
Under review as a conference paper at ICLR 2023

COMPRESSION-AWARE TRAINING OF NEURAL NET-
WORKS USING FRANK-WOLFE

Anonymous authors
Paper under double-blind review

ABSTRACT

Many existing Neural Network pruning approaches either rely on retraining to com-
pensate for pruning-caused performance degradation or they induce strong biases
to converge to a specific sparse solution throughout training. A third paradigm,
‘compression-aware’training, obtains state-of-the-art dense models which are robust
to a wide range of compression ratios using a single dense training run while also
avoiding retraining. In that vein, we propose a constrained optimization framework
centered around a versatile family of norm constraints and the Stochastic Frank-
Wolfe (SFW) algorithm which together encourage convergence to well-performing
solutions while inducing robustness towards convolutional filter pruning and low-
rank matrix decomposition. Comparing our novel approaches to compression
methods in these domains on benchmark image-classification architectures and
datasets, we find that our proposed scheme is able to yield competitive results, often
outperforming existing compression-aware approaches. In the case of low-rank
matrix decomposition, our approach can require much less computational resources
than nuclear-norm regularization based approaches by requiring only a fraction of
the singular values in each iteration. As a special case, our proposed constraints can
be extended to include the unstructured sparsity-inducing constraint proposed by
Pokutta et al. (2020) and Miao et al. (2022), which we improve upon. Our findings
also indicate that the robustness of SFW-trained models largely depends on the
gradient rescaling of the learning rate and we establish a theoretical foundation for
that practice.

1 INTRODUCTION

The astonishing success of Deep Neural Networks relies heavily on over-parameterized architectures
(Zhang et al., 2016a) containing up to several billions of parameters. Consequently, modern networks
require large amounts of storage and increasingly long, computationally intensive training and
inference times, entailing tremendous financial and environmental costs (Strubell et al., 2019). To
address this, a large body of work focuses on compressing networks, resulting in sparse models
that require only a fraction of memory or floating-point operations while being as performant as
their dense counterparts. Recent techniques include the pruning of individual parameters (LeCun
et al., 1989; Hassibi & Stork, 1993; Han et al., 2015; Gale et al., 2019; Lin et al., 2020; Blalock
et al., 2020) or group entities such as convolutional filters and entire neurons (Li et al., 2016; Alvarez
& Salzmann, 2016; Liu et al., 2018; Yuan et al., 2021), the utilization of low-bit representations
of networks (quantization) (Wang et al., 2018; Kim et al., 2020) as well as classical matrix- or
tensor-decompositions (Zhang et al., 2016b; Tai et al., 2015; Xu et al., 2020; Liebenwein et al., 2021)
in order to reduce the number of parameters.

While there is evidence of pruning being beneficial for the ability of a model to generalize (Blalock
et al., 2020; Hoefler et al., 2021), a higher degree of sparsification will typically lead to a degradation
in the predictive power of the network. To reduce this impact, two main paradigms have emerged.
Pruning after training, most prominently exemplified by Iterative Magnitude Pruning (IMP) (Han
et al., 2015), forms a class of algorithms characterized by a three-stage pipeline of regular (sparsity-
agnostic) training followed by prune-retrain cycles that are either performed once (One-Shot) or
iteratively. The need for retraining to recover pruning-induced losses is often considered to be an
inherent disadvantage and computationally impractical (Liu et al., 2020; Ding et al., 2019; Wortsman
et al., 2019; Lin et al., 2020). In that vein, pruning during training or regularization approaches avoid

1

Under review as a conference paper at ICLR 2023

retraining by inducing strong inductive biases to converge to a sparse model at the end of training
(Zhu & Gupta, 2017; Carreira-Perpinán & Idelbayev, 2018; Kusupati et al., 2020; Liu et al., 2020).
The ultimate pruning then results in a negligible performance degradation, rendering the retraining
procedure superfluous. However, such procedures incorporate the goal sparsity into training, requiring
to completely train a model per sparsity level, while IMP needs just one pretrained model to generate
the entire accuracy-vs.-sparsity frontier, albeit at the price of retraining.

A third paradigm, which is the focus of this work, naturally emerges when no retraining is allowed,
but training several times to generate the accuracy-vs.-sparsity tradeoff frontier is prohibitive. Ideally,
the optimization procedure is "compression-aware" (Alvarez & Salzmann, 2017; Peste et al., 2022)
or "pruning-aware" (Miao et al., 2022), allowing to train once and then being able to compress One-
Shot to various degrees while keeping most of the performance without retraining (termed pruning
stability). Compression-aware training procedures are expected to yield state-of-the-art dense models
which are robust to pruning without its (regularization) hyperparameters being selected for a particular
level of compression. While many such methods employ (potentially modified) SGD-variants to
discrimnate between seemingly ‘important’and ‘unimportant’parameters, cf. GSM (Ding et al.,
2019), LC (Carreira-Perpinán & Idelbayev, 2018), ABFP (Ding et al., 2018) or Polarization (Zhuang
et al., 2020), actively encouraging the former to grow and penalizing the latter, an interesting line of
research considers the usage of specific optimizers other than SGD. An optimization approach that
is particularly suited is the first-order and projection-free Stochastic Frank-Wolfe (SFW) algorithm
(Frank et al., 1956; Berrada et al., 2018; Pokutta et al., 2020; Tsiligkaridis & Roberts, 2020; Miao
et al., 2022). While being valued throughout various domains of Machine Learning for its highly
structured, sparsity-enhancing update directions (Lacoste-Julien et al., 2013; Zeng & Figueiredo,
2014; Carderera et al., 2021), the algorithm has only recently been considered for promoting sparsity
in Neural Network architectures.

Addressing the issue of compression-aware training, we propose leveraging the SFW algorithm for
a family of norm constraints actively encouraging robustness to convolutional filter pruning and
low-rank matrix decomposition. Our approach, using the group-k-support norm and variants thereof
(Argyriou et al., 2012; Rao et al., 2017; McDonald et al., 2016), is able to train state-of-the-art
image classification architectures on large datasets to high accuracy, all the while biasing the network
towards compression-robustness. Similarly motivated by the work of Pokutta et al. (2020) and,
concurrent to our work, Miao et al. (2022) showed the effectiveness of k-sparse constraints, focusing
solely on unstructured weight pruning. Our approach includes the unstructured pruning case as
well, mitigating existing convergence and hyperparameter stability issues, while improving upon the
previous approach. To the best of our knowledge, our work is the first to apply SFW for structured
pruning tasks. In analyzing the techniques introduced by Pokutta et al. (2020), we find that the
gradient rescaling of the learning rate is of utmost importance for obtaining high performing and
pruning stable results. We lay the theoretical foundation for this practice by proving the convergence
of SFW with gradient rescaling in the non-convex stochastic case, extending results of Reddi et al.
(2016).

Contributions. The major contributions of our work can be summarized as follows:

1. We propose a constrained optimization framework centered around a versatile family of
norm constraints, which, together with the SFW algorithm, can result in well-performing
models that are robust towards convolutional filter pruning as well as low-rank matrix
decomposition. We empirically show on benchmark image-classification architectures
and datasets that the proposed method is able to perform on par to or better than existing
approaches. Especially in the case of low-rank decomposition, our approach can require
much less computational resources than nuclear-norm regularization based approaches.

2. As a special case, our derivation includes a setting suitable for unstructured pruning. We
show that our approach enjoys favorable properties when compared to the existing k-sparse
approach (Pokutta et al., 2020; Miao et al., 2022), which we improve upon.

3. We empirically show that the robustness of SFW can largely be attributed to the usage of
the gradient rescaling of the learning rate, which increases the batch gradient norm and
effective learning rate throughout training, even though the train loss constantly decreases.
To justify the usage of gradient rescaling theoretically, we prove the convergence of SFW
with batch gradient dependent step size in the non-convex setting.

2

Under review as a conference paper at ICLR 2023

Compression-aware training is a promising research direction for training models to state-of-the-art
performance while encouraging stability to pruning. We believe that our work is an important
building block in the design of structured training algorithms. One strength is the fact that the
proposed methods cover a wide range of compression domains, i.e., structured pruning, matrix
decomposition as well as unstructured pruning. Our results show the suitability of the SFW algorithm
and highlight the importance of the learning rate rescaling, which we justify theoretically in the hope
of enabling further research.

Related Work. The Frank-Wolfe (FW) (Frank et al., 1956) or conditional gradient (Levitin &
Polyak, 1966) algorithm has been studied extensively in the convex setting, enjoying popularity
throughout various domains of Machine Learning for being able to efficiently deal with complex
structural requirements (e.g. Lacoste-Julien et al., 2013; Zeng & Figueiredo, 2014; Frandi et al., 2015;
Jaggi, 2013; Négiar et al., 2020). With convexity being a relatively strong assumption, Lacoste-Julien
(2016) extended the convergence theory of FW to the non-convex setting, while Hazan & Luo (2016)
and Reddi et al. (2016) provide convergence rates for the stochastic variant of the algorithm (SFW).
Several different accelerated variants have been proposed, including variance reduction methods
(Hazan & Luo, 2016; Yurtsever et al., 2019; Shen et al., 2019), adaptive gradients (Combettes et al.,
2020) and momentum (Mokhtari et al., 2018; Chen et al., 2018).

With the theoretical foundation for the non-convex stochastic setting being laid, SFW has received a
surge of interest in the context of training Neural Networks: Ravi et al. (2018) advocate the usage
of parameter constraints in Deep Learning, Xie et al. (2019) train shallow networks using SFW,
Berrada et al. (2018) design a variant specifically for Neural Networks, Tsiligkaridis & Roberts
(2020) employ SFW for adversarial training and Pokutta et al. (2020) show that SFW can reach
state-of-the-art performance on benchmark image classification tasks. While there is a rich literature
on classical FW being applied to sparsity problems in Machine Learning, only few have considered
exploiting the structure-enhancing properties of (stochastic) FW in the field of Deep Learning. Grigas
et al. (2019) remove neurons from three layer convolutional architectures. Pokutta et al. (2020)
propose to constrain the parameters to lie within a k-sparse polytope, resulting in a large fraction
of the parameters having small magnitude. Miao et al. (2022) leverage this idea in the context of
unstructured magnitude pruning with a focus on pruning-aware training, being a compression setting
of training ’once-for-all’ sparsities (Cai et al., 2020). For a detailed account of different sparsification
approaches we refer to the excellent survey of Hoefler et al. (2021).

