
EquiBot: SIM(3)-Equivariant Diffusion Policy for
Generalizable and Data Efficient Learning

Jingyun Yang∗, Zi-ang Cao∗, Congyue Deng,
Rika Antonova, Shuran Song, Jeannette Bohg

Stanford University
{jingyuny, ziangcao, congyue, rika.antonova, shuran, bohg}@stanford.edu

Figure 1: We propose a method for learning generalizable and sample-efficient visuomotor policies
that can be applied to everyday manipulation tasks.

Abstract: Building effective imitation learning methods that enable robots to
learn from limited data and still generalize across diverse real-world environments
is a long-standing problem in robot learning. We propose EquiBot, a robust, data-
efficient, and generalizable approach for robot manipulation task learning. Our
approach combines SIM(3)-equivariant neural network architectures with diffu-
sion models. This ensures that our learned policies are invariant to changes in
scale, rotation, and translation, enhancing their applicability to unseen environ-
ments while retaining the benefits of diffusion-based policy learning such as multi-
modality and robustness. We show on a suite of 6 simulation tasks that our pro-
posed method reduces the data requirements and improves generalization to novel
scenarios. In the real world, with 10 variations of 6 mobile manipulation tasks,
we show that our method can easily generalize to novel objects and scenes af-
ter learning from just 5 minutes of human demonstrations in each task. Website:
https://equi-bot.github.io/
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1 Introduction

The unpredictability and variability of real-world environments have posed significant challenges
to the development of fully autonomous robotic agents. Existing visuomotor policies learned via
imitation learning are effective in controlled settings [1, 2, 3, 4, 5, 6, 7], but they require substantial
data and generalize poorly to unseen scenarios [8, 9, 10, 11, 12], limiting their practical deployment.

In this work, we introduce EquiBot, an equivariant policy learning architecture based on diffusion
models [13]. The equivariant neural network guarantees that outputs scale, translate, and rotate with
inputs, even if not fully trained [14], enabling generalization to unseen scenarios with changes in

∗ These authors contributed equally.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://equi-bot.github.io/


object visuals, sizes, and placements. This architecture also has data efficiency benefits, as it can
infer actions for object placements and poses that are in distribution but insufficiently demonstrated,
outperforming non-equivariant policies. Using a diffusion model-based policy architecture also of-
fers robust learning performance, including support for idle actions and multi-modal behaviors [8].
Leveraging this design, EquiBot enables a wide range of household manipulation tasks using only
a handful of single-view human demonstration videos. At test time, our method takes single-view,
object-centric point clouds and robot proprioception as input and outputs sequences of robot end-
effector actions that consist of 6D velocity commands and gripper open-close signals.

We evaluate our method in both simulation and real-world experiments. In simulation, we test on
a suite of six tasks adapted from prior benchmarks [8, 15, 16], showing that our method is more
data-efficient and generalizes better to unseen scenarios than prior works. In real robot experiments,
we quantitatively test on 6 real-world mobile manipulation tasks in home settings, including pushing
a chair towards a desk, closing a laundry machine door, folding towels, making a bed, and closing
a suitcase. Our method successfully performs these tasks with unseen objects and scenes from
just 5 minutes of human demonstrations, outperforming baselines that rely on augmentations for
generalization or do not use a diffusion process to predict actions.

2 Related Work

Data-efficient imitation learning. Recent imitation learning approaches for imitation learning as-
sume large quantities of data to be available for learning manipulation policies [4, 8]. To reduce the
amount of data that policy training requires per task, some work [2, 17, 18, 19] formulate a one-shot
or few-shot imitation learning setup where the policy is trained on multi-task demonstration data
and can then output actions in a novel task after seeing one or more demonstrations as well as the
current state. However, this approach requires the availability of multi-task data in a task domain.
Some other works [20] achieve imitation learning from small demonstration datasets with sampling-
based optimization methods like Bayesian Optimization, but these methods are often limited to small
action spaces and open-loop settings. In contrast to prior works, we show that embedding equivari-
ance into the policy architecture can effectively improve the data efficiency of the imitation learning
algorithm, allowing robust policies to be learned with just a handful of demonstrations.

Equivariance in robot manipulation. To help learned robot policies generalize to unseen envi-
ronments and object placements, prior works [21, 22, 23] use data augmentation to improve cross-
domain transfer of the learned policy. However, these methods increase training time significantly
and do not guarantee generalization to visual appearances, object scales, and poses that are unseen in
the training data distribution even after the augmentation. In contrast, utilizing equivariant represen-
tations in policy learning allows the learned policies to generalize to objects and initial conditions
not previously seen at training time. Prior works have explored the use of equivariance in robot
manipulation in several different setups [24, 25, 26, 27, 28, 29], but most of them either focus on
only simple pick-and-place like tasks, do not support closed-loop policies, or do not support scale
equivariance. In our prior work [16], we developed a SIM(3)-equivariant visuomotor policy learning
method that can go beyond pick-and-place tasks with deformable and articulated objects. However,
EquivAct cannot handle multi-modal training data because of its deterministic architecture. Equiv-
Act also lacks the necessary architectural design that prevent it from predicting multiple actions
into the future, which is crucial for producing temporally consistent actions [8]. Compared to prior
works, our method trains stably, handles multi-modal data with diffusion, and generalizes to unseen
object appearance, initial states, scales, and poses with SIM(3)-equivariance.

Equivariant diffusion architectures. Prior works have integrated equivariance in diffusion models
in various non-robotics domains [30, 31, 32, 33]. Some works have attempted to integrate equivari-
ant architectures in diffusion models for robotics [34, 35, 36]. Diffusion-EDFs [34] produces target
end-effector poses and can only solve pick-and-place tasks. EquiDiff [35] can only handle SO(2)-
equivariance with simple 2D trajectories. EDGI [36] assumes ground-truth scene states as input
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and cannot handle complex visual observations. Compared to prior works, our work proposes an
equivariant diffusion policy for closed-loop 3D manipulation tasks with point cloud observations.

