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Abstract

The right to be forgotten calls for efficient machine unlearning techniques that
make trained machine learning models forget a cohort of data. The combination
of training and unlearning operations in traditional machine unlearning methods
often leads to the expensive computational cost on large-scale data. This paper
presents a Prompt Certified Machine Unlearning algorithm, PCMU, which executes
one-time operation of simultaneous training and unlearning in advance for a series
of machine unlearning requests, without the knowledge of the removed/forgotten
data. First, we establish a connection between randomized smoothing for certified
robustness on classification and randomized smoothing for certified machine un-
learning on gradient quantization. Second, we propose a prompt certified machine
unlearning model based on randomized data smoothing and gradient quantization.
We theoretically derive the certified radius R regarding the data change before and
after data removals and the certified budget of data removals about . Last but not
least, we present another practical framework of randomized gradient smoothing
and quantization, due to the dilemma of producing high confidence certificates in
the first framework. We theoretically demonstrate the certified radius R’ regarding
the gradient change, the correlation between two types of certified radii, and the
certified budget of data removals about R'.

1 Introduction

In order to to respect the privacy, machine unlearning techniques aim to enable data owners to proac-
tively remove their data and eliminate its influence from already trained machine learning model upon
requests [110, 43} 11111421491 139,150,1134,97]]. A straightforward solution is to retrain new models
from scratch on the remaining/remembered data, without the knowledge of the removed/forgotten
data, as if the retrained model has never seen the forgotten data. However, the naive method is
impractical since it often encounters expensive cost over complex models (e.g., DNN) on large data.

This has motivated the recent study of resolving the inefficiency issue of the naive machine unlearning.
Existing techniques can be broadly classified into two categories: (1) Exact unlearning algorithms
aim to learn an unlearning model with the same performance as the above naive ones retraining
from scratch by completely excluding the forgotten data from the training data [107, [12, |62 [17,
781185, 18}, 1108, 142, 110, 14} [7, (124} 115, [14] and (2) Approximate unlearning methods try to bring the
parameters of the trained model closer to the naive ones through the relaxation of exact unlearning
requirements [4} 48l 145] 122} 79,187,136 156, 94, |64, 142,149, 194, (1101 143 144} 49| 96l 46 37, [79] 81}
83,1126, [133)145] [15) 143} 182]. Certified removal is a certified-removal mechanism that applies a
Newton step on the model parameters that largely remove the influence of the deleted data points [49].
GKT is a zero-shot machine unlearning algorithm that imposes the constraint that zero training data
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is available to the unlearning algorithms [20]]. Two recent studies propose online machine unlearning
methods for linear regression models 78] and linear support vector machine models [[17]], for further
improving the efficiency of machine unlearning. The former adapts users’ requests to delete their
data before a specific time bar. The latter conducts only the task of variable support vector machine.

Despite achieving remarkable success, most of the above machine unlearning methods consist of two
sequential operations: (1) Training: train a model on the complete training data and (2) Unlearning:
generate an unlearning model from the former. The combination of two operations is computationally
expensive when training complex models over large datasets. In addition, they often sequentially
redo the unlearning operations one by one, when addressing a series of machine unlearning requests.

Randomized smoothing has achieved the state-of-the-art certified robustness guarantees against
worst-case attacks by smoothing with isotropic Gaussian distribution [69, 23|70} 76,104} 72} 144
58116, 381 1411921 [88], 33] 131, [142] [119] [1} 16}, 53] [86]). Specially, it takes a base classifier f(z) as an

input, and outputs a smooth classifier g(z) = argmax P_(f(x + €) = c¢) by averaging its prediction
cey

over isotropic Gaussian noise D = N (O, o?l ) of the input data = within its neighborhood e. It
provides a tight certified robustness guarantee: g(x) can always return the most probable class c 4,
i.e., g(x 4+ 0) = c4 forall ||§]|2 < R, as long as the perturbation § is within the certified radius R.

