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Abstract
We study preferential Bayesian optimization (BO)
where reliable feedback is limited to pairwise
comparison called duels. An important challenge
in preferential BO, which uses the preferential
Gaussian process (GP) model to represent flexible
preference structure, is that the posterior distri-
bution is a computationally intractable skew GP.
The most widely used approach for preferential
BO is Gaussian approximation, which ignores
the skewness of the true posterior. Alternatively,
Markov chain Monte Carlo (MCMC) based pref-
erential BO is also proposed. In this work, we first
verify the accuracy of Gaussian approximation,
from which we reveal the critical problem that
the predictive probability of duels can be inaccu-
rate. This observation motivates us to improve the
MCMC-based estimation for skew GP, for which
we show the practical efficiency of Gibbs sam-
pling and derive the low variance MC estimator.
However, the computational time of MCMC can
still be a bottleneck in practice. Towards build-
ing a more practical preferential BO, we develop
a new method that achieves both high computa-
tional efficiency and low sample complexity, and
then demonstrate its effectiveness through exten-
sive numerical experiments.

1. Introduction
Preferential Bayesian optimization (BO) has been an at-
tractive approach for solving problems where reliable feed-
back is limited to pairwise comparison, the so-called du-
els. This preference setting often appears in human-in-the-
loop optimization problems such as visual design optimiza-
tion (Koyama et al., 2020) and generative melody compo-
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sition (Zhou et al., 2021) because it is easier for humans
to judge which one is better than to give an absolute rat-
ing (Kahneman & Tversky, 2013). The system (i.e., the op-
timization method) in the human-in-the-loop optimization
presents choices and receives preferential feedback inter-
actively. To reduce the waiting time for users, the system
is required to quickly present the new options to users by
learning from the observed feedback information.

An important challenge in preferential BO, which uses the
preferential Gaussian process (GP) model to represent pref-
erence structure, is that the posterior distribution is computa-
tionally intractable skew GP. The existing approaches to this
difficulty are twofold: The first approach is the Gaussian
approximation, such as Laplace approximation (LA) and ex-
pectation propagation (EP) (Chu & Ghahramani, 2005b;a).
Actually, most of the preferential BO algorithms proposed
so far are based on this Gaussian approximation (Brochu
et al., 2010; Nielsen et al., 2015; González et al., 2017; Si-
ivola et al., 2021; Fauvel & Chalk, 2021), leading to good
computational efficiency. However, the predictive accu-
racy can be poor, as discussed in Section 3.1, because the
Gaussian approximation ignores the skewness of the ex-
act posterior represented as the skew GP (Benavoli et al.,
2020; 2021a;b). The second approach is to directly employ
the skew GP model using the Markov chain Monte Carlo
(MCMC) method (Benavoli et al., 2020; 2021a;b). Benavoli
et al. (2020; 2021a;b) argued that the Gaussian approxima-
tion has poor estimation accuracy, and their MCMC-based
estimation is effective in preferential BO. However, the
experimental evidence was insufficient to show why the
Gaussian approximation degrade the preferential BO.

The aim of this study is to build truly practical preferential
BO with experimental evidence to support it. To this end, we
first evaluate the accuracy of the Gaussian approximation-
based methods, which have been most used in the preferen-
tial BO literature. Our experiments reveal that those meth-
ods fail to correctly predict the probability of duel outcomes,
which is critical in the preferential BO setting. This result
implies that it is important to consider the skewness of the
true posterior, and then we also improve MCMC for skew
GP estimation. Specifically, we present MC estimators that
reduce the estimation variance for skew GP. Furthermore,
we empirically clarify the high computational efficiency
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of the Gibbs sampling compared with an MCMC method
employed in (Benavoli et al., 2020; 2021b). These improve-
ments make the preferential BO algorithm with skew GP
more attractive. On the other hand, the preferential BO algo-
rithms using MCMC can still be unrealistic in preferential
BO, where the computational time may become a bottleneck
in many cases.

To build practical preferential BO, we further develop a sim-
ple and computationally efficient preferential BO method
that incorporates the skewness of the true posterior in a
randomized manner. The basic idea is to use a posterior
additionally conditioned by a random sample from the orig-
inal posterior itself, called hallucination, by which we show
that computing acquisition functions (AFs) in the proposed
method is computationally efficient while reflecting the
skewness of the original posterior. Noteworthy, any power-
ful AFs developed so far in the standard BO literature (e.g.,
upper confidence bound (UCB) (Srinivas et al., 2010) and
expected improvement (EI) (Mockus et al., 1978)) can be
integrated, which improves the flexibility of the proposed
method.

Our contributions are summarized as follows:

1. Rethinking existing preferential BO algorithms: We
reveal the poor accuracy of Gaussian approximation-
based methods in the true posterior approximation,
which implies the importance of considering skewness
in the preferential BO setting. Motivated by this obser-
vation, we improve MCMC for skew GP estimation.

2. Building practical preferential BO algorithm: We de-
velop a simple and computationally efficient method,
called hallucination believer, that can reflect the skew-
ness of the original posterior and integrate any power-
ful AFs developed so far in the standard BO literature.

3. Extensive empirical validations: Numerical experi-
ments on 12 benchmark functions show that the pro-
posed method achieves better or at least competi-
tive performance in both terms of computational ef-
ficiency and sample complexity compared with Gaus-
sian approximation-based preferential BO (González
et al., 2017; Siivola et al., 2021; Fauvel & Chalk, 2021)
and MCMC-based preferential BO (Benavoli et al.,
2021a;b), respectively.

Our experimental codes are publicly available at https:
//github.com/CyberAgentAILab/preferentialBO.

2. Background
2.1. Preferential Bayesian Optimization Problem

We consider that the preferential relation is modeled by a
latent function f : X → R, where X ∈ Rd is the input

domain. Our goal is to maximize the latent function as

x∗ = argmax
x∈X

f(x),

through the dueling feedback, x ≻ x′, which implies x is
preferable to x′.

2.2. Gaussian Processes for Preferential Learning

We assume that f is a sample path of GP with zero mean
and some stationary kernel k : X × X → R. Following
(Chu & Ghahramani, 2005b;a), we consider that the duel is
determined as follows:

xi,w ≻ xi,l ⇔ f(xi,w) + ϵw > f(xi,l) + ϵl,

where i.i.d. additive noise ϵw and ϵl follow the normal dis-
tribution N (0, σ2

noise). This is equivalent to assuming that
the preferences are obtained by which a direct observation
y = f(x) + ϵ is bigger or smaller, where ϵ ∼ N (0, σ2

noise).
Therefore, the training data Dt can be written as,

Dt = {xi,w ≻ xi,l}ti=1 ≡ {vi < 0}ti=1,

where xi,w and xi,l are a winner and a loser of i-th duel,
respectively, and vi := f(xi,l) + ϵl − f(xi,w) − ϵw. For
brevity, we denote {vi < 0}ti=1 as vt < 0, where vt :=
(v1, . . . , vt)

⊤.

