)
,
[
Â−A⋆

]
(k)

〉
. (23)

We proceed to bound the right-hand side of inequality (23). By decomposing the inner products using the projections onto
two orthogonal subspaces, we have〈

∇L (A⋆) , Â−A⋆
〉
+

〈
∇Qλ

(
A⋆

(k)

)
,
[
Â−A⋆

]
(k)

〉
=

〈
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

)
,ΠF

([
Â−A⋆

]
(k)

)〉
+

〈
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

)
,ΠF⊥

([
Â−A⋆

]
(k)

)〉

≥−
∥∥∥ΠF

(
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

))∥∥∥
sp

∥∥∥∥ΠF

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

(24)

−
∥∥∥ΠF⊥

(
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

))∥∥∥
sp

∥∥∥∥ΠF⊥

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

. (25)

For (24), due to λ ≥ 1
2n

∥∥∥[X⋆ (E)](k)
∥∥∥
sp

, we see that
∥∥∥[∇L (A⋆)](k)

∥∥∥
sp

≤ λ/2. According to Assumption 1, we have

∥∥∥ΠF

(
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

))∥∥∥
sp

≤ 3

2
λ. (26)

For (25), since ΠF⊥

(
A⋆

(k)

)
= 0, we obtain∥∥∥ΠF⊥

(
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

))∥∥∥
sp

≤ 1

2
λ. (27)

Combine (26) and (27), we have〈
∇L (A⋆) , Â−A⋆

〉
+

〈
∇Qλ

(
A⋆

(k)

)
,
[
Â−A⋆

]
(k)

〉
≥ −3

2
λ

∥∥∥∥ΠF

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

− 1

2
λ

∥∥∥∥ΠF⊥

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

Moreover, noting that λ
∥∥∥Â∥∥∥

nuc
− λ ∥A⋆∥nuc ≥ −λ

∥∥∥∥ΠF

([
Â−A⋆

]
(k)

)∥∥∥∥+ λ

∥∥∥∥ΠF⊥

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

, and com-

bining with (23) , we obtain
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〈
∇L (A⋆) +∇Qλ

(
A⋆

(k)

)
, Â−A⋆

〉
+ λ

∥∥∥Â∥∥∥
nuc

− λ ∥A⋆∥nuc

≥− 5

2
λ

∥∥∥∥ΠF

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

+
1

2
λ

∥∥∥∥ΠF⊥

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

. (28)

Since Â is the global minimizer of the general estimator (2) and given that µ > ζ, it follows that

L̃
(
Â
)
+ λ

∥∥∥Â∥∥∥
nuc

− L̃ (A⋆)− λ ∥A⋆∥nuc ≤ 0. (29)

Substituting (23) and (29) into (28), we obtain

1

2
λ

∥∥∥∥ΠF⊥

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

≤ 5

2
λ

∥∥∥∥ΠF

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

.

Since λ > 0, we obtain ∥∥∥∥ΠF⊥

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

≤ 5

∥∥∥∥ΠF

([
Â−A⋆

]
(k)

)∥∥∥∥
nuc

.

Lemma 15. Considering the mode-wise low-rankness regularizer, under Assumptions 4∼1, for the estimated parameter
tensor Â and the true parameter tensor A⋆, we have∥∥∥Â−A⋆

∥∥∥
F
≤ 1

µ− ζ

[√∣∣SI
4

∣∣ ∥∥∥ΠF

(
[∇L (A⋆)](k)

)∥∥∥
sp

+ 3λ
√∣∣SII

4

∣∣] .
where SI

4 and SII
4 are subsets of the support set of S4. The set SI

4 include all indices i ∈ SI
4 which satisfy σi

(
A⋆

(k)

)
≥ ν,

and SII
4 includes all indices with σi

(
A⋆

(k)

)
< ν.

Proof. Since ∥ · ∥nuc is convex, we have

λ
∥∥∥Â(k)

∥∥∥
nuc

≥ λ
∥∥∥A⋆

(k)

∥∥∥
nuc

+ λ

〈[
Â−A⋆

]
(k)

,G⋆

〉
, (30)

λ
∥∥∥A⋆

(k)

∥∥∥
nuc

≥ λ
∥∥∥Â(k)

∥∥∥
nuc

+ λ

〈[
A⋆ − Â

]
(k)

, Ĝ

〉
. (31)

where G⋆ ∈ ∂∥A⋆
(k)∥nuc and Ĝ ∈ ∂∥Â(k)∥nuc. From (30) and (31), we have

λ
∥∥∥Â(k)

∥∥∥
nuc

+ λ
∥∥∥A⋆

(k)

∥∥∥
nuc

≥ λ
∥∥∥A⋆

(k)

∥∥∥
nuc

+ λ
∥∥∥Â(k)

∥∥∥
nuc

+ λ

〈[
Â−A⋆

]
(k)

,G⋆

〉
+ λ

〈[
A⋆ − Â

]
(k)

, Ĝ

〉
.

This equals to

0 ≥
(
λ

〈[
Â−A⋆

]
(k)

,G⋆

〉
+ λ

〈[
A⋆ − Â

]
(k)

, Ĝ

〉)
. (32)

Moreover, according to Lemma 13, we have

L̃
(
Â
)
≥ L̃ (A⋆) +

〈
∇L (A⋆) , Â−A⋆

〉
+

〈
∇Qλ

(
A⋆

(k)

)
,
[
Â−A⋆

]
(k)

〉
+

µ− ζ

2

∥∥∥Â−A⋆
∥∥∥2
F
, (33)
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L̃ (A⋆) ≥ L̃
(
Â
)
+
〈
∇L

(
Â
)
,A⋆ − Â

〉
+

〈
∇Qλ

(
Â(k)

)
,
[
A⋆ − Â

]
(k)

〉
+

µ− ζ

2

∥∥∥A⋆ − Â
∥∥∥2
F
. (34)

Summing (32), (33), and (34), we have

0 ≥
〈
∇L (A⋆) , Â−A⋆

〉
+
〈
∇L

(
Â
)
,A⋆ − Â

〉
+ (µ− ζ)

∥∥∥Â−A⋆
∥∥∥2
F

+

(〈
∇Qλ

(
A⋆

(k)

)
+ λG⋆,

[
Â−A⋆

]
(k)

〉
+
〈
∇Qλ

(
Â(k)

)
+ λĜ,A⋆

(k) − Â(k)

〉)
.

