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Abstract

Treatment assignment problems arise wherever limited budget must be allocated1

to heterogeneous users, with applications ranging from personalized recommen-2

dations to online advertising and healthcare. In such settings, individuals exhibit3

heterogeneous responses to different treatments, making it essential to learn cost-4

aware personalized treatments. This paper introduces the Cost per Unit Value5

Equalization Tree (CUVET) algorithm, a novel treatment assignment approach6

that partitions the user space. Under a diminishing-returns (power-law) assumption,7

it solves the treatment assignment problem by equalizing the marginal cost per unit8

value across each user group. This leads to a closed-form cost-aware treatment9

assignment solution, making it particularly suited for large-scale applications such10

as digital advertising. We also release CUVET-policy, a 87-million-impression11

public benchmark derived from real-world industrial A/B tests, providing an12

open-source evaluation framework for decision-focused learning. On both CUVET-13

policy and the public MT-LIFT dataset, CUVET significantly improves baselines’14

total value by +1% and +12.5% respectively, satisfying budget constraints.115

1 Introduction16

Treatment assignment problems are fundamental to decision-making across various fields because17

they involve optimally distributing limited resources to maximize desired outcomes. The significance18

of these problems arises from their direct impact on efficiency, productivity, equity, and sustainability,19

whether for personalized online recommendations (Tu et al., 2021; Betlei et al., 2024), energy20

consumption forecasting (Wahdany et al., 2023), food delivery platforms (Huang et al., 2024).21

Traditional machine learning-based methods excel at modeling correlations, but often fail to correctly22

identify the underlying causal relationship between treatment and outcome. In most of these problems,23

the relationship between resource allocation and the resulting value exhibits diminishing returns or24

non-linear scaling behavior (Shephard and Färe, 1974; Hulatt, 2023; Mongeon et al., 2016).25

Our contributions We propose a new method, the Cost per Unit Value Equalization Tree (CUVET)26

approach, that leverages the economic nature of the value and cost functions under the power-law27

elasticity assumption, resulting in a closed-form downstream solution as in a policy learning approach.28

We empirically demonstrate the advantages of the proposed method for user-space bucketization and29

policy learning over baseline approaches on synthetic and real-world data.30

1The dataset is available on https://huggingface.co/datasets/anonadata/CUVET-policy

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



2 The CUVET approach31

Usually, the criterion we want to maximize (see Appendix C for a detailed problem formulation) is32

not expressible in a closed-form way using estimates for a given partition. However the elasticity33

assumption on the value and cost, often observed in real data, enables this criterion to be expressed34

directly from offline data estimates (see Appendix C.2 for details), while solving the treatment35

assignment problem implicitly at the same time. It therefore performs jointly both the partitioning36

(step 1) and treatment assignment (step 2) problems.37

Treatment assignment problem We consider treatments parameterized continuously as T =38

{t0(α), α ∈ [αmin, αmax]}, with t0(1) the reference treatment. The user space X is partitioned39

into buckets B via a mapping π : X → B. For each bucket b ∈ B, we denote the expected cost40

and value outcomes under treatment α as (cb(α), vb(α)). We assume a power-law elasticity within41

each bucket: vb(α) = vb(1)α
γb , cb(α) = cb(1)α

ηb , with elasticity parameters γb < ηb ensuring42

concavity and thus capturing diminishing returns. Our treatment assignment for any given partition43

should respect total fixed budget C. Since v(·) is assumed to be an increasing function of c(·), the44

maximum value under cost constraint is always reached at the constraint limit. Thus, we write the45

optimization problem as a strict iso-cost constraint with a total budget C:
∑
b cb(αb) = C. Overall,46

our optimization problem is written as: maxϕ:B→T
∑
b∈B vb(ϕ(b)) s.t.

∑
b∈B cb(ϕ(b)) = C, In47

the following, for all b ∈ B, we will denote αb = ϕ(b).48

2.1 Marginal Cost equalization49

In econometric theory, we describe a market as being at the equilibrium when the market supply and50

market demand curves meet. As a result this allows to estimate a price and quantity at the equilibrium.51

In competitive markets, players should set their marginal cost equal to this price. Now, we can see52

our setting as a market where each bucket is a player and the outcome value is the quantity. At53

equilibrium, the marginal cost per unit of value in every bucket should be equal to the equilibrium54

price. We can therefore write that a treatment assignment enables the market to be at the equilibrium55

when marginal cost per unit of value is equal across buckets to fixed value µ (to be computed later):56

∀b, b′ ∈ B mCUVb(αb) = mCUVb′(αb′) := µ, (1)

where for all b ∈ B, mCUVb(αb) is the marginal cost of unit value in bucket b, evaluated for α = αb57

with ∀α ∈ A, mCUVb(α) = ∂cb/∂vb(α).58

This yields a closed-form expression for the optimal αb provided in Eq. (16).59

We demonstrate in Appendix E.2 that the equalization of mCUV is equivalent to the Lagrangian60

multiplier optimization method.61

Additionally, we want our allocation ϕ to respect the iso-cost constraint. This characterizes entirely62

the value of µ which is used in (1) according to the following implicit equation:63 ∑
b

cb(1)

(
µ

mCUVb(1)

) ηb
ηb−γb

= C. (2)

Since ∀b, ηb > γb, the function f : x 7→
∑
b cb(1)

(
µ

mCUVb(1)

) ηb
ηb−γb is continuous and increasing64

and diverges in both infinities,which guarantee the existence of a unique solution µ to (2). The value65

of µ can be determined with an optimization solver (for example by dichotomy or Brent’s method).66

2.2 CUVET method for partitioning67

We assume that in any region of the user space, cost-value relationships can be modeled as power-law68

relationships as presented in (6). Our goal is to use offline data to find a sequence of thresholds69

performing binary split of the nested regions following the generic decision tree blueprint (Breiman,70

1984). We provide pseudocode for our method in Algorithm 1.71

Recursive tree Thorough exploration of all possible partitions is computationally prohibitive with72

large-scale data. The decision tree approach circumvents this problem by adopting a greedy, recursive73
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approach to partition exploration. We assume access to a candidate_generator function that74

produces candidate splits expressed as a tuple (feature, threshold), see more details in appendix. The75

splitting criterion is the one presented in (8) with only two buckets. At each split search, we select the76

(feature, threshold) binary split which maximizes this criterion (which ensures maximally increased77

value at iso-cost). Once the split is found, we recursively find next splits considering both resulting78

leaves as input nodes for the two subsequent applications of the BuildTree function. The algo-79

rithm stops when we reach a given stopping_criterion, defined from parameters max_depth,80

min_samples_split, min_samples_leaf the definitions of which are given in appendix. Ap-81

pendix E.2) states the optimality of the greedy mCUV-equalization tree.82

3 Experiments83

We provide a comprehensive evaluation of our CUVET algorithm and several baselines on two84

large-scale, real-world datasets. We also provide an illustrative synthetic example which demonstrates85

the blindspot of HTE-based baselines (which systematically find a suboptimal solution) while the86

CUVET algorithm finds the optimal one in Appendix F. Baselines are discussed in Appendix H.2.87

Evaluation As treatment assignment is the targeted downstream problem, we estimate the quality
of produced assignments by comparing total value and total cost generated by the assignment
with those of the reference treatment. For any bucketization B, we learn the optimal assignment
ϕ∗B : B → T and compute the total value and cost of this assignment under the power-law assumption
(6): v(ϕ∗B) =

∑
b∈B vb(ϕ

∗
B(b)), c(ϕ

∗
B) =

∑
b∈B cb(ϕ

∗
B(b)). Denote the reference total value by

v(1) =
∑
b∈B vb(1) and reference total cost by c(1) =

∑
b∈B cb(1). Our final metrics of interest are

relative uplift in value and cost, ∆vB and ∆cB respectively:

∆vB =
v(ϕ∗

B)
v(1) − 1, ∆cB =

c(ϕ∗
B)

c(1) − 1.