P
e~D

This motivates us to establish a connection between randomized smoothing for certified robustness on
classification and randomized smoothing for certified machine unlearning on gradient quantization.
We analogize the data removals on the entire training data (i.e., the perturbations on the entire data)
in the machine unlearning to the adversarial attacks (i.e., the perturbations on the data samples) in
the certified robustness and liken the output quantized gradients in the former to the output discrete
class labels in the latter. Since the output class labels in the latter through randomized smoothing are
able to keep unchanged and correct against adversarial attacks within the certified radius, it is highly
possible that the output quantized gradients in the former through randomized smoothing can keep
unchanged against data removals within the certified budget, which implies that the learnt model
shares the same gradients (and parameters) with the naive one retrained on only the remembered data.

Instead of performing two sequential operations of training and unlearning, this work directly trains
an unlearning model in advance, without the knowledge of the forgotten data, based on randomized
data smoothing and gradient quantization. We propose to execute the randomized smoothing on
the average ¥ of data samples. When there are data removal requests in the training data, = will be
updated with a new average T, which can be treated as a perturbed version of Z. As the class labels
lie in a (countable) small discrete space but the gradients lie in a large continuous space, we propose
a gradient quantization technique to produce discrete gradients in a three-class space {—1,0,1}.
The randomized smoothing method needs to sample a large number of points surrounding the input
data for producing high confidence certificates, e.g., 10° samples for 99.9% confidence [23]. In
our context, the outputs of randomized smoothing are high-dimensional gradients. We propose to
utilize the Taylor expansion to approximate the output gradients of the sampled points for avoiding
expensive gradient computation. We theoretically derive the error introduced by the Taylor expansion,
the certified radius R regarding the perturbation surrounding Z and the certified budget B of data
removals (i.e., the maximally allowed amount of escaped data samples).

Notice that the response to the data removals is to erase the data samples and their associated labels
together. It is necessary to smooth on both of them. However, for a given dataset, the relationship
between the samples and labels is a multi-valued non-continuous mapping, which is a non-integrable
function. This results in the dilemma of producing high confidence certificates, even with sampling
and estimation techniques. Therefore, we propose a feasible solution based on randomized gradient
smoothing and gradient quantization. We theoretically demonstrate the certified radius R’ regarding
the gradient perturbations. Most importantly, we recognize the correlations between two types of
radii R and R’ and between B and R, which are used to derive the certified budget B’ about R’. We
further integrate the model training, randomized gradient smoothing, and gradient quantization into a
unified framework for directly training a machine unlearning model with the data removal certificates
as a guidance, for guaranteeing that the model parameters and gradients keep unchanged against the
data removals within the certified budget.

In comparison with existing machine unlearning techniques, our randomized gradient smoothing and
gradient quantization method exhibits three compelling advantages: (1) It simultaneously executes the
training and unlearning operations, which is able to dramatically improve the unlearning efficiency



for complex models on large-scale data; (2) The one-time operation of simultaneous training and
unlearning can provide the timely response to a series of machine unlearning requests, as long as
the actual data removals are below the certified budget of data removals; and (3) It is agnostic to the
removed/forgotten data before performing the unlearning operation.

Empirical evaluation on real datasets demonstrates the superior performance of our PCMU model
against several state-of-the-art machine unlearning methods on image classification. More experi-
ments, implementation details, and hyperparameter setting are presented in Appendices

2 Background

2.1 Randomized Smoothing for Certified Robustness

Randomized smoothing aims to build a smoothed classifier g from a base classifier f that maps inputs
x € R to classes ¢ € C.

g(z) = argmax P _(f(z+¢)=c) (1)
ccy e~D

where D = N (07 o?I ) is a Gaussian probability distribution in R? for randomized smoothing. g
returns whichever class f is most likely to return when z is perturbed by noise .
Let p.(z) be the output probability of f over class ¢, i.e., p.(x) = IP’D(f(m + €) = ¢). Without loss

of generality, we assume that p4 (x) and pp(z) are the probabilities on the most probable class ¢4 and
the runner-up class cp respectively. If P (f(z + ) = ca) > pa > DB > maxex., P(f(z+¢) = ¢),

where p4(z) is a lower bound of p4 (z) and pg(z) is an upper bound of pg(x), then g(z + 0) = ca

for ¥V € R%||6]l2 < R. In this case, the smoothed classifier g can always output the correct
prediction as long as the perturbation § is within a certified /o-norm radius of R.