3 Method

In this section, we describe the design of EquiBot. Our method builds upon recent advances that use
a diffusion process to represent visuomotor policies [8]. Starting from that, we provide key insights
for injecting equivariant architectures. By building an equivariant noise prediction network, we
enforce each diffusion step to be equivariant by construction (see Figure 2), and because of the self-
symmetry of the initial Gaussian noise, the overall framework outputs an equivariant distribution
under stochasticity. Section 3.2 provides our formal argument for this. The equivariant update in the
diffusion process plays the role of letting the network “see” different input variations under transfor-
mations, which replaces the need for data augmentations and makes our framework data-efficient.
Below, we introduce concepts related to equivariance and diffusion policy, then describe our method.

3.1 Preliminaries

Model inputs and outputs translate, 
rotate, and scale by construction

Point cloud & robot pose

Training Scenario

Deployment: Zero-shot Generalization

Equivariant
Architectures
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Architectures
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Figure 2: Method overview. Given input scene
point cloud & robot pose, our method performs a
series of diffusion steps to obtain denoised actions
with SIM(3)-equivariance, i.e. when the inputs
translate, rotate, and scale, the outputs are guar-
anteed to translate, rotate, and scale accordingly.

Problem setup. We assume an imitation learn-
ing setup, where our method receives a demon-
stration dataset D = {τn}Nn=1, which con-
sists of N demonstration trajectories τn. Each
demonstration trajectory consists of sequences
of observation-action pairs (Ot,At). The goal
of the policy is to learn a mapping π from past
observations Ot−To:t to either the next action
At or the next set of actions At:t+Tp

, where
To and Tp are the observation and prediction
horizons. At evaluation time, the policy re-
ceives state Ot and predicts the next one or
more actions to be executed in the environ-
ment. In this work, we assume the observation
Ot = (Xt,St) is composed of the scene point
cloud Xt and robot proprioception St.

SIM(3)-equivariant network architectures.
Let f be a function that takes a point cloud
X ∈RN×3 as input. This function is considered SIM(3)-equivariant if f(TX) = Tf(X) for any
rigid 3D transformation T := (R, t, s) ∈ SIM(3), where R, t, and s denote rotation, translation,
and scale respectively. In this work, we use the same SIM(3)-equivariant encoder architecture and
network layers as [16].

Diffusion process as policy representation. Our method uses Denoising Diffusion Probabilistic
Models (DDPMs) to model the conditional distribution p(At|Ot) similar to [8]. Starting from
Gaussian noise AK

t , where K is the number of diffusion steps, DDPM performs K iterations of
denoising to predict actions with decreasing levels of noise, AK−1

t , . . . ,A0
t . This process follows

Ak−1
t = αk(A

k
t − γkϵθ(Ot,A

k
t , k) + σkN (0, I)), (1)

where ϵθ is a denoising network, N (0, I) is Gaussian noise, and αk, γk, σk are functions of k set by a
noise scheduler. The policy outputs A0

t as its inference output. In this work, we use the CNN-based
Diffusion Policy variant specified in [8] as the starting point of our architecture design. The original
CNN-based Diffusion Policy architecture uses a noise prediction network that takes observation Ot,
diffusion iteration k, and noisy action At as input, and predicts the gradient ∇E(At) for denoising
At. The network first uses an encoder to encode the visual observations. The encoded visual features
and positional embeddings of the diffusion iteration parameter are passed into FiLM layers [37] so
that the encoded visual inputs are integrated into the network. Then, the policy network uses a
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convolutional U-net [38] to process the input noisy actions At, the conditioned observations, and
diffusion iteration k to predict the output denoising gradients.

Observation and action spaces. We use point clouds as input observations, since these contain the
necessary 3D information to ensure policies can be structured as equivariant to translation, rotation,
and scaling. We represent robot proprioception information with St = (S

(x)
t ,S

(d)
t ,S

(s)
t ), with 3D

positions in S
(x)
t , normalized directions in S

(d)
t , and scalars in S

(s)
t . Robot proprioception can be

converted into such a format that uses positions, velocities, offsets, and scalars in most cases, e.g.
end-effector positions go to S

(x)
t ; end-effector velocities can be converted to position targets and go

to S
(x)
t ; end-effector orientations can be converted into rotation matrices and placed in S

(v)
t ; gripper

open-close states go to S
(s)
t . Similarly, our representation for actions At = (A

(v)
t ,A

(d)
t ,A

(s)
t )

consists of 3D offsets or velocities A
(v)
t , normalized directions A

(d)
t , and scalars S

(s)
t . Similar to

proprioception information, most existing action spaces can also be converted into this format.

3.2 Equivariant Distributions and Diffusion

We make a diffusion process equivariant by making the architecture for performing each diffusion
step equivariant. In this section, we show that with equivariance in the per-step diffusion update,
the final output action distribution is also equivariant under stochasticity. We mainly discuss equiv-
ariance to SO(3)-rotations in the diffusion process. Equivariance to translations and scaling (to get
SIM(3)-equivariant architectures) is achieved via canonicalization before the diffusion process.

Proposition 1. Let p(xK |c) be an SO(3)-equivariant density function conditioned on c, i.e.
∀R ∈ SO(3), p(xK |c) = p(RxK |Rc). If the Markov transitions p(xk−1|xk, c) are SO(3)-
equivariant for all k, i.e. p(xk−1|xk, c) = p(Rxk−1|Rxk,Rc), then the density p(x0|c) =∫
p(xT |c)ΠK

k=1p(x
k−1|xk, c) is also SO(3)-equivariant.

Please view the complete proof in Section D of the supplementary materials. In our case, obser-
vation Ot conditions the diffusion process of the actions A0:K

t . The prior distribution p(AK
t |Ot)

is a standard Gaussian distribution equivariant to SO(3) transformations. The transition probabili-
ties p(Ak−1

t |Ak
t ,Ot) are predictions by an equivariant network, and thus are equivariant to SO(3)-

rotations. Therefore, the final output action p(A0
t |Ot) is also SO(3)-equivariant.