Note that the greater ∆vB the better while for the cost we have the constraint ∆cB ≤ 0.88

3.1 MT-LIFT data89

This public2 dataset was collected from two months of randomized controlled trials on coupon90

marketing scenarios for food delivery in the Meituan – China’s local living platform (Huang et al.,91

2024). The dataset contains nearly 5.5M instances, 99 features, 5 treatments (coupons), and 2 labels:92

click and conversion. See Appendix G.1 for preprocessing details.93

Results Results for ∆vB and ∆cB with respect to all evaluation methods are shown in Table 194

(graphical representation is deferred to Appendix I). Overall, CUVET consistently outperforms95

baselines across all evaluation methods. On mCUV eq. evaluation, CUVETuncl achieves +12.5%96

total value compared to the reference treatment, though at the cost of high constraint violations.97

This aligns with our earlier discussion on clipping: since the unclipped version allows α∗ > 0,98

it can explore a wider range of values, potentially leading to higher returns but also exceeding99

cost constraints. Conversely, CUVETcl appears more risk-averse. Under ILP evaluation, while100

CUVETcl achieves the highest ∆vB, results appear noisier. This is expected, as discretizing the101

optimal treatment space (rather than allowing continuity) introduces variability. On LP evaluation,102

both CUVETuncl and CF-Het perform similarly, though the former exhibits higher variance. LP103

results surpass ILP due to stochasticity, enabling smoother optimization and better generalization.104

High-variance performance on MT-LIFT data indicates that capturing user behavior changes under105

various treatments is difficult due to inherent noise present in the data. It would be useful to compare106

results on a larger data volume to assess whether the observed trends hold consistently.107

3.2 CUVET-policy data108

We publish the CUVET-policy benchmarking dataset3. It was generated by an online advertising109

platform that conducted a two-week A/B test of 5 different treatments. Data have been properly110

anonymized so as to not disclose any private information, see Appendix G.2 for details. The111

2https://github.com/MTDJDSP/MT-LIFT
3https://huggingface.co/datasets/anonadata/CUVET-policy
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Table 1: MT-LIFT data: relative uplifts in v and c on test split. Highest ∆vB result reported in bold.

CF-Het CF-MSE CUVETcl CUVETuncl

Evaluation Metric

mCUV eq. ∆vB 0.0054± 0.0084 0.0063± 0.0065 0.0791± 0.0154 0.1254± 0.0081
∆cB 0.0094± 0.0032 0.0049± 0.0042 0.0230± 0.0062 0.0411± 0.0053

ILP ∆vB −0.0007± 0.0228 0.0± 0.0 0.0069± 0.0382 −0.0062± 0.0381
∆cB −0.0234± 0.0083 0.0± 0.0 0.0185± 0.0125 0.0098± 0.0126

LP ∆vB 0.0344± 0.0284 −0.0221± 0.0151 0.0085± 0.0379 0.0345± 0.0442
∆cB 0.0265± 0.0099 −0.0078± 0.0057 0.0210± 0.0124 0.0155± 0.0126

dataset contains 86.7M samples and each sample represents a bidding opportunity for which a multi-112

dimensional context x ∈ R5 is observed. Let {αk}k be the set of possible treatments (i.e. different113

bidding strategies) parameters. A treatment with parameter αk corresponds to uniformly multiplying114

the bid values of the reference treatment t0. Therefore, our treatment set is defined in that case as115

T = {α · t0, α ∈ A} where A = [0.5, 1.5]. The treatment parameters which are present (randomly116

assigned) in the dataset are {α1, α2, α0, α3, α4} = {0.8, 0.9, 1, 1.1, 1.2} (where 1 corresponds to117

the reference treatment), restricting ourselves in our assignment problem. The value represents an118

advertising objective. Particular care has been taken to guarantee that each sample (x, α, v, c) is119

independent. The goal is to learn a policy that assigns a continuous treatment α to users and generates120

more value in expectation than the reference under the cost constraints.121

Results Results for ∆vB and ∆cB using all evaluation methods are provided in Table 2 (graphical122

representation is deferred to Appendix J). As in the MT-LIFT case, CUVET consistently outperforms123

baselines across all evaluation methods. On mCUV eq. evaluation, both CUVET versions achieve124

the highest total value, with a +1% gain compared to the reference – a significant improvement in125

this domain – while only slightly violating the cost constraint (∆cB = 0). This demonstrates the126

general effectiveness of the CUVET algorithm and highlights the efficiency of clipping in particular.127

Even under ILP evaluation, both CUVET versions yield superior results, with the unclipped version128

appearing more risk-averse than the clipped one. In addition, analysis of the performance depending129

on max_depth is provided in Appendix J.

Table 2: CUVET-policy data: relative uplifts in v and c on test split. Highest ∆vB result reported in
bold.

CF-Het CF-MSE CUVETcl CUVETuncl

Evaluation Metric

mCUV eq. ∆vB 0.0042± 0.0029 0.0055± 0.0036 0.0103± 0.0033 0.0098± 0.0036
∆cB 0.0015± 0.0016 −0.0017± 0.0018 0.0019± 0.0013 0.0010± 0.0010

ILP ∆vB 0.0105± 0.0100 0.0082± 0.0131 0.0149± 0.0100 0.0118± 0.0060
∆cB 0.0026± 0.0032 −0.0005± 0.0057 0.0045± 0.0038 −0.0013± 0.0021

LP ∆vB 0.0111± 0.0098 0.0053± 0.0102 0.0094± 0.0096 0.0155± 0.0109
∆cB 0.0036± 0.0035 0.0002± 0.0036 0.0035± 0.0043 0.0023± 0.0029

130
4 Conclusion131

This paper introduces CUVET (Cost per Unit Value Equalization Tree), a novel policy learning132

approach which partitions the user space based on marginal cost per unit value equalization while133

respecting the cost constraint. CUVET offers an interpretable, structured framework for efficient treat-134

ment assignment, integrating domain knowledge into a closed-form solution, particularly beneficial135

for large-scale digital advertising and decision-focused learning. The CUVET method is based on the136

power-law form for the value-cost relationship, which may not always hold in real-world use-cases137

but is realistic in practice: indeed, our algorithm outperforms baselines on real-world data for which138

we do not have prior guarantees that the power-law assumption is satisfied, possible extensions and139

future work are reported to Appendix D. We also release the CUVET-policy benchmark, a new dataset140

generated from real-world A/B tests, to contribute to the advance of open and reproducible research141

in decision-focused learning.142
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A Related works255

In many decision-making scenarios, individuals exhibit significant heterogeneity in their responses to256

different treatments or interventions. Effectively leveraging this heterogeneity requires learning a257

personalized decision-making rule–called a policy–that maps a user’s individual characteristics to258

the treatment to be assigned to that user. This paper focuses on the problem of learning treatment259

assignment policies from (offline) experimental data, a setting that has gained prominence with the260

increasing availability of large-scale datasets across diverse domains such as healthcare, incentive261

recommendation, and digital advertising (Huang et al., 2024; Vladimirova et al., 2024; Diemert262

et al., 2018, 2021). The data usually contain features representing individual characteristics, actions263

corresponding to treatment assignments and observed outcomes resulting from those policies.264

A/B tests (randomized controlled experiments) are widely used to evaluate the effectiveness of265

different interventions, and constitute a particularly relevant source of exploitable offline data (Kohavi266

et al., 2013, 2014; Tang et al., 2010; Xu et al., 2015). In an A/B test setting, individuals are267

randomly assigned to different treatment groups, ensuring that the collected data provides an unbiased268

estimate of treatment effects. However, traditional A/B testing often focuses on estimating the average269

treatment effect rather than learning personalized policies that account for individual heterogeneity (Tu270

et al., 2021). By leveraging policy learning techniques, we aim to go beyond average treatment271

effect estimation, in order to identify individualized treatment rules that maximize outcomes at the272

individual level.273

Estimating the causal effect of a specific treatment assignment on our outcome of interest (i.e. cost274

and value) is made difficult due to the fundamental problem of causal inference. In addition, in some275

applications, the experimental data contains additional complexities. For instance, online advertising276

suffers from imperfect attributions: there usually are several ads displayed in the few hours preceding277

each conversion, making it not straightforward to choose which action or ad placement should receive278

the reward for a subsequent conversion. One could assign rewards to several previous ad displays279

following a multi-touch attribution rule (Du et al., 2019a; Ji and Wang, 2017; Ren et al., 2018;280

Bompaire et al., 2021), though it does not entirely solve the label imperfection issue. These factors281
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lead to typically very noisy experimental data, which contribute to making individual causal effect282

estimation an even harder problem.283

A way to simplify the problem is to group similar users together into buckets (also called cohorts)284

and study aggregated causal effects, which are less noisy and easier to estimate than individual ones.285

This approach involves heterogeneous treatment effect (HTE) estimation or one of its sub-disciplines,286

namely subgroup discovery and subgroup analysis, to find an effective space partitioning (Athey and287

Imbens, 2016; Wager and Athey, 2018; Tu et al., 2021; Lee et al., 2020, 2024). The main drawback288

of these methods is a lack of scalability. Another more pragmatic approach is to opt for scalable,289

quantile-based partitionings (Betlei et al., 2024), which are less precise in regrouping users with290

similar causal effects. A reasonable partitioning can also be proposed by a domain expert or by taking291

into account the economic nature of the data.292

Once both the user space and the treatment effects are estimated, there only remains a standard293

knapsack-like optimization problem in order to optimally assign policies to each bucket of users.294