The exact posterior distribution p(f | vt < 0) is skew GP,
as shown in (Benavoli et al., 2021a;b). That is, for any
output vector f tes :=

(
f(x1,tes), . . . , f(xm,tes)

)⊤
, where

m ∈ N, we obtain the posterior distribution from Bayes’
theorem as follows:

p (f tes | vt < 0) =
Pr (vt < 0 | f tes) p (f tes)

Pr(vt < 0)
, (1)

which is the distribution called multivariate unified skew
normal (Azzalini, 2013; Benavoli et al., 2021a).

Then, we briefly derive the components of Eq. (1). Hereafter,
we denote (i, j)-th element of matrix as [·]i,j and both i-th
row of matrix and i-th element of vector as [·]i. Suppoce
that X ∈ R(m+2t)×d is

X :=
(
x1,tes, . . . ,xm,tes,x1,w, . . . ,xt,w,x1,l, . . . ,xt,l

)⊤
.

Then, the prior for f :=
(
f([X]1), . . . , f([X]m+2t)

)⊤ ∈
Rm+2t is,

f ∼ N (0,K),

where [K]i,j is k([X]i, [X]j). Since f tes and vt are linear
combinations of f and the noises ϵw and ϵl, we see that,[

f tes

vt

]
∼ N (0,Σ),
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where

Σ := A
(
K +B

)
A⊤ ∈ R(m+t)×(m+t), (2)

A :=

[
Im 0 0
0 −It It

]
∈ R(m+t)×(m+2t),

B :=

[
0 0
0 σ2

noiseI2t

]
∈ R(m+2t)×(m+2t),

and Ii ∈ Ri×i is the identity matrix. Thus, since the
conditional distribution of multivariate normal (MVN) is
MVN again (Rasmussen & Williams, 2005), vt | f tes

follows MVN. Consequently, p (f tes) is a probability
density function (PDF) of MVN, and Pr(vt < 0) and
Pr (vt < 0 | f tes) are cumulative distribution functions
(CDF) of MVN.

Statistics for skew GP, such as expectation, variance, proba-
bility, and quantile, are hard to compute. Specifically, they
all need many times of computation of CDF of MVN (Azza-
lini, 2013). CDF of MVN (Genz, 1992; Genton et al., 2017)
is computationally intractable and expensive. Therefore, the
posterior inference using CDF of MVN at each iteration for
preferential BO can be unrealistic.

To approximate the statistics, Benavoli et al. (2021a;b) em-
ployed the MCMC, for which they showed that a sam-
ple path from skew GP p(f |vt < 0) could be generated
through the sampling from truncated MVN (TMVN) and
MVN. For example, they approximate the posterior mean
Ef |vt<0

[
[f tes]i

]
as,

Ef |vt<0

[
[f tes]i

]
≈ 1

M

M∑
j=1

fj(xi,tes), (3)

where M is the number of MC samples and fj is a sample
path from the posterior f |vt < 0. Another popular approxi-
mation is Gaussian approximation using LA and EP (Chu &
Ghahramani, 2005b;a). LA (MacKay, 1996) approximates
the posterior by Gaussian distribution so that the mean is
equal to the mode of the true posterior. EP (Minka, 2001) is
an iterative moment-matching method, which aims to adjust
the first and second moments.

Benavoli et al. (2020) revealed that the true posterior of GP
classification (GPC) with probit likelihood is also a skew GP.
Therefore, in principle, the approximate inferences for GPC
can apply to preferential GP. Actually, the survey of GPC
(Nickisch & Rasmussen, 2008; Kuss & Rasmussen, 2005)
argues that EP exhibits excellent prediction performance in
the GPC setting. However, the validity of using EP in the
preferential BO has not been verified in detail so far. Then,
we will demonstrate in this study the predictive probability
of the duel using EP can be inaccurate in Section 3.1.
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predictive mean
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f (xw)=f (xl)

xw xl
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Figure 1. An illustrative example of preferential GP models fitted
to 50 uniformly random duels, including xw ≻ xl, from a sample
path from GP. We use the RBF kernel, which is used to generate the
sample path, and set σ2

noise = 10−4. The top, middle, and bottom
plots show the predictions of MCMC, LA, and EP, respectively.
The left plot shows the mean and 95% credible interval of f |vt <
0. The right plots show the estimator of Prt

(
f(x1) ≤ f(x2)

)
and PDF p(f(x1), f(x2)|vt < 0), for which an approximation
by Eq. (1) using CDF of MVN is used in the top right plot.

3. Rethinking Estimation of Preferential GP
First, we investigate the limitation of the Gaussian approxi-
mation, which is the inaccurate predictive probability. Sec-
ond, we tackle the improvement of MCMC-based estimation
for skew GP. We show the practical effectiveness of Gibbs
sampling for skew GP. Furthermore, we newly derive MC
estimators, showing that the estimation variance is lower
than the estimators used in (Benavoli et al., 2021a;b).

3.1. Limitation of Gaussian Approximation-Based
Preferential GP

To clarify the inaccuracy of Gaussian approximation, Fig-
ure 1 shows an illustrative example of the estimation of skew
GP via MCMC, LA, and EP. The MCMC-based estimation
uses many (10000) MC samples with 1000 burn-in and 10
thinning generated by Gibbs sampling, whose details are
discussed in Section 3.2.1 and Appendix D. Thus, we can ex-
pect that the MCMC is sufficiently precise and treat it as the
ground truth. Then, we will confirm the differences between
the ground truth (MCMC), and LA and EP, respectively.

3



Towards Practical Preferential Bayesian Optimization with Skew Gaussian Processes

Ground truth

LA

Mean

Ground truth
LA

Mode

Ground truth

LA

Duel prob.

Ground truth

EP

Mean

Ground truth

EP

Mode

Ground truth
EP

Duel prob.

(a) Truth vs. prediction plots for LA and EP.
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(b) RMSE of proposed MC estimator and full MC estimator (Be-
navoli et al., 2021a) against ground truth.

Figure 2. Experimental results in the Ackley function (d = 4). We
evaluate the estimators of the mean, mode, and duel probabilities
Prt

(
f(x) ≻ f(x′)

)
. Other details are shown in Appendix F. A

similar tendency was confirmed in the Holder table (d = 2) and
Hartmann6 (d = 6) functions, which are shown in Appendix G.