3.3 SIM(3)-Equivariant Diffusion Policy

To design a SIM(3)-equivariant model architecture, our approach is to modify each part of the CNN-
based Diffusion Policy architecture [8] to make them individually equivariant architectures. First, we
design our point cloud encoder to be SIM(3)-equivariant and additionally output a centroid vector
Θc as well as a scalar Θs quantifying object scale. Θc and Θs are then used to scale the inputs
to subsequent layers of the network so that they are invariant to positions and scales. We then
modify the FiLM layers, the convolutional U-net architecture, and other connecting layers to be
SO(3)-equivariant. Finally, before producing the output actions, we scale relevant parts of the action
back using Θc and Θs so the output is SIM(3)-equivariant to the input observation. Please see
supplementary materials (Figure 13) for a detailed method figure.

Encoder. We use a PointNet-based [39] encoder in this work. For SIM(3)-equivariance, we reuse
the encoder Φ introduced in [40] and [16]. This encoder takes a point cloud X as input and outputs
a latent code Θ = Φ(X), comprised of four components: Θ := (ΘR,Θinv,Θc,Θs), where ΘR

is a rotation equivariant latent representation, Θinv is an invariant latent representation, scalar Θs

is the computed object scale, and vector Θc denotes the object centroid. For more details on this
encoder, we refer to [16]. While [16] pre-trains the encoder using generated simulation data, we do
not perform pre-training on the encoder and learn it from scratch. This eliminates the need to build
task-specific simulation environments and collect custom pre-training data in these environments.

Routing input observations and actions into a conditional U-net. The conditional U-net takes
two inputs: action representation Za and conditioning information Zc. To construct these inputs
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from point cloud encoding Θ, proprioception St, and noisy action At, we need to first translate and
scale St and At using Θc and Θs so the resulting values are invariant to scale and position, and then
merge relevant inputs. More concretely, we define the action representation as

Za = ffuse
(
[A

(v)
t /Θs,A

(d)
t ],A

(s)
t

)
, (2)

where ffuse is a Vector Neuron layer that takes vector information as its first and scalar information
as its second input argument. We define conditioning information as

Zc = (Z(vector)
c ,Z(scalar)

c ) =
([

Θinv, (S
(x)
t −Θc)/Θs,S

(d)
t ],

[
S
(s)
t , pos emb(k)

])
, (3)

where Zvector
c and Zscalar

c are vector and scalar conditioning used as input to the FiLM layers [37] in
the conditional U-net, and pos emb(k) is the positional embedding of the diffusion iteration k.

SO(3)-equivariant conditional U-net. A conditional U-net is composed of 1D convolution layers,
upsampling layers, and FiLM layers. We make this network SO(3)-equivariant by converting every
layer of this network to an SO(3)-equivariant layer.

To make 1D convolution layers SO(3)-equivariant, we treat vector channels of the layer inputs as
batch dimensions and perform the original convolution operations. This simple change makes the
convolution layer SO(3)-equivariant. We do not make any modifications to the upsampling layer, as
it is naturally SO(3)-equivariant. To make the FiLM layer SO(3)-equivariant, we substitute vanilla
linear layers with vectorized linear layers introduced in [14]. More formally, a FiLM layer is for-
mulated as FiLM(F|η, β) = ηF + β, where η = f(x) and β = h(x) are parameters predicted
from learned functions used to modulate a neural network layer’s activations F, and x is this neural
network layer’s input. We replace non-equivariant layers f and h with ‘vector neuron’ layers [14],
achieving rotation equivariance.

Output. The conditional U-net with SO(3)-equivariant layers processes Za and Zc and outputs
translation and scale invariant actions Âinv. To process this value into the final output of the policy,
we assemble the final output action as Ât = (Â

(v)
inv · Θs, Â

(d)
inv , Â

(s)
inv ), where Â

(x)
inv , Â(d)

inv , and Â
(s)
inv

are the position, direction, and scalar components of the predicted invariant action.

Please refer to Section E in supplementary materials for implementation details.

4 Experiments

Through our experiments, we want to answer the following questions: (1) does our method general-
ize to unseen scenarios better than imitation learning methods that do not leverage equivariance; (2)
does our method demonstrate more robust performance than prior methods for equivariant visuomo-
tor policy learning that do not leverage diffusion models; (3) does our method achieve better data
efficiency when there is limited training data; (4) how do different components of the method con-
tribute to the final performance? We perform quantitative experiments in both simulations (Section
4.1) and the real world (Section 4.2) to answer these questions. Please view ablation experiments in
Section B of the supplementary materials.

4.1 Simulation Experiments

4.1.1 Comparisons to Vanilla Diffusion Policies and Other Equivariant Policy Architectures

Below, we evaluate our method on out-of-distribution generalization and compare to prior methods.

Comparisons. We compare our method to three baselines. (1) Diffusion Policy (DP) [8]: Vanilla dif-
fusion policy using a point cloud as input; we substitute the imaged-based encoder to a PointNet++
encoder [39] similar to what EquiBot is using. (2) Diffusion Policy with Augmentations (DP+Aug):
This baseline uses the same architecture as the vanilla diffusion policy baseline, but trains with syn-
thetically generated data augmentation. (3) EquivAct [16]: A re-implementation of [16] that drops
the pre-training phase that requires task-specific simulated data.
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Figure 3: Visualizations of simulation environments. The three mobile manipulation tasks feature
varied rigid, deformable, and articulated objects. The Push T task features multi-modal demonstra-
tion data that challenge the learning algorithms. The Can and Square tasks from the Robomimic
benchmark require precise position and orientation movements to successfully complete the tasks.

Augmentations. The DP+Aug baseline requires augmentations in the training phase. In all four
environments, we augment the training data to (1) rotate the observation around the z-axis, (2)
uniformly scale the observation within the range 0.5 × −1.5×, and (3) apply a random Gaussian
offset to the observation with standard deviation equal to 0.1 times the approximate workspace size.