Such problems are known to be NP-hard and solving them requires approximation algorithms that295

are often not suited for large-scale data (Tu et al., 2021; Betlei et al., 2024; Zhou et al., 2023a; Albert296

and Goldenberg, 2022).297

Diminishing returns assumption. The diminishing returns assumption is widely used across298

economics, business, engineering, and psychology, particularly in knapsack-like allocation problems.299

It states that as input increases, the marginal gain from each additional unit of input decreases (Gabaix,300

2009; Shephard and Färe, 1974; Hulatt, 2023; Mongeon et al., 2016). Many real-world phenomena301

exhibit diminishing returns, such as efficiency improvements in hardware systems (e.g., car engines,302

batteries), where early optimizations provide large gains, but subsequent improvements become303

increasingly difficult. In machine learning, this principle underlies scaling laws, where increasing304

compute or amount of data yields diminishing performance improvements (Kaplan et al., 2020).305

Similarly, in marketing, increasing advertising budgets does not lead to proportional increases in306

sales due to market saturation (Zhou et al., 2023a; Zhao et al., 2019). In assignment problems,307

returns are often modeled as following a power-law relationships, where a small number of items308

contribute most of the value (Clauset et al., 2009). For example, in digital advertising, initial spending309

brings high returns, but additional budget allocation saturates quickly, making cost-aware allocation310

crucial (Simchi-Levi and Wang, 2023). Understanding these diminishing returns is essential for311

optimizing treatment assignment policies and improving resource allocation in various applications.312

Two-stage learning. From a causal perspective, the allocation problems have two different issues to313

tackle: (i) treatment effect estimation, which predicts the expected benefit of each intervention, and (ii)314

optimization, often referred to as the treatment assignment problem. A common approach is to treat315

each step (treatment effect estimation and assignment) separately (Ai et al., 2022; Albert and Golden-316

berg, 2022; Tu et al., 2021; Zhao et al., 2019; Yan et al., 2023; Wu et al., 2022). However, proceeding317

in two steps has significant drawbacks: it incorporates cost considerations only in the second stage,318

leading to decision errors if the first-stage estimates are high-variance or biased (Fernández-Loría319

et al., 2022). In particular, errors in treatment effect estimation propagate into the optimization step,320

resulting in suboptimal allocations. To address this, the decision-focused approach (Mandi et al.,321

2023) integrates cost-aware learning in the first stage, ensuring that predictions are directly optimized322

for downstream decision-making tasks, reducing the impact of estimation errors.323

Decision-focused learning. Instead of separating treatment effect estimation and allocation,324

decision-focused learning integrates them into a single optimization problem, aligning predictions325

with decision outcomes (Mandi et al., 2023; Elmachtoub and Grigas, 2022). One challenge in326

decision-focused learning is computational complexity, i.e. solving the end-to-end optimization327

problem often requires to reformulate the problem into differentiable optimization layers, for instance,328

focusing on ranking problem as an end goal (Du et al., 2019b; Zhou et al., 2023a). Other formulations329

cast treatment assignment as a stochastic optimization problem (Tu et al., 2021), assuming normally330

distributed outcomes of bucket-level objective and constraints, with the final problem remains in331

the knapsack form. However, the bucketization is based on the causal tree approach (Athey and332

Imbens, 2016) which is not fully incorporated into the decision-focused framework. Similarly, Betlei333

et al. (2024) reformulate the optimization criteria, focusing on maximizing the probability of success,334

such as the likelihood of a positive A/B test outcome. However, their method does not explicitly335
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Table 3: Comparison of different methods and their characteristics. In the “Problem” column, “HTE”
stands for “HTE estimation”, “HTE for TA” is for “HTE estimation for Treatment Assignment” and
“TA” is for “Treatment Assignment”.

Method Problem Treatment type Applicable to
Large-Scale Data

Incorporate
Constraints End-to-end

Causal Tree (CT) (Athey and Imbens, 2016) HTE Binary ✓ ✗ ✗
Causal Forest (CF) (Athey et al., 2019) HTE Multiple ✓ ✗ ✗

Merging trees (Tu et al., 2021) HTE for TA Multiple ✓ ✗ ✗
Large-Scale Budget-Constrained CF (Ai et al., 2022) HTE for TA Multiple ✓ ✓ ✗
Distill-HTE (Wu et al., 2022) HTE for TA Multiple ✓ ✗ ✗

Optimal Prescriptive Trees (Jo et al., 2021) TA Multiple ✗ ✓ ✓
Optimal Policy Trees (Amram et al., 2022) TA Any ✓ ✗ ✓
CAIPWL (Zhou et al., 2023b) TA Multiple ✗ ✓ ✓

CUVET (ours) TA Continuous or Discretized ✓ ✓ ✓

incorporate user-space bucketization in the optimization phase. Addressing these limitations remains336

an active area of research.337

Policy learning. From a policy learning perspective, the goal is to learn an optimal treatment338

assignment policy that directly maps individual characteristics to the best treatment, rather than339

relying on a separate treatment effect estimation step (Zhou et al., 2023b). Advances in offline policy340

learning allow for direct learning of policies from observational and experimental data, effectively341

bypassing the challenges of high-variance treatment effect estimation (Swaminathan and Joachims,342

2015; Kitagawa and Tetenov, 2018; Kallus, 2018). Most of the state-of-the-art methods that take343

into account partitioning are built on the idea of optimal trees (Bertsimas and Dunn, 2017; Jo et al.,344

2021; Amram et al., 2022; Zhou et al., 2023b). Compared to traditional two-stage approaches, policy345

learning can be more robust to estimation errors and better suited for large-scale decision-making346

problems where individual-level heterogeneity plays a crucial role. Despite these advantages, policy347

learning can be computationally demanding (Jo et al., 2021; Zhou et al., 2023b), particularly in348

settings with high-dimensional feature spaces or limited interventional data.349

Our work empirically compares our algorithm to several baseline approaches with a similar focus,350

categorized into three main groups: HTE estimation methods (e.g., Causal Tree (Athey and Imbens,351

2016), Causal Forest (Athey et al., 2019)), treatment assignment approaches via HTE estimation (Ai352

et al., 2022; Tu et al., 2021; Wu et al., 2022), and direct treatment assignment methods (Jo et al.,353

2021; Amram et al., 2022; Zhou et al., 2023a). These baselines, while effective, have limitations in354

flexibility, scalability, or computational efficiency, which we discuss in detail in Section B and which355

our algorithm aims to address.356

B Baseline approaches357

We discuss possible connection of the described problem with two-stage, decision-focused and policy358

learning in Appendix A. Here we focus on baseline approaches relevant to our problem, where our359

main goal is to find a relevant user space bucketization. A detailed comparison of the methods is360

shown in Table 3.361

Most of the approaches can be divided into three main categories depending on the exact problem362

they are designed to solve in the first place, even if they can all be used to partition the user space363

(which is what our work focuses on).364

HTE estimation methods The Causal Tree (CT) Athey and Imbens (2016) algorithm uses a365

recursive partitioning approach to identify the buckets which share similar heterogeneous effects of a366

given binary treatment. Its splitting criteria is a modified version of the mean squared error (MSE)367

while penalizing higher estimation variances. Since CT is only applicable to binary treatments, it is368

much less flexible than our approach but can still be used as a baseline in those cases. Causal Forest369

(CF) (Athey et al., 2019) extend CT to ensemble models and solves a local moment equation problem370

– allowing CF trees to handle multiple treatment.371

HTE estimation methods are used only as the first step (partitioning) of a two-stage approach to372

treatment assignment, requiring downstream methods to solve the second step (assignment).373
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Treatment assignment approaches via HTE estimation Several methods improve on CT and374

