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Abstract

Domain adaptation (DA) aims to alleviate the domain shift between source domain
and target domain. Most DA methods require access to the source data, but
often that is not possible (e.g. due to data privacy or intellectual property). In
this paper, we address the challenging source-free domain adaptation (SFDA)
problem, where the source pretrained model is adapted to the target domain in
the absence of source data. Our method is based on the observation that target
data, which might no longer align with the source domain classifier, still forms
clear clusters. We capture this intrinsic structure by defining local affinity of the
target data, and encourage label consistency among data with high local affinity.
We observe that higher affinity should be assigned to reciprocal neighbors, and
propose a self regularization loss to decrease the negative impact of noisy neighbors.
Furthermore, to aggregate information with more context, we consider expanded
neighborhoods with small affinity values. In the experimental results we verify that
the inherent structure of the target features is an important source of information
for domain adaptation. We demonstrate that this local structure can be efficiently
captured by considering the local neighbors, the reciprocal neighbors, and the
expanded neighborhood. Finally, we achieve state-of-the-art performance on
several 2D image and 3D point cloud recognition datasets. Code is available in
https://github.com/Albert0147/SFDA_neighbors.

1 Introduction

Most deep learning methods rely on training on large amount of labeled data, while they cannot
generalize well to a related yet different domain. One research direction to address this issue is
Domain Adaptation (DA), which aims to transfer learned knowledge from a source to a target domain.
Most existing DA methods demand labeled source data during the adaptation period, however, it
is often not practical that source data are always accessible, such as when applied on data with
privacy or property restrictions. Therefore, recently, there have emerged a few works [[16} 17,20, [21]]
tackling a new challenging DA scenario where instead of source data only the source pretrained
model is available for adapting, i.e., source-free domain adaptation (SFDA). Among these methods,
USFDA [16] addresses universal DA [S7]] and SF [17] addresses open-set DA [36]. In both universal
and open-set DA the label set is different for source and target domains. SHOT [21] and 3C-GAN [20]]
are for closed-set DA where source and target domains have the same categories. 3C-GAN [20] is
based on target-style image generation with a conditional GAN, and SHOT [21]] is based on mutual
information maximization and pseudo labeling. Finally, BAIT [56] extends MCD [35]] to the SFDA
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Figure 1: (a) t-SNE visualization of target features by source model. (b) Ratio of different type of
nearest neighbor features of which: the predicted label is the same as the feature, K is the number of
nearest neighbors. The features in (a) and (b) are on task Ar—Rw of Office-Home. (¢) [llustration of
our method. In the left shows we distinguish reciprocal and non-reciprocal neighbors. The adaptation
is achieved by pushed the features towards reciprocal neighbors heavily.

Before Adaptation

setting. However, these methods ignore the intrinsic neighborhood structure of the target data in
feature space which can be very valuable to tackle SFDA.

In this paper, we focus on closed-set source-free domain adaptation. Our main observation is that
current DA methods do not exploit the intrinsic neighborhood structure of the target data. We use
this term to refer to the fact that, even though the target data might have shifted in the feature space
(due to the covariance shift), target data of the same class is still expected to form a cluster in the
embedding space. This can be implied to some degree from the t-SNE visualization of target features
on the source model which suggests that significant cluster structure is preserved (see Fig. [I] (a)).
This assumption is implicitly adopted by most DA methods, as instantiated by a recent DA work [42].
A well-established way to assess the structure of points in high-dimensional spaces is by considering
the nearest neighbors of points, which are expected to belong to the same class. However, this
assumption is not true for all points; the blue curve in Figure 1(b) shows that around 75% of the
nearest neighbors has the correct label. In this paper, we observe that this problem can be mitigated
by considering reciprocal nearest neighbors (RNN); the reciprocal neighbors of a point have the point
as their neighbor. Reciprocal neighbors have been studied before in different contexts [[14} 31} 60].
The reason why reciprocal neighbors are more trustworthy is illustrated in Fig.[T[c). Fig.[I(b) shows
the ratio of neighbors which have the correct prediction for different kinds of nearest neighbors.
The curves show that reciprocal neighbors indeed have more chances to predict the frue label than
non-reciprocal nearest neighbors (nRNN).