Since Â is the solution to the estimation problem and Â satisfies the optimality condition, for any A′ ∈ Rd1×···×dN , it
holds that

max
A′

{〈
∇L

(
Â
)
, Â−A′

〉
+

〈
∇Qλ

(
Â(k)

)
+ λĜ,

[
Â−A′

]
(k)

〉}
≤ 0,

which implies 〈
∇L

(
Â
)
,A⋆ − Â

〉
+

〈
∇Qλ

(
Â(k)

)
+ λĜ,

[
A⋆ − Â

]
(k)

〉
≥ 0.

Since
〈
∇L (A⋆) ,A⋆ − Â

〉
=

〈
[∇L (A⋆)](k) ,

[
A⋆ − Â

]
(k)

〉
, we have

(µ− ζ) ∥Â−A⋆∥2F ≤
[〈

[∇L (A⋆)](k) ,
[
A⋆ − Â

]
(k)

〉
+

〈
∇Qλ

(
A⋆

(k)

)
+ λG⋆,

[
A⋆ − Â

]
(k)

〉]
≤
〈
ΠF⊥

[
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

)
+ λG⋆

]
,
[
A⋆ − Â

]
(k)

〉
+

〈
ΠF

(
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

)
+ λG⋆

)
,
[
A⋆ − Â

]
(k)

〉
. (35)

We have defined σi

(
A⋆

(k)

)
as the i-th singular value of matrix A⋆

(k). With regard to the magnitudes of the singular values

of A⋆
(k), we can decompose (35) into three parts:

• i ∈ SI
4 that σi

(
A⋆

(k)

)
≥ ν,

• i ∈ SII
4 that ν ≥ σi

(
A⋆

(k)

)
> 0,

• i ∈ Sc
4 that σi

(
A⋆

(k)

)
= 0.

(i) For i ∈ SI
4 that σi

(
A⋆

(k)

)
≥ ν, define a subspace of F associated with SI

4 as follows

FSI
4
(U⋆,V ⋆) := {W | row (W ) ⊂ V ⋆

I , col (W ) ⊂ U⋆
I } ,

where V ⋆
I and U⋆

I is the matrix with the i-th row of V ⋆
I and U⋆

I with i ∈ SI
4.

Recall that Rλ

(
A⋆

(k)

)
= λ

∥∥∥A⋆
(k)

∥∥∥
nuc

+Qλ

(
A⋆

(k)

)
, we have

∇Rλ

(
A⋆

(k)

)
= ∇Qλ

(
A⋆

(k)

)
+ λk

(
U⋆

IV
⋆⊤
I +Z⋆

I

)
,
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where Z⋆
I = −λ−1ΠFSI

4

(
[∇L (A⋆)](k)

)
. Since ∥Z⋆

I ∥ ≤ 1 and Z⋆
I ∈ FSI

4
, which satisfies the condition of W ⋆ to be

sub-gradient of
∥∥∥A⋆

(k)

∥∥∥. Projecting Rλ

(
A⋆

(k)

)
into the subspace FSI

4
, we have

ΠFSI
4

(
∇Rλ

(
A⋆

(k)

))
= ΠFSI

4

(
∇Qλ

(
A⋆

(k)

)
+ λU⋆

IV
⋆⊤
I + λZ⋆

I

)
= U⋆

I q
′
λ (Σ

⋆
I )V

⋆⊤
I + λU⋆

IV
⋆⊤
I

= U⋆
I [q

′
λ (Σ

⋆
I ) + λII]V

⋆⊤
I ,

where II is an identity matrix with the size min{dk,Πj ̸=kdj} and (q′λ (Σ
⋆
I ) + λII) is a diagonal matrix that for i /∈ SI

4, the
i-th entry on the diagonal equals 0, i.e. [q′λ (Σ

⋆
I ) + λII]ii = 0, and for all i ∈ SI

4 , we have

[q′λ (Σ
⋆
I ) + λII]ii = q′λ

(
σi

(
A⋆

(k)

))
+ λ = p′λ

(
σi

(
A⋆

(k)

))
= 0.

The last equality is derived from fact that i ∈ SI
4 satisfies Assumption 1, p′λ (t) = 0. Therefore, we have q′λ (Σ

⋆
I )+λII = 0,

which indicates that ΠFSI
4

(
∇Rλ

(
A⋆

(k)

))
= 0. For G⋆ = U⋆

IV
⋆⊤
I +Z⋆

I ∈ ∂
∥∥∥A⋆

(k)

∥∥∥
nuc

, we have〈
ΠFSI

4

[
[∇L (A⋆)](k) + λG⋆ +∇Qλ

(
A⋆

(k)

)]
,
[
A⋆ − Â

]
(k)

〉
=

〈
ΠFSI

4

[
[∇L (A⋆)](k) +∇Rλ

(
A⋆

(k)

)]
,
[
A⋆ − Â

]
(k)

〉
=

〈
ΠFSI

4

(
[∇L (A⋆)](k)

)
,ΠFSI

4

([
A⋆ − Â

]
(k)

)〉
≤
∥∥∥ΠFSI

4

(
[∇L (A⋆)](k)

)∥∥∥
sp

·
∥∥∥∥ΠFSI

4

([
A⋆ − Â

]
(k)

)∥∥∥∥
nuc

,

where the last inequality is derived from the Hölder inequality. For
∥∥∥∥ΠFSI

4

([
A⋆ − Â

]
(k)

)∥∥∥∥
nuc

, from the properties of

projection on to the subspace FSI
4
, we have∥∥∥∥ΠFSI

4

([
A⋆ − Â

]
(k)

)∥∥∥∥
nuc

≤
√∣∣SI

4

∣∣ ∥∥∥∥ΠFSI
4

([
A⋆ − Â

]
(k)

)∥∥∥∥
F

≤
√∣∣SI

4

∣∣ ∥∥∥∥[A⋆ − Â
]
(k)

∥∥∥∥
F

=
√∣∣SI

4

∣∣ ∥∥∥A⋆ − Â
∥∥∥
F
.