Outline. We begin by introducing the problem setting and the SFW algorithm. Section 3 contains a
precise description of the proposed approach and Section 4 is devoted to experimentally comparing it
to existing approaches. Section 5 contains an analysis of the two learning rate rescaling mechanisms
and the converge theorem for gradient rescaling. Finally, we conclude and discuss the findings of our
work in Section 6.

2 PRELIMINARIES

For x ∈ Rn, we denote the i-th coordinate of x by [x]i. The diagonal matrix with x on its diagonal
is denoted by diag(x) ∈ Rn,n. For p ∈ [1,∞], the Lp-ball of radius τ is denoted by Bp(τ). ∥x∥0
denotes the number of non-zero components of x ∈ Rn. For any compact convex set C ⊆ Rn, let
us further denote the L2-diameter of C by D(C) = maxx,y∈C ∥x− y∥2. As usual, we denote the
gradient of a function L at θ by ∇L(θ) and the batch gradient estimator by ∇̃L(θ). For the sake of
convenience, we abuse notation and apply univariate functions to vectors in an elementwise fashion,
e.g., |x| denotes the vector |x| := (|x1| . . . , |xn|). If not indicated otherwise, we treat a tensor x of a
network as a vector x ∈ Rn.

Constrained optimization using the Stochastic Frank-Wolfe algorithm We aim at optimizing
the parameters θ of a Neural Network while enforcing structure-inducing constraints by considering
the constrained finite-sum optimization problem

min
θ∈C

L(θ) = min
θ∈C

1

m

m∑
i=1

ℓi(θ), (1)

3

Under review as a conference paper at ICLR 2023

where the per-sample loss functions ℓi are differentiable in θ and C is a compact, convex set. When
using SGD, imposing hard constraints requires a potentially costly projection back to C to ensure
feasiblity of the iterates. However, an alternative is the Stochastic Frank-Wolfe (SFW) algorithm
(Frank et al., 1956; Berrada et al., 2018; Pokutta et al., 2020), being projection-free and perfectly
suited for yielding solutions with structural properties. To ensure feasibility of the iterates, SFW does
not use the (batch) gradient direction for its updates but rather chooses a boundary point or vertex of
C that is best aligned with the (negative) gradient. In each iteration t, SFW calls a linear minimization
oracle (LMO) on the stochastic batch gradient∇t = ∇̃L(θt) to solve

vt = argmin
v∈C

⟨v,∇t⟩, (2)

which is then used as the direction to update the parameters using the convex combination
θt+1 ← (1− ηt)θt + ηtvt, (3)

where ηt ∈ [0, 1] is a suitable learning rate. If the initial parameters θ0 are ensured to lie in the convex
set C, then the convex update rule ensures feasibility of the parameters in each iteration. Solving
Equation (2) is often much cheaper than performing a projection step (Jaggi, 2013; Combettes &
Pokutta, 2021), in many cases even admitting a closed-form solution. If C is given by the convex hull
of (possibly infinitely many) vertices, a so-called atomic domain, then the solution to Equation (2) is
attained at one of these vertices (Jaggi, 2013).

Inducing structure through the feasible region Apart from constraining the parameters of a
network to satisfy a certain norm constraint, say to have bounded euclidean norm as is typically
done with weight decay (being equivalent via the Lagrangian formulation), the unique update rule
Equation (3) of the SFW algorithm can be used to induce structure through the feasible region. Not
only can a feasible region where the vt are highly structured be beneficial to generalization (Ravi
et al., 2018; Pokutta et al., 2020), but further induce desirable properties such as sparsity to the
network itself.

A recent example is the k-sparse polytope introduced by Pokutta et al. (2020), being a generalization
of the L1-ball B1. The k-sparse polytope C = Pk(τ) is defined as the convex hull of all vectors
v ∈ {0,±τ}n with at most k non-zero entries, which per design, form the solution set to Equation (2).
For small k, vt exhibits a high degree of sparsity and by Equation (3) only k parameters are activated
while all remaining parameters are discounted strongly, encouraging convergence towards sparse
solutions (Pokutta et al., 2020; Miao et al., 2022).

3 METHODOLOGY: COMPRESSION-AWARE TRAINING WITH SFW

In the following, we propose leveraging a suitable family of norm constraints which arise naturally
from L2-regularization with sparsification requirements. In general, we require the constraints to
result in sparse update directions when applying the update rule of Equation (3). In particular, we
want to discriminate between predefined groups of parameters, that is, we aim at decaying seemingly
unimportant groups of parameters (e.g. filters or neurons) while allowing others to grow. Similarly to
the proposals by Pokutta et al. (2020) and Miao et al. (2022), we control the degree of sparsification
with a tunable hyperparameter k such that the update vectors vt are k-sparse, i.e., non-zero at at most
k entries. However, the existing approach is limited to the sparsification of Neural Networks on
an individual-weight basis (i.e. unstructured pruning) and may further lead to hyperparameter and
convergence instability, which we discuss and improve upon with our proposal.

Distinguishing this work from previously proposed approaches, we aim at constructing constraints for
the structured sparsification case, which elegantly include the unstructured case as well. In addition,
we ensure that (similar to classical SGD), the individual parameters receive updates corresponding to
the magnitude of the gradient, enabling better convergence independent of the actual k chosen, as we
will discuss further below.

3.1 INDUCING GROUP SPARSITY TO NEURAL NETWORKS

Given a disjoint partition of the network’s parameters into groups G ∈ G, we define the group-k-
support norm (Rao et al., 2017) ball of radius τ as

CGk (τ) = conv{v | ∥v∥0,G ≤ k, ∥v∥2 ≤ τ}, (4)

4

Under review as a conference paper at ICLR 2023

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

R
el

a
ti

ve
d

is
ta

n
ce

to
p

ru
n

ed
m

o
d

el

ResNet-18 on CIFAR-10

k = 10%

k = 20%

k = 30%

k = 40%

k = 50%

k = 100%

(a)

90% 92% 94% 96% 98%

fraction of weights pruned

20.0%

40.0%

60.0%

80.0%

te
st

ac
cu

ra
cy

af
te

r
p

ru
n

in
g

Unstructured weight pruning

k-support (ours)

k-sparse (Pokutta et al., Miao et al.)

(b)

Figure 1: ResNet-18 on CIFAR-10: Relative distance to filter pruned model corresponding to 70%
sparsity when training with the proposed approach and varying k (left) and accuracy-vs.-sparsity
tradeoff curves for unstructured weight pruning comparing our approach to the existing k-sparse
approach (right).

where ∥v∥0,G is the smallest number of groups that are needed to cover the support of v. In other
words, the vertex set of CGk (τ) is given by all (vectorized) parameters for which the euclidean norm is
bounded by τ and where at most k groups contain non-zero entries. Here, the definition of a set of
groups G is left abstract, as it could be any disjoint partition of the parameters, that is each parameter
w must lie in exactly one group w ∈ G ∈ G. In the following however, let G be the set of all filters in
a convolutional layer.

The norm was originally proposed by Rao et al. (2017) motivated by the group lasso (Yuan & Lin,
2006), which is common in the statistics and classical machine learning literature. Choosing G as a
partition of the networks parameters, we can now state the solution to Equation (2) as follows. For
a group G ∈ G let ∥x∥G be the L2-norm of x ∈ Rn when only considering elements of G. Given
the batch gradient of the l-th convolutional layer ∇l

t, let G1, . . . , Gk be the k groups with the largest
gradient L2-norm ∥∇l

t∥Gi
and let H =

⋃k
i=1 Gi. The solution to Equation (2) is then given by

[vt]i =

{−τ [∇l
t]i/∥∇l

t∥H if i ∈ H,

0 otherwise.

A proof of this fact can be found in Rao et al. (2017). SFW applied to CGk (τ) updates the k filters
whose (stochastic) gradient entries correspond to those of fastest loss decrease while accounting for
the distribution of magnitude among them instead of using the same magnitude for all parameters.
Due to the convex update rule, the remaining filters are decayed, eventually resulting in few of them
not being close to zero and thus making the trained network robust towards filter pruning. Figure 1a
shows how different values of k as a fraction of the overall number of filters influence the relative
distance to the pruned model, indicating that k allows controlling the degree of robustness towards
sparsification.

Unstructured sparsity as a special case Clearly, the proposed approach is easily extendable to the
pruning of other groups, such as neurons. A most obvious special case arises when each weight of
the network has its own group, naturally extending the above rationale to the unstructured pruning
case. In that case, one recovers the k-support norm as proposed by Argyriou et al. (2012), which is a
suitable candidate for encouraging robustness towards unstructured weight pruning and to comparison
to the existing k-sparse polytope approach leveraged by Miao et al. (2022).

The k-sparse approach approach suffers from two drawbacks, which are mitigated by our proposed
method. First of all, all activated parameters will receive an update of same magnitude, namely τ .
This hinders convergence, especially when k is larger. Consider for example the worst-case scenario
in which k equals the number of parameters n, then every single parameter of the network will receive
an update of magnitude τ , essentially losing the entire information of the gradient apart from the

5

Under review as a conference paper at ICLR 2023

entrywise sign. On the contrary, the k-support norm with k = n will lead to optimization over the
L2-ball, yielding the default and best converging case of Neural Network training. Figure 1b shows
the facilitated convergence of our approach, which is nonetheless highly robust towards unstructured
pruning. The k-sparse approach performs well in the medium to high sparsity regime, but quickly
collapses for higher compression rates. A clear advantage of k-support norm ball constraints is that
SFW is able to obtain this performance in the high compression regime while not suffering from
underperformance before pruning. Secondly, Pokutta et al. (2020) and Miao et al. (2022) specify the
desired L2-diameter D of C = Pk(τ) to control the regularization strength and then in turn choose
the radius τ such that D(Pk(τ)) = D. Defined this way, τ depends on k as τ = D/(2

√
k). This is

counter-intuitive, since k controls both the amount of activated parameters as per design of the LMO
as well as the magnitude of the parameter updates, resulting in unnecessarily coupled parameters. As
opposed to the k-sparse polytope, the diameter of the k-support norm ball does not depend on k and
hence decouples the parameters k and τ as desired. Figure 4 in the appendix shows the successful
decoupling of the radius and k. The k-support norm ball is less sensitive to hyperparameter changes
and obtains better results throughout a wide range of hyperparameter configurations than its k-sparse
counterpart.