Figure 4: Results of out-of-distribution gener-
alization experiments. We show that our method
achieves more robust out-of-distribution general-
ization performance than methods that do not use
diffusion processes to model policies and ones
that do not utilize equivariance. Error bars show
the mean and standard deviation over 5 check-
points and 3 seeds.

Tasks. We use four simulated tasks: Cloth
Folding, Object Covering, Box Closing, and
Push T (see Figure 3). The first three tasks in-
volve two mobile robots manipulating various
deformable and articulated objects. In these
tasks, a simulated depth camera records point
clouds of relevant objects in the scene from a
third-person viewpoint. The policy takes these
point clouds as input and commands the end-
effector position, rotation, and gripper open-
close actions of both robots. We train policies
in these tasks with 50 synthetically generated
demonstrations. The Push T benchmark task
is a simulated 2D T-shape pushing game devel-
oped in [8] to showcase learning from multi-
modal demonstrations. To make this task com-
patible with our setup, we assume the agent and
object are placed on the ground plane (z = 0)
in 3D space. In this task, the policy receives
the eight corners of the T-shape as input and
outputs the velocity command to the pushing
operator. We use the same 200 demonstrations
as [8] to train policies in this task.

Training and evaluation. We train all methods
for 2,000 epochs on 3 random seeds. For every training run, we save a checkpoint every 50 epochs
and evaluate the last 5 checkpoints saved at the end of training. For each evaluation, we run the policy
in a randomly initialized environment for 10 episodes and record the mean final reward the policy
achieves. This means that each bar in the resulting plot reports the mean and standard deviation of
evaluation results over 3 seeds ×5 last checkpoints ×10 episodes = 150 trials of evaluation.

Evaluation setups. To gain insight into the generalizability of competing methods, we design four
different evaluation setups to test our policies. The Original setup evaluates the policy at the same
initial poses and goals as in the demos; the OOD (R) setup randomizes initial object rotation around
the z-axis; the OOD (S) setup scales the scene up 1× to 2× with up to a 1.33 aspect ratio change;
the OOD (P) setup adds dramatic position randomization to the scene; the OOD (R+S+P) combines
previous OOD setups by randomizing rotation, scale, and translation of the scene.

Results. We show the results of this experiment in Figure 4. The DP baseline performs very well in
the Original setup, but its performance drops significantly when it comes to any of the OOD setups.
The DP+Aug baseline performs especially well in the OOD (R) setup because the augmentations
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data this baseline learns from are in-distribution with respect to the evaluation scenarios. But in other
scenarios such as OOD (P) and OOD (R+S+P), it suffers from significant performance drops. The
EquivAct baseline performs very well in the Cloth Folding task but displays subpar performance in
Object Covering and Box Closing tasks. It also cannot perform well in the Push T task because the
deterministic network architecture with behavior cloning loss cannot handle multi-modal training
data well. We also show in supplementary materials Section B that EquivAct displays unstable
training performance. Our method performs stably in all four tasks and suffers from the least amount
of performance drop compared to all baselines. This shows that our method indeed outperforms prior
methods in out-of-distribution generalization.

4.1.2 Data Efficiency Experiments

Figure 5: Results of data efficiency experi-
ments. Our method achieves better data efficiency
than the Diffusion Policy when evaluated in distri-
bution on two benchmark tasks.

In this experiment, we aim to test if our
method outperforms prior methods in a low-
data regime, even if it is evaluated in dis-
tribution. Because we only care about in-
distribution performance in this experiment, we
only compare our method with the DP baseline.
We adopt two Robomimic environments [15]
for this experiment: Can and Square.

Setup. In each task, we train all methods 2,000
epochs in three setups: learning from 100 demos, 50 demos, and 25 demos. Following the same eval-
uation standard for mobile dual-robot and Push T environments, we report the mean and standard
deviation over 150 trials of evaluation.

Results. The results of this experiment can be found in Figure 5. In both tasks, the performance
of DP drops dramatically when the number of demos decreases from 100 to 25, while our method
retains relatively higher performance when the amount of data drops. This is because when the
training data size is too small to cover the whole distribution of initial poses, the DP baseline can-
not naturally generalize to unseen initial poses during evaluation. Our method, on the other hand,
leverages the equivariance nature to cope with novel initial object poses at test time.

4.2 Real Robot Experiments

We show a series of real robot experiments where we train mobile robots to perform everyday
manipulation tasks from 5 minutes of single-view human demonstration videos. We select a suite
of 6 tasks that involve diverse everyday objects, including rigid, articulated, and deformable objects
(see Figure 6): (1) Push Chair: A robot pushes a chair towards a desk; (2) Luggage Packing: A robot
picks up a pack of clothes and places it in an open suitcase; (3) Luggage Closing: A robot closes an
open suitcase on the floor; (4) Laundry Door Closing: A robot pushes the door of a laundry machine
to close it; (5) Bimanual Folding: Two robots collaboratively fold a piece of cloth on a couch; (6)
Bimanual Make Bed: Two robots unfold a comforter to make it cover the bed completely.

Data collection and robot setup. We collect 15 human demonstration videos for each real robot
task. We use a ZED 2 stereo camera to record the movement of a human operator using their fingers
to manipulate the objects of interest at 15 Hz. After data collection, we use an off-the-shelf hand
detection model [41], an object segmentation model [42], and a proprietary learned stereo-to-depth
model to parse out the human hand poses and object point clouds in each frame of the collected
demos. We then subsample this data to 3 Hz and convert it into a format supported by our policy
training algorithm. In all real robot experiments, we use holonomic mobile bases [43] with Kinova
Gen3 7 DoF arms mounted on top. Similar to human demonstration processing, we use a ZED2
camera and an object segmentation model to obtain the processed segmented point cloud as part of
the input of our policy. See Section F of supplementary materials for more details.

Training and evaluation. We train all methods for 1,000 epochs. After training, we evaluate
each method for 10 episodes and record the success rate of the method. We vary the evaluation
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Figure 6: Real robot evaluation setups. Each block represents one task. In each block, we show
sample training demos collected by a human on the left and evaluation scenarios on the right.