We obtain the second inequality from that the rank of the matrix ΠFSI
4

([
A⋆ − Â

]
(k)

)
≤
∣∣SI

4

∣∣. Thus, we have

〈
ΠFSI

4

[
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

)
+ λG⋆

]
,
[
A⋆ − Â

]
(k)

〉
≤
√∣∣SI

4

∣∣ ∥∥∥∥ΠFSI
4

([
A⋆ − Â

]
(k)

)∥∥∥∥
sp

·
∥∥∥A⋆ − Â

∥∥∥
F
. (36)

(ii) For i ∈ SII
4 , ν ≥ σi

(
A⋆

(k)

)
> 0, define a subspace of F associated with SII

4 as follows

FSII
4
(U⋆,V ⋆) := {W | row (W ) ⊂ V ⋆

II, col (W ) ⊂ U⋆
II} .

where V ⋆
II and U⋆

II is the matrix with the i-th row of U⋆ and V ⋆ with i ∈ SII
4 . Obviously, for all W , the following

decomposition holds
ΠF (W ) = ΠFSI

4

(W ) + ΠFSII
4

(W ) .
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In addition, since U⋆, V ⋆ are unitary matrices, for subspace FSI
4

and FSII
4

, we have the complementary subspace F⊥
SI
4
,

F⊥
SII
4

, thus we have

FSI
4
⊂ F⊥

SI
4
, and FSII

4
⊂ F⊥

SII
4
.

Similar to analysis in (i) on SI
4, we have

ΠFSII
4

(
∇Qλ

(
A⋆

(k)

))
= U⋆

IIq
′
λ (Σ

⋆
II)V

⋆⊤
II .

where q′λ (Σ
⋆
II) is a diagonal matrix that [q′λ (Σ

⋆
II)]ii = 0 for i /∈ SII

4 , and for all i ∈ SII
4 ,

[q′λ (Σ
⋆
II)]ii =

[
q′λ

(
σi

(
A⋆

(k)

))]
ii
≤ λ.

Since σi

(
A⋆

(k)

)
≤ ν, and qλ (·) satisfies the regularity Assumption 1, |q′λ (t)| ≤ λ. Therefore∥∥∥ΠFSII

4

(
∇Qλ

(
A⋆

(k)

))∥∥∥
sp

= max
i∈SII

4

[q′λ (Σ
⋆
II)]ii ≤ λ.

Meanwhile, because of the fact that FSII
4
⊂ FS4 , we have∥∥∥ΠFSII

4

(λG⋆)
∥∥∥
sp

≤
∥∥∥ΠF

(
λU⋆

IIV
⋆⊤
II

)∥∥∥
sp
. (37)

Since
∥∥∥U⋆V ⋆⊤

∥∥∥
sp

= 1, we have ∥∥∥ΠF

(
λU⋆

IIV
⋆⊤
II

)∥∥∥
sp

= λ. (38)

Thus, from (37) and (38), we have ∥∥∥ΠFSII
4

(λG⋆)
∥∥∥
sp

≤ λ. (39)

Additionally, due to the fact that
∥∥∥ΠFSII

4

(
[∇L (A⋆)](k)

)∥∥∥
sp

≤
∥∥∥[∇L (A⋆)](k)

∥∥∥
sp

≤ λ, which indicates that

〈
ΠFSII

4

(
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

)
+ λG⋆

)
,
[
A⋆ − Â

]
(k)

〉
=

〈
ΠFSII

4

(
[∇L (A⋆)](k)

)
,
[
A⋆ − Â

]
(k)

〉
+

〈
ΠFSII

4

(
∇Qλ

(
A⋆

(k)

))
,
[
A⋆ − Â

]
(k)

〉
+

〈
ΠFSII

4

(λG⋆) ,
[
A⋆ − Â

]
(k)

〉
≤
(∥∥∥ΠFSII

4

(
[∇L (A⋆)](k)

)∥∥∥
sp

+
∥∥∥ΠFSII

4

(
∇Qλ

(
A⋆

(k)

))∥∥∥
sp

+
∥∥∥ΠFSII

4

(λG⋆)
∥∥∥
sp

)
·
∥∥∥∥ΠFSII

4

([
A⋆ − Â

]
(k)

)∥∥∥∥
nuc

,

where the last inequality is derived from the Hölder inequality. Since we have obtained the bound for each term, as in (38)
and (39), we have〈

ΠFSII
4

(
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

)
+ λG⋆

)
,
[
A⋆ − Â

]
(k)

〉
≤ 3λ

∥∥∥∥ΠFSII
4

([
A⋆ − Â

]
(k)

)∥∥∥∥
nuc

≤ 3λ
√∣∣SII

4

∣∣ ∥∥∥∥[A⋆ − Â
]
(k)

∥∥∥∥
F

= 3λ
√∣∣SII

4

∣∣ ∥∥∥A⋆ − Â
∥∥∥
F
. (40)

where the second inequality utilizes the fact that rank
(
ΠFSII

4

([
A⋆ − Â

]
(k)

))
≤
∣∣SII

4

∣∣.
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(iii) For i ∈ Sc
4 , which correspond to the projector ΠF⊥ since σi

(
ΠF⊥

(
A⋆

(k)

))
= 0.

