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Abstract

Treatment assignment problems arise wherever limited budget must be allocated
to heterogeneous users, with applications ranging from personalized recommen-
dations to online advertising and healthcare. In such settings, individuals exhibit
heterogeneous responses to different treatments, making it essential to learn cost-
aware personalized treatments. This paper introduces the Cost per Unit Value
Equalization Tree (CUVET) algorithm, a novel treatment assignment approach
that partitions the user space. Under a diminishing-returns (power-law) assumption,
it solves the treatment assignment problem by equalizing the marginal cost per unit
value across each user group. This leads to a closed-form cost-aware treatment
assignment solution, making it particularly suited for large-scale applications such
as digital advertising. We also release CUVET-policy, a 87-million-impression
public benchmark derived from real-world industrial A/B tests, providing an
open-source evaluation framework for decision-focused learning. On both CUVET-
policy and the public MT-LIFT dataset, CUVET significantly improves baselines’
total value by +1% and +12.5% respectively, satisfying budget constraintsE]

1 Introduction

Treatment assignment problems are fundamental to decision-making across various fields because
they involve optimally distributing limited resources to maximize desired outcomes. The significance
of these problems arises from their direct impact on efficiency, productivity, equity, and sustainability,
whether for personalized online recommendations (Tu et al., 2021} [Betlei et al., [2024), energy
consumption forecasting (Wahdany et al., [2023)), food delivery platforms (Huang et al.| [2024).
Traditional machine learning-based methods excel at modeling correlations, but often fail to correctly
identify the underlying causal relationship between treatment and outcome. In most of these problems,
the relationship between resource allocation and the resulting value exhibits diminishing returns or
non-linear scaling behavior (Shephard and Fire, |1974; Hulatt, 2023; Mongeon et al., [2016).

Our contributions We propose a new method, the Cost per Unit Value Equalization Tree (CUVET)
approach, that leverages the economic nature of the value and cost functions under the power-law
elasticity assumption, resulting in a closed-form downstream solution as in a policy learning approach.
We empirically demonstrate the advantages of the proposed method for user-space bucketization and
policy learning over baseline approaches on synthetic and real-world data.

!The dataset is available on https://huggingface.co/datasets/anonadata/CUVET-policy
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2 The CUVET approach

Usually, the criterion we want to maximize (see Appendix [C|for a detailed problem formulation) is
not expressible in a closed-form way using estimates for a given partition. However the elasticity
assumption on the value and cost, often observed in real data, enables this criterion to be expressed
directly from offline data estimates (see Appendix for details), while solving the treatment
assignment problem implicitly at the same time. It therefore performs jointly both the partitioning
(step 1) and treatment assignment (step 2) problems.

Treatment assignment problem We consider treatments parameterized continuously as 7 =
{to(e), @ € [Qmin; Omax]}, With to(1) the reference treatment. The user space X is partitioned
into buckets B via a mapping 7w : X — B. For each bucket b € B, we denote the expected cost
and value outcomes under treatment « as (cp(x), vp()). We assume a power-law elasticity within
each bucket: vp(a) = vp(1) @, cp(cr) = cp(1) ™, with elasticity parameters 7, < 7 ensuring
concavity and thus capturing diminishing returns. Our treatment assignment for any given partition
should respect total fixed budget C'. Since v(-) is assumed to be an increasing function of ¢(-), the
maximum value under cost constraint is always reached at the constraint limit. Thus, we write the
optimization problem as a strict iso-cost constraint with a total budget C: >, c;(aw,) = C'. Overall,
our optimization problem is written as: maxg.557 g Vb(@(D)) s.t. > cpcp(@(b)) = C,In
the following, for all b € B, we will denote oy, = ¢(b).

2.1 Marginal Cost equalization

In econometric theory, we describe a market as being at the equilibrium when the market supply and
market demand curves meet. As a result this allows to estimate a price and quantity at the equilibrium.
In competitive markets, players should set their marginal cost equal to this price. Now, we can see
our setting as a market where each bucket is a player and the outcome value is the quantity. At
equilibrium, the marginal cost per unit of value in every bucket should be equal to the equilibrium
price. We can therefore write that a treatment assignment enables the market to be at the equilibrium
when marginal cost per unit of value is equal across buckets to fixed value i (to be computed later):

vb,b' € B mCUVy(ap) = mCUViy (o) := p, (1)
where for all b € B, mCUV,(«y) is the marginal cost of unit value in bucket b, evaluated for v = v,
withVa € A, mCUV,(«a) = 9e/av, ().
This yields a closed-form expression for the optimal «;, provided in Eq. (T6).

We demonstrate in Appendix [E.2] that the equalization of mCUYV is equivalent to the Lagrangian
multiplier optimization method.

Additionally, we want our allocation ¢ to respect the iso-cost constraint. This characterizes entirely
the value of ;4 which is used in (1) according to the following implicit equation:

.

b

b
Since Vb, 1, > s, the function f : . — >, cp(1) (#‘@(1)) "7 is continuous and increasing

and diverges in both infinities,which guarantee the existence of a unique solution g to (2). The value
of p can be determined with an optimization solver (for example by dichotomy or Brent’s method).

2.2 CUVET method for partitioning

We assume that in any region of the user space, cost-value relationships can be modeled as power-law
relationships as presented in (6)). Our goal is to use offline data to find a sequence of thresholds
performing binary split of the nested regions following the generic decision tree blueprint (Breiman,
1984). We provide pseudocode for our method in Algorithm I}

Recursive tree  Thorough exploration of all possible partitions is computationally prohibitive with
large-scale data. The decision tree approach circumvents this problem by adopting a greedy, recursive
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approach to partition exploration. We assume access to a candidate_generator function that
produces candidate splits expressed as a tuple (feature, threshold), see more details in appendix. The
splitting criterion is the one presented in (§) with only two buckets. At each split search, we select the
(feature, threshold) binary split which maximizes this criterion (which ensures maximally increased
value at iso-cost). Once the split is found, we recursively find next splits considering both resulting
leaves as input nodes for the two subsequent applications of the BuildTree function. The algo-
rithm stops when we reach a given stopping_criterion, defined from parameters max_depth,
min_samples_split, min_samples_leaf the definitions of which are given in appendix. Ap-
pendix states the optimality of the greedy mCUV-equalization tree.