Push Chair Laundry Door Closing Luggage Closing
Unseen Poses → – –

Object Variations → Long Desk Round Table – Large Luggage

DP 0/10 0/10 3/10 0/10
DP+Aug 1/10 2/10 2/10 2/10

Ours 8/10 10/10 8/10 6/10

Luggage Closing Bimanual Folding Bimanual Make Bed
Unseen Poses → Translate + Rotate Translate + Rotate –

Object Variations → T-shirt Towel Roll Cap Shorts Long Bath Towel Comforter

DP 0/10 0/10 0/10 0/10 0/10 0/10
Ours 7/10 3/10 8/10 8/10 6/10 8/10

Table 1: Results of real robot experiments. In a suite of 6 mobile manipulation tasks, we show
that our method can learn from just 5 minutes of human demonstration, outperforming the Diffusion
Policy and the Diffusion Policy with Augmentation baselines by a large margin.

scenarios from the training scenarios differently in each task. In Laundry Door Closing, we perform
evaluations in-distribution. In Push Chair, Luggage Closing, and Bimanual Make Bed, we evaluate
with out-of-distribution objects. In Luggage Packing and Bimanual Folding, we not only switch to
novel objects but also translate and rotate the layout of the scene.

Results. The results of real robot experiments are shown in Table 1. The evaluation shows that
our method can generalize to diverse unseen objects, outperforming the DP baseline in both in-
distribution and out-of-distribution scenarios with novel objects and unseen object poses. See sup-
plementary materials Section C for more results and detailed analysis.

5 Conclusions, Limitations and Future work

We proposed EquiBot, a visuomotor policy learning method for generalizable and data-efficient
policy learning in a wide range of robot manipulation tasks. In a suite of 6 simulated and 6 real
robot tasks, we showed that our proposed method outperforms vanilla diffusion policies and prior
imitation learning methods using equivariant architectures. We demonstrated that our method can
learn from just 5 minutes of human demonstrations and generalize to unseen scenarios that are
dramatically different from training scenarios.

While our method generalizes to scenes with unseen object positions, scales, and orientations, it
does not handle nonlinear changes in object shapes or dynamics by construction. Our method also
does not handle variations in the relative positioning of objects when multiple objects are present.
Resolving these limitations might involve explicitly modeling scene dynamics and individual ob-
jects. Our method might also fail when the scene is partially occluded or the camera angle changes
dramatically. This issue can be solved by learning general-purpose 3D representations robust to
incomplete point clouds or novel viewing angles. Please see more discussions on limitations in
Section H of supplementary materials. Solving the above challenges in out-of-distribution general-
ization and extending to multi-task setups are interesting directions for future work.
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A Further Discussion of Related Works

Imitation learning from 3D inputs. While many imitation learning works assume RGB images
as visual observations [15, 4, 20, 8], some works, similar to the design choice of our work, assume
3D point clouds or depth inputs to their methods. Recently, Ze et al. [44] proposed 3D Diffusion
Policy, a depth-only variant of diffusion policy for visuomotor policy learning. Their method is very
similar to our DP baseline, with two differences: (1) they use a simpler DP3 encoder in their work;
(2) they use a 2-layer MLP to encode the robot proprioceptive states before concatenating with the
point cloud representation.

Figure 7: Comparisons with DP3-related architec-
tures in the Cloth Folding task. We compare our
method with two DP3-related baselines and one varia-
tion of our method that uses the DP3 encoder: (1) DP3
is a variation of the DP baseline with the PointNet-
based encoder replaced by the DP3 encoder proposed
in [44], with the code of DP3 encoder copied verbatim
from the public codebase; (2) DP3+Aug is a variant of
the DP3 baseline trained with augmentations that are
the same as the DP+Aug baseline in the main paper; (3)
DP3 w/ Equivariance is the integration of DP3 into our
method.

In Figure 7, we show quantitative comparison
results between our method and baselines re-
lated to [44]. As in our main paper results,
we run 3 seeds of training runs, each for 2,000
epochs, for all experiments. We evaluate the
last 5 checkpoints for each training run and col-
lect the final task reward for 10 episodes in
each evaluation. Comparisons show that [44]
displays similar performance as the DP base-
line in the main paper, performing very well
in in-distribution setups and poorly in out-of-
distribution setups.

We also show that [44] can be easily integrated
with our method by switching our PointNet-
based encoder to the DP3 encoder. In Figure 7,
we show a comparison between our method
and a variation of our method with a modifi-
cation of the DP3 encoder to make it SO(3)-
equivariant. Results show that the DP3 variant
has slightly lower but comparable performance
as our method in the Cloth Folding task.

Figure 8: Ablations on
model architecture. EquiBot
outperforms naive extensions
of EquivAct [16] for a variety
of hyperparameter choices.

Additional works in equivariant architectures for robot manip-
ulation. Aside from prior equivariant architectures for robot ma-
nipulation introduced in the main paper, there are also robotics
works that attempt to utilize equivariance in various setups. Some
works [45, 46] attempt to use equivariance in a pick-and-place
setup, while others [47, 48] propose SO(2)-equivariant robot poli-
cies for tabletop manipulation tasks. In comparison to prior works,
our proposed architecture is equivariant to position, orientation, and
uniform scaling. In addition, our method can be applied in various
3D manipulation tasks that involve rigid, deformable, and articu-
lated objects.

B Ablations and Analysis

Ablations on architecture designs. We perform more ablation
experiments to understand how various aspects of our proposed
method contribute to the final performance of the method. The first
question we want to answer is how much the architecture of our
method matters compared to that of the prior work EquivAct [16].
To show this, we provide a comparison of EquiBot with a naive ex-
tension of EquivAct with a diffusion head. As seen in Figure 8, EquiBot significantly outperforms
this architecture for all hyperparameter variations we tried in the OOD setups. When naively adding
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a diffusion head to EquivAct with action horizon 1, the policy’s poor performance can be explained
by its inability to generate multiple actions in a sequence to ensure temporal action consistency [8].
When we increase prediction horizons, the EquivAct architecture, which is not designed to deal with
large prediction horizons, suffers from dramatic drops in performance. Our method performs the
best across all comparisons we performed in Figure 8.