The above observation and analysis motivate us to assign different weights to the supervision from
nearest neighbors. Our method, called Neighborhood Reciprocity Clustering (NRC), achieves source-
free domain adaptation by encouraging reciprocal neighbors to concord in their label prediction.
In addition, we will also consider a weaker connection to the non-reciprocal neighbors. We define
affinity values to describe the degree of connectivity between each data point and its neighbors,
which is also utilized to encourage class-consistency between neighbors, and we propose to use a
self-regularization to decrease the negative impact of potential noisy neighbors. Furthermore, inspired
by recent graph based methods [[1, 13, [61] which show that the higher order neighbors can provide
relevant context, and also considering neighbors of neighbors is more likely to provide datapoints that
are close on the data manifold [43]]. Thus, to aggregate wider local information, we further retrieve
the expanded neighbors, i.e, neighbor of the nearest neighbors, for auxiliary supervision.

Our contributions can be summarized as follows, to achieve source-free domain adaptation: (i) we
explicitly exploit the fact that same-class data forms cluster in the target embedding space, we do



this by considering the predictions of neighbors and reciprocal neighbors, (ii) we further show that
considering an extended neighborhood of data points further improves results (iii) the experiments
results on three 2D image datasets and one 3D point cloud dataset show that our method achieves
state-of-the-art performance compared with related methods.

2 Related Work

Domain Adaptation. Most DA methods tackle domain shift by aligning the feature distributions.
Early DA methods such as [23} |41, 45] adopt moment matching to align feature distributions.
And in recent years, plenty of works have emerged that achieve alignment by adversarial training.
DANN [7] formulates domain adaptation as an adversarial two-player game. The adversarial training
of CDAN [24] is conditioned on several sources of information. DIRT-T [40] performs domain
adversarial training with an added term that penalizes violations of the cluster assumption. Addi-
tionally, [18} 26l 135] adopts prediction diversity between multiple learnable classifiers to achieve
local or category-level feature alignment between source and target domains. AFN [52] shows that
the erratic discrimination of target features stems from much smaller norms than those found in
the source features. SRDC [42] proposes to directly uncover the intrinsic target discrimination via
discriminative clustering to achieve adaptation. More related, [27] resorts to K-means clustering for
open-set adaptation while considering global structure. Our method instead only focuses on nearest
neighbors (local structure) for source-free adaptation.

Source-free Domain Adaptation. Source-present methods need supervision from the source domain
during adaptation. Recently, there are several methods investigating source-free domain adaptation.
USFDA [16] and FS [[17] explore source-free universal DA [57] and open-set DA [36], and they
propose to synthesize extra training samples to make the decision boundary compact, thereby allowing
to recognise the open classes. For closed-set DA setting. SHOT [21]] proposes to fix the source
classifier and match the target features to the fixed classifier by maximizing mutual information and a
proposed pseudo label strategy which considers global structure. 3C-GAN [20] synthesizes labeled
target-style training images based on the conditional GAN to provide supervision for adaptation.
Finally, SFDA [22] is for segmentation based on synthesizing fake source samples.

Graph Clustering. Our method shares some similarities with graph clustering work such as [38], 48|
54, 55]] by utilizing neighborhood information. However, our methods are fundamentally different.
Unlike those works which require labeled data to train the graph network for estimating the affinity,
we instead adopt reciprocity to assign affinity.

3 Method

Notation. We denote the labeled source domain data with ng samples as D, = {(z?,y7)}.,, where

the y; is the corresponding label of x7, and the unlabeled target domain data with n; samples as
D, = {1’; }?;1. Both domains have the same C classes (closed-set setting). Under the SFDA setting
D is only available for model pretraining. Our method is based on a neural network, which we split
into two parts: a feature extractor f, and a classifier g. The feature output by the feature extractor is
denoted as z(x) = f (), the output of network is denoted as p(z) = J(g(z)) € RE where § is the
softmax function, for readability we will abandon the input and use z, p in the following sections.