3 Experiments

We provide a comprehensive evaluation of our CUVET algorithm and several baselines on two
large-scale, real-world datasets. We also provide an illustrative synthetic example which demonstrates
the blindspot of HTE-based baselines (which systematically find a suboptimal solution) while the
CUVET algorithm finds the optimal one in Appendix [F} Baselines are discussed in Appendix

Evaluation As treatment assignment is the targeted downstream problem, we estimate the quality
of produced assignments by comparing total value and total cost generated by the assignment
with those of the reference treatment. For any bucketization 3, we learn the optimal assignment
¢5 : B — T and compute the total value and cost of this assignment under the power-law assumption
©): v(op) = e vp(@p(D)). c(d5) = > e c(d5(b)). Denote the reference total value by
v(1) = >, vs(1) and reference total cost by ¢(1) = >, - ;5 cp(1). Our final metrics of interest are
relative uplift in value and cost, Avg and Acp respectively:

_ v(¢n) _ c¢n)
AUB = u(lB) — 1, ACB = C(f; —1.

Note that the greater Avg the better while for the cost we have the constraint Acg < 0.

3.1 MT-LIFT data

This publicE] dataset was collected from two months of randomized controlled trials on coupon
marketing scenarios for food delivery in the Meituan — China’s local living platform (Huang et al.|
2024). The dataset contains nearly 5.5M instances, 99 features, 5 treatments (coupons), and 2 labels:
click and conversion. See Appendix [G.T|for preprocessing details.

Results Results for Avg and Acp with respect to all evaluation methods are shown in Table
(graphical representation is deferred to Appendix [). Overall, CUVET consistently outperforms
baselines across all evaluation methods. On mCUYV eq. evaluation, CUVET,,,,; achieves +12.5%
total value compared to the reference treatment, though at the cost of high constraint violations.
This aligns with our earlier discussion on clipping: since the unclipped version allows a* > 0,
it can explore a wider range of values, potentially leading to higher returns but also exceeding
cost constraints. Conversely, CUVET,; appears more risk-averse. Under ILP evaluation, while
CUVET,,; achieves the highest Avg, results appear noisier. This is expected, as discretizing the
optimal treatment space (rather than allowing continuity) introduces variability. On LP evaluation,
both CUVET,,,; and CF-Het perform similarly, though the former exhibits higher variance. LP
results surpass ILP due to stochasticity, enabling smoother optimization and better generalization.

High-variance performance on MT-LIFT data indicates that capturing user behavior changes under
various treatments is difficult due to inherent noise present in the data. It would be useful to compare
results on a larger data volume to assess whether the observed trends hold consistently.

3.2 CUVET-policy data

We publish the CUVET-policy benchmarking datasetﬂ It was generated by an online advertising
platform that conducted a two-week A/B test of 5 different treatments. Data have been properly
anonymized so as to not disclose any private information, see Appendix [G.2] for details. The

2https://github.com/MTDJDSP/MT-LIFT
*https://huggingface.co/datasets/anonadata/CUVET-policy
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Table 1: MT-LIFT data: relative uplifts in v and c on test split. Highest Awvg result reported in bold.

CF-Het CFE-MSE CUVET; CUVET nc
Evaluation  Metric

mCUVeq. Aus 0.0054 £ 0.0084 0.0063 £ 0.0065 0.0791 £0.0154  0.1254 +0.0081
Acg 0.0094 + 0.0032 0.0049 + 0.0042 0.0230 £ 0.0062 0.0411 £+ 0.0053

ILP Avg —0.0007 £ 0.0228 0.0+0.0 0.0069 +0.0382 —0.0062 £+ 0.0381
Acp —0.0234 £+ 0.0083 0.0+0.0 0.0185 £ 0.0125 0.0098 + 0.0126
LP Avg 0.0344 £0.0284  —0.0221 £ 0.0151 0.0085 £ 0.0379  0.0345 £+ 0.0442

Acs 0.0265 £ 0.0099  —0.0078 £ 0.0057 | 0.0210 %+ 0.0124 0.0155 £ 0.0126

dataset contains 86.7M samples and each sample represents a bidding opportunity for which a multi-
dimensional context x € R” is observed. Let {ay }1 be the set of possible treatments (i.e. different
bidding strategies) parameters. A treatment with parameter oy, corresponds to uniformly multiplying
the bid values of the reference treatment t,. Therefore, our treatment set is defined in that case as
T ={a-ty, «a€ A} where A=[0.5,1.5]. The treatment parameters which are present (randomly
assigned) in the dataset are {«1, ag, g, ag, s} = {0.8,0.9,1,1.1,1.2} (where 1 corresponds to
the reference treatment), restricting ourselves in our assignment problem. The value represents an
advertising objective. Particular care has been taken to guarantee that each sample (z, a, v, ¢) is
independent. The goal is to learn a policy that assigns a continuous treatment « to users and generates
more value in expectation than the reference under the cost constraints.

Results Results for Avg and Acg using all evaluation methods are provided in Table [2] (graphical
representation is deferred to Appendix[J). As in the MT-LIFT case, CUVET consistently outperforms
baselines across all evaluation methods. On mCUYV eq. evaluation, both CUVET versions achieve
the highest total value, with a +1% gain compared to the reference — a significant improvement in
this domain — while only slightly violating the cost constraint (Acg = 0). This demonstrates the
general effectiveness of the CUVET algorithm and highlights the efficiency of clipping in particular.
Even under ILP evaluation, both CUVET versions yield superior results, with the unclipped version
appearing more risk-averse than the clipped one. In addition, analysis of the performance depending
on max_depth is provided in Appendix [J}

Table 2: CUVET-policy data: relative uplifts in v and ¢ on test split. Highest Avy result reported in
bold.