First, we can see that the LA is inaccurate since the mode
can be very far away from the mean, particularly when
σ2
noise is small. A similar problem for GPC is discussed in

(Nickisch & Rasmussen, 2008, Section 12.2.1). Therefore,
although LA is very fast, LA-based preferential BO will
fail.

Second, EP is very accurate for estimating the mean and
the credible interval of f |vt < 0, which matches the ex-
perimental observation in the literature of GPC (Nickisch
& Rasmussen, 2008; Kuss & Rasmussen, 2005). However,
in the right plot, Prt(f(xw) ≤ f(xl)) is overestimated
although xw ≻ xl is already obtained. This implies the
problem of EP that predictions for the statistics involving
the joint distribution of several outputs (e.g., f(xw) and
f(xl)) can be inaccurate. Particularly, since some AFs
for preferential BO (González et al., 2017; Nielsen et al.,
2015; Fauvel & Chalk, 2021) need to evaluate the joint
distribution of f(x(1)

t ) and f(x
(2)
t ), EP can degrade the per-

formance of such AFs. This is a crucial problem but has

not been discussed in the literature on preferential GP (Chu
& Ghahramani, 2005a; Benavoli et al., 2021a;b) and GPC
(Kuss & Rasmussen, 2005; Nickisch & Rasmussen, 2008).

It should be noted that Benavoli et al. (2021b) already pro-
vided the experimental comparison between EP and skew
GP. However, we argue that their setting is not common in
the following aspects: For example, (Benavoli et al., 2021b,
Figure 6 and 7) considers that all the inputs in a certain
interval lose, and all other inputs in another interval win.
Although the Gaussian approximation becomes inaccurate
due to the heavy skewness in this setting, these biased train-
ing duels are unrealistic. In contrast, Figure 1, in which the
usual uniformly random duels are used, considers a more
common setting.

Figure 2 (a) further shows the truth (MCMC) and predic-
tions of LA and EP plots using the Ackley function. We
can again confirm that LA underestimates all the statistics,
and the mean and mode estimators of EP are very accurate.
However, for the probability of duels, EP underestimates
the probabilities around 0 or 1. Importantly, we can see that
the estimator does not retain the relative relationship of the
ground truth. Thus, EP-based AF can select the different
inputs from the inputs selected by the ground truth. There-
fore, Figure 2 (a) also suggests that EP-based preferential
BO can deteriorate.

3.2. Improving MCMC-based Preferential GP

The above results motivated us to improve the MCMC-
based estimation of the skew GP. In this section, we show
the practical effectiveness of Gibbs sampling and derive the
low variance MC estimators.

3.2.1. GIBBS SAMPLING FOR TMVN

In this study, for MCMC of skew GP that requires sampling
from TMVN, we argue that the Gibbs sampling should be
employed rather than linear elliptical slice sampling (Li-
nESS) (Gessner et al., 2020), which is used in the existing
studies (Benavoli et al., 2021a;b). Gibbs sampling is a stan-
dard approach for the sampling from TMVN (Adler et al.,
2008; Breslaw, 1994; Geweke, 1991; Kotecha & Djuric,
1999; Li & Ghosh, 2015; Robert, 1995). In Gibbs sam-
pling, we need to sample univariate truncated normal, for
which we used the efficient rejection sampling (Li & Ghosh,
2015, Section 2.1), which uses several proposal distribu-
tions depending on the truncation. Detailed procedure and
pseudo-code of Gibbs sampling are shown in Appendix D.

Figure 3 shows the trace and autocorrelation plots of Li-
nESS and Gibbs sampling, where we used the implemen-
tation by (Benavoli et al., 2021a;b) for LinESS (https:
//github.com/benavoli/SkewGP). The mixing time of
Gibbs sampling is very fast compared with LinESS. Further-
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Figure 3. Trace and autocorrelation plots of LinESS and Gibbs
sampling for first 1000 samples used in the experiments in Figure 2.

Table 1. The mean and standard deviation of computational time
of MCMC for Figure 3 with 10 random trials.

LinESS Gibbs sampling
Time (sec) 1.61± 0.01 0.54± 0.01

more, as shown in Table 1, Gibbs sampling is roughly 3x
faster than LinESS. Consequently, our experimental results
suggest that Gibbs sampling is more suitable than LinESS
for preferential GP.

Note that LinESS is expected to be effective when the
number of truncations is much larger than the dimension
of MVN, given that LinESS is a rejection-free sampling
method. In contrast, when the number of truncations is
huge, a rejection sampling-based Gibbs sampling suffers
a low acceptance rate. On the other hand, in this case for
vt | vt < 0, both dimensions are t. We conjecture that this
is the reason why Gibbs sampling is efficient compared to
LinESS in our experiments.

3.2.2. MC ESTIMATION FOR POSTERIOR STATISTICS

To derive the low variance MC estimator, we use the follow-
ing fact:

Proposition 3.1. The exact posterior distribution addition-
ally conditioned by vt is a GP. That is, for an arbitrarily
output vector f tes, we obtain

f tes | vt,vt < 0
d
= f tes | vt ∼ N (µtes|v,Σtes|v),

µtes|v := Σtes,vΣ
−1
v,vvt, (4)

Σtes|v := Σtes,tes −Σtes,vΣ
−1
v,vΣ

⊤
tes,v,

where d
= implies the equality in distribution, and we denote

the sub-matrices of Eq. (2) as follows:

Σ =:

[
Σtes,tes Σtes,v

Σ⊤
tes,v Σv,v

]
,

where Σtes,tes ∈ Rm×m,Σtes,v ∈ Rm×t,Σv,v ∈ Rt×t.

See Appendix A for the proof.

One of the important consequences of Proposition 3.1 is that
an expectation for the posterior inference can be partially
calculated by an analytical form. For example, the posterior
mean Ef |vt<0[f tes] can be derived as,

Ef |vt<0[f tes] = Et

[
Ef |vt,vt<0[f tes]

]
= Et[µtes|v] (∵ Prop. 3.1)

= Σtes,vΣ
−1
v,vEt[vt],

where we denote Et[·] := Evt|vt<0[·]. Note that, in the
first and last equalities, we use the tower property of the
expectation and Eq. (4), the definition of µtes|v , respectively.
Other statistics, such as variance and probability, can be
estimated via the following derivation:

Vf |vt<0[f tes] = Vt[µtes|v] +Σtes|v,

Pr
(
[f tes]i ≤ c|vt < 0

)
= Et

[
Φ

(
c− [µtes|v]i√

[Σtes|v]i,i

)]
, (5)

Prt
(
[f tes]i ≤ [f tes]j |vt < 0

)
= Et

[
Φ

(
[µtes|v]j − [µtes|v]i√

[Σtes|v]i,i + [Σtes|v]j,j − 2[Σtes|v]i,j

)]
,

where V means the (co)variance, and we denote Vt[·] :=
Vvt|vt<0[·], and Φ is the CDF of the standard normal distri-
bution. See Appendix B for detailed derivation. As a result,
we only need to apply MC estimation using the samples of
vt to Vt or Et. Note that after we obtain the samples of
vt|vt < 0 once, we can reuse it for all the estimations.