Figure 9: Ablations on equivariance in object
covering. We show that translation, rotation, and
scale equivariance each contribute to our method.

Ablations on equivariance. To show how
different forms of equivariance play a role in
the final performance of our method, we per-
form ablation experiments in the Object Cov-
ering task by subtracting rotation, translation,
and scaling equivariance implementations from
our method. The result of this ablation ex-
periment is shown in Figure 9. As shown in
the results, when we subtract out any form of
equivariance from the implementation, the per-
formance of this ablated method suffers from
performance drops when the evaluation setup
is out-of-distribution to the equivariance this
method supports.

Figure 10: Training stability.

Training stability. In the real world, it is impractical to
test multiple training checkpoints on the robot. There-
fore, high training stability can make checkpoint selection
and getting robust test-time performance easy. Here, we
specifically compare the training stability of our method
with prior work EquivAct [16]. In Figure 10, we plot
the in-distribution performance of EquivAct against our
method in the Push T task during the training process. We
plot average reward over 40 evaluation episodes for every
50 epochs of training. Our method achieves more stable
training performance across checkpoints than EquivAct.

C Further Evaluations and Performance Analysis

C.1 Failure Analysis

Although our method outperforms vanilla Diffusion Policy [8] and prior equivariant visuomotor
policy architectures, our method still presents various failure cases. Below, we focus our analysis
on execution failure of our method in the real robot experiments. In Figure 11, we show the failure
breakdown of all real robot executions we have performed with our method.

In most packing tasks (packing t-shirt, towel, and cap), the main failure cases are the end-effector
opening too early. We believe this is because the out-of-distribution scenarios resulted in the agent
thinking that it has moved to the dropping location for the object and opened the end-effector. For
the packing shorts task variation, half of the failures come from end-effector opening too late, and
half of the failures come from the shorts not slipping off from the end-effector due to the friction of
the end-effector. This problem can potentially be solved by designing end-effectors that can handle
deformable objects better or performing online adaptation after training, which is out of the scope
of our work.

In the Push Chair, Laundry Door Closing, and Bimanual Folding tasks, the majority of failures come
from the end-effector not performing the full motion or not performing gripper open close actions
at the right time. This most likely happens because the errors in predicted actions accumulated and
the observation became too out-of-distribution scenarios for the policy to behave correctly. The
Bimanual Make Bed task appears to be more difficult for our object segmentation method than other
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Figure 11: Failure cases of our method during real robot executions. The pie charts show failure
breakdown in every real robot task variation. The navy color denotes success, while other colors
denote different types of failures. Each pie chart shoes a total of 10 trials since we run 10 episodes
per evaluation.

Ours DP
Number of Demos → 10 25 50 10 25 50

Success Rate 8/10 9/10 10/10 3/10 5/10 7/10
Close with Click Sound 2/10 2/10 5/10 2/10 1/10 5/10

Total Missing Angle 17.46◦ 7.18◦ 6.3◦ 140.42◦ 33.85◦ 21.55◦

Collision or Safety Issue 0/10 0/10 0/10 2/10 0/10 0/10

Table 2: Detailed performance of the laundry door closing task.

tasks, causing failures to segment the full comforter in some scenarios, since the folded comforter
looks like two pieces of cloth, one laid on top of another.

C.2 Additional Real Robot Results

Detailed performance analysis of the laundry door closing task. To understand the performance
of the Diffusion Policy [8] and our method better, we perform a more detailed analysis in the laundry
door closing task. In Table 2, we report four different metrics of policy performance in each evalua-
tion setup. Success Rate measures the percentage of evaluations that end within the success criteria
we set; Close with Click Sound measures the percentage of episodes that end with the laundry door
closed completely after making a clicking sound; Total Accumulated Missing Angle measures the
sum of the opening angles of the laundry door at the end of the 10 evaluation episodes; Collision
or Safety Issue measures the percentage of evaluation runs that are terminated because of undesired
collisions or critical safety issues, such as the robot arm getting stuck at the laundry door. From
the evaluation results, we see that the DP policy not only has a lower success rate but also has a
much larger accumulated missing angle. The baseline also suffers from many safety issues requir-
ing episodes to be manually terminated by the robot operator. Our method has much fewer safety
issues when it executes.

Qualitative results. In Figure 12, we show qualitative rollout samples for all evaluation scenarios
we mentioned in the paper, plus one bonus task where two robots lift a woven basket onto a coffee
table.
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Figure 12: Qualitative rollout samples for all real robot evaluation scenarios. From top to
bottom, we have: (1) pushing a chair towards a long standing desk; (2) pushing a chair towards a
circular table; (3) packing t-shirts; (4) packing towel roll; (5) packing cap; (6) packing shorts; (7)
closing a check-in luggage; (8) closing laundry door; (9) bimanual folding; (10) bimanual make bed;
(11) a bonus task where two robots lift a woven basket onto a coffee table.

D Equivariant Distributions and Diffusion

In this section, we prove Proposition 1 that we introduced in Section 3.2 of the main paper.

Proposition 1. Let p(xK |c) be a SO(3)-equivariant density function conditioned on c, i.e.
∀R ∈ SO(3), p(xK |c) = p(RxK |Rc). If Markov transitions p(xk−1|xk, c) are SO(3)-
equivariant for all k, i.e. p(xk−1|xk, c) = p(Rxk−1|Rxk,Rc), then the density p(x0|c) =∫
p(xT |c)ΠK

k=1p(x
k−1|xk, c) is also SO(3)-equivariant.