CF-Het CF-MSE CUVET, CUVETna
Evaluation  Metric

mCUVeq. Awvg | 0.0042+£0.0029 0.0055+0.0036 | 0.0103 +0.0033  0.0098 £ 0.0036
Acp 0.0015 £ 0.0016  —0.0017 £ 0.0018 | 0.0019 £ 0.0013 0.0010 £ 0.0010

ILP Avp | 0.0105+0.0100  0.0082 £ 0.0131 0.0149 £ 0.0100  0.0118 £ 0.0060
Acs 0.0026 £0.0032 —0.0005 £ 0.0057 | 0.0045+0.0038  —0.0013 £ 0.0021
LP Avs | 0.0111+0.0098  0.0053 £ 0.0102 0.0094 +0.0096  0.0155 £ 0.0109

Acg 0.0036 £ 0.0035  0.0002 £ 0.0036 0.0035 £+ 0.0043 0.0023 £ 0.0029

4 Conclusion

This paper introduces CUVET (Cost per Unit Value Equalization Tree), a novel policy learning
approach which partitions the user space based on marginal cost per unit value equalization while
respecting the cost constraint. CUVET offers an interpretable, structured framework for efficient treat-
ment assignment, integrating domain knowledge into a closed-form solution, particularly beneficial
for large-scale digital advertising and decision-focused learning. The CUVET method is based on the
power-law form for the value-cost relationship, which may not always hold in real-world use-cases
but is realistic in practice: indeed, our algorithm outperforms baselines on real-world data for which
we do not have prior guarantees that the power-law assumption is satisfied, possible extensions and
future work are reported to Appendix|D} We also release the CUVET-policy benchmark, a new dataset
generated from real-world A/B tests, to contribute to the advance of open and reproducible research
in decision-focused learning.
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A Related works

In many decision-making scenarios, individuals exhibit significant heterogeneity in their responses to
different treatments or interventions. Effectively leveraging this heterogeneity requires learning a
personalized decision-making rule—called a policy—that maps a user’s individual characteristics to
the treatment to be assigned to that user. This paper focuses on the problem of learning treatment
assignment policies from (offline) experimental data, a setting that has gained prominence with the
increasing availability of large-scale datasets across diverse domains such as healthcare, incentive
recommendation, and digital advertising (Huang et al.l 2024; |Vladimirova et al., 2024; [Diemert
et al., 2018} 2021). The data usually contain features representing individual characteristics, actions
corresponding to treatment assignments and observed outcomes resulting from those policies.

A/B tests (randomized controlled experiments) are widely used to evaluate the effectiveness of
different interventions, and constitute a particularly relevant source of exploitable offline data (Kohavi
et al., 2013} 2014; [Tang et al.l 2010; Xu et al., 2015). In an A/B test setting, individuals are
randomly assigned to different treatment groups, ensuring that the collected data provides an unbiased
estimate of treatment effects. However, traditional A/B testing often focuses on estimating the average
treatment effect rather than learning personalized policies that account for individual heterogeneity (Tu
et al.l [2021). By leveraging policy learning techniques, we aim to go beyond average treatment
effect estimation, in order to identify individualized treatment rules that maximize outcomes at the
individual level.

Estimating the causal effect of a specific treatment assignment on our outcome of interest (i.e. cost
and value) is made difficult due to the fundamental problem of causal inference. In addition, in some
applications, the experimental data contains additional complexities. For instance, online advertising
suffers from imperfect attributions: there usually are several ads displayed in the few hours preceding
each conversion, making it not straightforward to choose which action or ad placement should receive
the reward for a subsequent conversion. One could assign rewards to several previous ad displays
following a multi-touch attribution rule (Du et al.| 2019a}; |Ji and Wang| [2017; Ren et al.| 2018}
Bompaire et al.| |2021), though it does not entirely solve the label imperfection issue. These factors
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lead to typically very noisy experimental data, which contribute to making individual causal effect
estimation an even harder problem.

A way to simplify the problem is to group similar users together into buckets (also called cohorts)
and study aggregated causal effects, which are less noisy and easier to estimate than individual ones.
This approach involves heterogeneous treatment effect (HTE) estimation or one of its sub-disciplines,
namely subgroup discovery and subgroup analysis, to find an effective space partitioning (Athey and
Imbens, 2016} [Wager and Atheyl 2018; Tu et al.| [2021} |Lee et al., 2020, |2024). The main drawback
of these methods is a lack of scalability. Another more pragmatic approach is to opt for scalable,
quantile-based partitionings (Betlei et al.| [2024)), which are less precise in regrouping users with
similar causal effects. A reasonable partitioning can also be proposed by a domain expert or by taking
into account the economic nature of the data.

Once both the user space and the treatment effects are estimated, there only remains a standard
knapsack-like optimization problem in order to optimally assign policies to each bucket of users.
Such problems are known to be NP-hard and solving them requires approximation algorithms that
are often not suited for large-scale data (Tu et al.,|2021} Betlei et al.| [2024; [Zhou et al.| |2023a} |Albert
and Goldenberg, [2022)).

Diminishing returns assumption. The diminishing returns assumption is widely used across
economics, business, engineering, and psychology, particularly in knapsack-like allocation problems.
It states that as input increases, the marginal gain from each additional unit of input decreases (Gabaix|,
2009; [Shephard and Firel |1974} Hulatt, 2023 Mongeon et al.,|2016). Many real-world phenomena
exhibit diminishing returns, such as efficiency improvements in hardware systems (e.g., car engines,
batteries), where early optimizations provide large gains, but subsequent improvements become
increasingly difficult. In machine learning, this principle underlies scaling laws, where increasing
compute or amount of data yields diminishing performance improvements (Kaplan et al., [2020).
Similarly, in marketing, increasing advertising budgets does not lead to proportional increases in
sales due to market saturation (Zhou et al.l 2023a; [Zhao et al.l [2019). In assignment problems,
returns are often modeled as following a power-law relationships, where a small number of items
contribute most of the value (Clauset et al.,2009). For example, in digital advertising, initial spending
brings high returns, but additional budget allocation saturates quickly, making cost-aware allocation
crucial (Simchi-Levi and Wang|, 2023)). Understanding these diminishing returns is essential for
optimizing treatment assignment policies and improving resource allocation in various applications.

Two-stage learning. From a causal perspective, the allocation problems have two different issues to
tackle: (i) treatment effect estimation, which predicts the expected benefit of each intervention, and (ii)
optimization, often referred to as the treatment assignment problem. A common approach is to treat
each step (treatment effect estimation and assignment) separately (Ai et al.,2022; |Albert and Golden-
berg, 2022} [Tu et al., 2021} [Zhao et al., 2019} [Yan et al.,|2023; Wu et al., 2022). However, proceeding
in two steps has significant drawbacks: it incorporates cost considerations only in the second stage,
leading to decision errors if the first-stage estimates are high-variance or biased (Ferndndez-Loria
et al.,[2022)). In particular, errors in treatment effect estimation propagate into the optimization step,
resulting in suboptimal allocations. To address this, the decision-focused approach (Mandi et al.,
2023) integrates cost-aware learning in the first stage, ensuring that predictions are directly optimized
for downstream decision-making tasks, reducing the impact of estimation errors.