The remaining important statistic is the quantile of
[f tes]i|vt < 0, which is useful to compute the credible
interval and UCB-based AFs. Although this can be derived
as an inverse function of Eq. (5), the analytical form of this
inverse function is unknown. Thus, we compute the quantile
by applying a binary search to the MC estimator of Eq. (5).
See Appendix B for details.

The error of the MC estimator is in proportion to the variance
of the MC estimator. Then, our MC estimators are justified
in terms of the error of the MC estimator as follows:

Proposition 3.2. The variances of our MC estimators are
smaller than those of (Benavoli et al., 2021a), such as
Eq. (3). For example, the following inequality holds:

Vt

[
[µtes|v]i

]
≤ Vf |vt<0

[
[f tes]i

]
,

for all i ∈ {1, . . . ,m}.

This proposition is a direct consequence of the law of total
variance. See Appendix C for details. Thus, in principle,
our MC estimators are always superior to those of (Benavoli
et al., 2021a;b).
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Figure 2 (b) shows the root mean squared error (RMSE) of
our MC estimators and those of (Benavoli et al., 2021a;b),
which we refer to as a full MC estimator. Note that the
RMSE is computed using the ground truth. Thus, if the
ground truth is sufficiently accurate (equal to the true ex-
pectation), the RMSE can be interpreted as the standard
deviation estimator of the MC estimator. We can observe
that the RMSE of our estimator is smaller than that of the
full MC estimator in all the statistics and all the number of
MC samples. Therefore, the efficiency of our MC estimator
was verified also experimentally.

4. Preferential BO with Hallucination Believer
Although we tackled the speed-up of MCMC-based estima-
tion, its computational time can still be unrealistic in pref-
erential BO. Furthermore, Gaussian approximation often
suffers poor prediction performance ignoring the skewness
of the posterior. In this work, we propose a computation-
ally efficient preferential BO method while considering the
skewness in a randomized manner.

4.1. Hallucination Believer

We proposed a randomized preferential BO method, called
hallucination believer (HB), which uses the AFs for the
standard BO calculated from GP f |vt = ṽt, where ṽt ∼
p(vt|vt < 0) is an i.i.d. sample and called hallucination.

The HB method is motivated by Proposition 3.1, which il-
lustrates that the conditioning on vt reduces the posterior
to the GP f |vt. As a result, we can employ any compu-
tationally efficient and powerful AF for the standard BO
by utilizing the GP f |vt. Then, selecting the variables for
the conditioning on vt is important. At first glance, natural
candidates may be the mean E[vt] or mode. However, the
computation of these statistics can already be computation-
ally expensive, as discussed in Section 2.2. Furthermore,
since TMVN p(vt|vt < 0) can be highly skewed, the con-
ditioning by mean or mode can degrade the performance as
with LA and EP. Hence, we consider using the hallucination
ṽt. One sampling of ṽt ∼ p(vt|vt < 0) can be performed
efficiently by Gibbs sampling as shown in Section 3.2.1. In
addition, the calculation of AF itself is also cheaper than
that of an MCMC-based preferential BO method (Benavoli
et al., 2021a), which necessitates averaging over the many
MCMC samples. Lastly, we aim to incorporate the skew-
ness of the posterior in a randomized manner by using the
hallucination ṽt.

Intuitive Rationale behind HB: We believe that it is
better to consider the prediction and the optimization sepa-
rately: For example, Thompson sampling (TS) selects the
next duels using a random sample path. An essential require-
ment in this context is that the sample path should reflect

Algorithm 1 Hallucination believer for preferential BO
Input: D0 = {x0,w,x0,l}, X

1: for t = 1, . . . do
2: x

(1)
t ← xt−1,w

3: Draw ṽt−1 from the posterior p(vt−1 | vt−1 < 0)

4: x
(2)
t ← argmaxx∈X α(x) based on GP f | ṽt−1

5: Set xt,w and xt,l as the winner and loser of the duel
between x

(1)
t and x

(2)
t , respectively

6: Dt ← Dt−1 ∪ (xt,w ≻ xt,l)
7: end for

the uncertainty of the true posterior rather than pursuing
the accuracy as a single prediction. In the case of the HB
method, the posterior for the AF calculation is constructed
based on the conditioning on a random sample ṽt. This
sampling process also incorporates the uncertainty of the
true posterior into the subsequent AF calculation, and it
does not necessarily aim to recover the exact posterior at
that iteration. It is worth noting that the sampling in the HB
method is only for ṽt, in contrast to TS which samples the
entire objective function.

Algorithm 1 shows the procedure of HB. HB iteratively
selects a pair of inputs by the following two steps: (i) Select
the winner of the past duels as the first input x(1)

t (line
2) as with (Benavoli et al., 2021a). (ii) Using the posterior
distribution conditioned by the hallucination, select the input
that maximizes the AF α : X → R as the second point x(2)

t

(lines 3-4).

4.2. Choice of AF for HB

For HB, we can use an arbitrary AF for the standard BO,
e.g., EI (Mockus et al., 1978) and UCB (Srinivas et al.,
2010). However, HB combining TS is meaningless since
the sampling sequentially from p(vt|vt < 0) and p(f |vt)
is just the TS. On the other hand, we empirically observed
that AFs proposed for preferential BO, such as bivariate EI
(Nielsen et al., 2015) and maximally uncertain challenge
(MUC) (Fauvel & Chalk, 2021), which aims for appropriate
diversity by considering the correlation between x

(1)
t and

x
(2)
t , should not be integrated into HB. This is because, in

HB, diversity is achieved by hallucination-based random-
ization. Thus, HB combining bivariate EI or MUC results
in over-exploration. The empirical comparison for the HB
methods combining bivariate EI, MUC, and the mean maxi-
mization are shown in Appendix G.4. Consequently, we use
EI and UCB in our experiments.

Recently, several AFs for the standard BO have been pro-
posed, e.g., predictive entropy search (Hernández-Lobato
et al., 2014), max-value entropy search (Wang & Jegelka,
2017), and improved randomized UCB (Takeno et al., 2023).
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Confirming the performance of the HB method combined
with these AFs is a possible future direction for this research.