Overview. We assume that the source pretrained model has already been trained. As discusses in the
introduction, the target features output by the source model form clusters. We exploit this intrinsic
structure of the target data for SFDA by considering the neighborhood information, and the adaptation
is achieved with the following objective:

1 Dsin (p' p')
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where the Neigh(z;) means the nearest neighbors of x;, Ds;,, computes the similarity between
predictions, and Dy, is a constant measuring the semantic distance (dissimilarity) between data.
The principle behind the objective is to push the data towards their semantically close neighbors by
encouraging similar predictions. In the next sections, we will define Dg;,, and D ;.



3.1 Encouraging Class-Consistency with Neighborhood Affinity

To achieve adaptation without source data, we use the prediction of the nearest neighbor to encourage
prediction consistency. While the target features from the source model are not necessarily totally
intrinsic discriminative, meaning some neighbors belong to different class and will provide the wrong
supervision. To decrease the potentially negative impact of those neighbors, we propose to weigh the
supervision from neighbors according to the connectivity (semantic similarity). We define affinity
Vallues to signify the connectivity between the neighbor and the feature, which corresponds to the

o, in Eq.|lfindicating the semantic similarity.

To retrieve the nearest neighbors for batch training, similar to [33} 150} 162]], we build two memory
banks: F stores all target features, and S stores corresponding prediction scores:

F = [Zl,ZQ,...,Znt]al'ldS = Lplap27"'7pnt] (2)

We use the cosine similarity for nearest neighbors retrieving. The difference between ours and [33}[50]]
lies in the fact that we utilize the memory bank to retrieve nearest neighbors while [33. 150]] adopts
the memory bank to compute the instance discrimination loss. Before every mini-batch training, we
simply update the old items in the memory banks corresponding to current mini-batch. Note that
updating the memory bank is only done to replace the old low-dimension vectors with new ones
computed by the model, and does not require any additional computation.

We then use the prediction of the neighbors to supervise the training weighted by the affinity values,
with the following objective adapted from Eq. [T}

Ly = —nit SN AwSipi 3)
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where we use the dot product to compute the similarity between predictions, corresponding to Dy,
in Eq[I] the k is the index of the k-th nearest neighbors of z;, Sy, is the k-th item in memory bank
S, Ay, is the affinity value of k-th nearest neighbors of feature z;. Here the NV, }< is the index se of
the K -nearest neighbors of feature z;. Note that all neighbors are retrieved from the feature bank F.
With the affinity value as weight, this objective pushes the features to their neighbors with strong
connectivity and to a lesser degree to those with weak connectivity.

To assign larger affinity values to semantic similar neighbors, we divide the nearest neighbors retrieved
into two groups: reciprocal nearest neighbors (RNN) and non-reciprocal nearest neighbors (nRNN).
The feature z; is regarded as the RNN of the feature z; if it meets the following condition:

jeNLNieN, 4)

Other neighbors which do not meet the above condition are nRNN. Note that the normal definition

of reciprocal nearest neighbors [31] applies K = M, while in this paper K and M can be different.

We find that reciprocal neighbors have a higher potential to belong to the same cluster as the feature

(Fig.[I[b)). Thus, we assign a high affinity value to the RNN features. Specifically for feature z;, the
affinity value of its j-th K-nearest neighbor is defined as:

1 ifj e NgnieN]
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r otherwise.

where 7 is a hyperparameter. If not specified r is set to 0.1.

To further reduce the potential impact of noisy neighbors in Az, which belong to the different class
but still are RNN, we propose a simply yet effective way dubbed self-regularization, that is, to not
ignore the current prediction of ego feature:

1
Eselj' = _7’7? ZS,LTP’L (6)

where S; means the stored prediction in the memory bank, note this term is a constant vector and
is identical to the p; since we update the memory banks before the training, here the loss is only
back-propagated for variable p;.

2All indexes are in the same order for the dataset and memory banks.



Algorithm 1 Neighborhood Reciprocity Clustering for Source-free Domain Adaptation

Require: D, (only for source model training), D;
1: Pre-train model on D
2: Build feature bank F and score bank S for Dy
3: while Adaptation do
4: Sample batch 7 from D,
5 Update F and S corresponding to current batch 7~
6: Retrieve nearest neighbors A for each of 7'
7: Compute affinity value A > Eq[j]
8: Retrieve expanded neighborhoods F for each of N
9: Compute loss and update the model > Eq.[9]
0:

10: end while

To avoid the degenerated solution [8, 39] where the model predicts all data as some specific classes
(and does not predict other classes for any of the target data), we encourage the prediction to be
balanced. We adopt the prediction diversity loss which is widely used in clustering [8, |9, |13]] and also
in several domain adaptation works [21} 139, |42]:
< 1 1
_ . — c
Laiw = 3 KL(pellac), with pe = - E;pi- and g0y = 5 ()
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where the pgc) is the score of the c-th class and p, is the empirical label distribution, it represents the
predicted possibility of class ¢ and q is a uniform distribution.