Decision-focused learning. Instead of separating treatment effect estimation and allocation,
decision-focused learning integrates them into a single optimization problem, aligning predictions
with decision outcomes (Mandi et al., 2023; Elmachtoub and Grigas, [2022). One challenge in
decision-focused learning is computational complexity, i.e. solving the end-to-end optimization
problem often requires to reformulate the problem into differentiable optimization layers, for instance,
focusing on ranking problem as an end goal (Du et al.,[2019b;|Zhou et al.| [2023a). Other formulations
cast treatment assignment as a stochastic optimization problem (Tu et al.,[2021)), assuming normally
distributed outcomes of bucket-level objective and constraints, with the final problem remains in
the knapsack form. However, the bucketization is based on the causal tree approach (Athey and
Imbens) 2016)) which is not fully incorporated into the decision-focused framework. Similarly, Betlei
et al.| (2024)) reformulate the optimization criteria, focusing on maximizing the probability of success,
such as the likelihood of a positive A/B test outcome. However, their method does not explicitly
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Table 3: Comparison of different methods and their characteristics. In the “Problem” column, “HTE”
stands for “HTE estimation”, “HTE for TA” is for “HTE estimation for Treatment Assignment” and
“TA” is for “Treatment Assignment”.

Applicable to Incorporate

Method Problem Treatment type Large-Scale Data  Constraints End-to-end
Causal Tree (CT) (Athey and Imbens![2016) HTE Binary v X X
Causal Forest (CF) (Athey et al.|[2019) HTE Multiple v X X
Merging trees (Tu et al.|[2021) HTE for TA Multiple 4 X X
Large-Scale Budget-Constrained CF (Ai et al.;|2022)  HTE for TA Multiple 4 v X
Distill-HTE (Wu et al.|[2022) HTE for TA Multiple v X X
Optimal Prescriptive Trees (Jo et al.|[2021) TA Multiple X v v
Optimal Policy Trees (Amram et al.|[2022) TA Any 4 X v
CAIPWL (Zhou et al.{|2023b) TA Multiple X v v
CUVET (ours) TA Continuous or Discretized v v v

incorporate user-space bucketization in the optimization phase. Addressing these limitations remains
an active area of research.

Policy learning. From a policy learning perspective, the goal is to learn an optimal treatment
assignment policy that directly maps individual characteristics to the best treatment, rather than
relying on a separate treatment effect estimation step (Zhou et al., 2023b). Advances in offline policy
learning allow for direct learning of policies from observational and experimental data, effectively
bypassing the challenges of high-variance treatment effect estimation (Swaminathan and Joachims),
2015} [Kitagawa and Tetenovl, [2018]; Kallus| [2018)). Most of the state-of-the-art methods that take
into account partitioning are built on the idea of optimal trees (Bertsimas and Dunnl 2017; Jo et al.|
2021; /Amram et al., 2022} Zhou et al.,|2023b). Compared to traditional two-stage approaches, policy
learning can be more robust to estimation errors and better suited for large-scale decision-making
problems where individual-level heterogeneity plays a crucial role. Despite these advantages, policy
learning can be computationally demanding (Jo et al., 2021; Zhou et al 2023b)), particularly in
settings with high-dimensional feature spaces or limited interventional data.

Our work empirically compares our algorithm to several baseline approaches with a similar focus,
categorized into three main groups: HTE estimation methods (e.g., Causal Tree (Athey and Imbens|
2016), Causal Forest (Athey et al.l[2019)), treatment assignment approaches via HTE estimation (A1
et al.|, [2022; Tu et al., 2021; Wu et al. [2022)), and direct treatment assignment methods (Jo et al.|
2021; |Amram et al., 2022; Zhou et al.,|2023a)). These baselines, while effective, have limitations in
flexibility, scalability, or computational efficiency, which we discuss in detail in Section [B|and which
our algorithm aims to address.

B Baseline approaches

We discuss possible connection of the described problem with two-stage, decision-focused and policy
learning in Appendix |A] Here we focus on baseline approaches relevant to our problem, where our
main goal is to find a relevant user space bucketization. A detailed comparison of the methods is
shown in Table Bl

Most of the approaches can be divided into three main categories depending on the exact problem
they are designed to solve in the first place, even if they can all be used to partition the user space
(which is what our work focuses on).

HTE estimation methods The Causal Tree (CT) |Athey and Imbens| (2016) algorithm uses a
recursive partitioning approach to identify the buckets which share similar heterogeneous effects of a
given binary treatment. Its splitting criteria is a modified version of the mean squared error (MSE)
while penalizing higher estimation variances. Since CT is only applicable to binary treatments, it is
much less flexible than our approach but can still be used as a baseline in those cases. Causal Forest
(CF) (Athey et al.,|2019) extend CT to ensemble models and solves a local moment equation problem
— allowing CF trees to handle multiple treatment.

HTE estimation methods are used only as the first step (partitioning) of a two-stage approach to
treatment assignment, requiring downstream methods to solve the second step (assignment).
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Treatment assignment approaches via HTE estimation Several methods improve on CT and
CF to optimize on the downstream, treatment assignment task. |A1 et al.| (2022)) modify the splitting
criteria of CF that allows similar users from multiple treatment groups to reside in the same node. [Tu
et al.| (2021) learn one causal tree for each (treatment, outcome) pair and merge resulted buckets into
a single tree. In Distill-HTE (Wu et al., 2022)), distillation techniques are used to learn one multi-task
decision tree from a black-box HTE model — in particular a Gradient Boosting Decision Tree (GBDT)
model may be learned each (treatment, outcome) pair.

Although latter methods are claimed to be scalable, training and maintaining |7 | - || models is
computationally intensive.