Theorem 1. Let f : RY — Y be any deterministic or random function, and let € ~ N (O, o’l ) Let
g be defined as in (1). Suppose cx € Y and pa,pp € [0,1] satisfy [23]:

P(f(z+¢)=ca)>pa>DPp > maxP(f(z +¢) =c) )

c#ca
Then g(x + 6) = ca for all ||6]|2 < R, where

R=2 (27 (pa) =@ (72)) 3)

where ® ! is the inverse of the standard Gaussian CDF.

2.2 Machine Unlearning

Machine unlearning aims to enable the trained models to forget what has been learned from the data
to be removed. Specifically, given a training dataset of N samples D = {z;, yl}f\il Each sample

z; € R?is associated with a label y; € J = {1,2,..., Y}, where Y is the number of classes. A
classification model M (D) is trained on the complete training dataset D.

The users can submit a data removal request at any time. Thus, the complete training data D is
partitioned into two subsets: Dy C D denoting the data which we wish the classification model to
forget and D, C D specifying the data which we want the model to remember (D = Dy U D).
The goal of machine unlearning is to unlearn the forgotten data Dy, i.e., eliminate the influence of
Dy from M (D). A straightforward solution is to use the remembered data D, as the training data
to retrain a new classification model M,.(D,.) from scratch. However, this naive method is often
time-consuming over large-scale datasets. An efficient algorithm is to directly generate a sanitized
model M, (D, Dy, M) from the deployed model M (D) that approximates M,.(D,), i.e.,

M,(D,Dy, M) ~ M, (D,) “)



3 Randomized Data Smoothing and Gradient Quantization

The idea of this work is to establish a connection between randomized smoothing for certified
robustness on classification and randomized smoothing for certified machine unlearning on gradient
quantization. By leveraging the theory of randomized smoothing and gradient quantization, we
theoretically derive the certified radius R regarding the perturbation surrounding the data average
and the certified budget B of data removals.

The gradient G(z,y) € R” of a machine learning model is given as follows.

OL(x, y;w)
ow

where L is the loss function, e.g., cross-entropy for image classification. w is the model parameter.

G(x,y) = ®)

We propose to quantize each dimension ¢ (¢ = 1,--- , T') of the continuous gradient G(x,y) € RT
over a discrete three-class space {—1,0,1}, for mimicking the classification in the randomized
smoothing for certified robustness.

Q(t) = Softmax([~|t — o?|, =[t|, =t + o*[)) (©)

where Q(t) maps a gradient dimension ¢ to a three-dimensional vector [—|t — o2|, —[t|, — |t + o2|],
where each component denotes the similarity score between ¢ and —o2, 0, or 2. ¢ is the standard
deviation of the Gaussian probability distribution in the randomized smoothing and also serves
as a quantization threshold in our method. The details of the selection of quantization threshold
are presented in Appendix [A.2] Therefore, all T gradient dimensions are partitioned into three
intervals: (—oo, —0? /2] that comes near to —c?, [—0%/2, 02 /2] that is closer to 0, and [0%/2, )
that approaches 2. Each component in () with the Softmax function also represents the probability
of the gradient dimension ¢ belonging to classes -1, 0, or 1. The most probable class ¢4 € {—1,0,1}
in Q(t) is assigned to dimension ¢ as a final quantized gradient dimension.

We represent the composition F'(z, y) of gradient computation and quantization as follows.

Fa,y) = Q(G(x,y)) (7

We use F*(z,y) to denote the output three-dimensional quantization vector of the t'* (t = 1,--- | T
dimension of the gradient G(z,y) and use F!(z,y) to represent the ¢! (¢ € {—1,0,1}) component
of Ft(z,y).

As the data removal is treated as the noise on the entire training data, we use the average x of all data
samples to represent the entire training data.

Pe o Y w g= Y ®)

z, €D yi€D

where ¥ is the average of the class labels of all data samples.

The randomized data smoothing for certified unlearning on gradient quantization is defined below.