4.3. Relation to Existing Methods

HB and TS have a relationship in the perspective of using
a random sample from the posterior. HB used the halluci-
nation from p(vt|vt < 0). We can interpret that TS uses
the most uncertain hallucination, i.e., sample path from
p(f |vt < 0). Thus, the uncertainty of TS is very large, and
TS often results in over-exploration. On the other hand, the
hallucination ṽt is the least uncertain random variable in
the random variables, which reduces the posterior to the
GP. By this difference, HB has lower uncertainty than TS
and alleviates over-exploration, particularly when the input
dimension is large.

HB also has a relationship to the kriging believer (Shahriari
et al., 2016), which is a well-known heuristic in the literature
of parallel BO. This relation is discussed in Appendix E.

5. Related Work
Although dueling bandit (Yue et al., 2012) considers online
learning from the duels, it does not consider the correlation
between arms in general, as reviewed in (Sui et al., 2018).
In contrast, preferential BO (Brochu et al., 2010) aims for
more efficient optimization using the preferential GP, which
can capture a flexible correlational structure in an input do-
main. Since the true posterior is computationally intractable,
most prior works employed Gaussian approximation-based
preferential GP models (Chu & Ghahramani, 2005b;a). Typ-
ically, preferential BO sequentially duels x(1)

t , which is the
most exploitative point (e.g., maxima of the posterior mean),
and x

(2)
t , which is the maxima of some AFs.

The design of AFs for x(2)
t is roughly twofold. First ap-

proaches (Brochu et al., 2010; Siivola et al., 2021) use the
AFs for standard BO, which assumes that the direct observa-
tion y can be obtained (e.g., EI (Mockus et al., 1978)). How-
ever, this approach selects similar duels repeatedly since the
preferential GP model’s variance is hardly decreased due
to the weakness of the information obtained from the duel.
Second approach considers the relationship between x

(1)
t

and x
(2)
t . For example, bivariate EI (Nielsen et al., 2015)

uses the improvement from f(x
(1)
t ), and MUC (González

et al., 2017; Fauvel & Chalk, 2021) employed the uncer-
tainty of the probability that x(2)

t wins x(1)
t . Considering

the correlation to x
(1)
t , these AFs are expected to explore ap-

propriately. However, as discussed in Section 3.1, Gaussian
approximation (LA and EP) can be inaccurate for evaluation
of the joint distribution of f(x(1)

t ) and f(x
(2)
t ).

Instead of using Gaussian approximation, Benavoli et al.
(2021a) directly estimates the true posterior using MCMC.

However, MCMC-based AFs require heavy computational
time, which can be a bottleneck in practical applications.

Another well-used AF for preferential BO is TS (Russo &
Van Roy, 2014). González et al. (2017) proposed to select
x
(1)
t by TS, and Siivola et al. (2021); Sui et al. (2017) pro-

posed to select both x
(1)
t and x

(2)
t by TS, both of which are

based on Gaussian approximation. Benavoli et al. (2021a)
also proposed to select x(2)

t by TS, which is generated from
skew GP. Although the merit of Gaussian approximation is
low computational time, the posterior sampling from skew
GP only once is sufficiently fast (comparable to EP). There-
fore, the advantage of Gaussian approximation for TS-based
AF is limited. In Section 6, we will show that TS can cause
over-exploration when the input dimension is large in pref-
erential BO, as with the standard BO reviewed in (Shahriari
et al., 2016).

6. Comparison of Preferential BO Methods
We investigate the effectiveness of the proposed preferential
BO method through comprehensive numerical experiments.
We employed the 12 benchmark functions. In this section,
we show the results for the 8 functions, called the Branin,
Holder table, Bukin, Eggholder, Ackley, Harmann3, Hart-
mann4, and Hartmann6; others are shown in Appendix G.

We performed HB combining EI (Mockus et al., 1978) and
UCB (Srinivas et al., 2010), denoted as HB-EI and HB-
UCB, respectively. We employed the baseline methods,
LA-EI(Brochu et al., 2010), EP-EI (Siivola et al., 2021),
EP-MUC (Fauvel & Chalk, 2021), EP-TS-MUC (González
et al., 2017)1, DuelTS (Benavoli et al., 2021a), Du-
elUCB (Benavoli et al., 2021a), and EIIG2 (Benavoli et al.,
2021a), where DuelTS, DuelUCB, and EIIG were based
on skew GP and other methods with Suffix “EP” and “LA”
employed EP and LA, respectively. The first input x(1)

t for
EP-EI, EP-MUC, and LA-EI is the maxima of the posterior
mean over the training duels, and other methods, including
HB, use the winner so far as x(1)

t , following (Benavoli et al.,
2020). For preferential GP models, we use RBF kernel with
automatic relevance determination (Rasmussen & Williams,
2005), whose lengthscales are selected by marginal likeli-
hood maximization per 10 iterations, and set fixed noise
variance σ2

noise = 10−4. We use marginal likelihood estima-
tion by LA, which is sufficiently precise if σ2

noise is small,

1This method was originally proposed as “dueling TS,” whose
name is same as (Benavoli et al., 2021a). To distinguish them, we
denote TS-MUC since this method selects the first input by TS and
the second input by MUC. Furthermore, although González et al.
(2017) used the GPC model, we use the EP-based preferential GP
model to concentrate on the difference from the AF.

2Benavoli et al. (2021a;b) proposed EIIG that is EI minus
information gain (IG), which is probably a typo since both EI and
IG should be large. Thus, we used a modified one that EI plus IG.
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Figure 4. Average and standard error of the regret of the proposed methods (HB-EI and HB-UCB) and the state-of-the-art preferential BO
methods. The horizontal axis represents (a) the computational time (sec) and (b) the number of iterations. The vertical axis represents the
regret, which is the smaller, the better it is.

as discussed in (Kuss & Rasmussen, 2005, Section 7.2). We
show the accuracy of the marginal likelihood estimations
of LA and EP in Appendix G. Other detailed settings are
shown in Appendix F.

Figure 4 show the results for (a) computational time and (b)
iterations. As a performance measure, we used the regret
defined as f(x∗)− f(x̃t), where x̃t is a recommendation
point at t-th iteration, for which we used x

(1)
t . We report

the mean and standard error of the regret over 10 random
initialization, where the initial duel is 3d uniformly random
input pair.