Based on Assumption 1, qλ (0) = q′λ (0) = 0. We have that ∇Qλ

(
A⋆

(k)

)
= U⋆

cq
′
λ (Σ

⋆
c)V

⋆⊤
c , where Σ⋆

c ∈ Rr×r is a
diagonal matrix and r = min{dk,Πj ̸=kdj}. Now we have

ΠF⊥

(
∇Qλ

(
A⋆

(k)

))
=
(
Ic −U⋆

cU
⋆⊤
c

)
U⋆

kq
′
λ (Σ

⋆
c)V

⋆⊤
c

(
Ic − V ⋆

cV
⋆⊤
c

)
= (U⋆

c −U⋆
c) q

′
λ (Σ

⋆
c)
(
V ⋆⊤

c − V ⋆⊤
c

)
= 0,

where Ic is the identity matrix. Meanwhile, since

∥∥∥ΠF⊥

(
[∇L (A⋆)](k)

)∥∥∥
sp

≤
∥∥∥[∇L (A⋆)](k)

∥∥∥
sp

=

∥∥∥[X⋆ (E)](k)
∥∥∥
sp

n
≤ λ.

For Z⋆
c = −λ−1ΠF⊥

(
[∇L (A⋆)](k)

)
and G⋆ = U⋆

cV
⋆⊤
c + Z⋆

c ∈ ∂
∥∥∥A⋆

(k)

∥∥∥
nuc

, we have

ΠF⊥

[
[∇L (A⋆)](k) + λG⋆

]
= ΠF⊥

(
[∇L (A⋆)](k)

)
+ λZ⋆

c = 0,

which implies that〈
ΠF⊥

(
[∇L (A⋆)](k) + λG⋆ +∇Qλ

(
A⋆

(k)

))
,
[
A⋆ − Â

]
(k)

〉
=

〈
0,
[
A⋆ − Â

]
(k)

〉
= 0. (41)

Adding (36), (40) and (41), which indicate that

(µ− ζ)
∥∥∥Â−A⋆

∥∥∥
F

≤
〈
ΠF

(
[∇L (A⋆)](k) +∇Qλ

(
A⋆

(k)

)
+ λG⋆

)
,
[
A⋆ − Â

]
(k)

〉
≤
√∣∣SI

4

∣∣ ∥∥∥ΠSI
4

(
[∇L (A⋆)](k)

)∥∥∥
sp

·
∥∥∥A⋆ − Â

∥∥∥
F
+ 3λ

√∣∣SII
4

∣∣ ∥∥∥A⋆ − Â
∥∥∥
F

=
∥∥∥A⋆ − Â

∥∥∥
F

√∣∣SI
4

∣∣ ∥∥∥ΠSI
4

(
[∇L (A⋆)](k)

)∥∥∥
sp

+ 3λ
√∣∣SII

4

∣∣.
Thus, we have ∥∥∥Â−A⋆

∥∥∥
F
≤ 1

µ− ζ

[√∣∣SI
4

∣∣ ∥∥∥ΠSI
4

(
[∇L (A⋆)](k)

)∥∥∥
sp

+ 3λ
√∣∣SII

4

∣∣] .

Lemma 16. Suppose A⋆ ∈ Rd1×···×dN with rank of each mode-(k) unfolding |S4|. Then the error bound between the

oracle estimator Â
O

and the true A⋆ satisfies

∥∥∥ÂO
−A⋆

∥∥∥
F
=

∥∥∥∥[ÂO
−A⋆

]
(k)

∥∥∥∥
F

≤
2
√
|S4|

∥∥∥ΠF

(
[∇L (A⋆)](k)

)∥∥∥
sp

µ
. (42)

Proof. Let B′ = Â
O
−A⋆. According to the general estimator (2) and the definition of the adjoint operator X(·), we can

29



High-Dimensional Tensor Regression with Oracle Properties

express the difference in loss as follows

L
(
Â

O
)
− L (A⋆) =

1

2n

n∑
i=1

[
Y(i) − X(i)

(
A⋆ +B′)]2 − 1

2n

n∑
i=1

[
Y(i) − X(i) (A⋆)

]2
=

1

2n

n∑
i=1

[
E(i) − X(i)

(
B′)]2 − 1

2n

n∑
i=1

E(i)

=
1

2n

∥∥∥[X (B′)]
(k)

∥∥∥2
sp

− 1

n

〈
X⋆ (E) ,B′〉 .

Given that Â
O

minimizes L(·) over the subspace F and A⋆
(k) ∈ F , we have

L
(
Â

O
)
− L (A⋆) ≤ 0.

Thus, it follows that
1

2n

∥∥∥[X (B′)]
(k)

∥∥∥2
sp

≤ 1

n

〈
X⋆ (E) ,B′〉 . (43)

By the RSC condition 2, we know that

L (A+B)− L (A) ≥ ⟨∇L (A) ,B⟩+ µ

2
∥B∥2F .

Applying this to B′,

µ

2

∥∥B′∥∥2
F
≤ L

(
B′)− L (A⋆)−

〈
∇L (A⋆) ,B′〉

=
1

2n

∥∥∥[X (B′)]
(k)

∥∥∥2
sp

− 1

n

〈
X⋆ (E) ,B′〉− 〈∇L (A⋆) ,B′〉 . (44)

Substituting (43) into (44) gives

µ

2

∥∥B′∥∥2
F
≤ 1

2n

∥∥∥[X (B′)]
(k)

∥∥∥2
sp

≤ 1

n

〈
X⋆ (E) ,B′〉 .