S'(z,7) = argmax P (FY(Z+e,7+e,) =c) )
c€{~1,0,1}¢=:ey~D

where D = N (O, a?I ) is a Gaussian distribution. S? is a smoothed version of a base gradient

quantizatier F'* that maps the t*" gradient dimension about inputs (Z, ) to gradient classes ¢ €
{—1,0,1}. S* returns whichever class F'* is most likely to return when (z, i) is perturbed by (£, &,).

The randomized smoothing method needs to sample a large number of points surrounding the input
data for producing high confidence certificates, e.g., 10° samples for 99.9% confidence [23]]. In
our context, computing the gradients for massive samples is extremely inefficient. We utilize the
Taylor expansion to approximate the output gradients of sampled points, based on the outputs from



the original sample (Z, 7). For each quantlzatlon component F!(Z,y) for a sample in a Gaussian
distribution surrounding (Z,y), where & = T + €,y = § + €4,€2,€y ~ D, we take the Taylor
expansion of F!(z, ) at (Z,%) as follows.

FU&.) =Fi(e.0) + e plE -0+ SE @6 -9+
2 1t 2 tl‘ R R 2 tf R
2 EOD g GO0 gy PR Gy
et Oy 0)

A A ok Ft S _ ~ N\ _ A A _ .
where 0;(7,7) = (S Y goasiier (& — D)*(F — 7)1 4}, € € ((3,2), (5,9).5 =
3,---,00,and k =1,2,3.

The following theorem derives the error introduced by the Taylor expansion.
Theorem 2. The error introduced by the Taylor expansion of F!(%,%) at (Z,7) is

|- oM+ an

where L; = maxy—q.... ; 81’(?;% and M is the number of sampled points.
Please refer to Appendix[A4|for detailed proof of Theorem|2)}

Notice that

P(F'(z,9) = // P(F!(z,9))dzdy > max F'(z,7) (12)
ce{-1,0,1}
Thus, we derive the probabilities p 4 and pg on the most probable class ¢4 and the runner-up class

¢p in the randomized smoothing for certified machine unlearning (ca,cp € {—1,0,1}), based on
the error introduced by the Taylor expansion.

pa= max P(F'(Z,9) —¢€) = / P(F(z, 1) — e)dxdy, c = ca (13)
ce{-1,0,1} i

Rb

pp = max P(F(

c#ca

Y) +e) = / / P(FL(2,y) + e)didy, ¢ # ca (14)

Notice that the correlation between the data z and its classes ¥ is fixed for a given dataset. We denote
this correlation as § = H(Z) where H : R? — C. Thus, the randomized smoothing for certified
machine unlearning in Eq.(9) is rewritten as an equivalent one as follows.

SH(z) = argmax P (FYZ+¢)=c) (15)
ce{—1,0,1}e~D
where F'(z) = F'(z, H(Z)) = F'(Z,7).
Based on the computed PA> DB> and F'(Z), we can obtain the certified radius R regarding the
perturbation surrounding = and the certified budget B of data removal.
Theorem 3. Lete ~ D = N (0,0°1) and S'(z) = argmax ]P’D(Ft(i +€) = ¢). Suppose that
ce{—1,0,1}5~
for a specific & € RY, there exist cy € {—1,0,1} and pa,pp € [0,1] such that:

P(Ft(ﬂ_2’+€):CA) > pa > D5 > maxP(FY(z +¢) = ¢) (16)

— c#ca



Then S*(% + 6) = ca for all ||8]|2 < R, where

g

R= 5 (@' (pa) — @' (B)) (17)

where ®~1 is the inverse of the standard Gaussian CDF.