CF to optimize on the downstream, treatment assignment task. Ai et al. (2022) modify the splitting375

criteria of CF that allows similar users from multiple treatment groups to reside in the same node. Tu376

et al. (2021) learn one causal tree for each (treatment, outcome) pair and merge resulted buckets into377

a single tree. In Distill-HTE (Wu et al., 2022), distillation techniques are used to learn one multi-task378

decision tree from a black-box HTE model – in particular a Gradient Boosting Decision Tree (GBDT)379

model may be learned each (treatment, outcome) pair.380

Although latter methods are claimed to be scalable, training and maintaining |T | · |Y| models is381

computationally intensive.382

Direct treatment assignment methods Methods of this category are mostly built on the idea383

of optimal trees (Bertsimas and Dunn, 2017). Zhu et al. (2020) develop scalable mixed-integer384

programming tree method for training multivariate decision trees, using a 1-norm SVM to maximize385

the number of correctly classified instances and to maximize the margin between clusters at the leaf386

nodes. Jo et al. (2021) propose a method for learning optimal prescriptive trees using mixed-integer387

optimization. Under mild conditions their method converges to an optimal out-of-sample treatment388

assignment policy, as the data size tends to infinity. Amram et al. (2022) extend the exact optimal389

trees using coordinate ascent to the problem of learning prescription policies based on complete390

counterfactual information. Resulting Optimal Policy Trees are interpretable and scalable, handling391

both discrete and continuous treatments. (Zhou et al., 2023b) study a family of doubly robust392

algorithms for multi-action policy learning. They develop a customized tree-search based algorithm393

that finds the exact optimal tree in the policy optimization step.394

Unfortunately, most of direct treatment assignment approaches are NP-hard (Jo et al., 2021), in-395

sufficiently scalable (Zhu et al. (2020)’s handles up to 245,000 samples; Zhou et al. (2023b)’s has396

complexity of O(|X |2), solving an exact tree search problem in 2.5 hours on a small dataset with397

|X | = 105, d = 12 and |T | = 3), or use proprietary software (Amram et al., 2022).398

C Problem formulation399

Let X ⊂ Rd be a d−dimensional feature space, and X ∈ X be the random variable containing users400

features.401

We assume we have at our disposal a collection of different treatments T : in all generality this set402

might be anything from finite to continuous, but we do not make any further assumption on the403

structure of this set at this point. For simplicity, we will however consider that T always contains a404

reference treatment t0, which is a default treatment that is assigned to each user outside of ‘testing’405

periods (for example in digital advertising, the reference treatment corresponds to the way production406

operates by default; in medicine the reference treatment is a placebo). We denote Y = (Y c, Y v) ∈ R2407

the random outcome vector we observe after treatment assignation to users. The random variables408

Y c and Y v are respectively designating the cost and value at the user level.409

Let us consider a fixed user u with features x ∈ X and outcome vector y ∈ R2 (which are410

respectively realizations of the random variables X and Y). For any treatment t ∈ T , we denote411

y(t) = (yc(t), yv(t)) the potential outcome vector (Rubin, 1974), corresponding to the outcome412

vector we would have observed had treatment t been assigned to user u.413

C.1 Multi-treatment cost-constrained assignment414

An optimal multi-treatment assignment (or policy) corresponds to a mapping ψ : X → T415

assigning treatments to users so that the value of interest Y v is maximized (in expectation) while416

ensuring the cost Y c is controlled. Typically, we ensure the expected cost of the policy is at most417

equal to the expected cost resulting from applying the reference treatment t0 to each user. In the418

following, we denoteC = E[Y c(t0)] our allowed budget in the multiple treatment allocation problem.419

420

With this in hand, we can now formalize the general treatment assignment – or policy learning421

– problem at the user level:422

max
ψ:X→T

E[Y v(ψ(X))] s.t. E[Y c(ψ(X))] ≤ C, (3)
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where the expectations are implicitly defined with respect to the joint distribution of variables X and423

(Y(t))t∈T underlying our considered setting.424

Solving the treatment assignment problem This is a multi-treatment knapsack problem with425

stochastic rewards, which has been extensively studied in the past decades. It can be solved with426

linear programming (LP), which however does not scale easily: optimization solvers are not typically427

designed for large-scale datasets, such as those encountered in online advertising (Tu et al., 2021;428

Albert and Goldenberg, 2022; Zhou et al., 2023a).429

Treatment effect estimation and bucketization Whatever the method which is used to solve (3),430

there remains the problem of estimating the effect of each treatment t ∈ T on each user. Provided we431

have access to data resulting from a randomized controlled trial, a good solution to balance bias and432

variance is to use bucket-level treatment effect estimation (instead of user-level), which requires a433

bucketization of the user space Tu et al. (2021).434

Reparametrization of the treatment assignment problem assuming a bucketization of the user435

space A partition of the user space is given by a function π : X → B, mapping the user feature436

space X to a discrete set of buckets B. Assuming a given partition function π : X → B, treatment437

assignment problem (3) can be rewritten as438

max
ϕ:B→T

∑
b∈B

Y vb (ϕ(b)) s.t.
∑
b∈B

Y cb (ϕ(b)) ≤ C, (4)

where for every bucket b ∈ B and treatment t ∈ T ,

Yb(t) = E[Y(t)|π(X) = b] · P(π(X) = b),

designates the bucket level expected outcome vector.439

C.2 Continuous treatment and elasticity assumptions440

Continuous treatment set assumption In the following, we assume the treatment collection set T441

is of the form442

T = {t0(α), α ∈ A}, (5)

where A ∈ R+ is an interval of the form [αmin, αmax], and t0(.) is a treatment parametrization such443

that the reference treatment is t0(1). An example of such a continuous treatment set is presented in444

Betlei et al. (2024), where the authors consider a set Π = {α · π0}α∈I of ‘candidate policies’ (which445

act as different treatments) in the context of bidding strategy design.446

In practice treatments are bounded for two reasons. First, some hypotheses hold only locally, so447

solutions should not stray too far from the reference treatment. Second, production systems typically448

restrict large deviations from the reference to avoid unintended behavior.449

Simplified notations For simplicity, we will denote Y(α) the potential outcome variable cor-450

responding to treatment t(α) ∈ T , i.e. Y(α) = Y(t(α)). Moreover, we will designate the two451

components of Y by (c, v) instead of (Y c, Y v). In particular for a bucket b ∈ B we denote cb := Y cb452

and vb := Y vb .453

Elasticity assumption It is quite common to model the behavior of quantitative metrics using elastic454

relationships, which describe the sensitivity of these variables to a change in a cause variable (Phillips,455

2021; Zhao et al., 2019; Zhou et al., 2023a). This assumption is commonly used in real-world456

applications: for example, advertising spend typically shows an elastic return curve (Yan et al., 2023;457

Zhou et al., 2023a).458

We choose to model the relationships between the treatment parameter α, cost yc and value yv as459

power-law (elastic) inside any given partition π : X → B. Formally, for any bucket b ∈ B, we460

assume there exist parameters γb and ηb such that:461

vb(α) = vb(1)α
γb , cb(α) = cb(1)α

ηb . (6)
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This implies the following relationship between average value and cost inside bucket b:

∀cb ∈ (cb(αmin), cb(αmax)), vb(cb) = vb(1)

(
cb
cb(1)

) γb
ηb

.

For any b ∈ B, γb and ηb have to satisfy that γb < ηb, in order for the function cb 7→ vb(cb) to be462

(strictly) concave. This concavity is needed for the principle of diminishing returns to apply: the463

higher the spend in bucket b, the less spending an additional marginal amount has an effect on the464

value.465

D Limitations and future work466

The power-law form for the value/cost relationship may not hold universally (as we describe in the467

next paragraph), however, it is a natural first order assumption for concave functions (equivalent to a468

local linear approximation for the log of the quantities).469

Power-law assumption exception cases While the power-law elasticity assumption is very com-470

mon, its applicability depends on the system dynamics. Below we provide several examples with471

illustration from digital advertising when the power-law elasticity assumption is not realistic:472

• If all competitors increase spending simultaneously or if most of the audience is already473

reached, spending more leads to diminishing returns but not necessarily power-law. For474

example, a brand is already dominating a browser search. The returns in these cases often475

flatten out, but remain locally elastic476

• If users are driven entirely by price, extra ad spend will not yield nonlinear gains. For477

example, generic campaigns for undifferentiated products like USB cables.478

CUVET future work Despite the strengths of CUVET demonstrated empirically, there exist several479

interesting extensions:480

• Temporal drift of elasticities: We assume elasticity parameters are fixed through time, but this481

typically does not hold in the real-world. Future work could incorporate uncertainty-aware482

methods like conformalized quantile regression.483

• Scalability: Efficient pruning techniques could improve stability and prevent over-fitting.484

• Multi-objective optimization: Extending CUVET to handle trade-offs (e.g. revenue vs.485

engagement) and constraints (e.g. fairness, budget caps).486

• Observational data: Adapting CUVET for non-randomized data using covariate adjustment487

and causal inference methods would be a natural extension.488

Addressing these challenges will enhance CUVET’s scalability, robustness, and applicability to489

complex decision-making, inspiring further methods that leverage domain knowledge in large-scale490

settings.491

E Proofs492

E.1 Optimal policy expression proposition493

E.1.1 Optimal splitting criterion494

We formulate the optimal policy in the following proposition, the proof of which is referred to Ap-495

pendix E.1.2496

Proposition 1. For a given partition B, a treatment set T parametrized by a continuous α ∈ A497

as in (5) and assuming power-law relationships as in (6) hold in every bucket from B, the optimal498

treatment parameter α for each bucket b ∈ B is expressed in the closed-form:499

α∗
b =

(
µ

mCUVb(1)