3.2 A DIFFERENT NOTION OF SPARSITY: PRUNING SINGULAR VALUES

So far we employed a very restricted notion of sparsity, namely that of the existence of zeros in
a matrix or tensor. Instead of removing individual parameters or groups thereof, networks can
also be compressed after training by decomposing parameter matrices into a product of smaller
matrices, allowing one to replace a layer by two consecutive ones that require a drastically smaller
amount of FLOPs at inference (Denton et al., 2014). The key ingredient is the truncated singular
value decomposition (SVD), where setting the smallest singular values to zero leads to an optimal
low-rank approximation by virtue of the Eckart–Young–Mirsky theorem. More precisely, given
a rank r parameter matrix W ∈ Rn,m with singular values σ(W) = (σ1(W), . . . , σr(W)) and
SVD W =

∑r
i=1 uiσiv

T
i = UΣV T , U = [u1, . . . , ur] ∈ Rn,r,Σ = diag(σ(W)) ∈ Rr,r, V =

[v1, . . . , vr] ∈ Rm,r, the k-SVD of W is given by W ≈ ∑k
i=1 uiσiv

T
i = UkΣkV

T
k , where the

magnitude of ‘pruned’singular values quantifies the error in approximation. A detailed account of
this approach can be found in the appendix. A natural approach to ensure robustness to matrix
decomposition is hence based on penalizing the nuclear norm ∥W∥∗ := ∥σ(W)∥1 (Tai et al., 2015;
Alvarez & Salzmann, 2017), which requires the costly computation of the full SVD in each iteration.

When constraining the parameters to have bounded nuclear norm instead of penalizing it, the LMO
solution to Equation (2) utilized by SFW can be computed efficiently by requiring only the first
singular value-vector-pair (Jaggi, 2013). Extending this notion to consider the k largest singular
pairs, we propose utilizing the spectral-k-support norm (McDonald et al., 2016), for which the ball
of radius τ is defined as

Cσk (τ) = conv{W ∈ Rn×m | rank(W) ≤ k, ∥σ(W)∥2 ≤ τ}, (5)

where ∥σ(W)∥2 is the 2-Schattennorm of the singular values σ(W) (Jaggi, 2013). The following
lemma allows us to efficiently compute the LMO solution.

Lemma 3.1. Given ∇t ∈ Rn×m, letWt = −τ∥σ(Σk)∥−1
2 UkΣkV

T
k ∈ Cσk (τ), where UkΣkV

T
k is

the truncated k-SVD of∇t such that only the k largest singular values are kept. ThenWt is a solution
to Equation (2).

A proof can be found in the appendix. Note that similar to the group-k-support norm ball taking
the magnitude of k largest gradient groups into account, the scaling by Σk∥σ(Σk)∥−1

2 takes the
magnitude of k largest singular values into account. In Section 4.2 we study the capabilities of
SFW when constraining the Spectral-k-support norm of convolutional tensors, which account for the
majority of FLOPs at inference (Han et al., 2015). While there exist higher-order generalizations of
the SVD to decompose tensors directly (cf. Lebedev et al., 2014; Kim et al., 2015), we follow the
approach of interpreting the tensorW ∈ Rn×c×d×d with c in-channels, n convolutional filters and
spatial size d as an (n× cd2)-matrix (Alvarez & Salzmann, 2017; Idelbayev & Carreira-Perpinán,
2020).

6

Under review as a conference paper at ICLR 2023

3.3 EXPERIMENTAL SETUP: A FAIR COMPARISON BETWEEN METHODS

All experiments are conducted using the PyTorch framework (Paszke et al., 2019), where we relied
on Weights & Biases (Biewald, 2020) for the analysis of results. To enable reproducibility, our
implementation will be available throughout the entire review process and publicly thereafter.

We train convolutional architectures such as Residual Networks (He et al., 2015) and Wide Residual
Networks (Zagoruyko & Komodakis, 2016) on ImageNet-1K (Russakovsky et al., 2015), TinyIma-
geNet (Le & Yang, 2015), CIFAR-100 and CIFAR-10 (Krizhevsky et al., 2009). The exact training
setups as well as grid searches used can be found in the appendix. As a general remark, we follow
the experimental guidelines of Blalock et al. (2020) towards standardized comparisons between
sparsification methods. All results are averaged over two seeds with min-max bands indicated for
plots and standard deviation for tables. We use a validation set of 10% of the training data for
hyperparameter selection.

In the compression-aware setting we are interested in finding single hyperparameter configurations
that perform well under a wide variety of compression rates, i.e., without tuning hyperparameters for
each sparsity. When comparing the performance for multiple compression rates at once, we have to
decide how to select the ‘best’hyperparameter configuration. To that end, we select the configuration
for each method that results in the highest on-average validation accuracy among all sparsities at
stake.

4 EXPERIMENTAL RESULTS

4.1 STRUCTURED FILTER PRUNING

For the pruning of convolutional filters, we follow the PFEC approach of Li et al. (2016): at the end
of training we sort the filters of each convolutional layer by their L1-norm and remove the smallest
ones until the desired level of compression is met. We enforce a uniform distribution of sparsity
among layers, noting that there exist more sophisticated ways of determining the per-layer pruning
ratios (Liebenwein et al., 2021).

Baselines We compare our approach (denoted as SparseFW) to several baselines. Every experiment
includes the most natural baseline, which corresponds to regular training with momentum SGD and
weight decay. Apart from that, we have implemented the following recent filter pruning approaches.
SSL (Wen et al., 2016) leverages a group penalty on the filters. Similarly, GLT (Alvarez & Salzmann,
2016) employs a group-lasso on the filters followed by a proximal gradient descent (soft-thresholding)
step. ABFP (Ding et al., 2018) follows an "auto-balanced" approach which penalizes certain filters
while actively encouraging others to grow. SFP (He et al., 2018) softly prunes after each epoch,
allowing filters to recover throughout the epoch.

Results Figure 2 shows that SFW converges to solutions that are robust to a wide range of filter
pruning ratios. Especially in the high sparsity regime SFW is able to keep most of its performance,
while other approaches collapse, with the exception of ABFP for TinyImageNet which can be even
more robust for high sparsities. Apart from that, SFW reaches excellent results for a wide range of
compression ratios. Full results can be found in the appendix.

4.2 LOW-RANK MATRIX DECOMPOSITION

We compare SparseFW with spectral-k-support norm constraints to other approaches aiming for
robustness to tensor decomposition. At the end of training, we set the smallest singular values of
each convolutional matrix to zero and replace the layer by two consecutive layers as described in the
appendix.

Baselines Apart from the regular training baseline using momentum SGD with weight decay,
we implemented NUC (Denton et al., 2014) and SVDEnergy (Alvarez & Salzmann, 2017). The
former employs a nuclear norm regularization technique together with SGD, hence computing the
subgradient of a nuclear norm regularization penalty term (Watson, 1992) and updating the weights
accordingly. The latter similarly performs the usual SGD update on the loss, followed by applying

7

Under review as a conference paper at ICLR 2023

50% 60% 70% 80% 90%

fraction of filters pruned

20%

40%

60%

80%

te
st

a
cc

u
ra

cy
a
ft

er
p

ru
n

in
g

ResNet-18 on CIFAR-10

SparseFW

Baseline

SSL

GLT

ABFP

SFP

(a)

10% 15% 20% 25% 30% 35% 40%

fraction of filters pruned

40%

45%

50%

55%

60%

65%

70%

75%

80%

te
st

a
cc

u
ra

cy
a
ft

er
p

ru
n

in
g

WideResNet on CIFAR-100

SparseFW

Baseline

SSL

GLT

ABFP

SFP

(b)

10% 15% 20% 25% 30% 35% 40%

fraction of filters pruned

0%

10%

20%

30%

40%

50%

60%

70%

te
st

a
cc

u
ra

cy
a
ft

er
p

ru
n

in
g

ResNet-50 on ImageNet

SparseFW

Baseline

SSL

GLT

ABFP

SFP

(c)

Figure 2: Accuracy-vs.-sparsity tradeoff curves for structured convolutional filter pruning on CIFAR-
10 (a), CIFAR-100 (b) and ImageNet (c). The plots show the parameter configuration with highest
test accuracy after pruning when averaging over all sparsities at stake.

Table 1: WideResNet on CIFAR-100: Comparison of approaches for encouraging low-rank matrices
throughout training.

Sparsity
Method 30 % 40% 50% 60% 70% 80%

Baseline 75.57 ±0.10 74.28 ±2.59 73.52 ±0.95 64.67 ±11.12 56.04 ±2.24 10.97 ±8.29

SparseFW 75.53 ±0.18 75.69 ±0.04 75.75 ±0.08 75.37 ±0.40 75.30 ±0.10 73.28 ±2.02
NUC 75.96 ±0.29 74.86 ±1.53 72.35 ±0.48 68.57 ±4.95 55.97 ±2.80 5.40 ±2.12
SVDEnergy 75.69 ±0.95 75.14 ±0.18 74.11 ±0.81 66.76 ±4.41 55.40 ±3.04 30.82 ±26.87

the soft-thresholding operator over the singular values of the parameters, a strategy also known as
singular value thresholding (Cai et al., 2010). Both approaches require the computation of the entire
SVD, tradionally requiring O(nmmin(n,m)) operations for an n × m matrix (Allen-Zhu & Li,
2016).

Results Table 1 compares the post-pruning test accuracy of the four approaches for a range of
sparsities between 30 and 80 percent. The proposed approach outperforms both the natural baseline
of regular SGD training as well as the nuclear norm regularization approaches, experiencing only a
minor accuracy decrease in the high sparsity regime and no performance degradation medium sparsity
regime. The accuracies correspond to the on-average best hyperparameter configuration. A significant
advantage of SFW in this regard is its efficiency, allowing a higher images-per-second throughput
as nuclear norm regularized based approaches (446 images per second compared to 191 images per
second on CIFAR-100), where we performed measurements on the same hardware, namely a 24-core
Xeon Gold with Nvidia Tesla V100 GPU. Since the LMO requires the computation of the k largest
singular pairs, the efficiency of SFW is clearly dependent on k. The on-average best configuration of
SFW in this setting is given by k corresponding to ten percent of the singular values. We used a naive
implementation of the k-SVD power method (Bentbib & Kanber, 2015), noting that there are more
sophisticated and faster algorithms (Allen-Zhu & Li, 2016).