16



Proof. We say that a distribution p(y) invariant to the SO(3)-rotation group actions if:

p(y) = p(Ry), ∀R ∈ SO(3). (4)

We say that a conditional distribution p(y|x) is equivariant to SO(3) rotations if:

p(y|x) = p(Ry|Rx), ∀R ∈ SO(3). (5)

[49] shows that an invariant distribution composed with an equivariant invertible function results
in an invariant distribution. Moreover, given a Markov chain x0:K , [50] shows that if the initial
distribution xK ∼ p(xK) is invariant to a group and the transition probabilities xk−1 ∼ p(xk−1|xk)
are equivariant at each time step to the same group, then the marginal distribution of xk−1 is also
invariant to the group actions at each time step. Specifically, p(x0) is invariant:

p(x0) =

∫
p(xK)p(x0:K−1|xK)dx1:K (6)

=

∫
p(xK)

K∏
k=1

p(xk−1|xk)dx1:K (7)

=

∫
p(RxK)

K∏
k=1

p(Rxk−1|Rxk)dx1:K (8)

= p(Rx0). (9)

Now consider an additional condition c, and equivariant initial distribution p(xK |c) with transitions
p(xk−1|xk, c) as follows:

p(xK |c) = p(RxK |Rc), p(xk−1|xk, c) = p(Rxk−1|Rxk,Rc). (10)

The following shows that the marginal distribution p(x0|c) is also equivariant:

p(x0|c) =
∫

p(xK |c)p(x0:K−1|xK , c)dx1:K (11)

=

∫
p(xK |c)

K∏
k=1

p(xk−1|xk, c)dx1:K (12)

=

∫
p(RxK |Rc)

K∏
k=1

p(Rxk−1|Rxk,Rc)dx1:K (13)

= p(Rx0|Rc), (14)

E Method Architectures and Implementation Detail

In this section, we describe in detail the architecture of our method. We visualize the architecture of
our model in Figure 13.

Observation and action spaces. In all simulated and real robot tasks except for Push T, we use a 13-
dimensional proprioception information and a 7-dimensional action space for each robot. The pro-
prioception data for each robot consists of the following information: a 3-dimensional end-effector
position, a 6-dimensional vector denoting end-effector orientation (represented by two columns of
the end-effector rotation matrix), a 3-dimensional vector indicating the direction of gravity, and a
scalar that represents the degree to which the gripper is opened. The action space for each robot
consists of the following information: a 3-dimensional vector for the end-effector position veloc-
ity, a 3-dimensional vector for the end-effector angular velocity in axis-angle format, and a scalar
denoting the gripper action.
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Figure 13: Architecture of EquiBot. Given input scene point cloud, robot proprioception, noisy
actions, and the diffusion timestamp, our architecture processes position, direction, and scalar in-
formation independently, uses the encoder outputs to scale position information into position and
scale invariant values, and then routes them into an SO(3)-equivariant conditional U-net to predict
denoised actions. In the figure, we omit scaling for the ease of viewing. VecLinear and VecConv1D
refer to a SO(3)-equivariant version of linear and convolution 1D layers.

In the Push T task, the robot proprioception is 3-dimensional and consists of the agent’s 3D position
in the scene, while the action space is 3-dimensional and denotes the absolute position target of the
agent.

In all simulated and real robot tasks, our policy uses an observation horizon of 2 steps, a prediction
horizon of 16 steps, and an action horizon of 8 steps. This is identical to the setup used in the
diffusion policy paper [8].

Encoder architecture. In all tasks except for Push T, we use a SIM(3)-equivariant version of
PointNet++ with 4 layers and hidden dimensionality 128. In the Push T task, we decrease the
number of layers to 2 since the number of points in the point cloud observation is much smaller in
this task.

Noise prediction network. Our noise prediction network inherits hyperparameters from the original
diffusion policy paper [8]. In all simulation experiments, we use the DDPM scheduler [13] and
perform 100 denoising steps during inference. In real robot experiments, to optimize for inference
speed, we use the DDIM scheduler [51] with 8 denoising steps.

Point cloud size. Picking the number of points to sample in the point cloud observation is a key
hyperparameter to consider when designing an architecture that takes point cloud inputs. In our
experiments, we found out that using 512 or 1024 points is sufficient for all tasks. In particular,
for all real robot experiments and simulated mobile manipulation tasks, we use 1024-point point
clouds. In Can and Square tasks, we use 256 and 512 points respectively since there is relatively
more training data in these tasks, and decreasing the number of points in the point cloud makes
training faster without hurting performance.

Normalization. Data normalization can be important to the performance of diffusion models.
Vanilla diffusion policy normalizes the observations and actions separately. We instead normal-
ize all 3D-vector inputs (including observation and action) together due to our SIM(3)-equivariance
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assumptions. Implementation-wise, we take a subset of training data and compute the mean point
cloud scale and mean action scale as spc and sac. Then, all position- and velocity-related information
is divided by spc/sac at the start of the network forward pass and multiplied back before the output
is returned. This normalization factor ensures that the diffusion process always works with actions
with values within the −1 to 1 range. We normalize scalar information in the same way as the vanilla
diffusion policy.

F Real Robot Setup and Experiments – Further Details

F.1 Human Demo Parsing Infrastructure

We use a single ZED 2 camera to record human natural motion in real-time, which is way more
flexible and time-efficient than the expert demonstration from human teleoperation of a robot. With
that, we create a set of human demonstrations D = {τn}Nn=1. Each human demonstration consists
of a series of RGB-D image frames τn = {Int }Tt=1, where T is the episode horizon.

The human demonstration processing module has three parts:

1. an off-the-shelf object detection and tracking model Xn
t = Ψ(Int , I

n
t−1) that takes the current

and previous demonstration frames Int and Int−1 as input, and outputs a parsed point cloud of
objects of interest Xn

t ;
2. an off-the-shelf hand detection model Hn

t = Φ(Int ) that takes the current demonstration frame
as input and outputs the keypoints on each human hand in the input frame Hn

t ;
3. an alignment module Ω(Xn

t ,H
n
t , I

n
t ) that takes the outputs of the previous two steps as input,

aligns the 3D coordinates of the outputs, and outputs the aligned human finger pose yn
t in the

same coordinate system of Xn
t .