First, we focus on the comparison against Gaussian
approximation-based methods. LA-EI is the worst method
due to the poor approximation accuracy. Note that, since
we set the plotted interval for the small regret to focus the
differences between HB and baseline methods except for
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LA-EI, LA-EI is out of the range in Hartmann 3, 4, and 6
functions. The regret of EP-EI, which selects the duel be-
tween the maximums of the posterior mean and EI, is often
stagnated due to over-exploitation. The regrets of EP-MUC
and EP-TS-MUC also stagnate in the Bukin and Ackley
functions since EP is often inaccurate in predicting the joint
distribution of several outputs, as shown in Section 3.1. Fur-
thermore, EP-TS-MUC deteriorates in the high-dimensional
functions such as Hartmann 4 and 6 functions due to over-
exploration from the nature of TS. Overall, incorporating the
skewness of the true posterior, HB-EI and HB-UCB outper-
formed Gaussian approximation-based methods in Figure 4
(b). Furthermore, the same tendency can also be confirmed
in Figure 4 (a) since the computational time of HB-EI and
HB-UCB is comparable with Gaussian approximation.

Second, DuelUCB and EIIG are MCMC-based AFs based
on skew GP. Therefore, although they often show rapid
convergence in Figure 4(b) because of the use of skew GP,
they show slow convergence in Figure 4(a) due to the heavy
computational time of MCMC. Hence, HB-EI and HB-UCB
are comparable to and outperformed MCMC-based AFs in
Figure 4(b) and (a), respectively, which suggest the practical
effectiveness of the proposed methods.

Last, since DuelTS requires only one sample path, its per-
formance is not largely changed in Figure 4 (a) and (b).
Although the regret of DuelTS converges rapidly in low-
dimensional functions, it converges considerably slowly in
relatively high-dimensional functions, such as Hartmann4
and Hartmann6, in which the proposed methods clearly out-
performed DuelTS. In our experiments, we confirmed that
TS results in over-exploration in relatively high-dimensional
functions, which is the well-known problem of TS for the
standard BO, as reviewed in (Shahriari et al., 2016).

7. Conclusion
Towards building a more practical preferential BO, this work
has made the following important progresses. We first re-
vealed the poor performance of the Gaussian approximation
for skew GP, such as Laplace approximation and expec-
tation propagation, despite being the method most widely
used in preferential BO. This result motivated us to improve
the MCMC-based estimation of the skew GP, for which we
showed the practical effectiveness of Gibbs sampling and
derived the low variance MC estimators. Finally, we devel-
oped a new preferential BO method that achieves both high
computational efficiency and low sample complexity, and
then verified its effectiveness through extensive numerical
experiments. The regret analysis of the proposed method is
one of the interesting future works.

Acknowledgements
This work was supported by MEXT KAKENHI 21H03498,
22H00300, MEXT Program: Data Creation and Utilization-
Type Material Research and Development Project Grant
Number JPMXP1122712807, and JSPS KAKENHI Grant
Number JP21J14673.

References
Adler, R. J., Blanchet, J., and Liu, J. Efficient simulation

for tail probabilities of Gaussian random fields. In 2008
Winter Simulation Conference, pp. 328–336. IEEE, 2008.

Azzalini, A. The Skew-Normal and Related Families. Insti-
tute of Mathematical Statistics Monographs. Cambridge
University Press, 2013.

Benavoli, A., Azzimonti, D., and Piga, D. Skew Gaussian
processes for classification. Machine Learning, 109(9):
1877–1902, 2020.

Benavoli, A., Azzimonti, D., and Piga, D. Preferential
Bayesian optimisation with skew Gaussian processes. In
Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, pp. 1842–1850, 2021a.

Benavoli, A., Azzimonti, D., and Piga, D. A unified frame-
work for closed-form nonparametric regression, classifi-
cation, preference and mixed problems with skew Gaus-
sian processes. Machine Learning, 110(11):3095–3133,
2021b.

Breslaw, J. Random sampling from a truncated multivariate
normal distribution. Applied Mathematics Letters, 7(1):
1–6, 1994. ISSN 0893-9659.

Brochu, E., Cora, V. M., and de Freitas, N. A tutorial
on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical
reinforcement learning. arXiv.1012.2599, 2010.

Chu, W. and Ghahramani, Z. Extensions of Gaussian pro-
cesses for ranking: semisupervised and active learning. In
Proceedings of the Learning to Rank workshop at the 18th
Conference on Neural Information Processing Systems,
pp. 29–34, 2005a.

Chu, W. and Ghahramani, Z. Preference learning with Gaus-
sian processes. In Proceedings of the 22nd international
conference on Machine learning, pp. 137–144, 2005b.

Fauvel, T. and Chalk, M. Efficient exploration in binary
and preferential Bayesian optimization. arXiv preprint
arXiv:2110.09361, 2021.

Genton, M. G., Keyes, D. E., and Turkiyyah, G. Hierarchical
decompositions for the computation of high-dimensional

9



Towards Practical Preferential Bayesian Optimization with Skew Gaussian Processes

multivariate normal probabilities. Journal of Computa-
tional and Graphical Statistics, pp. 268–277, 2017.

Genz, A. Numerical computation of multivariate normal
probabilities. Journal of Computational and Graphical
Statistics, 1:141–150, 1992.

Gessner, A., Kanjilal, O., and Hennig, P. Integrals over
Gaussians under linear domain constraints. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 2764–2774. PMLR, 2020.

Geweke, J. Efficient simulation from the multivariate normal
and student-t distributions subject to linear constraints
and the evaluation of constraint probabilities. In Com-
puting science and statistics: Proceedings of the 23rd
symposium on the interface, pp. 571–578, 1991.
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A. Proof of Proposition 3.1
We here prove Proposition 3.1. The joint posterior distribution of f tes and vt is truncated MVN, in which vt is truncated
above at 0, as follows:

p(f tes,vt|vt < 0) =
Pr(vt < 0|f tes,vt)p(f tes,vt)

Pr(vt < 0)
.

Then, we can see that Pr(vt < 0|f tes,vt) = 1{vt < 0}, where 1{vt < 0} = 1 if vt < 0, and 0 otherwise. Hence, we
can obtain

p(f tes,vt|vt < 0) =
1{vt < 0}p(f tes,vt)

Pr(vt < 0)

= p(f tes|vt)
1{vt < 0}p(vt)

Pr(vt < 0)
.

Furthermore, we know that p(vt|vt < 0) = 1{vt<0}p(vt)
Pr(vt<0) . Therefore, we derive

p(f tes,vt|vt < 0) = p(f tes|vt)p(vt|vt < 0),

which shows p(f tes|vt) = p(f tes|vt,vt < 0). Since f tes is arbitrary, f | vt is a GP.