Theorem 4. Let R be the certified radius of & € R based on S*(Z) = argmax ]P’D(Ft (Z+4e) =¢),
ce{—1,0,1}~
then the certified budget of data removals is

9do?
R2

B <N - (18)

Please refer to Appendix|A.4|for detailed proof of Theorems[3|and

The above method is effective for certified machine unlearning, but it is computationally expensive
to calculate high-dimensional double integrals in p4 and pp. We can reduce the double integrals to
the single integrals through § = H (). However, H is essentially a multi-valued non-continuous
mapping, which is not an integrable function and makes the above method impractical.

x

@:[[P(Fi(i,ﬁ)—e)dﬁ?dﬁ:/P(Fg(fc,H(%))—e)di c=ca (19)

4 Randomized Gradient Smoothing and Quantization

In order to avoid the dilemma of computing practical p, pp and R, we propose a feasible solution
based on randomized gradient smoothing and gradient quantization. We theoretically demonstrate
the certified radius R’ regarding the gradient perturbations. We recognize the correlations between R
and R’ and between B and R, which are used to derive the certified budget B’ about R'.

We first calculate the gradient G(z;,y;) in terms of each sample (z;,y;) and the gradient average G.

= 1
G:N Z G(4i,y:) (20)

(zi,y:)€D

The randomized gradient smoothing for certified unlearning on gradient quantization is defined below.

SY(G) = argmax P (Q'(G +¢e)=c) (21)

ce{—1,0,1}~D

where D = N (O, %l ) is a Gaussian distribution. S* is a smoothed version of a base gradient

quantizatier ¢ that maps each dimension ¢ of the gradient Gi to gradient classes ¢ € {—1,0,1}. S¥
returns whichever gradient class Q! is most likely to return when G is perturbed by noise €.

We compute the probabilities over three intervals of (—oo, —02 /2], [-0?/2,02 /2], and [0? /2, 00).

o 1 .2 TG 2 S A 2
P = {/ e 202 dz, e 202 dz,/ e 202 dz} (22)
2 _Gt oV2m —22_GroV2lm — o oV 2w

Now, we can directly generate the corresponding probabilities p/, and pTB.

ply = max P, ply = max {P — {py}} (23)



By following the similar strategy in Theorem 3| we can derive the corresponding certified radius R’.
Namely, S (G + &) = c4 for all ||§]]2 < R/, where

S AREI0))

However, it is difficult to obtain the corresponding certified budget of data removal from R’, since
R/ is related to the perturbations over the gradient G, instead of the data Z. The following theorem
demonstrates the correlation between two types of radii R and R'.

Theorem 5. Let R and R’ be the certified radii of the above two algorithms respectively and L be
the Lipschitz constant of gradient G(z,y) € RY, then

R> gR’ (25)

By combining Theoremsand together, we derive the certified budget B’ of data removal from R'.

36dL2
B < N — 26
=0T T ) - 2 1 (pp)? (20)

In addition, we conduct the convergence analysis of our prompt certified machine unlearning algorithm
based on randomized gradient smoothing and quantization.

Theorem 6. Let S (G) be the randomized gradient smoothing for certified machine unlearning on
gradient quantization, L, L1, and Lo be the Lipschitz constants of G, Q, and SY respectively, i.e.,

IVSY(a) — VSY(b)||2 < LaLyL||la — b||2 for any a,b 27)

If we run gradient descent for k iterations with a fixed step size s < ﬁ it will yield a solution
S(K) vwhich satisfies

0) _ %2
St/(q(k)) _St/(q*) < ||q QSkq ||2 (28)

where SY (q(0)) is the initial solution and S (q*) is the local optimal solution.
This means that gradient descent is guaranteed to converge and that it converges with rate O(1/k).
Please refer to Appendix[A.4|for detailed proof of Theorems 5| and 6]

Finally, we integrate the model training for a specific learning task (e.g., image classification)
randomized gradient smoothing, and gradient quantization into a unified framework for directly
training a machine unlearning model with the data removal certificates as a guidance, for guaranteeing
that the model parameters and gradients keep unchanged against the data removals within the certified
budget. The corresponding parameter update is given below.

w=w-—n[s"(G),---, ST (G)] (29)

where w is the model parameter and 7 is a learning rate.