5 THE DYNAMICS OF GRADIENT RESCALING

The learning rate ηt ∈ [0, 1] determines the length of the parameter update relative to the size of the
feasible region. This coupling between regularization strength and step size makes the tuning of the
learning rate cumbersome. To decouple the tuning of the learning rate from the size of the feasible
region, Pokutta et al. (2020) propose two different learning rate rescaling mechanisms: diameter
rescaling and gradient rescaling, the latter being used throughout our experiments in the preceding
section. While the former divides the learning rate by the L2-diameter D(C) of C, gradient rescaling
rescales the update direction length to that of the batch gradient, i.e., η̂t := ηt∥∇t∥2/∥vt − θt∥2.

It is however largely unclear what effect these normalization schemes have on both the convergence
for regular training as well as the robustness to pruning, noting that the learning rate of SFW explicitly

8

Under review as a conference paper at ICLR 2023

controls the decay on non-activated parameters. Figure 3 shows the test accuracy vs. sparsity tradeoff
curves directly before and after magnitude-pruning of the parameters, comparing the two rescaling
variants when training with k-support norm constraints. Gradient rescaling consistently outperforms
its diameter-based counterpart w.r.t. both dense as well as pruned test accuracy.

70% 75% 80% 85% 90% 95%

amount of weights pruned

92.5%

93.0%

93.5%

94.0%

94.5%

95.0%

te
st

ac
cu

ra
cy

test accuracy vs. pruning amount

gradient rescaling (pruned)

gradient rescaling (dense)

diameter rescaling (pruned)

diameter rescaling (dense)

Figure 3: ResNet-18 on CIFAR-10: For
each pruning amount, the best hyperpa-
rameter configuration w.r.t. the accu-
racy after pruning (pruned) is depicted.
The corresponding value before pruning
(dense) is depicted as a dashed line.

We found the denominator of gradient rescaling not to be
subject to much variation, whereas the batch gradient norm
dynamically changes the learning rate over time. Figure 6
compares the evolution of ∥∇t∥ for two different radii of
the k-support norm ball (with fixed k), where we compare
to usual SGD training with weight decay. For both SGD
and SFW, ∥∇t∥ is subject to noise and increases until 75%
of the training process, despite the continuous decrease of
the train loss. In fact, the batch gradient norm is not signif-
icantly smaller than at the start of training even though the
loss converges. This behaviour might best be explainable
by the presence of Batch-Normalization layers, whose in-
terplay with weight decay has recently been analyzed by
van Laarhoven (2017) and Hoffer et al. (2018): layers pre-
ceding a Batch-Normalization are rescaling invariant, that
is their output remains unchanged when multiplying all
parameters by a scalar, however rescaling them results in
inverse rescaling of the gradient norm in subsequent layers
and iterations. Weight decay continuously decreases the
scale of the parameters and hence increases the scale of
the batch gradient, where stronger decay of the former
leads to stronger increase of the latter. Since in gradient rescaling the norm of the batch gradient also
influences the strength of the decay of the parameters, this process has a self-accelerating dynamic.
This dynamic results in larger steps towards the (sparse) vertices of the k-support norm ball, leading
to a stronger decay on the previous parameter configuration, which in turn increases the robustness to
pruning, making gradient rescaling the method of choice in that setting.

With the following theorem, we lay the theoretical foundation by showing that incorporating the
batch gradient norm into the learning rate leads to convergence of SFW at the specified rate, that
is, the expected product of exact gradient norm and the Frank-Wolfe Gap G(θt) decays at a rate of
O(T−1/2). The precise statement as well as a proof can be found in Appendix A.5.
Theorem 5.1 (Convergence of gradient rescaling, informal). Assume that L is M-smooth and ℓ is G-
Lipschitz and let ηt = ∥∇t∥η for appropriately chosen η and all 0 ≤ t < T . If θa is chosen uniformly
at random from the SFW iterates {θi : 0 ≤ i < T}, then we have E [G(θa) · ∥∇L(θa)∥] = O(T−1/2),
where E denotes the expectation w.r.t. all the randomness present.

6 DISCUSSION AND OUTLOOK

We proposed to utilize a versatile family of norm constraints to, together with the SFW algorithm,
train deep neural networks to state-of-the-art dense performance as well as robustness to compression
for a wide range of compression ratios. Our experimental results show that SFW can leverage highly
structured feasible regions to avoid performance degradation when performing convolutional filter
pruning or low-rank tensor decomposition. For the latter, SFW can result in significant speedups
compared to nuclear-norm regularization based approaches. As a special case, our proposed approach
includes the unstructured pruning case and we showed how utilizing the proposed norm can mitigate
the drawbacks of and improve upon the results of Miao et al. (2022). We hope that our findings
regarding the importance of the learning rate rescaling as well as Theorem 5.1 stimulate further
research in the direction of compression-aware training with SFW.

However, we emphasize that our results hold primarily in the setting that we described, namely that
of compression-aware training, where the training is sparsity-agnostic and retraining is prohibitive.
Our goal was to show the versatility of SFW, which provides a suitable algorithmic framework for
enforcing structure throughout training. If the sparsity can be incorporated into training, significantly
more complex approaches can be applied.

9

Under review as a conference paper at ICLR 2023

7 REPRODUCIBILITY

Reproducibility is a crucial aspect of any work based on experiments. Our code
will be available to the reviewers throughout all stages of the submission and publicly
thereafter. We also highlight some publicly available implementations we used. The
ResNet-18 implementation is based on https://github.com/charlieokonomiyaki/
pytorch-resnet18-cifar10/blob/master/models/resnet.py, where for the
WideResNet architecture we relied on https://github.com/meliketoy/wide-resnet.
pytorch. For the computation of the theoretical speedup, we used the implementation of Blalock
et al. (2020) available at https://github.com/JJGO/shrinkbench. Regarding pruning
methods that are not directly available through the Pytorch framework, we used the original imple-
mentation whenever possible and indicate so directly in the code.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Lazysvd: Even faster svd decomposition yet without agonizing
pain. Advances in neural information processing systems, 29, 2016.

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. Advances
in Neural Information Processing Systems, 29, 2016.

Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. Advances in
neural information processing systems, 30, 2017.

Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the k-support norm.
Advances in Neural Information Processing Systems, 25, 2012.

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
20852–20864. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/ef2ee09ea9551de88bc11fd7eeea93b0-Paper.pdf.

AH Bentbib and A Kanber. Block power method for svd decomposition. Analele Universitatii"
Ovidius" Constanta-Seria Matematica, 23(2):45–58, 2015.

Leonard Berrada, Andrew Zisserman, and M. Pawan Kumar. Deep frank-wolfe for neural network
optimization. International Conference on Learning Representations 2019, November 2018.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? In I. Dhillon, D. Papailiopoulos, and V. Sze (eds.), Proceedings of Machine
Learning and Systems, volume 2, pp. 129–146, 2020. URL https://proceedings.mlsys.
org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylxE1HKwS.

Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm
for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. doi: 10.1137/
080738970.

Alejandro Carderera, Sebastian Pokutta, Christof Schütte, and Martin Weiser. Cindy: Conditional
gradient-based identification of non-linear dynamics – noise-robust recovery. January 2021.

Miguel A Carreira-Perpinán and Yerlan Idelbayev. Learning-compression algorithms for neural net
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

10

https://github.com/charlieokonomiyaki/pytorch-resnet18-cifar10/blob/master/models/resnet.py
https://github.com/charlieokonomiyaki/pytorch-resnet18-cifar10/blob/master/models/resnet.py
https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/JJGO/shrinkbench
https://proceedings.neurips.cc/paper/2020/file/ef2ee09ea9551de88bc11fd7eeea93b0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ef2ee09ea9551de88bc11fd7eeea93b0-Paper.pdf
https://www.wandb.com/
https://www.wandb.com/
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://openreview.net/forum?id=HylxE1HKwS

Under review as a conference paper at ICLR 2023

Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. Projection-free online optimiza-
tion with stochastic gradient: From convexity to submodularity. In International Conference on
Machine Learning, pp. 814–823. PMLR, 2018.

Cyrille W. Combettes and Sebastian Pokutta. Complexity of linear minimization and projection on
some sets. January 2021.

Cyrille W. Combettes, Christoph Spiegel, and Sebastian Pokutta. Projection-free adaptive gradients
for large-scale optimization. September 2020.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. Auto-balanced filter pruning for
efficient convolutional neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Xiaohan Ding, Guiguang Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, and Ji Liu. Global sparse
momentum sgd for pruning very deep neural networks. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 2943–2952. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/evci20a.html.

Emanuele Frandi, Ricardo Nanculef, Stefano Lodi, Claudio Sartori, and Johan A. K. Suykens. Fast
and scalable lasso via stochastic frank-wolfe methods with a convergence guarantee. October
2015.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Paul Grigas, Alfonso Lobos, and Nathan Vermeersch. Stochastic in-face frank-wolfe methods for
non-convex optimization and sparse neural network training. June 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In S. Hanson, J. Cowan, and C. Giles (eds.), Advances in Neural Information Processing
Systems, volume 5. Morgan-Kaufmann, 1993. URL https://proceedings.neurips.cc/
paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf.

Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In
International Conference on Machine Learning, pp. 1263–1271. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. August 2018.

11

https://proceedings.neurips.cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf

Under review as a conference paper at ICLR 2023

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. arXiv preprint
arXiv:2102.00554, January 2021.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: Efficient and accurate
normalization schemes in deep networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/file/a0160709701140704575d499c997b6ca-Paper.pdf.

Yerlan Idelbayev and Miguel A Carreira-Perpinán. Low-rank compression of neural nets: Learning
the rank of each layer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8049–8059, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings of
the 30th international conference on machine learning, pp. 427–435, 2013.

Jangho Kim, KiYoon Yoo, and Nojun Kwak. Position-based scaled gradient for model quantization
and pruning. volume 33, pp. 20415–20426, 2020.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Compres-
sion of deep convolutional neural networks for fast and low power mobile applications. November
2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 5544–5555. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/kusupati20a.html.

Simon Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. July 2016.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate frank-
wolfe optimization for structural svms. In International Conference on Machine Learning, pp.
53–61. PMLR, 2013.