Therefore, we have

∥∥B′∥∥2
F
≤

2
〈
ΠF

(
[X⋆ (E)](k)

)
,B′
〉

nµ
≤

2
∥∥∥ΠF

(
[X⋆ (E)](k)

)∥∥∥
sp

·
∥∥B′∥∥

nuc

nµ
.

Using the fact that rank
(
B′) = |S4|, we have∥∥∥B′

(k)

∥∥∥
nuc

≤
√
|S4|

∥∥∥B′
(k)

∥∥∥2
F
.

Thus, it follows that

∥∥∥B′
(k)

∥∥∥2
F
≤

2
√
|S4|

∥∥∥ΠF

(
[X⋆ (E)](k)

)∥∥∥
sp

·
∥∥∥B′

(k)

∥∥∥2
F

nµ
.

Recalling that ∇L (A⋆) = −X⋆(E)
n , we conclude

∥∥∥B′
(k)

∥∥∥
F
≤

2
√
|S4|

∥∥∥ΠF

(
[X⋆ (E)](k)

)∥∥∥
sp

nµ
=

2
√

|S4|
∥∥∥ΠF

(
[∇L (A⋆)](k)

)∥∥∥
sp

µ
.
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Thus, since
∥∥∥B′

(k)

∥∥∥
F
=
∥∥B′∥∥

F
, we have the desired error bound

∥∥∥ÂO
−A⋆

∥∥∥
F
=
∥∥B′∥∥

F
≤

2
√
|S4|

∥∥∥ΠF

(
[∇L (A⋆)](k)

)∥∥∥
sp

µ
.

Then, we prove Theorem 6.

Proof. Suppose Ĝ ∈ ∂
∥∥∥(Â(k)

)∥∥∥
nuc

, since Â satisfies the optimality condition, for any A′ ∈ Rd1×···×dN , it holds that

max
A′

{〈
∇L

(
Â
)
, Â−A′

〉
+

〈
∇Qλ

(
Â(k)

)
+ λĜ,

[
Â−A′

]
(k)

〉}
≤ 0. (45)

In the following, we will show some Ĝ
O
∈ ∂

∥∥∥ÂO

(k)

∥∥∥
nuc

satisfy that

max
A′

{〈[
∇L

(
Â

O
)]

(k)
+∇Qλ

(
Â

O

(k)

)
+ λĜ

O
,
[
Â

O
−A′

]
(k)

〉}
≤ 0. (46)

Recall that L̃ (A) = L (A) + Qλ

(
A(k)

)
. Projecting the components of the inner product of the LHS in (46) into two

complementary spaces F and F⊥, we have the following decomposition〈[
∇L

(
Â

O
)]

(k)
+∇Qλ

(
Â

O

(k)

)
+ λĜ

O
,
[
Â

O
−A′

]
(k)

〉
=

〈[
∇L

(
Â

O
)]

(k)
+∇Qλ

(
Â

O

(k)

)
+ λĜ

O
,ΠF

([
Â

O
−A′

]
(k)

)〉
︸ ︷︷ ︸

P1

+

〈[
∇L

(
Â

O
)]

(k)
+∇Qλ

(
Â

O

(k)

)
+ λĜ

O
,ΠF⊥

([
Â

O
−A′

]
(k)

)〉
︸ ︷︷ ︸ .

P2

(47)

For Term P1. By applying Weyl’s inequality for singular values, we obtain

max
l

∣∣∣σi

(
A⋆

(k)

)
− σi

(
Â

O

(k)

)∣∣∣ ≤ ∥∥∥A⋆
(k) − Â

O

(k)

∥∥∥
sp
.

Further, from the properties of the Frobenius norm, we have∥∥∥A⋆ − Â
O
∥∥∥
F
=

∥∥∥∥[A⋆ − Â
O
]
(k)

∥∥∥∥
F

.

From Lemma 16, the estimation error A⋆ − Â
O

yields

max
l

∣∣∣σi

(
A⋆

(k)

)
− σi

(
Â

O

(k)

)∣∣∣ ≤ 2
√
|S4|

∥∥∥[X⋆ (E)](k)
∥∥∥
sp

nµ
,

where |S4| denotes the rank of the unfolded matrix A⋆
(k). Utilizing the weak condition of the singular values, we find

min
i∈S4

∣∣∣σi

(
A⋆

(k)

)∣∣∣ ≥ ν +
2
√
|S4|

nµ

∥∥∥[X⋆ (E)](k)
∥∥∥
sp
.
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Applying the triangle inequality, we derive

min
i∈S4

∣∣∣σi

(
Â

O

(k)

)∣∣∣ = min
i∈S4

∣∣∣σi

(
Â

O

(k)

)
− σi

(
A⋆

(k)

)
+ σi

(
A⋆

(k)

)∣∣∣
≥ −max

i∈S4

∣∣∣σi

(
Â
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2
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2
√
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∥∥∥[X⋆ (E)](k)
∥∥∥
sp

= ν.

Considering the definition of oracle estimator , Â
O

∈ F , which implies the tensor rank of each mode-(k) unfold-

ing rank
(
Â

O

(k)

)
= |S4|. And we have the singular value decomposition Â

O

(k) = U⋆Σ̂
O
V ⋆⊤. Since Rλ

(
A(k)

)
=

λ
∥∥A(k)

∥∥
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+ Qλ

(
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)
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O
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O
)
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∈ R|S4|×|S4| is a diagonal matrix, where
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(
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O
))

= q′λ
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O
)
S4

)
. Based on the definition of ∇Qλ (·) and ∂ ∥·∥nuc, we have
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)
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where the second equality in (48) is to simply project each component into the subspace F . IS4 is the identity matrix and
IS4

∈ R|S4|×|S4|. Since pλ (t) = qλ (t) + λ |t|, we have p′λ (t) = q′λ (t) + λt for all t > 0. Consider the diagonal matrix

q′λ

((
Σ̂

O
)
S4

)
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(
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Â
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.