5 Experimental Evaluation

In this section, we have evaluated the effectiveness of our PCMU model and other comparison methods
for machine unlearning over three popular image classification datasets: Fashion-MNIST [138, 150,
371, CIFAR-10 [66}43]/44,[1211150,137], and SVHN [95} 491 [7]]. We train the classifiers on the training
set and test them on the test set for three datasets. We train a convolutional neural network (CNN) on
Fashion-MNIST for clothing classification. We train LeNet over CIFAR-10 for image classification.
We apply the ResNet-18 architecture on SVHN for street view house number identification. We



Table 1: Performance with 10% data removal and CNN on Fashion-MNIST

Performance Runtime (s)
Metric Accuracy Errory Error, Error;|Training Unlearning Total
Retrain 88.50 11.50 892 1141 687 629 1,316
Fisher 86.23 1377 12.61 13.33 671 2,015 2,686
certified removal 77.70 2230 90.11  89.87 719 181 900
DeltaGrad 84.22 1578 1436 15.27 553 141 694
NTK 86.02 1398 12.81 13.25 671 1,879 2,550
Unrolling SGD 83.44 16.56 41.13  41.00 356 63 419
SISA 84.46 15.54 1459 1452 | 1,419 1,387 2,806
Adaptive Unlearning| 86.02 1398 1280 13.25 | 1,537 1,481 3,018
FedEraser 69.86 30.14 29.88 28.14 677 608 1,285
MCMC unlearning 85.29 1471 6.62  58.73 621 803 1,424
PCMU 88.34 11.66 10.68 10.71 802 0 802
Table 2: Performance with 20% data removal and CNN on Fashion-MNIST
Performance Runtime (s)
Metric Accuracy Errory Error, Error;|Training Unlearning Total
Retrain 88.21 11.79  9.75 11.76 687 561 1,248
Fisher 86.02 1398 1280 13.25 827 1,939 2,766
certified removal 76.69 2331 9029 89.82 711 347 1,058
DeltaGrad 84.11 1589 1473 1321 570 140 710
NTK 86.03 1397 12.81 13.25 827 1,807 2,634
Unrolling SGD 85.56 1444 3827 3750 371 65 436
SISA 83.90 16.10 14.64 1471 | 1,419 1,351 2,770
Adaptive Unlearning| 75.13 24.87 2537 25.19 1,537 1,419 2,956
FedEraser 71.93 28.07 27.07 27.13 654 586 1,240
MCMC unlearning 84.52 1548 695  63.02 995 778 1,773
PCMU 88.34 11.66 10.25 1147 802 0 802

evaluate the performance of various machine unlearning methods on three datasets with the ratio
of data removal between 5% and 20%. In this work, by following several representative machine
unlearning methods [[7,150} [134], where each learning request is modeled as a random draw from the
training data in terms of a uniform distribution. Given a ratio of data removal, the forgotten data D
are sampled uniformly from the complete training data D with this ratio. The remaining dataset D,.
(i.e., D = Dy U D,) will be considered as the remembered data. This sampling approach is more
realistic since a removal request may be applied to any data examples with the same probability.

Baselines. We compare the PCMU model with nine state-of-the-art machine unlearning models.
Fisher is a scrubbing procedure that removes information from the trained weights, without the need
to access the original training data, nor to retrain the entire network [43]. certified removal provides
a strong theoretical guarantee that a model from which data is removed cannot be distinguished
from a model that never observed the data to begin with [49]. DeltaGrad is a rapid retraining
machine learning model based on information cached during the training phase [136]. NTK removes
dependency on a cohort of training data from a trained deep network that improves upon and
generalizes previous methods to different readout functions [44]. Unrolling SGD is a taxonomy of
approximate unlearning which concludes with verification error as a metric to study as it subsumes a
large class of unlearning criteria [[121]]. SISA is a practical approach for unlearning that relies on data
sharding and slicing to reduce the computational overhead of unlearning [7]. Adaptive Unlearning
gives a general reduction from deletion guarantees against adaptive sequences to deletion guarantees
against non-adaptive sequences. [50]. FedEraser is a federated unlearning methodology that can
eliminate the influences of a federated client’s data on the global model while significantly reducing
the time consumption [[79]. MCMC unlearning designs an MCMC influence function to characterize
the knowledge learned from data, which then delivers the MCMC unlearning algorithm [37]]. To our
best knowledge, this work is the first to execute one-time operation of simultaneous training and
unlearning in advance for a series of machine unlearning requests.