Direct treatment assignment methods Methods of this category are mostly built on the idea
of optimal trees (Bertsimas and Dunn|, 2017). [Zhu et al.| (2020) develop scalable mixed-integer
programming tree method for training multivariate decision trees, using a 1-norm SVM to maximize
the number of correctly classified instances and to maximize the margin between clusters at the leaf
nodes. [Jo et al.|(2021)) propose a method for learning optimal prescriptive trees using mixed-integer
optimization. Under mild conditions their method converges to an optimal out-of-sample treatment
assignment policy, as the data size tends to infinity. /Amram et al.| (2022) extend the exact optimal
trees using coordinate ascent to the problem of learning prescription policies based on complete
counterfactual information. Resulting Optimal Policy Trees are interpretable and scalable, handling
both discrete and continuous treatments. (Zhou et al.l 2023b) study a family of doubly robust
algorithms for multi-action policy learning. They develop a customized tree-search based algorithm
that finds the exact optimal tree in the policy optimization step.

Unfortunately, most of direct treatment assignment approaches are NP-hard (Jo et al., 2021)), in-
sufficiently scalable (Zhu et al.|(2020)’s handles up to 245,000 samples;|Zhou et al.|(2023b)’s has
complexity of O(|X|?), solving an exact tree search problem in 2.5 hours on a small dataset with
|X| = 10°,d = 12 and | T| = 3), or use proprietary software (Amram et al., [2022).

C Problem formulation

Let X C R? be a d—dimensional feature space, and X € X be the random variable containing users
features.

We assume we have at our disposal a collection of different treatments 7 in all generality this set
might be anything from finite to continuous, but we do not make any further assumption on the
structure of this set at this point. For simplicity, we will however consider that 7~ always contains a
reference treatment t(, which is a default treatment that is assigned to each user outside of ‘testing’
periods (for example in digital advertising, the reference treatment corresponds to the way production
operates by default; in medicine the reference treatment is a placebo). We denote Y = (Y€, Y?) € R?
the random outcome vector we observe after treatment assignation to users. The random variables
Y ¢ and YY" are respectively designating the cost and value at the user level.

Let us consider a fixed user u with features z € X and outcome vector y € R? (which are
respectively realizations of the random variables X and Y). For any treatment ¢ € T, we denote
y(t) = (y°(t), y"(¢t)) the potential outcome vector (Rubin, [1974), corresponding to the outcome
vector we would have observed had treatment ¢ been assigned to user .

C.1 Multi-treatment cost-constrained assignment

An optimal multi-treatment assignment (or policy) corresponds to a mapping b : X — T
assigning treatments to users so that the value of interest Y is maximized (in expectation) while
ensuring the cost Y ¢ is controlled. Typically, we ensure the expected cost of the policy is at most
equal to the expected cost resulting from applying the reference treatment ¢, to each user. In the
following, we denote C' = E[Y “(¢¢)] our allowed budget in the multiple treatment allocation problem.

With this in hand, we can now formalize the general treatment assignment — or policy learning
— problem at the user level:

Juax B (X)) st BV (u(X))] < C, ©)

10
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where the expectations are implicitly defined with respect to the joint distribution of variables X and
(Y (t))te7 underlying our considered setting.

Solving the treatment assignment problem This is a multi-treatment knapsack problem with
stochastic rewards, which has been extensively studied in the past decades. It can be solved with
linear programming (LP), which however does not scale easily: optimization solvers are not typically
designed for large-scale datasets, such as those encountered in online advertising (Tu et al.| 2021}
Albert and Goldenberg, 2022; Zhou et al., 2023a).

Treatment effect estimation and bucketization Whatever the method which is used to solve (3),
there remains the problem of estimating the effect of each treatment ¢ € T on each user. Provided we
have access to data resulting from a randomized controlled trial, a good solution to balance bias and
variance is to use bucket-level treatment effect estimation (instead of user-level), which requires a
bucketization of the user space[Tu et al.[(2021).

Reparametrization of the treatment assignment problem assuming a bucketization of the user
space A partition of the user space is given by a function 7 : X — I3, mapping the user feature
space X to a discrete set of buckets 3. Assuming a given partition function 7 : X — B, treatment
assignment problem (3) can be rewritten as

Jmax > V(o) sty Vi(e(b) < C, )
’ beB beB

where for every bucket b € 3 and treatment ¢t € 7T,
Y (t) = E[Y (8)[x(X) = b] - P((X) = b),

designates the bucket level expected outcome vector.

C.2 Continuous treatment and elasticity assumptions

Continuous treatment set assumption In the following, we assume the treatment collection set 7~
is of the form

T = {to(), o € A}, ©)

where A € R+ is an interval of the form [umin, Omax], and to(.) is a treatment parametrization such
that the reference treatment is ¢o(1). An example of such a continuous treatment set is presented in
Betlei et al.|(2024), where the authors consider a set II = {« - o } e Of ‘candidate policies’ (which
act as different treatments) in the context of bidding strategy design.

In practice treatments are bounded for two reasons. First, some hypotheses hold only locally, so
solutions should not stray too far from the reference treatment. Second, production systems typically
restrict large deviations from the reference to avoid unintended behavior.

Simplified notations For simplicity, we will denote Y («) the potential outcome variable cor-
responding to treatment t(«) € T, i.e. Y(a) = Y(¢(cr)). Moreover, we will designate the two
components of Y by (c,v) instead of (Y°,Y”). In particular for a bucket b € B we denote ¢}, := Y}’
and v, := Y},

Elasticity assumption It is quite common to model the behavior of quantitative metrics using elastic
relationships, which describe the sensitivity of these variables to a change in a cause variable (Phillips|
2021} [Zhao et al., 2019} [Zhou et al., |2023a). This assumption is commonly used in real-world
applications: for example, advertising spend typically shows an elastic return curve (Yan et al., 2023
Zhou et al.| [2023a).

We choose to model the relationships between the treatment parameter «, cost ¥ and value y" as
power-law (elastic) inside any given partition 7 : X — B. Formally, for any bucket b € B, we
assume there exist parameters 7y, and 7 such that:

vp(a) = vp(1)a,  cp(a) = ep(1)a™™. 6)

11
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This implies the following relationship between average value and cost inside bucket b:

b
¢ o
¥y € (ch(Qmin), co(@max))s vb(c) = vp(1) ( : ) :
ep(1)
For any b € B, ~, and 7, have to satisfy that y, < 7, in order for the function ¢, — v,(cp) to be
(strictly) concave. This concavity is needed for the principle of diminishing returns to apply: the
higher the spend in bucket b, the less spending an additional marginal amount has an effect on the
value.