3.2 Expanded Neighborhood Affinity

As mentioned in Sec.|I} a simple way to achieve the aggregation of more information is by considering
more nearest neighbors. However, a drawback is that larger neighborhoods are expected to contain
more datapoint from multiple classes, defying the purpose of class consistency. A better way to
include more target features is by considering the M-nearest neighbor of each neighbor in N of z;
in Eq.[ i.e., the expanded neighbors. These target features are expected to be closer on the target data
manifold than the features that are included by considering a larger number of nearest neighbors [43]].
The expanded neighbors of feature z; are defined as Ey(2;) = Nu(z;) V5 € Nk (zi), note that
En(2z;) is still an index set and i (ego feature) ¢ Ep(z;). We directly assign a small affinity value
r to those expanded neighbors, since they are further than nearest neighbors and may contain noise.
We utilize the prediction of those expanded neighborhoods for training:

Lo=-23 3 Y STn ®)

i keNj meEk,
where EX, contain the M-nearest neighbors of neighbor & in N.

Although the affinity values of all expanded neighbors are the same, it does not necessarily mean
that they have equal importance. Taking a closer look at the expanded neighbors E);(z;), some
neighbors will show up more than once, for example z,,, can be the nearest neighbor of both z; and
z; where h, j € Nk (z;), and the nearest neighbors can also serve as expanded neighbor. It implies
that those neighbors form compact cluster, and we posit that those duplicated expanded neighbors
have potential to be semantically closer to the ego-feature z;. Thus, we do not remove duplicated
features in Fps(z;), as those can lead to actually larger affinity value for those expanded neighbors.
This is one advantage of utilizing expanded neighbors instead of more nearest neighbors, we will
verify the importance of maintaining the duplicated features in the experimental section.

Final objective. Our method, called Neighborhood Reciprocity Clustering (NRC), is illustrated in
Algorithm. [T] The final objective for adaptation is:

L="Lgiw +Lyn+LE+ Lsery. )
4 Experiments

Datasets. We use three 2D image benchmark datasets and a 3D point cloud recognition dataset.
Office-31 [32] contains 3 domains (Amazon, Webcam, DSLR) with 31 classes and 4,652 images.



Table 1: Accuracies (%) on Office-31 for ResNet50-based methods.
Method | SF \ A—D A—W D—W W—D D—A W—A Avg

MCD [35] X 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN [24] X 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [59] X 90.4 90.4 98.7 99.9 75.0 73.7 88.0
BNM [4] X 90.3 91.5 98.5 100.0 70.9 71.6 87.1
DMRL [49] X 93.4 90.8 99.0 100.0 73.0 71.2 87.9
BDG [53] X 93.6 93.6 99.0 100.0 73.2 72.0 88.5
MCC [15] X 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC [42] X 95.8 95.7 99.2 100.0 76.7 77.1 90.8
RWOT [31] X 94.5 95.1 99.5 100.0 77.5 71.9 90.8
RSDA-MSTN [10] X 95.8 96.1 99.3 100.0 774 78.9 91.1
SHOT [21] v 94.0 90.1 98.4 99.9 74.7 74.3 88.6
3C-GAN [20] 4 92.7 93.7 98.5 99.8 75.3 71.8 89.6
NRC v 96.0 90.8 99.0 100.0 75.3 75.0 89.4

Table 2: Accuracies (%) on Office-Home for ResNet50-based methods.
Method [SFAr—ClAr—Pr Ar—Rw Cl—Ar CI=Pr CI-Rw Pr—ArPr—CIPr-RwRw—ArRw—CIRw—Pr Avg