We can obtain other proof. From the property of truncated MVN (Horrace, 2005, Conclusion 5), the conditional distribution
of truncated MVN is truncated MVN keeping the original truncation, in which the parameters can be computed as with usual
MVN. Therefore, since remained variable f tes is not truncated, the conditional distribution p(f tes | vt,vt < 0) is MVN:

f tes | vt,vt < 0 ∼ N (µtes|v,Σtes|v),

which is equivalent to the distribution p(f tes | vt). Hence, we can see that f | vt is a GP.

B. Detailed Derivation of Statistics for Skew GP
Variance: From the law of total variance, we can decompose the variance as follows:

Vf |vt<0[f tes] = Vt[Ef |vt
[f tes]] + Et[Vf |vt

[f tes]]

= Vt[µtes|v] + Et[Σtes|v] (∵ Proposition 3.1)

= Vt[µtes|v] +Σtes|v. (∵ Σtes|v does not depend on vt.)

CDF of f(x): We can derive as follows:

Pr
(
[f tes]i ≤ c|vt < 0

)
= Et

[
Pr
(
[f tes]i ≤ c|vt,vt < 0

)]
= Et

[
Φ

(
c− [µtes|v]i√

[Σtes|v]i,i

)]
. (∵ Proposition 3.1)

Probability of Duel: Given vt, [f tes]i and [f tes]j follow MVN jointly. Therefore, [f tes]i − [f tes]j |vt also follows the
Gaussian distribution N ([µtes|v]i − [µtes|v]j , [Σtes|v]i,i + [Σtes|v]j,j − 2[Σtes|v]i,j). Then, we can obtain the estimator as
follows:

Pr
(
[f tes]i ≤ [f tes]j |vt < 0

)
= Pr

(
[f tes]i − [f tes]j ≤ 0|vt < 0

)
= Et

[
Pr
(
[f tes]i − [f tes]j ≤ 0|vt,vt ≤ 0

)]
= Et

[
Φ

(
[µtes|v]j − [µtes|v]i√

[Σtes|v]i,i + [Σtes|v]j,j − 2[Σtes|v]i,j

)]
. (∵ Proposition 3.1)
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Algorithm 2 Binary search for quantiles of skew GP

Input: F̂i : R→ [0, 1], the desired percentage α ∈ (0, 1), tolerance ϵ
1: c← Φ−1(α)

2: [ℓ, u]←
[
mink[µtes|ṽt,k

]i + c
√

[Σtes|ṽt,k
]i,i,maxk[µtes|ṽt,k

]i + c
√
[Σtes|ṽt,k

]i,i

]
3: while |F̂i(γ)− α| > ϵ do
4: γ ← F̂i

(
(ℓ+ u)/2

)
5: if γ > α then
6: u← (ℓ+ u)/2
7: else
8: ℓ← (ℓ+ u)/2
9: end if

10: end while
Output: γ

Quantile: As mentioned in the main paper, the quantile estimators can be defined as an inverse function of the MC
estimator of Eq. (5). Let the estimator of Eq. (5) be F̂i : R→ [0, 1]. Unfortunately, since F̂i is defined as the mean of the
CDF of Gaussian distribution, the analytical form of F̂ (−1)

i is unknown. Therefore, we apply the binary search to F̂i. We
define the initial search interval from the M MC samples ṽt,k, where k ∈ {1, . . . ,M}. From the construction of F̂i, we see
that

F̂
(−1)
i (α) ∈ [ℓ, u] :=

[
min
k

[µtes|ṽt,k
]i + c

√
[Σtes|ṽt,k

]i,i,max
k

[µtes|ṽt,k
]i + c

√
[Σtes|ṽt,k

]i,i

]
,

where α ∈ (0, 1), c = Φ−1(α), and ℓ and u are the most extreme value of the quantiles of [f tes]i|ṽt,k over k ∈ {1, . . . ,M}.
Therefore, we use [ℓ, u] as the initial interval. Algorithm 2 shows the pseudo-code.

C. Proof of Proposition 3.2
We show the general fact for the MC estimator. Let X and Y be random variables, where Y depends on X . Furthermore, we
assume the conditional expectation µY |X := EY |X [Y ] can be analytically calculated from a realization of X . Then, Y itself
and µY |X are both unbiased estimators of E[Y ], i.e., EY [Y ] = EX [µY |X ]. Intuitively, since µY |X is computed analytically
with respect to the expectation of Y |X , it should be a better estimator than Y . This intuition is justified by the law of total
variance shown below:

V[Y ] = VX [µY |X ] + EX [VY |X [Y ]].

Since EX [VY |X [Y ]] ≥ 0, we see VX [µY |X ] ≤ V[Y ]. In the case of our mean estimator, X , Y , and µY |X correspond to vt,
f(xi,tes), and µtes|vt

. This concludes the proof.

D. Detailed Procedure of Gibbs Sampling for TMVN
Let us consider the sampling from TMVN p(v|v < 0), where original v ∈ Rn follows MVN below:

v ∼ N (0,Σ),

where Σ ∈ Rn×n is an arbitrary covariance matrix. Let vj and v−j be j-th element of v and the vector consisting of the
elements except for vj , respectively. In Gibbs sampling, we repeat the sampling vj | v−j , vj < 0, which follows a univariate
truncated normal distribution. The conditional distribution vj | v−j ∼ N (µj , σ

2
j ), where µj and σ2

j are computed efficiently
by computing Σ−1 once (Rasmussen & Williams, 2005, Section 5.4.2). Algorithm 3 shows the procedure of Gibbs sampling.
For the sampling from the univariate truncated normal distribution, we employed the efficient rejection sampling (Li &
Ghosh, 2015, Section 2.1), which uses several proposal distributions depending on the truncation. Note that we did not
employ the transformation of v, which is proposed in (Li & Ghosh, 2015, Section 2.2) to improve the mixing time. This is
because we cannot confirm the effectiveness of this transformation due to additional computational time for transformation.
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Algorithm 3 Gibbs sampling for TMVN

Input: v(0), Σ
Compute Σ−1

for i = 1, . . . do
v(i) ← v(i−1)

for j = 1, . . . , n do
µ
(i)
j ← [Σ−1v(i)]j/[Σ

−1]jj

Set v(i)j by the sampling from N (µ
(i)
j , σ2

j = 1/[Σ−1]jj) with truncation above at 0
end for

end for

E. Difference between Hallucination and Kriging Believer
Kriging believer (KB) (Shahriari et al., 2016) is a well-known heuristic for parallel BO. KB conditions on the ongoing
function evaluation by the posterior mean, and then the next batch point is selected using this GP conditioned by the posterior
mean. Some variants, called constant liar, use some predefined constant instead of the posterior mean. Furthermore, some
studies averaged the resulting AF value by the sample of the posterior normal distribution (e.g., Snoek et al., 2012). These
studies aim to guarantee the diversity of the batch points via penalization by conditioning.