) 1
ηb−γb

, (7)
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where µ is the unique solution to (2), ∀α ∈ A, mCUVb(α) = ∂cb/∂vb(α) and γb, ηb are the500

elasticity parameters from (6).501

Now, computing the value of µ from (2), then injecting the resulting values of α∗
b given by (7) in our502

optimization objective (??) yields the following closed-form criterion:503 ∑
b∈B

vb(α
∗
b), (8)

which can be readily estimated using offline data estimates of the elasticity parameters for cost and504

value. The core-idea of our CUVET approach is to perform recursive splitting as in any decision tree505

algorithm using this criterion in order to determine the optimal successive splits. We give a detailed506

pseudocode of this algorithm in the next subsection. The optimal solution will be the policy ϕ∗ such507

that for every bucket b, ϕ∗(b) = α∗
b where the values of α∗

b are given by Proposition 1.508

E.1.2 Optimal splitting criterion proof509

As a reminder, for α ∈ A510

cb(α) = cb(1)× αηb , (9)
vb(α) = vb(1)× αγb . (10)

Straightforward derivations yield that for any possible value cb of the cost in b, vb can be expressed
as a function of cb as follows:

vb(cb) = vb(cb(1))×
(

cb
cb(1)

)γb/ηb
.

We call ϵb = γb/ηb the elasticity of vb (value in b) relative to cb (cost in b). We assume that ϵb < 1511

since the cost-value relationship is classically assumed to be concave in every bucket (decreasing512

marginal gains). This in turn implies that γb < ηb for all b ∈ B.513

Cost of Unit Value (CUV). For b ∈ B and α ∈ A we define the cost of unit value in g for bid514

multiplier α as:515

CUVb(α) =
cb(α)

vb(α)
, (11)

which can be explicitly written using (9) and (10) as:516

CUVb(α) = CUVb(1)α
ηb−γb . (12)

This quantity corresponds to the average cost of value in the bucket b. In particular, for every b ∈ B,517

CUVb(1) =
cb(1)
vb(1)

and mCUVb(1) =
CUVb(1)

ϵb
are computable from offline data directly, without the518

need for counterfactual estimation methods.519

Marginal Cost of Unit Value (mCUV). For b ∈ B and α ∈ A we define the marginal cost of unit520

value in b for bid multiplier α as:521

mCUVb(α) =
∂cb(α)

∂vb(α)
,

which can be explicitly written using (9) and (10) as:522

mCUVb(α) =

(
CUVb(1)

ϵb

)
αηb−γb . (13)

This quantity corresponds to the cost of the next unit of value: it is the current cost of value in the523

bucket b.524
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Equalization. For all b, b′ ∈ B let µ be525

mCUVb(αb) = mCUVb′(αb′) := µ. (14)

and with µ satisfying4526

∑
b

cb(1)×
(

µ

mCUVb(1)

)1/(1−ϵb)

=
∑
b

cb(1) = C. (15)

For a given partition B, the optimal treatment for each bucket can be expressed in a closed-form527

expression. From mCUVb(α
∗
b) = µ we get528 (

CUVb(1)

ϵb

)
(α∗)ηb−γb = µ.

Indeed, the optimal value of the treatment parameter α in each bucket, α∗
b , can be written as:529

α∗
b(µ) =

(
µ · ϵb

CUVb(1)

)1/(ηb−γb)

=

(
µ

mCUVb(1)

)1/(ηb−γb)

, (16)

taking into account the relationship between mCUVb(1) and CUVb(1).530

E.2 Equivalence to Lagrange multipliers method531

Proposition 2. Consider a given partition B, a treatment set T parametrized by a continuous α ∈ A532

as in (5) and assume power-law relationships as in (6) hold in every bucket from B. Then the greedy533

mCUV-equalization strategy consisting in equalizing marginal cost per unit value across user buckets534

yields an optimal policy, i.e. a policy that maximizes total expected value under a fixed (iso-cost)535

budget.536

We prove Proposition 2, i.e. that equalization of mCUV in buckets yields the same parameters α that537

are found using constrained optimization.538

Firstly, we formulate the constrained optimization problem for K buckets. We are seeking to539

maximize the total expected value (sum of the values in each buckets), constrained by the total cost540

not being greater than our fixed budget C. This writes:541

max
α1,...,αK

K∑
b=1

Vb(αb) s.t.
K∑
b=1

Cb(αb) = C.

This can be reformulated using the Lagrangian function L as follows:542

L(α1, ..., αK , λ) =

K∑
b=1

Vb(αb)− λ

(
C −

K∑
b=1

Cb(αb)

)

=

K∑
b=1

Vb(1) · αbγb − λ

(
C −

K∑
b=1

Cb(1) · αbηb
)

4Equation (15) has a unique solution since the expression on the right-hand side is strictly increasing in µ
and has value 0 for µ = 0 and goes to +∞ when µ goes to +∞.
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Writing out the first-order conditions yields:543

544

∂L
∂αb

= 0⇒ ∂Vb(αb)

∂αb
− λ∂Cb(αb)

∂αb
= 0

⇒ Vb(1) · γb · αγb−1
b = λ · Cb(1) · ηb · αηb−1

b

⇒ λ =
Vb(1) · γb · αγb−1

b

Cb(1) · ηb · αηb−1
b

=
αγb−ηbb

mCUVb(1)
=

1

mCUVb(αb)

⇒ mCUVb(αb) =
1

λ
= µ

⇒ αb = (λ ·mCUVb(1))
1

γi−ηb

∂L
∂λ

= 0⇒
K∑
b=1

Cb(αb) = C.

This exactly matches the values of α∗
b given in (7) and iso-cost constraint (2), and therefore proves545

that equalizing marginal cost of unit value is equivalent to maximizing value under cost constraint as546

stated.547

F Synthetic example when CUVET outperforms Causal Forest548

Synthetic setup We consider a single dimensional feature variable X , with x ∼ U(0, 1). We549

introduce two thresholds t1, t2 ∈ (0, 1) which define three buckets {b1, b2, b3}. We consider our data550

results of applying a radomized control trial with two treatments: α0 = 1 and α1 = 1.5. We design551

the elasticity (power-law) parameters in each bucket so that the only proper split that should be learn552

from a value optimization perspective is threshold t2.553

Formally, we set {t1, t2} = {0.1, 0.5}, and fix the following values for the power-law parameters
and reference (cost, value) per bucket:

vb1(1) = 6.5, cb1(1) = 0.4, γb1 = 1, ηb1 = 1.5
vb2(1) = 1.63, cb2(1) = 0.1, γb2 = 1, ηb2 = 1.5
vb3(1) = 1.19, cb3(1) = 0.1, γb3 = 1, ηb3 = 1.5

The marginal cost of unit value (mCUV s), optimal µ, values of α∗ all have a closed-form expressions
with respect to those parameters. In this setting they are equal to:

mCUV (b1) = mCUV (b2) ≈ 0.91, mCUV (b3) ≈ 0.11
µ ≈ 0.1, α∗(b1) = α∗(b2) ≈ 1.2, α∗(b3) ≈ 0.63

Intuition behind the setup We therefore see that the theoretical optimal treatment parameter α∗554

are the same for buckets b1 and b2, and therefore the same for the whole region {x < 0.5}, while it is555

different for bucket b3 i.e. for the region {x > 0.5}. This implies that the single theoretically optimal556

split should be made at threshold x = t2. However, the value and cost quantities are significantly557

larger in bucket b1 that will make any HTE-based method consider threshold t1 as more important558

since it better at splitting different heterogeneous treatment effects. However this HTE splitting is not559

consistent with the best treatment assignment split in this context, making our method conceptually560

outperform any HTE based method at the task of treatment assignment targeted partitioning.561

Data We generate data of 300000 points with the defined parameters and create train/test splits562

randomly in 50/50 proportion. For the outcome of CF we use y = v − η
γ c.563

Results. Firstly we plot the CUVET criterion value along with the optimal value α∗ with respect to564

the chosen threshold on Figure 1. Following our expectations, CF always chooses t∗ = t1 = 0.1,565

while CUVET chooses t∗ = t2 = 0.5.566

Results for ∆vB and ∆cB using mCUV equalization evaluation are provided in Table 4. We observe567

that, on both train and test datasets, CUVET reaches much larger ∆vB than the baselines. At the568

same time, while on the train set ∆cB = 0, we observe a small deviation of ∆cB from 0 on the test569

set, explained by the variance in elasticity parameters estimations.570
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Figure 1: Synthetic example: criterion and α∗
bi

as functions of the threshold t.