Duong Hoang Le and Binh-Son Hua. Network pruning that matters: A case study on retraining
variants. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=Cb54AMqHQFP.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-
up convolutional neural networks using fine-tuned cp-decomposition. December 2014.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky
(ed.), Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pp. 598–605. Morgan Kaufmann, 1989. URL http://papers.
nips.cc/paper/250-optimal-brain-damage.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for
the magnitude-based pruning. In International Conference on Learning Representations, October
2020.

12

https://proceedings.neurips.cc/paper/2018/file/a0160709701140704575d499c997b6ca-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a0160709701140704575d499c997b6ca-Paper.pdf
http://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v119/kusupati20a.html
https://openreview.net/forum?id=Cb54AMqHQFP
https://openreview.net/forum?id=Cb54AMqHQFP
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage

Under review as a conference paper at ICLR 2023

Evgeny S Levitin and Boris T Polyak. Constrained minimization methods. USSR Computational
mathematics and mathematical physics, 6(5):1–50, 1966.

Bailin Li, Bowen Wu, Jiang Su, Guangrun Wang, and Liang Lin. Eagleeye: Fast sub-net evaluation
for efficient neural network pruning. July 2020a.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. August 2016.

Mengtian Li, Ersin Yumer, and Deva Ramanan. Budgeted training: Rethinking deep neural network
training under resource constraints. In International Conference on Learning Representations,
2020b. URL https://openreview.net/forum?id=HyxLRTVKPH.

Lucas Liebenwein, Alaa Maalouf, Oren Gal, Dan Feldman, and Daniela Rus. Compressing neural
networks: Towards determining the optimal layer-wise decomposition. July 2021.

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. In International Conference on Learning Representations, 2020.

Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Cheung, and Hayden K.H. So. Dynamic sparse training:
Find efficient sparse network from scratch with trainable masked layers. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
SJlbGJrtDB.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. October 2018.

Andrew McDonald, Massimiliano Pontil, and Dimitris Stamos. Fitting spectral decay with the
k-support norm. In Artificial Intelligence and Statistics, pp. 1061–1069. PMLR, 2016.

Lu Miao, Xiaolong Luo, Tianlong Chen, Wuyang Chen, Dong Liu, and Zhangyang Wang. Learning
pruning-friendly networks via frank-wolfe: One-shot, any-sparsity, and no retraining. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=O1DEtITim__.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Conditional gradient method for stochastic
submodular maximization: Closing the gap. In International Conference on Artificial Intelligence
and Statistics, pp. 1886–1895. PMLR, 2018.

Geoffrey Négiar, Gideon Dresdner, Alicia Tsai, Laurent El Ghaoui, Francesco Locatello, Robert
Freund, and Fabian Pedregosa. Stochastic frank-wolfe for constrained finite-sum minimization. In
International Conference on Machine Learning, pp. 7253–7262. PMLR, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Alexandra Peste, Adrian Vladu, Dan Alistarh, and Christoph H. Lampert. Cram: A compression-
aware minimizer. July 2022.

Sebastian Pokutta, Christoph Spiegel, and Max Zimmer. Deep neural network training with frank-
wolfe. October 2020.

Nikhil Rao, Miroslav Dudík, and Zaid Harchaoui. The group k-support norm for learning with
structured sparsity. In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2402–2406, 2017. doi: 10.1109/ICASSP.2017.7952587.

Sathya N. Ravi, Tuan Dinh, Vishnu Lokhande, and Vikas Singh. Constrained deep learning using
conditional gradient and applications in computer vision. March 2018.

13

https://openreview.net/forum?id=HyxLRTVKPH
https://openreview.net/forum?id=SJlbGJrtDB
https://openreview.net/forum?id=SJlbGJrtDB
https://openreview.net/forum?id=O1DEtITim__
https://openreview.net/forum?id=O1DEtITim__
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Under review as a conference paper at ICLR 2023

Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic frank-wolfe methods for
nonconvex optimization. In 2016 54th annual Allerton conference on communication, control, and
computing (Allerton), pp. 1244–1251. IEEE, 2016.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on Learning Representations, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Zebang Shen, Cong Fang, Peilin Zhao, Junzhou Huang, and Hui Qian. Complexities in projection-
free stochastic non-convex minimization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2868–2876. PMLR, 2019.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. June 2019.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, and Weinan E. Convolutional neural networks
with low-rank regularization. November 2015.

Theodoros Tsiligkaridis and Jay Roberts. On frank-wolfe optimization for adversarial robustness and
interpretability. December 2020.

Twan van Laarhoven. L2 regularization versus batch and weight normalization. June 2017.

Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng. Two-step
quantization for low-bit neural networks. In Proceedings of the IEEE Conference on computer
vision and pattern recognition, pp. 4376–4384, 2018.

G Alistair Watson. Characterization of the subdifferential of some matrix norms. Linear algebra and
its applications, 170(0):33–45, 1992.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. August 2016.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf.

Jiahao Xie, Zebang Shen, Chao Zhang, Boyu Wang, and Hui Qian. Efficient projection-free online
methods with stochastic recursive gradient. October 2019.

Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Yingyong Qi, Yiran Chen, Weiyao Lin, and
Hongkai Xiong. Trp: Trained rank pruning for efficient deep neural networks. April 2020.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. Growing efficient deep networks
by structured continuous sparsification. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=wb3wxCObbRT.

Alp Yurtsever, Suvrit Sra, and Volkan Cevher. Conditional gradient methods via stochastic path-
integrated differential estimator. In International Conference on Machine Learning, pp. 7282–7291.
PMLR, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
May 2016.

Xiangrong Zeng and Mário A. T. Figueiredo. The ordered weighted ℓ1 norm: Atomic formulation,
projections, and algorithms. September 2014.

14

https://proceedings.neurips.cc/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf
https://openreview.net/forum?id=wb3wxCObbRT

Under review as a conference paper at ICLR 2023

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, November
2016a.

X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep convolutional networks for classification
and detection. volume 38, pp. 1943–1955, Los Alamitos, CA, USA, oct 2016b. IEEE Computer
Society. doi: 10.1109/TPAMI.2015.2502579.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, October 2017.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. In Advances in Neural Information Processing
Systems, volume 33, pp. 9865–9877, 2020.

Max Zimmer, Christoph Spiegel, and Sebastian Pokutta. How i learned to stop worrying and love
retraining. November 2021.

15

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 TECHNICAL DETAILS

Whenever using SFW, we employ a momentum variant (Pokutta et al., 2020) and enforce local
constraints, i.e., we constrain the parameters of each layer in a separate feasible region. As suggested
by Pokutta et al. (2020), we do not tune the radius τ of the feasible region C(τ) directly but rather
specify a scalar factor w > 0 and set the L2-diameter of the feasible region of each layer as

D = 2wE(∥θ∥2),
where the expected L2-norm of the layer parameters θ are simply estimated by computing the mean
among multiple default initializations. D is then in turn used to compute τ such that D(C(τ)) = D.
This allows us to control the L2-regularization strength of each layer. We do not prune biases and
batch-normalization parameters, as they only account for a small fraction of the total number of
parameters yet are crucial for obtaining well-performing models (Evci et al., 2020). Apart from the
direct comparison between diameter and gradient rescaling, we use gradient rescaling throughout all
experiments.

While there exist multiple successful strategies to retrain after pruning (Renda et al., 2020; Le &
Hua, 2021; Zimmer et al., 2021), the compression-aware training setting requires the methods to be
compared directly after pruning without retraining. However, similarly to Li et al. (2020a) and Peste
et al. (2022) we notice that the validation accuracy after pruning can be significantly increased by
recomputing the Batch Normalization (Ioffe & Szegedy, 2015) statistics, which have to be recalibrated
since the pre-activations of the hidden layers are distorted by pruning. To that end, we recompute the
statistics on the train dataset after pruning and note that in practice only a fraction of the training data
is necessary to recalibrate the Batch Normalization layers.

In the following, we state technical details of our approaches to structured and unstructured pruning,
as well as low-rank matrix decomposition.

A.1.1 STRUCTURED FILTER AND UNSTRUCTURED PRUNING

As outlined in the main section, we follow the approach of Li et al. (2016) and remove the convo-
lutional filters with smallest L1-norm. Since each filter might correspond to a different number of
parameters, depending on the convolutional layer it is located in, the L1-norm of filters is incom-
parable among different layers. We hence follow the local approach and prune the same amount in
each convolutional layer until the desired sparsity is met. Since this will lead to the same theoretical
speedup, independent of the algorithm at stake, we omit these values.

For unstructured pruning, we employ the usual magnitude pruning, that is, we remove the parameters
with smallest absolute value until we meet the desired level of compression. As we found it to work
best among all algorithms, we prune globally, i.e. we select the smallest weights among all network
parameters eligible for pruning. We note however that there exists several different magnitude-based
selection approaches (cf. e.g. Han et al., 2015; Gale et al., 2019; Lee et al., 2020).

A.1.2 LOW-RANK MATRIX DECOMPOSITION

We describe the rationale behind the decomposition of matrices with (preferably) low rank. Low-Rank
matrix decomposition is centered around the idea of truncating the singular value decomposition
(SVD). Let θ = UΣV T =

∑r
i=1 uiσiv

T
i be the SVD of rank-r matrix θ ∈ Rn×m, where ui, vi are

the singular vectors to singular values σ1 ≥ . . . ≥ σr > 0. The goal is now to find the best low-rank
approximation θ̂ ∈ Rn×m to θ, namely to solve

min
rank(θ̂)≤t

∥θ − θ̂∥F . (6)

By the Eckart–Young–Mirsky theorem, a minimizer is given by UtΣtV
T
t :=

∑t
i=1 uiσiv

T
i , where

the smallest t − r singular values are truncated. If the singular values now decay rapidly, i.e.,
only the first t singular values contain most of the energy of θ, then this approximation can be
applied as a post-processing step without much change in the output of a linear layer (Denton et al.,
2014). Consequently, a natural approach to ensure stability w.r.t. matrix decomposition is based on

16

Under review as a conference paper at ICLR 2023

Table 2: Exact training configurations used throughout the experiments. The dense test accuracy
refers to the optimal accuracy we achieve using momentum SGD with weight decay.