Variants of PCMU model. We evaluate two versions of PCMU to show the strengths of different
techniques. PCMU-N uses the basic model with only the gradient quantization. PCMU operates with
the full support of both the randomized gradient smoothing and the gradient quantization techniques.
Notice that the gradient quantization is a necessary operation to convert continuous gradients to
discrete gradient classes for the randomized gradient smoothing in our PCMU model. Thus, we
cannot validate the version with only the randomized gradient smoothing.

Evaluation metrics. By following the same settings in several representative machine unlearn-
ing models [43] 144, 121 [37], we use four popular measures in machine unlearning to verify the



Table 3: Performance with 10% data removal and LeNet on CIFAR-10

Performance Runtime (s)
Metric Accuracy Errory Error, Errory|Training Unlearning Total
Retrain 64.31 35.69 27.44  36.16 846 745 1,591
Fisher 62.39 37.61 33.76  33.78 693 2189 2,882
certified removal 36.91 63.09 90.02 89.66 749 174 923
DeltaGrad 61.46 38.54 23.12 2392 859 493 1,352
NTK 62.36 37.64 33776 3544 693 2,047 2,740
Unrolling SGD 59.69 40.31 41.69 49.80 511 168 679
SISA 58.01 4199 3401 3440 | 1,594 1,533 3,127
Adaptive Unlearning| 43.35 56.65 55.80 55.21 1,176 293 1,469
FedEraser 51.63 48.37 4357 48.62 | 1,190 984 2,174
MCMC unlearning 60.70 3930 4.53 2698 | 1,322 718 2,040
PCMU 604.33 35.67 24.21 37.68 903 0 903

Table 4: Performance with 20% data removal and LeNet on CIFAR-10

Performance Runtime (s)

Metric Accuracy Errory Error,. Errory|Training Unlearning Total
Retrain 63.29 36.71 2459 36.89 846 673 1,519
Fisher Failed due to out of memory Failed due to out of memory
certified removal 36.03 63.97 90.14 89.84 749 430 1,179
DeltaGrad 61.55 3845 2261 2220 864 499 1,363
NTK Failed due to out of memory Failed due to out of memory
Unrolling SGD 60.39 39.61 40.17 47.00 511 327 838

SISA 57.17 42.83 3575 3574 | 1,594 1,465 3,059
Adaptive Unlearning| 41.23 58.77 5752 5922 | 1,176 321 1,497
FedEraser 51.66 48.34 4853 50.14 | 1,190 980 2,170
MCMC unlearning 61.33 38.67 529 3042 | 1,322 714 2,766
PCMU 64.33 35.67 25.18 3532 903 0 903

performance of different methods: Accuracy, Errory (classification errors on the forgortten data
Dy), Error, (errors on the remembered data D,.), and Error; (errors on the test data). Since the
model M,.(D,) (Retrain) that uses only the remembered data D, as the training data retrained from
scratch has never seen the forgotten data Dy, it is usually used as the gold standard for evaluating the
performance of machine unlearning algorithms [43}[37]. Ideally, the accuracy and three errors of the
unlearning models should match that of the retrained model M,.(D,.).

Machine unlearning accuracy with varying ratios of data removal. Tables [[}4] exhibit the accu-
racy obtained by eleven machine unlearning approaches by varying the ratio of unlearning request /
data removal between 10% and 20%. Retrain represents the model retrained on only the remembered
data D, from scratch, without the knowledge of the forgotten data Dy. A machine unlearning
algorithm with more similar performance to the Retrain model achieves a better unlearning result.
It is observed that among ten approaches except the Retrain model, no matter how large the ratios
of data removal are, the PCMU method achieves the closest accuracy to the Retrain model in all
tests, showing the effectiveness of PCMU to the machine unlearning. Compared to the absolute
performance difference between other baselines and the Retrain model, PCMU, on average, achieves
at least 5.56% and 15.17% improvement of absolute accuracy difference on Fashion-MNIST and
CIFAR-10 respectively. Notice that the accuracy and error on test data by our PCMU keep unchanged
since it performs one-time operation of simultaneous training and unlearning for addressing multiple
unlearning requests. In addition, the promising performance of PCMU over Fashion-MNIST and
CIFAR-10 implies that PCMU has great potential as a general machine unlearning solution to other
image datasets, which is desirable in practice.