On the other hand, one of the important aims of HB is to reduce the skew GP to the standard GP. For this purpose, we
conditioned the latent truncated variable vt, which is not related to parallel BO. Furthermore, in preferential BO, if we
conditioned the constant including the posterior mean, preferential BO methods cannot consider the skewness. Thus, the
conditioning by the constant results in poor performance as with Gaussian approximation. On the other hand, although
averaging by the samples from the posterior is promising, it requires huge computational time for MCMC with respect to
skew GP. Hence, we employed the conditioning by the hallucination of vt.

F. Detailed Experimental Settings
All the details of benchmark functions are shown in https://www.sfu.ca/˜ssurjano/optimization.html.

Comparison of Preferential GPs: We fitted LA-, EP-, and MCMC-based preferential GP with RBF kernel to 50 uniformly
random duels in 10 random trials. We set σ2

noise = 10−4, and the hyperparameters of RBF kernel are determined by marginal
likelihood maximization (Rasmussen & Williams, 2005), for which we use LA-based marginal likelihood estimation. We
evaluate the estimators of the mean, mode, and the duel probabilities Prt

(
f(x) ≻ f(x′)

)
at 100 uniformly random inputs

and inputs included in the training duels. The MCMC uses 10000 MC samples, 1000 burn-in, and 10 thinning.

Comparison of Preferential BO Methods: Although (Benavoli et al., 2021a) originally employed LinESS for the
sampling from truncated MVN, we employed Gibbs sampling in DuelTS, DuelUCB, and EIIG, as with our proposed
methods, for a fair comparison. For the parameters for Gibbs sampling, burn-in is 1000, and the MC sample size for
DuelUCB and EIIG is 1000 (thinning is not performed). Other settings for existing methods, such as the percentage for
UCB, are set as with the suggestion from the original paper. For HB-UCB, we use β1/2 = 2.

G. Additional Experiments
In this section, we provide additional experimental results.

G.1. Marginal Likelihood Approximation

The marginal likelihood of the preferential GP model is Pr(vt < 0), the CDF of MVN. LA and EP can provide computa-
tionally efficient approximations of this. In the literature of GPC, Kuss & Rasmussen (2005) showed the broad evaluations
for the accuracy of these approximations, which suggest that EP is accurate. Furthermore, Kuss & Rasmussen (2005,
Section 7.2) described that LA is also accurate if the noise variance σ2

noise < 1. We here show the examples using the Branin
function in Figure 5, in which the marginal likelihood approximations by Scipy CDF of MVN, LA, and EP are shown. We
can see that LA and EP show reasonable approximations for the marginal likelihood. In addition, the computational time
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Figure 5. Log marginal likelihood estimations for Branin function by Scipy CDF of MVN, LA, and EP. Vertical and horizontal axes
represent lengthscales of RBF kernel. In titles, averages of computational times are shown.

Table 2. The mean and standard deviation of computational time of MCMC for Figure 6 (a) and Figure 7 (a) with 10 random trials.
Time (sec) LinESS Gibbs sampling

Holder table 1.71± 0.00 0.55± 0.02
Hartmann6 1.64± 0.00 0.56± 0.00

shown in the title implies the efficiency of LA. Therefore, we employed the LA-based marginal likelihood approximation
throughout the paper.

G.2. Approximation of Preferential GP for Other Benchmark Functions

We here show the additional experiments regarding preferential GP, which include the comparisons between Gibbs sampling
and LinESS, MCMC and LA and EP, and our MC estimator and the full MC estimator, using the Holder table and Hartmann6
functions. The experimental settings are the same as the experiments for the Ackley function.

Figures 6 and 7 show the results of the Holder table and Hartmann6 functions, respectively. We can observe the same
tendency as the Ackley function. Only in Figure 6 (b), the difference between the RMSE of MC estimators is lower than
those of other functions. This is because, since the dimension of the Holder table functions is relatively low, the remaining
uncertainty of f |vt is smaller than that in other functions. Furthermore, we can confirm the computational efficiency of
Gibbs sampling also for the Holder table and Hartmann6 functions, as shown in Table 2.

G.3. Regret Evaluation for Other Benchmark Functions

Figure 8 shows the results for the Cross in tray, Langerman, Levy13, and Levy functions. In these plots, we can still confirm
that the proposed methods, HB-EI and HB-UCB, show superior performance in terms of both computational time and
iteration.

G.4. Comparison of HB with Other AFs

In this section, we evaluate which AF is suitable to combine with HB. Figure 9 shows the comparisons of HB with several
AFs. Note that, in Figure 9, the horizontal axis is the iterations since the computational time of each method does not differ
largely from each other. HB-EI and HB-UCB are the same as the methods shown in the main paper and are plotted for
comparison. HB-mean chooses the second input as the maximizer of the mean of f |vt = ṽt. HB-MUC and HB-BVEI
choose the second input using MUC(González et al., 2017; Fauvel & Chalk, 2021) and bivariate EI(Nielsen et al., 2015),
respectively. All experimental settings are the same as the experiments in Section 6.

We can see that HB-MUC and HB-BVEI are relatively inferior to HB-EI and HB-UCB, particularly in Ackley and Hartmann3
functions. We conjecture that HB-MUC and HB-BVEI deteriorate by over-exploration, which is caused by the randomization
of HB and considering the correlation between the first and second inputs by MUC and BVEI. On the other hand, HB-mean
shows comparable performance with HB-EI and HB-UCB except for the Holder table function. This could be attributed to
HB facilitating the appropriate exploration while the mean maximization is exploitative.
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The above experimental results suggest the discussion about the exploit-exploration tradeoff. Since HB facilitates the
exploration, a good choice of the exploit-exploration tradeoff can differ from the usual BO. A more systematic way to
choose the exploit-exploration tradeoff in the HB method is one of the important future works.
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(a) Trace and autocorrelation plots of proposed MC estimator and
full MC estimator (Benavoli et al., 2021a).
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Figure 6. Reuslts of the Holder table function (d = 2).
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(a) Trace and autocorrelation plots of proposed MC estimator and
full MC estimator (Benavoli et al., 2021a).
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Figure 7. Reuslts of the Hartmann6 function (d = 2).
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Figure 8. Average and standard error of the proposed methods (HB-EI and HB-UCB) and the state-of-the-art preferential BO methods.
The horizontal axis represents (a) the computational time (sec) and (b) the number of iterations. The vertical axis represents the regret,
which is the smaller, the better it is.
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Figure 9. Average and standard error of the regret of the proposed HB with several AFs. The horizontal axis represents the number of
iterations. The vertical axis represents the regret, which is the smaller, the better it is.
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