MCD [35] X| 489 683 746 613 676 688 570 47.1 751 69.1 522 79.6 64.1
CDAN [24] X| 507 706 760 576 700 700 574 509 773 709 567 81.6 658
SAFN [52] X| 520 717 763 642 699 719 637 514 771 709  57.1 81.5 67.3
Symnets [58] X| 4717 729 785 642 713 742 642 488 795 745 526 827 67.6
MDD [59] X| 549 737 778 600 714 718 612 536 78.1 725  60.2 823 68.1
TADA [47] X| 531 723 772 591 712 721 597 531 784 724 600 829 67.6
BNM [4] X| 523 739 800 633 729 749 617 495 797 705 536 822 679
BDG [53] X| 515 734 787 653 715 737 651 497 81.1 746 551 848 68.7
SRDC [42] X| 523 763 810 695 762 780 687 538 817 763 571 85.0 713
RSDA-MSTN [10]| x| 532 777 813 664 740 765 679 530 820 758 578 854 709
SHOT [21] v 571 781 815 680 782 781 674 549 822 733 588 843 718
NRC V| 577 803 820 681 798 786 653 564 83.0 710 586 856 72.2

Office-Home [46] contains 4 domains (Real, Clipart, Art, Product) with 65 classes and a total of
15,500 images. VisDA [28]] is a more challenging dataset, with 12-class synthetic-to-real object
recognition tasks, its source domain contains of 152k synthetic images while the target domain has
55k real object images. PointDA-10 [30] is the first 3D point cloud benchmark specifically designed
for domain adaptation, it has 3 domains with 10 classes, denoted as ModelNet-10, ShapeNet-10 and
ScanNet-10, containing approximately 27.7k training and 5.1k testing images together.

Evaluation. We compare with existing source-present and source-free DA methods. All results are
the average on three random runs. SF in the tables denotes source-free.

Model details. For fair comparison with related methods, we also adopt the backbone of
ResNet-50 [[11] for Office-Home and ResNet-101 for VisDA, and PointNet [29] for PointDA-
10. Specifically, for 2D image datasets, we use the same network architecture as SHOT [21]],
i.e., the final part of the network is: fully connected layer — Batch Normalization [12] —
fully connected layer with weight normalization [37]. And for PointDA-10 [29]], we use the code
released by the authors for fair comparison with PointDAN [29]], and only use the backbone without
any of their proposed modules. To train the source model, we also adopt label smoothing as SHOT
does. We adopt SGD with momentum 0.9 and batch size of 64 for all 2D datasets, and Adam for
PointDA-10. The learning rate for Office-31 and Office-Home is set to le-3 for all layers, except for
the last two newly added fc layers, where we apply le-2. Learning rates are set 10 times smaller for
VisDA. Learning rate for PointDA-10 is set to 1e-6. We train 30 epochs for Office-31 and Office-
Home while 15 epochs for VisDA, and 100 for PointDA-10. For the number of nearest neighbors (K)
and expanded neighborhoods (M), we use 3,2 for Office-31, Office-Home and PointDA-10, since
VisDA is much larger we set K, M to 5. Experiments are conducted on a TITAN Xp.

4.1 Results

2D image datasets. We first evaluate the target performance of our method compared with existing
DA and SFDA methods on three 2D image datasets. As shown in Table[T}3] the top part shows results
for the source-present methods with access to source data during adaptation. The bottom shows
results for the source-free DA methods. On Office-31, our method gets similar results compared



Table 3: Accuracies (%) on VisDA-C (Synthesis — Real) for ResNet101-based methods.
Method [SF]plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

ADR [34] X 1942 485 84.072.9 90.1 742 92.6 725 80.8 61.8 822 288 735
CDAN [24] X 1852 66.9 83.050.8 842 749 88.1 745 834 760 819 38.0 739
CDAN+BSP [2]| X | 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 842 77.9 82.1 384 759
SAFN [52] X 193.6 61.3 84.170.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 244 76.1
SWD [19] X 190.8 82.5 81.770.5 91.7 69.5 863 775 874 63.6 856 292 764
MDD [559] X\ - - - - - - - - - - 746
DMRL [49] X\ - - - - o . . . - - - 755
MCC [15] X 887 80.3 80.571.5 90.1 932 850 71.6 89.4 73.8 850 369 788
STAR [26] X 1950 84.0 84.673.0 91.6 91.8 859 784 944 84.7 87.0 422 82.7
RWOT [51] X 195.1 80.3 83.790.0 92.4 68.0 925 822 879 78.4 90.4 682 84.0
3C-GAN [20] |« |94.8 73.4 68.8 74.8 93.1 954 88.6 84.7 89.1 847 83.5 48.1 81.6
SHOT [21] v/ |94.3 885 80.157.3 93.1 949 80.7 803 91.5 89.1 86.3 582 829
NRC v/ |96.8 91.3 82.4 624 962 959 86.1 80.6 94.8 94.1 904 59.7 85.9