Since pλ (·) satisfies the regularity condition (iii) in Assumption 1 that p′λ (t) = 0 for all t ≥ ν, we have p′λ
(
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(
Â
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))
= 0

for i ∈ S4, due to the fact that σi

(
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O
)
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)
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= 0, substituting which in to (48) yields

ΠF

(
∇Rλ

(
Â

O
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))
= 0. (49)

Since Â
O

is the estimator over F , we have the optimality condition that for any A′ ∈ Rd1×···×dN , it holds that
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Â

O
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O
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Substitute (49) and (50) into P1, for all Ĝ
O
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we have
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Â

O
−A′

]
(k)

)〉
=max

A′

〈[
∇L

(
Â
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For Term P2. By definition of ∇Qλ (·), and the regularity condition (v) in Assumption 1, we do the decomposition that

∇Qλ

(
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)
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(
Σ̂

O
)
V ⋆⊤, where Σ̂
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Moreover, with the triangle inequality, we have∥∥∥∥[∇L
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where the second inequality comes from the fact that∥∥∥∥[∇L (A⋆)](k) −
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From Restricted Smoothness in Assumption 3 where
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Since ΠF⊥
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B′) = 0, it is evident that B′ ∈ C. Substitute (42) from Lemma 16 into (53), from the choice of λ, we have∥∥∥∥ΠF⊥
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Â

O
)]

(k)

∥∥∥∥
sp

≤
∥∥∥[∇L (A⋆)](k)

∥∥∥
sp

+
2
√
|S4|L
nµ

∥∥∥[X⋆ (E)](k)
∥∥∥
sp

≤ λ.

By setting Ẑ
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Now we are going to prove that Â
O
= Â and the error bound between Â

O
and A⋆.

Similar to the proof of Lemma 15, since ∥·∥nuc is convex, and applying Lemma 13, we have
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[
Â
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Substituting (55) and (56) into (57) such that
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Since µ > ζ, the inequation holds only if

Â
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= Â.

And by Lemma 16, we obtain the statistical oracle bound for the penalty
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, which completes the proof.
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B.5. Proof of Theorem 9

Recall that the proposed slice-wise low-rankness penalty can be reformulated as the sum of the ℓ1 penalty and a concave
part. Specifically, we have:
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∏
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l=1
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,
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A(j,k)

]
·,·,l

)
denotes the s-th singular value of the slice. For the estimation problem, we define
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Based on Lemma 13, for slice-wise lowrankness regularizer, we can similarly prove the following lemmas

Lemma 17. Under Assumption 2 , µ > ζ, and the regularization parameter λ ≥
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Proof. Similar to the proof of Lemma 14, we can prove the Lemma 17

From Lemma 13 and Lemma 17, we can prove the following general deterministic bound.

Lemma 18. For the estimated parameter tensor Â and the true parameter tensor A⋆, we have
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Proof. Similar to the proof for Lemma 16, we can derive the error bound for the slice-wise low-rankness regularizer.

Lemma 19. Suppose A⋆ ∈ Rd1×···×dN with rank of each slices |S5|. Then the error bound between the oracle estimator

Â
O

and the true A⋆ satisfies
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−A⋆

∥∥∥
F
=

√√√√∏
m̸=j,k dm∑
l=1

∥∥∥∥∥
[[
Â
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Proof. With Lemma 19, we can also obtain that Â
O
= Â. Similarly, we can prove the Theorem 9.

C. Complementary Experimental Results
In this section, we present additional results for the proposed penalties introduced in Section A. In Section C.1, we
evaluate the performance of these penalties on synthetic data and provide a detailed analysis of the experimental findings.
Furthermore, Section C.2 demonstrates the effectiveness of the penalties on real-world data.
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Figure 5: Fiber-wise sparsity regularizer with the error bars of MSFE ± standard deviation .
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Figure 6: Slice-wise sparsity regularizer with the error bars of MSFE ± standard deviation .
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Figure 7: Slice-wise low-rankness penalty with the error bars of MSFE ± standard deviation .

36



High-Dimensional Tensor Regression with Oracle Properties

Table 2: Comparisons between proposed nonconvex penalties and convex penalties.

Structures Methods Synthetic Data Real-world Data

size |S| η MSFE RMSE MSFE MPRE

Sparsity

Entry-wise Nonconvex
16× 16× 16 2048 0.1 0.4042 ± 0.0201 0.0992 ± 0.0021 134.5864 ± 11.2950 7.6072 ± 0.0301

Convex 0.6938± 0.0297 0.1004± 0.0023 144.7160± 14.9947 7.7498± 0.0457

Fiber-wise Nonconvex
16× 16× 16 8 0.1 0.4406 ± 0.0157 0.0993 ± 0.0012 90.3068 ± 7.3006 4.7161 ± 0.0103

Convex 0.7512± 0.0439 0.0995± 0.0019 102.7019± 9.2188 5.0330± 0.0118

Slice-wise Nonconvex
16× 16× 20 8 0.1 0.5761 ± 0.0289 0.0997 ± 0.0027 43.8705 ± 3.0257 1.8909 ± 0.0043

Convex 0.7201± 0.0314 0.1005± 0.0039 48.4585± 3.8834 1.9250± 0.0045

Low-rankness
Mode-wise Nonconvex

16× 16× 16 5 1 0.5482 ± 0.0395 0.1002 ± 0.0012 35.5536 ± 1.4889 1.0330 ± 0.0022

Convex 1.7411± 0.0953 0.1096± 0.0020 41.2719± 3.5079 1.1027± 0.0024

Slice-wise Nonconvex
16× 16× 20 5 1 0.9214 ± 0.0736 0.1004 ± 0.0010 8.9348 ± 0.7493 0.0436 ± 0.0002