Machine unlearning error with varying ratios of data removal. Tables also show the clas-
sification errors on the deleted data Dy (Errory), errors on the remembered data D, (Error,),
and errors on the test data (E'rror;) by eleven machine unlearning methods respectively. We have
observed that the performance of our PCMU method behaves similarly and achieves at least 13.73%
and 16.01% boost of absolute error difference on two datasets respectively. PCMU substantially
outperforms the performance of other baselines in most experiments, especially on the CIFAR-10
dataset. In addition, the errors by our PCMU are not sensitive to the ratio of data removals. This is
because that our PCMU method performs one-time operation of simultaneous training and unlearning
when addressing a series of machine unlearning requests, as long as the ratio of actual data removals
is below the certified budget of data removals in our PCMU. However, other baselines need to
sequentially handle these machine unlearning requests one by one.
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Ablation study. Figure [I| exhibits the unlearning performance with the Retrain model and two
variants of the PCMU model over two datasets of Fashion-MNIST and CIFAR-10 respectively.
We have observed the exact PCMU achieves the closest accuracy and errors to the Retrain model
over two datasets, which are obviously better than PCMU-N. A reasonable explanation is that our
PCMU method utilizes the randomized gradient smoothing and gradient quantization techniques for
supporting certified machine unlearning. It further uses the certificates as a guidance to train the
machine unlearning model, for guaranteeing that the model parameters and gradients keep unchanged
against the data removals within the certified budget.

Running time. Tables report the running time achieved by all comparison methods over two
dataset to produce machine unlearning results respectively. We observe that PCMU scales well
with deep neural network architectures over different image datasets and shows good efficiency for
machine unlearning. Our PCMU method achieves better efficiency than most baseline methods,
except DeltaGrad and Unrolling SGD. As discussed above, our PCMU method performs one-time
operation of simultaneous training and unlearning when addressing a series of machine unlearning
requests. However, DeltaGrad and Unrolling SGD need to sequentially handle these machine
unlearning requests one by one. This is clearly a computationally expensive process when the number
of machine unlearning requests is huge.

Impact of standard deviation. Figure [2| (a) measures the performance effect of standard deviation
of the Gaussian distribution in the randomized smoothing for machine unlearning by varying o from
0.025 to 0.3. Notice that the Retrain and PCMU-N models do not contain the module of randomized
smoothing. Thus, their accuracy scores keep unchanged with varying . We have witnessed the
performance curves by PCMU initially increase quickly and then become stable or even slight drop
when o continuously increases. Initially, a large o can help utilize the strength of randomized gradient
smoothing and quantization for directly training a machine unlearning model in advance. Later on,
when o continues to increase and goes beyond some thresholds, the performance curves become
stable. A rational guess is that after the data removals have been already certified at a certain threshold
and considered in the training of machine unlearning models, our PCMU model is able to generate a
good machine unlearning result. When o continuously increases, this does not affect the performance
of machine unlearning any more.

Impact of data removal ratio. Figure 2] (b) evaluates the accuracy impact of data removal ratios
varying from 5% to 20% on three datasets of Fishion-MNIST, CIFAR-10, and SVHN. It is observed
that when changing data removal ratios, the accuracy by our PCMU model matchs well with that
of the retrained model from scratch. The performance by our PCMU model keeps relatively stable,
since our method directly trains a unlearning model based on the certified budget of data removals in
advance and performs one-time operation of simultaneous training and unlearning, as long as the
ratio of actual data removals is below the certified budget of data removals.

6 Conclusions

In this work, we have proposed a prompt certified machine unlearning algorithm that executes one-
time operation of simultaneous training and unlearning in advance. First, we establish a connection
between randomized smoothing for certified robustness on classification and randomized smoothing
for certified machine unlearning on gradient quantization. Second, we propose a certified machine
unlearning model based on randomized data smoothing and gradient quantization. Finally, we present
another practical framework of randomized gradient smoothing and quantization, due to the dilemma
of producing high confidence certificates in the first framework.
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