Dataset Network (number of weights) Epochs Batch size Momentum Learning rate (t = iteration) Dense test accuracy

CIFAR-10 ResNet-18 (11 Mio) 100 128 0.9 linear decay from 0.1 95.0% ±0.04%
CIFAR-100 WideResNet-28x10 (37 Mio) 100 128 0.9 linear decay from 0.1 76.7% ±0.2%
TinyImagenet ResNet-50 (26 Mio) 100 128 0.9 linear decay from 0.1 64.9% ±0.1%
ImageNet ResNet-50 (26 Mio) 90 1024 0.9 linear decay from 0.1 75.35% ±0.1%

encouraging the parameter matrices to have low-rank throughout training, most prominently done by
regularizing the nuclear norm of the weight matrix (Tai et al., 2015; Alvarez & Salzmann, 2017). If t
is small, then the number of FLOPs can be drastically reduced by decomposing a layer into multiple
layers. For linear layers this is straightforward: let (θ, β) be weights and biases of a linear layer with
SVD of θ as above. For input x, the layer computes

θx+ β = UΣV Tx+ β ≈ Ut(ΣtV
T
t x) + β, (7)

being interpretable as the consecutive application of two linear layers: (ΣtV
T
t , 0) followed by

(Ut, β), possibly reducing the number of parameters from nm to t(n+m). For a four-dimensional
convolutional tensor θ ∈ Rn×c×d×d, where c is the number of in-channels, n the number of
convolutional filters, and d is the spatial size, we cannot directly construct the SVD. However, we
follow an approach similar to those of Alvarez & Salzmann (2017) and Idelbayev & Carreira-Perpinán
(2020), interpreting θ as a (n×cd2) matrix, whose truncated SVD decomposition allows us to replace
the layer by two consecutive convolutional layers, the first one having t filters, c channels and spatial
size d, followed by n filters, t channels and spatial size of one.

We describe NUC and SVDEnergy in more detail. Both approaches solve the problem

min
θ

L(θ) + λ∥θ∥∗, (8)

where λ > 0 is a suitably chosen regularization parameter. NUC does so by computing the subgradient
of λ∥θ∥∗ (Watson, 1992) and performing an ordinary SGD update. On the other hand, SVDEnergy
relies on the proximity operator of the nuclear norm, also known as singular value thresholding (Cai
et al., 2010; Alvarez & Salzmann, 2017). In each iteration this amount to first applying an SGD step
to minimize L(θt) with learning rate ηt obtaining θ̂t+1, which is then followed by soft-thresholding
the singular values of θ̂t+1 to obtain θt+1, i.e.,

θt+1 =

rank(θ̂t+1)∑
i=1

ui max(0, σi − ηtλ)v
T
i , (9)

where ui, vi are the singular vectors of θ̂t+1 to singular values σi. In essence, singular values smaller
than ηtλ are cut-off, potentially resulting in θt+1 having low rank.

A.2 EXPERIMENTAL SETUP AND EXTENDED RESULTS

Table 2 shows the exact training configurations we used throughout all experiments, where we relied
on a training timeframe of 100 epochs with a linearly decaying learning rate, as suggested by Li et al.
(2020b). In the following, we state the hyperparameter grids used as well as full tables and missing
plots.

A.2.1 STRUCTURED FILTER PRUNING

CIFAR-10 Hyperparameter grids If not specified otherwise, we use weight decay values of
{1e-4, 5e-4} for all algorithms except SparseFW.

• SparseFW: We tune the fractional k ∈ {0.1, 0.2, 0.3} and the multiplier w ∈ {10, 20, 30}
of the L2-diameter.

• SSL: We tune the the filter group penalty factor λ ∈ {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}.
• GLT: We tune the the filter group penalty factor λ ∈ {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}

and the lasso tradeoff between 0 and 0.5.

17

Under review as a conference paper at ICLR 2023

• ABFP: We tune the fractional k ∈ {0.1, 0.2, 0.3, 0.4} and the filter group penalty factor
λ ∈ {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}.

• SFP: We tune the fractional k ∈ {0.5, 0.6, 0.7, 0.8}. Further, we found it beneficial to tune
the epoch at which SFP starts the sparsification between {0, 10, 25}, since to early starts
might result in a model collapse.

CIFAR-100 Hyperparameter grids If not specified otherwise, we use weight decay values of
{1e-4, 5e-4} for all algorithms except SparseFW.

• SparseFW: We tune the fractional k ∈ {0.15, 0.2, 0.25, 0.3} and the multiplier w ∈
{20, 30, 40} of the L2-diameter.

• SSL: We tune the the filter group penalty factor λ ∈ {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}.
• GLT: We tune the the filter group penalty factor λ ∈ {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-3}

and the lasso tradeoff between 0 and 0.5.
• ABFP: We tune the fractional k ∈ {0.1, 0.2, 0.3} and the filter group penalty factor λ ∈
{1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}.

• SFP: We tune the fractional k ∈ {0.6, 0.7, 0.8, 0.9}. Further, we found it beneficial to tune
the epoch at which SFP starts the sparsification between {0, 10, 25}, since to early starts
might result in a model collapse.

TinyImagenet Hyperparameter grids If not specified otherwise, we use weight decay values of
{1e-4, 5e-4} for all algorithms except SparseFW.

• SparseFW: We tune the fractional k ∈ {0.15, 0.2, 0.25, 0.3} and the multiplier w ∈
{20, 30, 40} of the L2-diameter.

• SSL: We tune the the filter group penalty factor λ ∈ {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}.
• GLT: We tune the the filter group penalty factor λ ∈ {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-3}

and the lasso tradeoff between 0 and 0.5.
• ABFP: We tune the fractional k ∈ {0.1, 0.2, 0.3} and the filter group penalty factor λ ∈
{1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}.

• SFP: We tune the fractional k ∈ {0.6, 0.7, 0.75, 0.8, 0.85, 0.9}. Further, we found it benefi-
cial to tune the epoch at which SFP starts the sparsification between {0, 20, 50}, since to
early starts might result in a model collapse.

Imagenet Hyperparameter grids If not specified otherwise, we use weight decay values of {1e-4}
for all algorithms except SparseFW.

• SparseFW: We tune the fractional k ∈ {0.2, 0.25, 0.3, 0.35} and the multiplier w ∈
{20, 25, 30, 35} of the L2-diameter.

• SSL: We tune the the filter group penalty factor λ ∈ {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}.
• GLT: We tune the the filter group penalty factor λ ∈ {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-3}

and the lasso tradeoff between 0 and 0.5.
• ABFP: We tune the fractional k ∈ {0.1, 0.2, 0.3} and the filter group penalty factor λ ∈
{1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}.

• SFP: We tune the fractional k ∈ {0.6, 0.7, 0.75, 0.8, 0.85, 0.9}. Further, we found it benefi-
cial to tune the epoch at which SFP starts the sparsification between {0, 20, 50}, since to
early starts might result in a model collapse.

18

Under review as a conference paper at ICLR 2023

Table 3: ResNet-18 on CIFAR-10: Comparison of Filter Pruning approaches. For each sparsity we
indicate the achieved test accuracy after pruning averaged over all random seeds including standard
deviation.

Sparsity
Method 60% 70% 80% 90%

Baseline 60.32 ±0.18 32.83 ±0.52 14.49 ±4.68 10.92 ±0.20

SparseFW 90.21 ±0.14 89.78 ±0.15 86.45 ±0.91 37.01 ±7.18
SSL 91.26 ±0.13 87.13 ±1.72 63.66 ±0.36 16.25 ±1.24
GLT 68.54 ±6.12 45.42 ±6.99 21.03 ±3.69 9.36 ±0.22
ABFP 91.45 ±0.49 91.43 ±0.52 91.17 ±0.42 28.91 ±0.71
SFP 88.90 ±3.78 67.66 ±17.25 28.44 ±12.21 10.55 ±1.33

Table 4: WideResNet on CIFAR-100: Comparison of Filter Pruning approaches. For each sparsity we
indicate the achieved test accuracy after pruning averaged over all random seeds including standard
deviation.

Sparsity
Method 10% 20% 30% 40%

Baseline 71.78 ±2.29 65.30 ±2.82 51.33 ±0.34 35.00 ±2.59

SparseFW 72.21 ±0.30 72.24 ±0.29 72.20 ±0.23 71.23 ±0.18
SSL 72.10 ±1.20 67.51 ±0.25 59.26 ±0.77 42.18 ±2.67
GLT 74.08 ±0.87 69.37 ±1.54 54.43 ±4.77 28.19 ±6.30
ABFP 71.49 ±0.12 71.50 ±0.17 71.53 ±0.11 71.51 ±0.13
SFP 73.45 ±0.35 73.47 ±0.34 73.05 ±0.04 63.82 ±2.14

Table 5: ResNet-50 on TinyImagenet: Comparison of Filter Pruning approaches. For each sparsity we
indicate the achieved test accuracy after pruning averaged over all random seeds including standard
deviation.

Sparsity
Method 10% 20% 30% 40% 50% 60%

Baseline 62.20 ±0.26 57.44 ±0.04 49.69 ±0.47 39.63 ±0.69 26.75 ±1.32 13.04 ±0.46

SparseFW 60.37 ±0.32 60.37 ±0.35 60.25 ±0.21 59.87 ±0.45 58.30 ±0.38 52.56 ±0.09
SSL 60.44 ±0.37 58.86 ±0.59 56.58 ±1.46 53.06 ±2.28 46.82 ±2.69 36.79 ±2.11
GLT 60.71 ±0.46 57.47 ±1.09 51.75 ±0.52 42.96 ±1.36 30.09 ±1.17 14.86 ±1.21
SFP 62.06 ±0.38 62.07 ±0.37 62.06 ±0.37 62.06 ±0.37 49.31 ±1.33 26.76 ±2.22
ABFP 60.28 ±0.63 60.31 ±0.69 60.28 ±0.58 60.20 ±0.59 60.20 ±0.49 59.99 ±0.55

Table 6: ResNet-50 on Imagenet: Comparison of Filter Pruning approaches. For each sparsity we
indicate the achieved test accuracy after pruning averaged over all random seeds including standard
deviation.

Sparsity
Method 10% 20% 30% 40%

Baseline 65.37 ±0.25 37.78 ±1.46 7.33 ±0.48 0.65 ±0.04

SparseFW 69.85 ±0.12 68.44 ±0.06 65.07 ±0.07 57.26 ±0.24
SSL 70.73 ±0.08 60.05 ±0.19 32.08 ±0.35 9.58 ±0.30
GLT 72.93 ±0.20 63.39 ±1.98 41.80 ±0.36 14.53 ±1.94
SFP 70.69 ±0.07 69.97 ±0.38 69.28 ±0.89 17.92 ±7.73
ABFP 70.54 ±0.23 69.33 ±0.33 66.29 ±1.56 59.27 ±0.39

19

Under review as a conference paper at ICLR 2023

A.2.2 UNSTRUCTURED WEIGHT PRUNING

CIFAR-10 Hyperparameter grids For both the k-sparse polytope as well as k-support norm ball,
we tune the fractional k ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and the multiplier w ∈ {10, 20, 30, 40, 50} of the
L2-diameter.