Table 4: Synthetic example: relative uplifts ∆vB and ∆cB on train and test splits.

CF-Het CF-MSE CUVET
Split Metric

Train ∆vB 0.0039 0.0039 0.0102
∆cB 0.0 0.0 0.0

Test ∆vB 0.0038 0.0038 0.009
∆cB −0.001 −0.001 −0.0016

G Additional data description571

G.1 MT-LIFT details572

Preprocessing As treatments represent coupons, we can treat them as ordered and apply our573

methodology, allocating different coupons to different buckets. However, we introduce several574

modifications of the data. Firstly, we normalize treatment values to be {0.8, 0.9, 1, 1.1, 1.2} and575

define t0 = 1 to be our reference treatment. Similar to (Zhou et al., 2023a; Yan et al., 2023), we use576

the "click" label as a proxy of the cost and "conversion" as the value. Surprisingly, we observe the577

conversion elasticity with respect to treatment to be greater than the click one (γ > η).578

In order to preserve γ < η, we scale the conversion variable by adding constants depending on
treatment:

v′ti = exp (log (1 + vti) + µti)− 1

G.2 CUVET-policy privacy details579

The original dataset does not include any data that directly identifies a user, such as names, postal580

addresses, or email addresses in plain text, so the original data is pseudonymized. Further, we581

manually selected some continuous user features, added noise, and standardized them, making the582

re-identification impossible as the original scale is not provided. We further scaled and added noise583

to the value and cost features to keep business confidentiality.584
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Algorithm 1: CUVET Algorithm
Input: Train dataset X containing samples x ∈ X where x = (xi)i∈I , I being the set of

features, value function v, cost function c, reference treatment α,
stopping_criterion, candidate_generator

Output: Tree T
1 Function BuildTree(X, v, c, α):

// Function to build the tree recursively
2 if stopping_criterion met then
3 return leaf node (X, v) with predicted value
4 vmax ← v
5 for (i, s) from candidate_generator do

// Find the best split maximizing
∑
b vb(α

∗
b)

6 Xleft ← X ∩ I[xi ≤ s], Xright ← X \Xleft;
7 Estimate (ηb, γb, αb,mCUVb(1)) for b ∈ {left, right};
8 Compute µ from (1);
9 Compute α∗

b for b ∈ {left, right}, see (7);
10 Compute v∗b = vb(α

∗
b) for b ∈ {left, right};

11 Compute v∗ = v∗left + v∗right;
12 if v∗ > vmax then
13 vmax ← v∗, (i∗, s∗)← (i, s);

14 Create an internal node with split (i∗, s∗);
15 Partition X into Xleft and Xright based on (i∗, s∗);

// Recursively build sub-trees
16 Tleft ← BuildTree(Xleft, vleft, cleft, α

∗
left);

17 Tright ← BuildTree(Xright, vright, cright, α
∗
right);

18 Attach Tleft and Tright to the internal node;
19 return tree T

// Start tree construction
20 T ← BuildTree(X, v, c, α = 1);
21 return T

H Reproducibility details585

H.1 CUVET algorithm586

When developing our algorithm we define multiple hyper-parameters that define587

stopping_criterion, see Algorithm 1:588

• maximum depth max_depth as we do not know the true number of buckets,589

• minimum number of samples per leaf min_samples_leaf. In all our experiments we will590

fix this parameter to |X|
2max_depth+2 ,591

• minimum number of samples to perform split min_samples_split. In all our experiments592

we will fix this parameter to |X|
2max_depth+1593

For clipping, we use min and max treatment values.594

Estimating elasticity parameters The value and cost elasticity parameters are not known in595

advance and should be estimated for each region of interest. To do so, for each potential (feature,596

threshold) split, we estimate those parameters by performing a linear regression on the logarithm of597

the total outcome value and cost in both the ‘left’ and ‘right’ regions formed by the split. Note that598

this implies our dataset contains at least two different (randomly assigned) values of the treatment599

parameter α in each region: this typically is the case when using data extracted from a randomized600

controlled trial (or A/B test) with two or more treatments.601
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H.2 Baselines for experiments602

In order to find an optimal treatment assignment ϕ∗B, three different approaches were chosen:603

1. mCUV equalization: optimal policy for each bucket is found in the closed-form expression604

(see Section 2.1), representing the case where we let optimal policies to be continuous,605

though inside the [αmin, αmax] interval.606

2. Integer Linear Programming (ILP): optimization is with respect to decision variables δkb607

that are boolean indicators to assign treatment k to bucket b (this works when the treatment608

set is discrete).609

3. Linear Programming (LP): stochastic version of ILP - decision variables pkb are probabili-610

ties to assign treatment k to bucket b.611

As explained in Section B, defining appropriate baselines to compare with CUVET is not straight-612

forward. We compare CUVET to single trees output by the CF algorithm, as CF handles multiple613

treatments and is suitable for large-scale datasets. As CF inputs only one outcome, we incorporate614

the cost constraint in the splitting criterion by defining a proxy outcome as linear combination of615

v and c. For the experiments, the CF algorithm from the EconML library (Battocchi et al., 2019)616

was used. We use two splitting criterion of the CF tree, namely mean squared error CF-MSE and617

heterogeneity score CF-Het (details are in Appendix H.5).618

We also apply two versions of CUVET: in the clipped one (denoted in Seciton 3 as CUVETcl) –619

the values of α∗
b are always clipped to [αmin, αmax] during training, while in unclipped version620

(denoted in Seciton 3 as CUVETuncl) we simply constrain α∗
b > 0 but allow the values to leave the621

[αmin, αmax] interval. Comparing output partitions from both approaches enables us to evaluate622

how much clipping α∗ (and thus introducing a bias with respect to our theoretical result expressed in623

Proposition 1) is harmful for the final treatment assignment performance.624

H.3 Example on building a tree with cost constraint625

Cost constraint As we would like the possibility to have leaves at different levels (i.e to have an626

odd number of buckets) , we should ensure the conservation of the total cost C that we use to estimate627

the splits.628

Example. Consider a tree with a parent {1}, first-level children {2, 3} and leaves {4, 5, 6, 7}. In629

particular, 2 ← 1 → 3, and both 2 and 3 have child leafs 4 ← 2 → 5, 6 ← 3 → 7. We should630

have: c4(α∗
4) + c5(α

∗
5) = C2, c2(α∗

2) + c3(α
∗
3) = C1, and c3(α∗

3) + c4(α
∗
4) + c5(α

∗
5) = C1. As a631

result we should have: C2 = c2(α
∗
2). From this example, we can conclude we need to apply as a cost632

constraint when growing the tree the optimal cost in the parent node. For the root node however, we633

would use the total cost of the samples if it were under the policy of reference (i.e α = 1).634

H.4 Evaluation635

For the outcome of CF we use y = v − γ
η c – in this form y can be treated as proxy of revenue.636

For the model selection, we run all methods with max_depth ∈ {1, 2, 3}. On CUVET-policy data we637

used validation split to select the best model, though on MT-LIFT data we reported the best models638

on train split – as splitting it more would increase the noise in performance results.639

In order to build confidence intervals for the results on real datasets, 10 bootstraps were generated for640

both metrics: it was done on test split for MT-LIFT data and on both validation and test splits for641

CUVET-policy data. For the error estimation, 1.96 ∗ σ values were used.642

H.5 Causal Forest splitting criteria643

These criteria used in Battocchi et al. (2019) package that solve any linear moment problem of the644

form:645

E[J · θ(x)−A | X = x] = 0

The "mse" criterion finds splits that maximize the score:646
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∑
child

wchild · θTchild · E[J | X ∈ child] · θchild

This coincides with minimizing the MSE:647 ∑
child

E[(Y − ⟨θchild, T ⟩)2 | X = child] · wchild

Internally, for the case of more than two treatments this criterion is approximated by computationally648

simpler variants for computational purposes. In particular, it is replaced by:649 ∑
child

wchild · ρTchild · E[J | X ∈ child] · ρchild

where:650

ρchild := J−1
parentE[A− J · θparent | X ∈ child]

This can be thought of as a heterogeneity-inducing score, but putting more weight on scores with a651

large minimum eigenvalue of the child Jacobian E[J | X ∈ child], which leads to smaller variance652

of the estimate and stronger identification of the parameters.653

The "het" criterion finds splits that maximize the pure parameter heterogeneity score:654 ∑
child

wchild · ρTchild · ρchild

This can be thought of as an approximation to the ideal heterogeneity score:655

wleft · wright · ∥θleft − θright∥22
w2
parent

I MT-LIFT data656

I.1 Graphical representation of Table 1657

Figure 2: MT-LIFT data: relative uplifts in v and c on test split.
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Figure 3: MT-LIFT data: relative uplifts in v and c on test split.