Convex 1.8261± 0.1066 0.1113± 0.0031 10.1655± 0.9050 0.6348± 0.0009

C.1. Synthetic Data

Figure 5 illustrates the impact of the fiber-wise sparsity regularizer on estimation accuracy. In these experiments, we
consider 3rd-order tensor A ∈ Rd×d×d, with d = 16. We display the results of the Mean Squared Frobenius norm
Error (MSFE) when varying the tensor dimension d, the fiber-wise sparsity |S3|, and the sample size n, respectively. In
Figures 5a and 5b, we fix the fiber-wise sparsity |S3| = 4. The three lines in different colors represent varying sample sizes
n = {1000, 2000, 3000}. From Figure 5a, we observe that MSFE increases as the tensor dimension d increases. From
Figure 5b, we find that increasing the sample size n decreases the MSFE. This demonstrates that larger sample sizes improve
the accuracy of the tensor estimation, as expected. In Figure 5c, we see that increasing the fiber-wise-sparsity |S3| leads
to an increase in the estimate error. Furthermore, the standard deviation of the estimation error follows the same trend,
increasing with fiber-wise sparsity.

Figure 6 presents the results of the slice-wise sparsity regularizer. In Figures 6a and 6b, the number of slices is uniformly set
to s = 20. And we set the slice-wise sparsity |S4| = 4 in Figures 6a and 6c. We select three sample sizes while varying the
dimension d or the number of non-zero slices |S4|. The results indicate that the estimation error increases with increments
in d or |S4|. The standard deviation of the MSFE also rises as the MSFE increases. Furthermore, as observed in Figure 6c,
increasing the sample size reduces estimation errors when the dimension is fixed.

Figure 7 demonstrates the results of the slice-wise low-rankness penalty. In Figure 7b, the x-axis |S5| represents the rank of
each slice of the tensor A ∈ Rd×d×d. Figures 7a and 7c fix the rank of each slice to 5. The three distinct lines correspond
to the estimation errors for sample size n = {1000, 2000, 3000}. From Figure 7a, we observe that with a fixed rank and
sample size, the estimation error increases as the dimension d enlarges. Furthermore, Figure 7b shows that the estimation
errors increase with the rank. Figure 7c demonstrates that with more samples, the estimation errors decrease.

In Table 2, we compare the performance of our proposed nonconvex penalties against traditional convex penalties. For
sparsity penalties, we set the η = 0.1, and for low-rankness penalties, we set η = 1. We configure the tensor dimension
such that tensors with slices-wise structures A ∈ Rd×d×s and the others A ∈ Rd×d×d, where d = 16, s = 20. Depending
on the tensor structure, the sparsity or the rank of the tensors varies accordingly. The results in Table 2 demonstrate that
nonconvex penalties achieve lower MSFE for parameter estimation and lower RMSE for predictions compared to their
convex counterparts. These empirical findings are in strong agreement with our theoretical analysis.

Table 3: The Frobenius norm
∥∥∥Â−A⋆

∥∥∥
F

with standard variance changing the noise parameter

Structures Methods d = 10× 10× 10 d = 20× 20× 20

η = 0.1 η = 1 η = 5 η = 0.1 η = 1 η = 5

Sparsity
Entry-wise 1.8909± 0.2004 1.9021± 0.2214 1.9015± 0.2084 19.4215± 2.2710 18.6899± 2.7556 19.2904± 2.3523
Fiber-wise 1.8622± 0.2813 1.8461± 0.2783 1.8500± 0.2431 19.8920± 2.6721 19.3542± 2.8909 19.7628± 2.4745
Slice-wise 2.0509± 0.3510 2.0421± 0.3242 1.9927± 0.3666 20.0062± 2.7153 20.4267± 2.7248 19.4231± 2.6420

Low-rankness Mode-wise 2.6311± 0.3008 2.6947± 0.3254 2.6265± 0.3410 24.6129± 2.7010 23.8932± 2.7108 24.6571± 2.5114
Slice-wise 3.0150± 0.3227 3.0045± 0.3754 3.0184± 0.3365 25.8502± 3.7601 25.6691± 3.5732 25.9134± 3.8282
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Additional experiments. In this paper, we derive five corollaries that establish error bounds involving the noise parameterη.
The analysis of these bounds is nontrivial due to the interplay among conjugate operators, projection operators, and nuclear
norm regularization. From equation (20), we observe that increasing η enlarges the associated error term, thereby worsening
the overall error bound. To illustrate this effect, Table 3 presents results from synthetic data experiments conducted under
varying noise levels, which confirm the anticipated impact of η on the error magnitude.

Table 4: The Frobenius norm
∥∥∥Â−A⋆

∥∥∥
F

with standard variance for higher dimension

Structures Methods 3-order 4-order 5-order

d = 8 d = 16 d = 8 d = 16 d = 8 d = 16

Sparsity
Entry-wise 1.0509± 0.1004 1.9021± 0.2214 7.9015± 1.2084 19.4215± 2.2710 58.6899± 7.7556 192.2904± 17.3523
Fiber-wise 1.0622± 0.0813 1.8461± 0.2783 7.8500± 1.2431 19.8920± 2.6721 59.3542± 8.2909 190.7628± 16.4745
Slice-wise 1.0909± 0.1510 2.0421± 0.3242 8.0927± 1.3666 20.0062± 2.7153 60.4267± 8.1248 193.4231± 17.6420

Low-rankness Mode-wise 1.6311± 0.3008 2.6947± 0.3254 8.6265± 1.3410 34.6129± 3.4010 63.8932± 9.7108 224.6571± 21.5114
Slice-wise 1.8150± 0.3227 2.7045± 0.3754 9.0184± 1.3365 35.8502± 3.7601 65.6691± 9.5732 245.9134± 22.8282

As outlined in the five corollaries of our paper, our theoretical framework is inherently generalizable to tensors of any order.
Although the scope of this paper did not include experimental results for higher-order tensors, in Table 4, we have conducted
supplementary experiments that demonstrate promising outcomes for these cases.