Figure 4 compares the two feasible regions in an even larger hyperparameter search. The rows
correspond to the k-sparse polytope (above) and k-support norm ball (below), respectively. The
left column shows a heatmap of the test accuracy before pruning. While both approaches lead to
well performing models for a wide range of hyperparameter configurations (indicated as the radius
multiplier w on the x-axis and k on the y-axis), the k-support norm ball reaches higher results and
converges properly for all configurations at stake. The k-sparse polytope approach fails to yield
adequately trained dense models when the radius is relatively small but k becomes larger, which
is counter-intuitive, since larger k allows a larger fraction of the parameters to be activated. The
right column shows the corresponding heatmap of the test accuracy right after pruning. Clearly, the
proposed approach is robust to pruning for a wider hyperparameter range.

0.2

0.4

0.6

0.8

1.0

k
-s

p
a
rs

e
p

ol
y
to

p
e:
k

dense test accuracy pruned test accuracy

20 40 60 80 100

radius

0.2

0.4

0.6

0.8

1.0

k
-s

u
p

p
o
rt

n
or

m
:
k

20 40 60 80 100

radius

0.00%

54.72%

60.62%

66.51%

72.41%

78.31%

84.21%

90.10%

96.00%

Figure 4: ResNet-18 on CIFAR-10: Contour plot when performing a large hyperparameter search
over the radius and k of the feasible regions, where the first row corresponds to the k-sparse polytope
and the second one corresponds to the k-support norm ball. The left column shows the test accuracy
before pruning, while the right column shows the test accuracy after pruning. The k-support norm
approach leads to better performing dense models given the hyperparameter search at stake, which in
turn are more stable to pruning.

Miao et al. (2022) showed that SFW (with k-sparse polytope constraints) outperforms SGD with
weight decay, which in turn clearly, and unsurprisingly, outperforms the SFW-based approach when
it is allowed to retrain. Our experiments indicate that while being less robust to pruning, SGD is able
to reach on-par or better results after retraining, even when SFW is allowed to be retrained for the
same amount of time. Leaving the domain of compression-aware training, this raises a more general
question: in the case that retraining is not prohibited, is it beneficial to aim for robustness at pruning
when trying to maximize the post-retraining accuracy?

Figure 5 illustrates an experiment where we investigate this exact question by performing One-Shot
IMP (Han et al., 2015) to a sparsity of 95% and retraining for 10 epochs using LLR (Zimmer et al.,
2021). We tuned both the weight decay for regular retraining as well as the weight decay for the

20

Under review as a conference paper at ICLR 2023

retraining phase. Non surprisingly, there is a weight decay sweet spot when it comes to maximizing
the pre-pruning accuracy (left). The middle plot shows that higher weight decay typically leads to
more robustness to pruning, however a too large weight decay hinders convergence of the dense
model and might lower the performance after pruning. Surprisingly however, as depicted in the right
plot showing the test accuracy after retraining, the optimal parameter configuration is the one that
leads to the highest accuracy before pruning, which is also the least robust to pruning. This aligns
with previous findings of Bartoldson et al. (2020), who question the strive for pruning stability when
retraining is not prohibitive possible.

0.0 0.2 0.4 0.6 0.8 1.0

weight decay ×10−2

0.0

0.2

0.4

0.6

0.8

1.0

re
tr

ai
n

in
g

w
ei

gh
t

d
ec

ay

×10−2 dense test accuracy

0.0 0.2 0.4 0.6 0.8 1.0

weight decay ×10−2

pruned test accuracy

0.0 0.2 0.4 0.6 0.8 1.0

weight decay ×10−2

final test accuracy

0.00%

77.15%

79.85%

82.54%

85.23%

87.92%

90.62%

93.31%

96.00%

Figure 5: ResNet-18 on CIFAR-10: Test accuracy heatmap before pruning (left), after pruning
(middle) and after retraining (right) when training SGD and applying One-Shot pruning, tuning both
the weight decay during training (x-axis) as well as during retraining (y-axis).

A.2.3 LOW-RANK MATRIX DECOMPOSITION

CIFAR-10 Hyperparameter grids If not specified otherwise, we use weight decay values of
{1e-4, 5e-4} for all algorithms except SparseFW.

• SparseFW: We tune the fractional k ∈ {0.1, 0.15, 0.2, 0.25, 0.3} and the multiplier w ∈
{20, 30, 50} of the L2-diameter.

• NUC: We tune the nuclear norm penalty factor λ ∈
{1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 8e-3, 5e-3, 1e-2, 5e-2}.

• SVDEnergy: We tune the nuclear norm thresholding λ ∈
{1e-2, 5e-2, 1e-1, 3e-1, 5e-1, 7e-1, 9e-1, 1e-0, 5e-0}.

CIFAR-100 Hyperparameter grids If not specified otherwise, we use weight decay values of
{1e-4, 5e-4} for all algorithms except SparseFW.

• SparseFW: We tune the fractional k ∈ {0.1, 0.15, 0.2, 0.25, 0.3} and the multiplier w ∈
{20, 30, 50} of the L2-diameter.

• NUC: We tune the nuclear norm penalty factor λ ∈
{1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2}.

• SVDEnergy: We tune the nuclear norm thresholding λ ∈
{1e-2, 5e-2, 1e-1, 3e-1, 5e-1, 7e-1, 9e-1, 1e-0, 5e-0} and varied the weight decay in
{1e-4, 2e-4, 5e-4}.

21

Under review as a conference paper at ICLR 2023

Table 7: ResNet-18 on CIFAR-10: Comparison of approaches for encouraging low-rank matrices
throughout training. For each method we indicate the images-per-second throughput during training.

Sparsity
Method 40% 50% 60% 70% 80% 90%

Baseline 93.19 ±0.23 93.02 ±0.13 91.66 ±0.17 89.95 ±0.14 82.07 ±1.41 53.07 ±1.98

SparseFW 92.19 ±0.11 92.12 ±0.21 92.14 ±0.23 91.96 ±0.22 90.72 ±0.05 74.94 ±2.40
NUC 92.56 ±0.18 92.48 ±0.27 92.59 ±0.17 92.45 ±0.33 89.82 ±0.07 64.83 ±1.16
SVDEnergy 92.75 ±0.81 92.62 ±0.64 92.48 ±0.30 91.68 ±0.42 87.99 ±2.18 65.23 ±8.99

Table 8: WideResNet on CIFAR-100: Comparison of approaches for encouraging low-rank matrices
throughout training. For each method we indicate the images-per-second throughput during training.

Sparsity
Method 30 % 40% 50% 60% 70% 80%

Baseline 75.57 ±0.10 74.28 ±2.59 73.52 ±0.95 64.67 ±11.12 56.04 ±2.24 10.97 ±8.29

SparseFW 75.53 ±0.18 75.69 ±0.04 75.75 ±0.08 75.37 ±0.40 75.30 ±0.10 73.28 ±2.02
NUC 75.96 ±0.29 74.86 ±1.53 72.35 ±0.48 68.57 ±4.95 55.97 ±2.80 5.40 ±2.12
SVDEnergy 75.69 ±0.95 75.14 ±0.18 74.11 ±0.81 66.76 ±4.41 55.40 ±3.04 30.82 ±26.87

A.3 THE DYNAMICS OF GRADIENT RESCALING

0 25 50 75 100

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

b
at

ch
gr

ad
ie

n
t

n
or

m

batch gradient norm

SGD (1e-4)

SGD (5e-4)

SFW (50)

SFW (100)

Figure 6: ResNet-18 on CIFAR-10: The evolution of the batch gradient norm ∥∇t∥ when training
SFW for different values of k and SGD for two weight decay strengths. The metric is averaged with
respect to two random seeds and over all iterations within one epoch.

A.4 PROOFS OF LMO CONSTRUCTIONS

In the following, we state the missing proof of the k-support norm LMO (being a special case of the
group-k-support norm) and Lemma 3.1.
Lemma A.1. Given∇t, let vt ∈ Ck(τ) = conv{v | ∥v∥0 ≤ k, ∥v∥2 ≤ τ} such that

[vt]i =

{−τ [∇t]i/∥∇topk
t ∥2 if i ∈ topk(|∇t|),

0 otherwise,

where∇topk
t is the vector obtained by setting to zero all n−k entries [∇t]j of∇t with j ̸∈ topk(|∇t|).

Then vt ∈ argminv∈Ck(τ)
⟨v,∇t⟩ is a solution to Equation (2).

Proof. By construction, all vertices v of Ck(τ) satisfy ∥v∥2 = τ and are k-Sparse, i.e., ∥v∥0 ≤ k.
Note that being k-Sparse includes cases where more than n− k entries are zero. The minimum of

22

Under review as a conference paper at ICLR 2023

Equation (2) is attained at one such v. Further recall the following reformulation of the euclidean
inner product:

⟨v,∇t⟩ = ∥v∥2∥∇t∥2 cos(∠(v,∇t)) = τ∥∇t∥2 cos(∠(v,∇t)), (10)

where ∠(v,∇t) denotes the angle between v and ∇t. This term is minimized as soon as the angle
between v and∇t is maximal. If v was not required to be k-Sparse, i.e., v would be allowed to lie
anywhere on the border of B2(τ), the solution would clearly be given by −τ∇t/∥∇t∥2. However,
since v is k-Sparse, the vector maximizing the angle to∇t is the one that is closest to −τ∇t/∥∇t∥2
but is k-Sparse at the same time. This is exactly the one claimed.

Lemma A.2. Given∇t ∈ Rn×m, letWt ∈ Cσk (τ) such that

Wt =
−τ

∥σ(Σk)∥2
UkΣkV

T
k ,

where UkΣkV
T
k is the truncated SVD of ∇t such that only the k largest singular values are kept.

ThenWt ∈ argminv∈Cσ
k (τ)⟨v,∇t⟩ is a solution to Equation (2).