D Limitations and future work

The power-law form for the value/cost relationship may not hold universally (as we describe in the
next paragraph), however, it is a natural first order assumption for concave functions (equivalent to a
local linear approximation for the log of the quantities).

Power-law assumption exception cases While the power-law elasticity assumption is very com-
mon, its applicability depends on the system dynamics. Below we provide several examples with
illustration from digital advertising when the power-law elasticity assumption is not realistic:

* If all competitors increase spending simultaneously or if most of the audience is already
reached, spending more leads to diminishing returns but not necessarily power-law. For
example, a brand is already dominating a browser search. The returns in these cases often
flatten out, but remain locally elastic

* If users are driven entirely by price, extra ad spend will not yield nonlinear gains. For
example, generic campaigns for undifferentiated products like USB cables.

CUVET future work Despite the strengths of CUVET demonstrated empirically, there exist several
interesting extensions:

» Temporal drift of elasticities: We assume elasticity parameters are fixed through time, but this
typically does not hold in the real-world. Future work could incorporate uncertainty-aware
methods like conformalized quantile regression.

* Scalability: Efficient pruning techniques could improve stability and prevent over-fitting.

* Multi-objective optimization: Extending CUVET to handle trade-offs (e.g. revenue vs.
engagement) and constraints (e.g. fairness, budget caps).

* Observational data: Adapting CUVET for non-randomized data using covariate adjustment
and causal inference methods would be a natural extension.

Addressing these challenges will enhance CUVET’s scalability, robustness, and applicability to
complex decision-making, inspiring further methods that leverage domain knowledge in large-scale
settings.

E Proofs

E.1 Optimal policy expression proposition
E.1.1 Optimal splitting criterion

We formulate the optimal policy in the following proposition, the proof of which is referred to Ap-
pendix

Proposition 1. For a given partition B, a treatment set T parametrized by a continuous o € A
as in O) and assuming power-law relationships as in () hold in every bucket from B, the optimal
treatment parameter « for each bucket b € 3 is expressed in the closed-form:

. p O
@ = (mC’UV},(l)) : )

12
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where i is the unique solution to @), Voo € A, mCUV,(«) = 9ev/ov,(cr) and ~yy,np are the
elasticity parameters from (6).

Now, computing the value of  from (2)), then injecting the resulting values of o given by (7)) in our
optimization objective (??) yields the following closed-form criterion:

> uplap), ®)

beB

which can be readily estimated using offline data estimates of the elasticity parameters for cost and
value. The core-idea of our CUVET approach is to perform recursive splitting as in any decision tree
algorithm using this criterion in order to determine the optimal successive splits. We give a detailed
pseudocode of this algorithm in the next subsection. The optimal solution will be the policy ¢* such
that for every bucket b, ¢*(b) = a; where the values of a;} are given by Proposition

E.1.2 Optimal splitting criterion proof
As areminder, fora € A
cp(a) = (1) x ™, 9)

vp(a) = vp(1) x ™. (10)

Straightforward derivations yield that for any possible value ¢; of the cost in b, v, can be expressed
as a function of ¢, as follows:

c Yo /Mb
vb(cb) = vb(cb(l)) X (Cb(b1)> .

We call €, = 73/ the elasticity of v, (value in b) relative to ¢, (cost in b). We assume that €, < 1
since the cost-value relationship is classically assumed to be concave in every bucket (decreasing
marginal gains). This in turn implies that v, < ), for all b € B.

Cost of Unit Value (CUV). Forb € B and a € A we define the cost of unit value in g for bid
multiplier « as:

(@)
CUVi(a) = , (11)
b( ) ’Ub(Ol)
which can be explicitly written using (9) and (10) as:
CUVy(a) = CUVy(1)a™ . (12)

This quantity corresponds to the average cost of value in the bucket b. In particular, for every b € 15,

CUV(1) = 528 and mCUV,(1) = %}f(l) are computable from offline data directly, without the

need for counterfactual estimation methods.

Marginal Cost of Unit Value (mCUV). Forb € B and a € A we define the marginal cost of unit
value in b for bid multiplier « as:

_ Ocp(@)

mCUVi(a) = 52,

which can be explicitly written using (9) and (T0) as:

mCUVy () = <CU2/b(1)> o™, (13)
b

This quantity corresponds to the cost of the next unit of value: it is the current cost of value in the
bucket b.

13
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Equalization. For all b,b’ € B let i1 be
mCUVy(ap) = mCUVy (ap) := . (14)
and with y satisfyinéﬂ

1/(1—Eb)

zb:cb(l) x (M) =S a0 =c (15)

For a given partition B, the optimal treatment for each bucket can be expressed in a closed-form
expression. From mCUVj(aj) = p we get

(CUVb(U

€b

)@ =g

Indeed, the optimal value of the treatment parameter « in each bucket, o, can be written as:

ol () = L € 1/(mo—) _ [ 1/(mo—s) 6
b CUV,(1) mCUV,(1) ’

taking into account the relationship between mCUV;(1) and CUV},(1).

E.2 Equivalence to Lagrange multipliers method

Proposition 2. Consider a given partition 3, a treatment set T parametrized by a continuous o € A
as in @) and assume power-law relationships as in (6) hold in every bucket from BB. Then the greedy
mCUV-equalization strategy consisting in equalizing marginal cost per unit value across user buckets
yields an optimal policy, i.e. a policy that maximizes total expected value under a fixed (iso-cost)
budget.

We prove Proposition |2} i.e. that equalization of mCUYV in buckets yields the same parameters « that
are found using constrained optimization.

Firstly, we formulate the constrained optimization problem for K buckets. We are seeking to
maximize the total expected value (sum of the values in each buckets), constrained by the total cost
not being greater than our fixed budget C'. This writes:

This can be reformulated using the Lagrangian function £ as follows:

K K
Llar, o, A) =D Vilap) = A (0 -3 C’b(ozb)>

b=1 b=1
K K

= > V(1) an™ = A (c -y a0 a)
b=1 b=1

*Equation (T3) has a unique solution since the expression on the right-hand side is strictly increasing in
and has value O for + = 0 and goes to +00 when g goes to +-oc.