Figure 4: MT-LIFT data: relative uplifts in v and c on test split.
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J CUVET-policy data658

J.1 Graphical representation of Table 2659

Figure 5: CUVET-policy data: relative uplifts in v and c on test split.

Figure 6: CUVET-policy data: relative uplifts in v and c on test split.

Figure 7: CUVET-policy data: relative uplifts in v and c on test split.
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J.2 Performance as a function of max_depth660

Figure 8: CUVET-policy data: relative uplifts in v and c with respect to max depth of the tree using
mCUV − Eq evaluation approach, on validation split.
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Figure 9: CUVET-policy data: relative uplifts in v and c with respect to max depth of the tree using
ILP evaluation approach, on validation split.

NeurIPS Paper Checklist661

The checklist is designed to encourage best practices for responsible machine learning research,662

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove663

the checklist: The papers not including the checklist will be desk rejected. The checklist should664

follow the references and follow the (optional) supplemental material. The checklist does NOT count665

towards the page limit.666

Please read the checklist guidelines carefully for information on how to answer these questions. For667

each question in the checklist:668

• You should answer [Yes] , [No] , or [NA] .669

• [NA] means either that the question is Not Applicable for that particular paper or the670

relevant information is Not Available.671

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).672

The checklist answers are an integral part of your paper submission. They are visible to the673

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it674

(after eventual revisions) with the final version of your paper, and its final version will be published675

with the paper.676
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Figure 10: CUVET-policy data: relative uplifts in v and c with respect to max depth of the tree using
LP evaluation approach, on validation split.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.677

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a678

proper justification is given (e.g., "error bars are not reported because it would be too computationally679

expensive" or "we were unable to find the license for the dataset we used"). In general, answering680

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we681

acknowledge that the true answer is often more nuanced, so please just use your best judgment and682

write a justification to elaborate. All supporting evidence can appear either in the main paper or the683

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification684

please point to the section(s) where related material for the question can be found.685

IMPORTANT, please:686

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",687

• Keep the checklist subsection headings, questions/answers and guidelines below.688

• Do not modify the questions and only use the provided macros for your answers.689

1. Claims690

Question: Do the main claims made in the abstract and introduction accurately reflect the691

paper’s contributions and scope?692

Answer: [TODO]693
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Justification: [TODO]694

Guidelines:695

• The answer NA means that the abstract and introduction do not include the claims696

made in the paper.697

• The abstract and/or introduction should clearly state the claims made, including the698

contributions made in the paper and important assumptions and limitations. A No or699

NA answer to this question will not be perceived well by the reviewers.700

• The claims made should match theoretical and experimental results, and reflect how701

much the results can be expected to generalize to other settings.702

• It is fine to include aspirational goals as motivation as long as it is clear that these goals703

are not attained by the paper.704

2. Limitations705

Question: Does the paper discuss the limitations of the work performed by the authors?706

Answer: [TODO]707

Justification: [TODO]708

Guidelines:709

• The answer NA means that the paper has no limitation while the answer No means that710

the paper has limitations, but those are not discussed in the paper.711

• The authors are encouraged to create a separate "Limitations" section in their paper.712

• The paper should point out any strong assumptions and how robust the results are to713

violations of these assumptions (e.g., independence assumptions, noiseless settings,714

model well-specification, asymptotic approximations only holding locally). The authors715

should reflect on how these assumptions might be violated in practice and what the716

implications would be.717

• The authors should reflect on the scope of the claims made, e.g., if the approach was718

only tested on a few datasets or with a few runs. In general, empirical results often719

depend on implicit assumptions, which should be articulated.720

• The authors should reflect on the factors that influence the performance of the approach.721

For example, a facial recognition algorithm may perform poorly when image resolution722

is low or images are taken in low lighting. Or a speech-to-text system might not be723

used reliably to provide closed captions for online lectures because it fails to handle724

technical jargon.725

• The authors should discuss the computational efficiency of the proposed algorithms726

and how they scale with dataset size.727

• If applicable, the authors should discuss possible limitations of their approach to728

address problems of privacy and fairness.729

• While the authors might fear that complete honesty about limitations might be used by730

reviewers as grounds for rejection, a worse outcome might be that reviewers discover731

limitations that aren’t acknowledged in the paper. The authors should use their best732

judgment and recognize that individual actions in favor of transparency play an impor-733

tant role in developing norms that preserve the integrity of the community. Reviewers734

will be specifically instructed to not penalize honesty concerning limitations.735

3. Theory assumptions and proofs736

Question: For each theoretical result, does the paper provide the full set of assumptions and737

a complete (and correct) proof?738

Answer: [TODO]739

Justification: [TODO]740

Guidelines:741

• The answer NA means that the paper does not include theoretical results.742

• All the theorems, formulas, and proofs in the paper should be numbered and cross-743

referenced.744

• All assumptions should be clearly stated or referenced in the statement of any theorems.745
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• The proofs can either appear in the main paper or the supplemental material, but if746

they appear in the supplemental material, the authors are encouraged to provide a short747

proof sketch to provide intuition.748

• Inversely, any informal proof provided in the core of the paper should be complemented749

by formal proofs provided in appendix or supplemental material.750

• Theorems and Lemmas that the proof relies upon should be properly referenced.751

4. Experimental result reproducibility752

Question: Does the paper fully disclose all the information needed to reproduce the main ex-753

perimental results of the paper to the extent that it affects the main claims and/or conclusions754

of the paper (regardless of whether the code and data are provided or not)?755

Answer: [TODO]756

Justification: [TODO]757

Guidelines:758

• The answer NA means that the paper does not include experiments.759

• If the paper includes experiments, a No answer to this question will not be perceived760

well by the reviewers: Making the paper reproducible is important, regardless of761

whether the code and data are provided or not.762

• If the contribution is a dataset and/or model, the authors should describe the steps taken763

to make their results reproducible or verifiable.764

• Depending on the contribution, reproducibility can be accomplished in various ways.765

For example, if the contribution is a novel architecture, describing the architecture fully766

might suffice, or if the contribution is a specific model and empirical evaluation, it may767

be necessary to either make it possible for others to replicate the model with the same768

dataset, or provide access to the model. In general. releasing code and data is often769

one good way to accomplish this, but reproducibility can also be provided via detailed770

instructions for how to replicate the results, access to a hosted model (e.g., in the case771

of a large language model), releasing of a model checkpoint, or other means that are772

appropriate to the research performed.773

• While NeurIPS does not require releasing code, the conference does require all submis-774

sions to provide some reasonable avenue for reproducibility, which may depend on the775

nature of the contribution. For example776

(a) If the contribution is primarily a new algorithm, the paper should make it clear how777

to reproduce that algorithm.778

(b) If the contribution is primarily a new model architecture, the paper should describe779

the architecture clearly and fully.780

(c) If the contribution is a new model (e.g., a large language model), then there should781

either be a way to access this model for reproducing the results or a way to reproduce782

the model (e.g., with an open-source dataset or instructions for how to construct783

the dataset).784

(d) We recognize that reproducibility may be tricky in some cases, in which case785

authors are welcome to describe the particular way they provide for reproducibility.786

In the case of closed-source models, it may be that access to the model is limited in787

some way (e.g., to registered users), but it should be possible for other researchers788

to have some path to reproducing or verifying the results.789

5. Open access to data and code790

Question: Does the paper provide open access to the data and code, with sufficient instruc-791

tions to faithfully reproduce the main experimental results, as described in supplemental792

material?793

Answer: [TODO]794

Justification: [TODO]795

Guidelines:796

• The answer NA means that paper does not include experiments requiring code.797

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/798

public/guides/CodeSubmissionPolicy) for more details.799
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• While we encourage the release of code and data, we understand that this might not be800

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not801

including code, unless this is central to the contribution (e.g., for a new open-source802

benchmark).803

• The instructions should contain the exact command and environment needed to run to804

reproduce the results. See the NeurIPS code and data submission guidelines (https:805

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.806

• The authors should provide instructions on data access and preparation, including how807

to access the raw data, preprocessed data, intermediate data, and generated data, etc.808