We use Grounded Segment Anything Model with DEVA [52] as the object detection and tracking
model Ψ and HaMeR [41] as the hand detection model Φ. In the alignment module, we find a set of
matching points between the point cloud Xn

t and Hn
t , and then fit a rotation transformation Rh and

an offset th to transform all points Hn
t to the coordinate frame of the point cloud. Then, we extract

the thumb and index finger positions on the transformed keypoint set to predict the human “end-
effector” pose yn

t . We found that the alignment module Ω is crucial, as the hand detection model
produces hand poses in a different coordinate frame from the point cloud. Without this module, the
resulting hand poses will not align with the object point cloud.

F.2 Mobile Robot Control Infrastructure

Our robot control setup consists of a centralized workstation and two mobile robots. The workstation
reads and parses visual observations, performs policy inference, and communicates with the robots.
The mobile robots take the output actions of the policy and execute them. On the workstation side,
we build a multi-process infrastructure to handle observation parsing, policy inference, and action
execution.

In the observation parsing process, we obtain visual observations from a single ZED 2 camera di-
rectly connected to the workstation via cable. We use the Grounded Segment Anything Model with
DEVA [52] to obtain segmented point clouds that contain only relevant objects in the scene. We
then downsample this segmented point cloud to 1024 points. The downsampled point cloud and
the robot proprioception information are sent to the policy inference process. The policy inference
process then outputs a sequence of 16 predicted actions.

In the action execution process, we first reset all robots to their initial poses. Then, for each step
in an evaluation episode, we read out the latest policy inference results from the policy inference
process. To ensure accurate execution, we compute the elapsed time between the policy input time
and action execution time. If this elapsed time exceeds a threshold, we skip the first few predicted
actions during action execution. After skipping the first few predicted actions to account for latency,
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we select the 8 actions that immediately follow the skipped actions to execute. This means that no
matter how many actions are skipped, we always execute 8 actions at a time.

On the mobile robot, we also build a multi-process control infrastructure to control the Kinova arm
and mobile base. We utilize a motion capture system to obtain mobile base position. Then, we (1)
transfer each control signal from the global world frame to the local frame of the Kinova arm, (2)
convert the target pose at the gripper fingertip to an expected pose of the Kinova end-effector, and
(3) convert it into a velocity command for the arm. We use position control for the mobile base and
only move it when the robot end-effector is too close to or too far from the base.

F.3 Task Details

Push chair. In this task, the human demonstrations are collected using a standing desk (48 × 30
inches). The policies are evaluated on two different tables: a longer rectangular desk (58×23 inches)
and a circular table (diameter of 36 inches). An episode is considered successful if the center of the
chair goes beneath the desk.

Luggage packing. In the human demonstrations, a human picks up a pack of white t-shirts and
places them into a white carry-on luggage. At evaluation time, we test four different packing items:
white t-shirts (same as training object), gray towel roll, blue cap, and navy shorts. An episode is
considered successful if at least half of the packed object ends up within the luggage.

Luggage closing. In this task, human demonstrations are collected on a small carry-on luggage
(55× 40× 23 cm), while the policies are evaluated on a large check-in luggage (76× 48× 25 cm).
An episode is considered successful if the luggage ends up in a closed state.

Laundry door closing. In this task, the human demonstrations and the robot work with the same
laundry machine (front-loader). The goal is to close the door of the laundry machine that is open at
the start of the episode. An episode is considered successful if the door ends up with an opening of
at most 5cm.

Bimanual folding. In this task, the human demonstrations are collected by using two hands to fold
a small piece of cloth (34× 38 cm). At evaluation time, the robot is asked to fold a large gray towel
(140× 75 cm). After each evaluation episode, we measure the mean distance between each grasped
corner to their corresponding target cloth corners and mark the episode as successful if this mean
distance is less than 0.2 times the length of the folding side of the cloth.

Bimanual make bed. In this task, the human demonstrations are collected by using two hands to
unfold a towel (34 × 38 cm). At evaluation time, the robot is asked to make the bed by unfolding
a much larger comforter on top of the bed. After each evaluation episode, we measure the mean
distance between each grasped corner to the bed headboard and mark the episode as successful if
this mean distance is less than 0.2 times the length of the bed.

G Simulation Tasks – Further Details

Cloth folding. In this task, the demonstrations show two robots folding a piece of cloth (27.5×27.5
cm). During an evaluation, we compute the task reward as 1.0 − (d1 + d2)/(0.275 × 2), where d1
and d2 denote the distance from the two grasped cloth corners to the target cloth corners.

Object covering. In this task, the demonstrations show two robots moving a piece of cloth ( 27.5×
27.5 cm) onto a rigid box (10 × 7 × 5 cm). During an evaluation, the task reward is computed as
Vintersect/Vconvex hull, where Vintersect is the volume intersection between the box and the convex hull of
the cloth and Vconvex hull is the volume of the convex hull of the cloth.

Box closing. In this task, the demonstrations show two robots closing a box (14.5× 12× 11.5 cm)
with three flaps. Success in this task is evaluated as (a1+a2+a3)/(3×180), where a1 to a3 denote
the angle in degrees at which each flap of the box is closed.
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Push T. In this task, a 2D anchor pushes a T-shaped object on a plane of dimension 512×512 pixels.
The task reward is computed as the percentage of the T shape that overlaps with the target T pose.

Robomimic tasks. We use the same object and reward specifications in these tasks as the original
benchmark. Please check out the Robomimic [15] paper for more details.

H Limitations and Future Work – Further Details

Although we only enforced equivariance to SIM(3)-transformations by construction, in practice we
still observed generalization to geometric variations beyond SIM(3), such as non-uniform scaling.
While this capability is not enabled by construction, our hypothesis is that ensuring equivariance in
all policy layers is conducive to learning a more general feature representation. This may relate to
the observations in prior feature-learning works, e.g. [53], which noted that by training the network
to be (in their case) invariant to data transformations, they gained better features for downstream per-
ception tasks. In future work, it would be interesting to study the intermediate features of equivariant
networks with systematic probing and evaluation techniques.
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