14
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Writing out the first-order conditions yields:

oL a%(ab) 8Cb(ab)
—— =0 —A =0
30[1; = 8@;, 80[{,
= %(1) Vb * azbfl =A- Cb(l) My - Ongil
R A R AT S
T Oyt mOUVR(1) T mCUVi(aw)
1
= mCUVy(ap) = TTH
= ap = (- mCUV,(1)) 77
oL K
a —0:>b§::10b(ab) =C.

This exactly matches the values of o} given in (7) and iso-cost constraint (2)), and therefore proves
that equalizing marginal cost of unit value is equivalent to maximizing value under cost constraint as
stated.

F Synthetic example when CUVET outperforms Causal Forest

Synthetic setup We consider a single dimensional feature variable X, with x ~ 4/(0,1). We
introduce two thresholds ¢;, t3 € (0, 1) which define three buckets {b1, b, b3 }. We consider our data
results of applying a radomized control trial with two treatments: ap = 1 and o3 = 1.5. We design
the elasticity (power-law) parameters in each bucket so that the only proper split that should be learn
from a value optimization perspective is threshold ¢s.

Formally, we set {t1,t2} = {0.1,0.5}, and fix the following values for the power-law parameters
and reference (cost, value) per bucket:

'Ubl(l) = 6.5, Cbl(l) = 0.4, Yo, = 1, Mo, = 1.5
’Ub2(1) = 163, Cb2(1) = 0.1, Yo, = 1, Moy = 1.5
Ub3(1) = 1.197 Cb3(1) = 0.1, Yoy = 1, Moy = 1.5

The marginal cost of unit value (mCUV's), optimal p, values of o™ all have a closed-form expressions
with respect to those parameters. In this setting they are equal to:

mCUV (by) = mCUV (by) = 0.91, mCUV(b3) =~ 0.11
w01, a*(b)=0a"(b) =12, «a*(b3)=0.63

Intuition behind the setup We therefore see that the theoretical optimal treatment parameter o*
are the same for buckets b; and bo, and therefore the same for the whole region {z < 0.5}, while it is
different for bucket bs i.e. for the region {z > 0.5}. This implies that the single theoretically optimal
split should be made at threshold z = ¢5. However, the value and cost quantities are significantly
larger in bucket b, that will make any HTE-based method consider threshold ¢; as more important
since it better at splitting different heterogeneous treatment effects. However this HTE splitting is not
consistent with the best treatment assignment split in this context, making our method conceptually
outperform any HTE based method at the task of treatment assignment targeted partitioning.

Data We generate data of 300000 points with the defined parameters and create train/test splits

randomly in 50/50 proportion. For the outcome of CF we use y = v — gc.

Results. Firstly we plot the CUVET criterion value along with the optimal value o* with respect to
the chosen threshold on Figure|l} Following our expectations, CF always chooses t* = ¢; = 0.1,
while CUVET chooses t* = t5 = 0.5.

Results for Avg and Acp using mCUV equalization evaluation are provided in Table[d] We observe
that, on both train and test datasets, CUVET reaches much larger Avp than the baselines. At the
same time, while on the train set Acg = 0, we observe a small deviation of Acg from O on the test
set, explained by the variance in elasticity parameters estimations.
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Figure 1: Synthetic example: criterion and o as functions of the threshold .

Table 4: Synthetic example: relative uplifts Avg and Acp on train and test splits.

CF-Het CF-MSE | CUVET
Split  Metric

Train  Avg 0.0039  0.0039 0.0102
Acp 0.0 0.0 0.0

Test Avg 0.0038  0.0038 0.009
Acg | —0.001 —0.001 | —0.0016

G Additional data description

G.1 MT-LIFT details

Preprocessing As treatments represent coupons, we can treat them as ordered and apply our
methodology, allocating different coupons to different buckets. However, we introduce several
modifications of the data. Firstly, we normalize treatment values to be {0.8,0.9,1,1.1,1.2} and
define ty = 1 to be our reference treatment. Similar to (Zhou et al.||[2023a;|Yan et al., [2023)), we use
the "click" label as a proxy of the cost and "conversion" as the value. Surprisingly, we observe the
conversion elasticity with respect to treatment to be greater than the click one (v > 7).

In order to preserve v < 7, we scale the conversion variable by adding constants depending on
treatment:

o, = exp(log (1+v,,) + pu,) — 1

G.2 CUVET-policy privacy details

The original dataset does not include any data that directly identifies a user, such as names, postal
addresses, or email addresses in plain text, so the original data is pseudonymized. Further, we
manually selected some continuous user features, added noise, and standardized them, making the
re-identification impossible as the original scale is not provided. We further scaled and added noise
to the value and cost features to keep business confidentiality.
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Algorithm 1: CUVET Algorithm

Input: Train dataset X containing samples € X where = (z;);cy, I being the set of
features, value function v, cost function c, reference treatment o,
stopping_criterion, candidate_generator

QOutput: Tree T’

Function BuildTree(X, v, c, a):

// Function to build the tree recursively

if stopping_criterion met then

| return leaf node (X, v) with predicted value

Vmax < U
for (i, s) from candidate_generator do
// Find the best split maximizing ), vy(cy)
Xleft —Xn I[[SUZ < S], Xright «— X \ Xleft;
Estimate (1, 7, o, mCU V(1)) for b € {left, right};
Compute  from (I));
Compute o for b € {left, right}, see (7));
Compute vy = vp(of) for b € {left, right};
Compute v* = vjeg + Ufign
if v* > vyax then
| Umax < 0%, (i%,5%) < (4,5);

Create an internal node with split (i*, s*);
Partition X into X'*™ and X"¢" based on (i*, s*);
// Recursively build sub-trees

Tiete < BuildTree (X' Viefts Cleft a;"eﬁ) ;

Trighl < BuildTree (X”ghta Uright, Cright a;’;ghf) 5
Attach Tie and Tigp, to the internal node;
return tree 7'

// Start tree construction
T < BuildTree(X,v,c,a =1);
return 7’

H Reproducibility details

H.1 CUVET algorithm

When developing our algorithm we define multiple hyper-parameters that define
stopping_criterion, see Algorithm|[I}

* maximum depth max_depth as we do not know the true number of buckets,

* minimum number of samples per leaf min_samples_leaf. In all our experiments we will

. X
fix this parameter to Qmu‘dﬁ

* minimum number of samples to perform split min_samples_split. In all our experiments

. . X
we will fix this parameter to ledﬁ

For clipping, we use min and max treatment values.