• The authors should provide scripts to reproduce all experimental results for the new809

proposed method and baselines. If only a subset of experiments are reproducible, they810

should state which ones are omitted from the script and why.811

• At submission time, to preserve anonymity, the authors should release anonymized812

versions (if applicable).813

• Providing as much information as possible in supplemental material (appended to the814

paper) is recommended, but including URLs to data and code is permitted.815

6. Experimental setting/details816

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-817

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the818

results?819

Answer: [TODO]820

Justification: [TODO]821

Guidelines:822

• The answer NA means that the paper does not include experiments.823

• The experimental setting should be presented in the core of the paper to a level of detail824

that is necessary to appreciate the results and make sense of them.825

• The full details can be provided either with the code, in appendix, or as supplemental826

material.827

7. Experiment statistical significance828

Question: Does the paper report error bars suitably and correctly defined or other appropriate829

information about the statistical significance of the experiments?830

Answer: [TODO]831

Justification: [TODO]832

Guidelines:833

• The answer NA means that the paper does not include experiments.834

• The authors should answer "Yes" if the results are accompanied by error bars, confi-835

dence intervals, or statistical significance tests, at least for the experiments that support836

the main claims of the paper.837

• The factors of variability that the error bars are capturing should be clearly stated (for838

example, train/test split, initialization, random drawing of some parameter, or overall839

run with given experimental conditions).840

• The method for calculating the error bars should be explained (closed form formula,841

call to a library function, bootstrap, etc.)842

• The assumptions made should be given (e.g., Normally distributed errors).843

• It should be clear whether the error bar is the standard deviation or the standard error844

of the mean.845

• It is OK to report 1-sigma error bars, but one should state it. The authors should846

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis847

of Normality of errors is not verified.848

• For asymmetric distributions, the authors should be careful not to show in tables or849

figures symmetric error bars that would yield results that are out of range (e.g. negative850

error rates).851
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• If error bars are reported in tables or plots, The authors should explain in the text how852

they were calculated and reference the corresponding figures or tables in the text.853

8. Experiments compute resources854

Question: For each experiment, does the paper provide sufficient information on the com-855

puter resources (type of compute workers, memory, time of execution) needed to reproduce856

the experiments?857

Answer: [TODO]858

Justification: [TODO]859

Guidelines:860

• The answer NA means that the paper does not include experiments.861

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,862

or cloud provider, including relevant memory and storage.863

• The paper should provide the amount of compute required for each of the individual864

experimental runs as well as estimate the total compute.865

• The paper should disclose whether the full research project required more compute866

than the experiments reported in the paper (e.g., preliminary or failed experiments that867

didn’t make it into the paper).868

9. Code of ethics869

Question: Does the research conducted in the paper conform, in every respect, with the870

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?871

Answer: [TODO]872

Justification: [TODO]873

Guidelines:874

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.875

• If the authors answer No, they should explain the special circumstances that require a876

deviation from the Code of Ethics.877

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-878

eration due to laws or regulations in their jurisdiction).879

10. Broader impacts880

Question: Does the paper discuss both potential positive societal impacts and negative881

societal impacts of the work performed?882

Answer: [TODO]883

Justification: [TODO]884

Guidelines:885

• The answer NA means that there is no societal impact of the work performed.886

• If the authors answer NA or No, they should explain why their work has no societal887

impact or why the paper does not address societal impact.888

• Examples of negative societal impacts include potential malicious or unintended uses889

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations890

(e.g., deployment of technologies that could make decisions that unfairly impact specific891

groups), privacy considerations, and security considerations.892

• The conference expects that many papers will be foundational research and not tied893

to particular applications, let alone deployments. However, if there is a direct path to894

any negative applications, the authors should point it out. For example, it is legitimate895

to point out that an improvement in the quality of generative models could be used to896

generate deepfakes for disinformation. On the other hand, it is not needed to point out897

that a generic algorithm for optimizing neural networks could enable people to train898

models that generate Deepfakes faster.899

• The authors should consider possible harms that could arise when the technology is900

being used as intended and functioning correctly, harms that could arise when the901

technology is being used as intended but gives incorrect results, and harms following902

from (intentional or unintentional) misuse of the technology.903
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• If there are negative societal impacts, the authors could also discuss possible mitigation904

strategies (e.g., gated release of models, providing defenses in addition to attacks,905

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from906

feedback over time, improving the efficiency and accessibility of ML).907

11. Safeguards908

Question: Does the paper describe safeguards that have been put in place for responsible909

release of data or models that have a high risk for misuse (e.g., pretrained language models,910

image generators, or scraped datasets)?911

Answer: [TODO]912

Justification: [TODO]913

Guidelines:914

• The answer NA means that the paper poses no such risks.915

• Released models that have a high risk for misuse or dual-use should be released with916

necessary safeguards to allow for controlled use of the model, for example by requiring917

that users adhere to usage guidelines or restrictions to access the model or implementing918

safety filters.919

• Datasets that have been scraped from the Internet could pose safety risks. The authors920

should describe how they avoided releasing unsafe images.921

• We recognize that providing effective safeguards is challenging, and many papers do922

not require this, but we encourage authors to take this into account and make a best923

faith effort.924

12. Licenses for existing assets925

Question: Are the creators or original owners of assets (e.g., code, data, models), used in926

the paper, properly credited and are the license and terms of use explicitly mentioned and927

properly respected?928

Answer: [TODO]929

Justification: [TODO]930

Guidelines:931

• The answer NA means that the paper does not use existing assets.932

• The authors should cite the original paper that produced the code package or dataset.933

• The authors should state which version of the asset is used and, if possible, include a934

URL.935

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.936

• For scraped data from a particular source (e.g., website), the copyright and terms of937

service of that source should be provided.938

• If assets are released, the license, copyright information, and terms of use in the939

package should be provided. For popular datasets, paperswithcode.com/datasets940

has curated licenses for some datasets. Their licensing guide can help determine the941

license of a dataset.942

• For existing datasets that are re-packaged, both the original license and the license of943

the derived asset (if it has changed) should be provided.944

• If this information is not available online, the authors are encouraged to reach out to945

the asset’s creators.946

13. New assets947

Question: Are new assets introduced in the paper well documented and is the documentation948

provided alongside the assets?949

Answer: [TODO]950

Justification: [TODO]951

Guidelines:952

• The answer NA means that the paper does not release new assets.953
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• Researchers should communicate the details of the dataset/code/model as part of their954

submissions via structured templates. This includes details about training, license,955

limitations, etc.956

• The paper should discuss whether and how consent was obtained from people whose957

asset is used.958

• At submission time, remember to anonymize your assets (if applicable). You can either959

create an anonymized URL or include an anonymized zip file.960

14. Crowdsourcing and research with human subjects961

Question: For crowdsourcing experiments and research with human subjects, does the paper962

include the full text of instructions given to participants and screenshots, if applicable, as963

well as details about compensation (if any)?964

Answer: [TODO]965

Justification: [TODO]966

Guidelines:967

• The answer NA means that the paper does not involve crowdsourcing nor research with968

human subjects.969

• Including this information in the supplemental material is fine, but if the main contribu-970

tion of the paper involves human subjects, then as much detail as possible should be971

included in the main paper.972

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,973

or other labor should be paid at least the minimum wage in the country of the data974

collector.975

15. Institutional review board (IRB) approvals or equivalent for research with human976

subjects977

Question: Does the paper describe potential risks incurred by study participants, whether978

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)979

approvals (or an equivalent approval/review based on the requirements of your country or980

institution) were obtained?981

Answer: [TODO]982

Justification: [TODO]983

Guidelines:984

• The answer NA means that the paper does not involve crowdsourcing nor research with985

human subjects.986

• Depending on the country in which research is conducted, IRB approval (or equivalent)987

may be required for any human subjects research. If you obtained IRB approval, you988

should clearly state this in the paper.989

• We recognize that the procedures for this may vary significantly between institutions990

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the991

guidelines for their institution.992

• For initial submissions, do not include any information that would break anonymity (if993

applicable), such as the institution conducting the review.994

16. Declaration of LLM usage995

Question: Does the paper describe the usage of LLMs if it is an important, original, or996

non-standard component of the core methods in this research? Note that if the LLM is used997

only for writing, editing, or formatting purposes and does not impact the core methodology,998

scientific rigorousness, or originality of the research, declaration is not required.999

Answer: [TODO]1000

Justification: [TODO]1001

Guidelines:1002

• The answer NA means that the core method development in this research does not1003

involve LLMs as any important, original, or non-standard components.1004

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1005

for what should or should not be described.1006
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