Table 5: The Frobenius norm
∥∥∥Â−A⋆

∥∥∥
F

with standard variance changing ground data structure of our proposed methods

Structures Methods Tensor Data Structures

entry-sp fiber-sp slice-sp lr-mode lr-slice

Sparsity
Entry-wise 1.0509± 0.1004 1.0680± 0.1027 1.1263± 0.2046 1.8991± 0.4002 1.9367± 0.3979
Fiber-wise 1.0931± 0.1421 1.0622± 0.0813 1.1305± 0.2488 1.9054± 0.3865 1.9274± 0.4410
Slice-wise 1.1014± 0.1852 1.1226± 0.2200 1.0909± 0.1510 2.0221± 0.4518 2.3185± 0.4477

Low-rankness Mode-wise 6.8502± 1.2101 6.9333± 1.2565 6.9068± 1.1987 1.6311± 0.3008 14.9490± 1.4555
Slice-wise 7.1481± 1.3061 7.1636± 1.2989 7.0701± 1.3004 15.5770± 1.3435 1.8150± 0.3227

Also, to explore whether the proposed methods perform robustness under an unknown structure, in table 5, we implement
experiments on the proposed methods for each tensor structure, and the results are shown in the table.

C.2. Real-world Data

We have chosen several real-world images from the ImageNet 2012 dataset (Russakovsky et al., 2015) besides the image
used in Section 6.2. We implement experiments based on different penalties, revealing the following performance. In
Figure 8, we pick one image “rabbit” from the dataset, and the denoised results are shown in the figure.

We have also implemented additional real-world data experiments with the proposed methods. In Table 7, the real data is
considered the tensor to be estimated. Regarding the initialization of the covariate tensors A in the real-data experiments,
the number of covariate tensors A corresponds to the sample size n = 5000, and the noise term E are drawn independently
from a Gaussian distribution with mean 0 and variance equal to η = 0.01.

The experimental data employed in this study were sourced from the University of Southern California’s Viterbi School

Table 6: The average computational time with standard variance comparing nonconvex algorithm and MATLAB CVX
solver.

Structures Methods d = 8× 8× 18 d = 16× 16× 16

Iterations Total time Iterations Total time

Entry-wise Sparse Nonconvex (APG Algorithm) 17.5000± 0.5415 9.5374± 0.2927 27.8345± 0.3892 16.5968± 0.6731
Convex (CVX solver) \ 76.0145± 1.2664 \ 254.2588± 2.5022

Mode-wise Lowrank Nonconvex (APG Algorithm) 22.3333± 0.3258 12.5169± 0.4709 27.9677± 0.1796 17.3974± 0.5930
Convex (CVX solver) \ 77.5089± 1.0035 \ 229.7236± 2.7010
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(a) “rabbit” (b) noisy “rabbit” (c) denoised “rabbit”
(cvx. entry-sp)

(d) denoised “rabbit”
(ncvx. entry-sp)

(e) denoised “rabbit”
(cvx. fiber-sp)

(f) denoised “rabbit”
(ncvx. fiber-sp)

(g) denoised “rabbit”
(cvx. slice-sp)

(h) denoised “rabbit”
(ncvx. slice-sp)

(i) denoised “rabbit”
(cvx. mode-lr)

(j) denoised “rabbit”
(ncvx. mode-lr)

(k) denoised “rabbit”
(cvx. slice-lr)

(l) denoised “rabbit”
(ncvx. slice-lr)

Figure 8: The denoising results with the fiber-wise sparsity regularizer.
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Table 7: The MSFE of the climate data (10 years) observation and alcoholic genetic predisposition data with our proposed
methods

Dataset Penalties Sparsity Low-rankness

Entry Fiber Slice Mode Slice

NA-1990-2002-Monthly
SCAD 7.4556 ± 0.8235 8.0716± 0.9456 8.4187± 0.9491 11.6809 ± 2.0437 9.9750 ± 1.2203
MCP 7.6087± 1.0003 7.9554 ± 0.9884 8.1305 ± 0.9050 12.6281± 2.1882 10.2314± 2.0015

Convex 8.2502± 1.4887 8.7425± 1.7264 9.4577± 1.3004 14.5808± 3.3435 13.4508± 2.6688

EEG Database
SCAD 12.6865 ± 2.3544 13.8878 ± 2.2412 14.5640 ± 2.4898 18.7983± 5.0977 16.3202 ± 4.8331
MCP 13.0024± 1.9973 14.0368± 2.0241 16.0431± 3.9314 18.4546 ± 4.8020 16.4002± 4.7771

Convex 13.8001± 2.6764 14.5716± 2.1379 16.8890± 4.3051 19.6404± 5.3317 18.5783± 5.3854

of Engineering repository and the UCI Machine Learning Repository’s EEG Database. Specifically, the datasets can be
accessed via the following links: https://archive.ics.uci.edu/dataset/121/eeg+database, https:
//viterbi-web.usc.edu/~liu32/data.html.

NA-1990-2002-Monthly is a monthly climatological dataset (size of 22× 19500) that includes monthly observations of
time series data of 18 climate agents in 125 locations in North America. The original data size for one location in 12 years is
a 22× 156 matrix. To fit our model, we segment it into twelve 22× 13 matrices and merge them into a 22× 13× 12 tensor
to predict. The estimation results are shown in Table 7.

EEG Database is an alcoholic genetic predisposition dataset that contains the EEG images of 64 channels sampled at 256 Hz
for 77 subjects suffering from alcoholism and 44 normal controls. In the dataset, there are 10 alcoholic subjects, and each
sample is a third-order tensor (Channels× Time × Voltage). We take each sample as the tensor to estimate, and the result is
revealed in Table 7.
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