Estimating elasticity parameters The value and cost elasticity parameters are not known in
advance and should be estimated for each region of interest. To do so, for each potential (feature,
threshold) split, we estimate those parameters by performing a linear regression on the logarithm of
the total outcome value and cost in both the ‘left’ and ‘right’ regions formed by the split. Note that
this implies our dataset contains at least two different (randomly assigned) values of the treatment
parameter « in each region: this typically is the case when using data extracted from a randomized
controlled trial (or A/B test) with two or more treatments.
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H.2 Baselines for experiments
In order to find an optimal treatment assignment ¢, three different approaches were chosen:

1. mCUYV equalization: optimal policy for each bucket is found in the closed-form expression
(see Section [2.1), representing the case where we let optimal policies to be continuous,
though inside the [@min, max] interval.

2. Integer Linear Programming (ILP): optimization is with respect to decision variables dy,
that are boolean indicators to assign treatment k to bucket b (this works when the treatment
set is discrete).

3. Linear Programming (LP): stochastic version of ILP - decision variables py;, are probabili-
ties to assign treatment k to bucket b.

As explained in Section [B] defining appropriate baselines to compare with CUVET is not straight-
forward. We compare CUVET to single trees output by the CF algorithm, as CF handles multiple
treatments and is suitable for large-scale datasets. As CF inputs only one outcome, we incorporate
the cost constraint in the splitting criterion by defining a proxy outcome as linear combination of
v and c. For the experiments, the CF algorithm from the EconML library (Battocchi et al., [2019)
was used. We use two splitting criterion of the CF tree, namely mean squared error CF-MSE and
heterogeneity score CF-Het (details are in Appendix [H.3)).

We also apply two versions of CUVET: in the clipped one (denoted in Seciton 3 as CUVET;) —
the values of aj are always clipped tO [y, Qmae] during training, while in unclipped version
(denoted in Seciton 3 as CUVET,,,;) we simply constrain c;; > 0 but allow the values to leave the
[@min, @maz] interval. Comparing output partitions from both approaches enables us to evaluate
how much clipping o* (and thus introducing a bias with respect to our theoretical result expressed in
Proposition[T)) is harmful for the final treatment assignment performance.

H.3 Example on building a tree with cost constraint

Cost constraint As we would like the possibility to have leaves at different levels (i.e to have an
odd number of buckets) , we should ensure the conservation of the total cost C' that we use to estimate
the splits.

Example. Consider a tree with a parent {1}, first-level children {2, 3} and leaves {4, 5, 6, 7}. In
particular, 2 <— 1 — 3, and both 2 and 3 have child leafs 4 < 2 — 5,6 < 3 — 7. We should
have: cq(af) + c5(af) = Co, ca(ad) + c3(af) = Ch, and c3(af) + ca(a}) + c5(af) = C. As a
result we should have: Cy = ¢o(a3). From this example, we can conclude we need to apply as a cost
constraint when growing the tree the optimal cost in the parent node. For the root node however, we
would use the total cost of the samples if it were under the policy of reference (i.e @ = 1).

H.4 Evaluation

For the outcome of CF we use y = v — %c — in this form y can be treated as proxy of revenue.

For the model selection, we run all methods with max_depth € {1,2,3}. On CUVET-policy data we
used validation split to select the best model, though on MT-LIFT data we reported the best models
on train split — as splitting it more would increase the noise in performance results.

In order to build confidence intervals for the results on real datasets, 10 bootstraps were generated for
both metrics: it was done on test split for MT-LIFT data and on both validation and test splits for
CUVET-policy data. For the error estimation, 1.96 * o values were used.

H.5 Causal Forest splitting criteria

These criteria used in[Battocchi et al.| (2019) package that solve any linear moment problem of the
form:
E[J-0(z)—A| X =2]=0

The ""mse" criterion finds splits that maximize the score:
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> wenita - Olira - BT | X € child] - Ocpira
child

This coincides with minimizing the MSE:
S T EY = (Oenira, T))? | X = child) - wenira
child

Internally, for the case of more than two treatments this criterion is approximated by computationally
simpler variants for computational purposes. In particular, it is replaced by:

Z Wenitd - pnira - Bl | X € child] - penia
child

where:

Pchild ‘= ‘]p_alTentE[A —J- Gpu,«ent | X € Cthd]

This can be thought of as a heterogeneity-inducing score, but putting more weight on scores with a
large minimum eigenvalue of the child Jacobian E[J | X € child], which leads to smaller variance
of the estimate and stronger identification of the parameters.

The ""het' criterion finds splits that maximize the pure parameter heterogeneity score:
T
Z Wehild * Pehild ° Pchild
child
This can be thought of as an approximation to the ideal heterogeneity score:

Wieft * Wright * ||9left - erightH%

2
wparent

I MT-LIFT data

I.1 Graphical representation of Table ]|
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Figure 2: MT-LIFT data: relative uplifts in v and c on test split.
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Figure 3: MT-LIFT data: relative uplifts in v and c on test split.
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Figure 4: MT-LIFT data: relative uplifts in v and c on test split.
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Figure 5: CUVET-policy data: relative uplifts in v and c on test split.
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Figure 6: CUVET-policy data: relative uplifts in v and c on test split.
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Figure 7: CUVET-policy data: relative uplifts in v and c on test split.
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660 J.2 Performance as a function of max_depth
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Figure 8: CUVET-policy data: relative uplifts in v and ¢ with respect to max depth of the tree using
mCUV — Eq evaluation approach, on validation split.
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Figure 9: CUVET-policy data: relative uplifts in v and ¢ with respect to max depth of the tree using
I LP evaluation approach, on validation split.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:
* You should answer [ Yes] , ,or [NAJ.

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).
The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it

(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
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Figure 10: CUVET-policy data: relative uplifts in v and ¢ with respect to max depth of the tree using
L P evaluation approach, on validation split.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
¢ Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [TODO]
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Justification: [TODO]
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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8.

10.

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [TODO]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [TODO]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not release new assets.
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14.

15.

16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [TODO]

Justification: [TODO]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [TODO]

Justification: [TODO]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [TODO]

Justification: [TODO]

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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