Proof. Recall that

Cσk (τ) = conv{W ∈ Rn×m | rank(W) ≤ k, ∥σ(W)∥2 ≤ τ}.
LetW be some minimizer. Note that rescaling a matrix by a scalar has no effect on its rank. Let us
hence assume that ∥σ(W)∥2 = α for some α > 0 and characterizeW ∈ argminrank(v)≤k⟨v,∇t⟩.
Again, we have

⟨W,∇t⟩F = ⟨←−W,
←−∇t⟩2 = α∥←−∇t∥2 cos(∠(

←−W,
←−∇t)), (11)

where←−x is there vectorized form of matrix x. Since we can choose α ≤ τ , this term is minimal as
soon as the angle ∠(

←−W,
←−∇t) is maximal, i.e. cos(∠(

←−W,
←−∇t)) < 0 and α = τ , where we use the same

euclidean-geometric interpretation as in the proof for Lemma A.1 above. To obtain a maximal angle,
we hence minimize the L2-distance between −←−W and

←−∇t in compliance with the rank constraint.
Since again ∥ −←−W −←−∇t∥2 = ∥ −W −∇t∥F , the Eckart–Young–Mirsky theorem yields the claim,
where we rescale appropriately to meet the Schattennorm constraint.

A.5 CONVERGENCE OF SFW WITH GRADIENT RESCALING

Before priving the convergence of SFW with gradient rescaling as stated it informally in Theorem 5.1,
we first recall some central definitions and assumptions.

A.5.1 SETTING

Let Ω be the set of training datapoints from which we sample uniformly at random. In Equation (1)
we defined a unique loss function ℓi for each datapoint. In the following let ℓ(θ, ωi) = ℓi(θ) for
ωi ∈ Ω. Similar to Reddi et al. (2016) and Pokutta et al. (2020), we define the SFW algorithm as
follows, where the output θa is chosen uniformly at random from all iterates θ0, . . . , θT−1.

Algorithm 1 Stochastic Frank–Wolfe (SFW)
Input: Initial parameters θ0 ∈ C, learning rate ηt ∈ [0, 1], batch size bt, number of steps T .
Output: Iterate θa chosen uniformly at random from θ0, . . . , θT−1

1: for t = 0 to T − 1 do
2: sample i.i.d. ω(t)

1 , . . . , ω
(t)
bt
∈ Ω

3: ∇̃L(θt)← 1
bt

∑bt
j=1∇ℓ(θt, ω

(t)
j)

4: vt ← argminv∈C ⟨∇̃L(θt), v⟩
5: θt+1 ← θt + ηt(vt − θt)
6: end for

Let us recall some definitions. We denote the globally optimal solution by θ⋆ and the Frank–Wolfe
Gap at θ as

G(θ) = max
v∈C
⟨v − θ,−∇L(θ)⟩. (12)

23

Under review as a conference paper at ICLR 2023

We will use the same assumptions as Reddi et al. (2016). First of all, let us assume that L is M -smooth,
that is

∥∇L(x)−∇L(y)∥ ≤M∥x− y∥ (13)

for all x, y ∈ C, which implies the well-known inequality

L(x) ≤ L(y) + ⟨∇L(y), x− y⟩+ M

2
∥x− y∥2. (14)

Further, we assume the function ℓ to be G-Lipschitz, that is for all x ∈ C and ω ∈ Ω we have

∥∇ℓ(x, ω)∥ ≤ G. (15)

A direct consequence is that the norm of the gradient estimator can be bounded as ∥∇̃L(θt)∥ ≤ G.

A.5.2 CONVERGENCE PROOF

The following well-established Lemma quantifies how closely ∇̃L(θ) approximates∇L(θ). A proof
can be found in Reddi et al. (2016).

Lemma A.3. Let ω1, . . . , ωb be i.i.d. samples in Ω, θ ∈ C and ∇̃L(θ) = 1
b

∑b
j=1∇ℓ(θt, ωj). If ℓ is

G-Lipschitz, then

E∥∇̃L(θ)−∇L(θ)∥ ≤ G

b1/2
. (16)

In the following, we denote the gradient estimator at iteration t as∇t := ∇̃L(θt) and the L2-diameter
D(C) as D. Let β ∈ R satisfy

β ≥ 2h(θ0)

MD2
, (17)

for some given initialization θ0 ∈ C of the parameters, where h(θ0) = L(θ0)− L(θ⋆) denotes the
optimality gap of θ0.

Theorem A.4. For all 0 ≤ t < T , let bt = b = T and ηt = ∥∇t∥η where η =
(

h(θ0)
TMD2G2β

)1/2

. If

θa is chosen uniformly at random from the SFW iterates {θi : 0 ≤ i < T}, then we have

E [G(θa) · ∥∇L(θa)∥] ≤
D√
T

(√
h(θ0)MG2β +G2 +

MGD

2
√
2

)
,

where E denotes the expectation w.r.t. all the randomness present.

Proof. First of all notice that ηt is well defined: Using β as defined above we have

η ≤
(

1

2TG2

)1/2

=
1

G

1√
2T

(18)

and consequently we obtain ηt = ∥∇t∥η ≤ 1√
2T
≤ 1 by using that ∥∇t∥ ≤ G . By M -smoothness

of L we have

L(θt+1) ≤ L(θt) + ⟨∇L(θt), θt+1 − θt⟩+
M

2
∥θt+1 − θt∥2.

Using the fact that θt+1 = θt + ηt(vt − θt) and that ∥vt − θt∥ ≤ D, it follows that

L(θt+1) ≤ L(θt) + ηt⟨∇L(θt), vt − θt⟩+
MD2η2t

2
. (19)

Now let
v̂t = argmin

v∈C
⟨∇L(θt), v⟩ = argmax

v∈C
⟨−∇L(θt), v⟩ (20)

be the LMO solution if we knew the exact gradient at iterate θt, where t = 0, . . . , T − 1. This
minimizer is not part of the algorithm but is crucial in the subsequent analysis. Note that we have

G(θt) = max
v∈C
⟨v − θt,−∇L(θt)⟩ = ⟨v̂t − θt,−∇L(θt)⟩. (21)

24

Under review as a conference paper at ICLR 2023

Continuing from Equation (19), we therefore have

L(θt+1) ≤ L(θt) + ηt⟨∇̃L(θt), vt − θt⟩+ ηt⟨∇L(θt)− ∇̃L(θt), vt − θt⟩+
MD2η2t

2

≤ L(θt) + ηt⟨∇̃L(θt), v̂t − θt⟩+ ηt⟨∇L(θt)− ∇̃L(θt), vt − θt⟩+
MD2η2t

2

= L(θt) + ηt⟨∇L(θt), v̂t − θt⟩+ ηt⟨∇L(θt)− ∇̃L(θt), vt − v̂t⟩+
MD2η2t

2

= L(θt)− ηt G(θt) + ηt⟨∇L(θt)− ∇̃L(θt), vt − v̂t⟩+
MD2η2t

2
,

where the first inequality is just a reformulation of Equation (19) and the second one is due to the
minimality of vt. Applying Cauchy–Schwarz and using the fact that the diameter of C is D, we
therefore have

L(θt+1) ≤ L(θt)− ηt G(θt) + ηtD∥∇L(θt)− ∇̃L(θt)∥+
MD2η2t

2
. (22)

Now note that ηt = ∥∇t∥η ≤ Gη, yielding

L(θt+1) ≤ L(θt)− ηt G(θt) + ηGD∥∇L(θt)− ∇̃L(θt)∥+
MD2G2η2

2
. (23)

Let θ0:t denote the sequence θ0, . . . , θt. Taking expectations and applying Lemma A.3, we get

Eθ0:t+1L(θt+1) ≤ Eθ0:t+1L(θt)− Eθ0:t+1 [ηtG(θt)] +
DG2η

b1/2
+

MD2G2η2

2
. (24)

By rearranging and summing over t = 0, . . . , T − 1, we get the upper bound
T−1∑
t=0

Eθ0:t+1 [ηtG(θt)] ≤ L(θ0)− Eθ0:TL(θT) +
TDG2η

b1/2
+

TMD2G2η2

2

≤ L(θ0)− L(θ⋆) +
TDG2η

b1/2
+

TMD2G2η2

2
. (25)

Now fix t and apply the law of total expectation to reformulate
Eθ0:t+1

[ηtG(θt)] = Eθ0:tEθ0:t+1
[ηtG(θt) | θ0:t] = Eθ0:t [G(θt)η · Eθ0:t+1

[∥∇t∥ | θ0:t]], (26)
where we exploited that once θ0:t is available, G(θt) is not subject to randomness anymore. The
expected norm of the gradient estimator given θt depends only on the uniform selection of samples,
allowing us to exploit the unbiasedness of the estimator as well as the convexity of the norm ∥ · ∥
using Jensen’s inequality as follows:

Eθ0:t+1
[∥∇t∥ | θ0:t] = Eω[∥∇t∥ | θ0:t] (27)

≥ ∥Eω[∇t | θ0:t]∥ (28)

= ∥1
b

b∑
j=1

Eωj∇ℓ(θt, ωj)∥ (29)

= ∥∇L(θt)∥. (30)
Combining this with Equation (25), we obtain

η

T−1∑
t=0

Eθ0:t [G(θt) · ∥∇L(θt)∥] ≤ h(θ0) +
TDG2η

b1/2
+

TMD2G2η2

2
. (31)

Using the definition of θa, being a uniformly at random chosen iterate from θ0, . . . , θT−1, we
conclude the proof with the following inequality.

E [G(θa) · ∥∇L(θa)∥] ≤
h(θ0)

Tη
+

DG2

b1/2
+

MD2G2η

2
(32)

≤ D√
T

(√
h(θ0)MG2β +G2 +

MGD

2
√
2

)
(33)

25

	Introduction
	Preliminaries
	Methodology: Compression-aware training with SFW
	Inducing group sparsity to Neural Networks
	A different notion of sparsity: Pruning singular values
	Experimental setup: A fair comparison between methods

	Experimental Results
	Structured Filter Pruning
	Low-Rank Matrix decomposition

	The dynamics of gradient rescaling
	Discussion and Outlook
	Reproducibility
	Appendix
	Technical details
	Structured Filter and Unstructured Pruning
	Low-Rank Matrix decomposition

	Experimental setup and extended results
	Structured Filter Pruning
	Unstructured Weight Pruning
	Low-Rank Matrix decomposition

	The dynamics of gradient rescaling
	Proofs of LMO constructions
	Convergence of SFW with gradient rescaling
	Setting
	Convergence Proof