Table 4: Accuracies (%) on PointDA-10. The results except ours are from PointDAN [30)].
|SF|Model—Shape Model—Scan Shape—Model Shape—Scan Scan—Model Scan—Shape Avg

MMD [25] | X 57.5 27.9 40.7 26.7 473 54.8 42.5
DANN [6] | X 58.7 29.4 423 30.5 48.1 56.7 44.2
ADDA [44] | X 61.0 30.5 404 29.3 48.9 51.1 435
MCD [35] | X 62.0 31.0 414 31.3 46.8 59.3 453
PointDAN [30]| X 64.2 33.0 47.6 33.9 49.1 64.1 48.7
Source-only 43.1 17.3 40.0 15.0 33.9 47.1 32.7
NRC v 64.8 25.8 59.8 26.9 70.1 68.1 52.6

with source-free method 3C-GAN and lower than source-present method RSDA-MSTN. And our
method achieves state-of-the-art performance on Office-Home and VisDA, especially on VisDA our
method surpasses the source-free method SHOT and source-present method RWOT by a wide margin
(3% and 1.9% respectively). The reported results clearly demonstrate the efficiency of the proposed
method for source-free domain adaptation. Interestingly, like already observed in the SHOT paper,
source-free methods outperform methods that have access to source data during adaptation.

3D point cloud dataset. We also report the result for the PointDA-10. As shown in Table 4] our
method outperforms PointDA [30], which demands source data for adaptation and is specifically
tailored for point cloud data with extra attention modules, by a large margin (4%).

4.2 Analysis

Ablation study on neighbors \V, E and affinity A. In the first two tables of Table[5} we conduct
the ablation study on Office-Home and VisDA. The 1-st row contains results from the source model
and the 2-nd row from only training with the diversity loss L4;,,. From the remaining rows, several
conclusions can be drawn.

First, the original supervision, which considers all neighbors equally can lead to a decent performance
(67.1 on Office-Home). Second, considering higher affinity values for reciprocal neighbors leads to a
large performance gain (69.1 on Office-Home). Last but not the least, the expanded neighborhoods

Table 5: Ablation study of different modules on Office-Home (left) and VisDA (middle), comparison
between using expanded neighbors and larger nearest neighbors (right).

ﬁdm £N EE EE‘ A Avg Ldiv EN EE ﬁE‘ Al Acc
59.5 44.6
Method&Dataset | Acc
v 62.1 v 47.8 -
VisDA (K=M=5) |85.9
v / 67.1 v / 74.6 .
VisDA w/o E (K=30) | 84.0
v / v |69.1 v / v/ |81.5
OH (K=3,M=2) |72.2
v v/ 65.2 v v/ 61.2 OH wio E (K=9) |69.5
o/ 7 v|722 o/ 7 v |85.9 wio = :
v / v V|69.1 v / v V1820




Table 6: Runtime analysis on SHOT and our method. For SHOT, pseudo labels are computed at each
epoch. 20%, 10% and 5% denote the percentage of target features which are stored in the memory
bank.

VisDA Runtime (s/epoch)Per-class (%)
SHOT 618.82 82.9
NRC 540.89 85.9
NRC(20% for memory bank) 507.15 85.3
NRC(10% for memory bank) 499.49 85.2
NRC(5% for memory bank) 499.28 85.1
Office-Home 9.0 VisDA Acc on VisDA with different r
741 wjo self w/o self
7 w/ self 87:5 w/ self 80
722 85.0 85.9
70! 711 84.8
_ 825 82.7 o
oo 69.1 00 I ED
<66 < 775 2%
641 @30 75.0 50
62 72.5
40
e N N+E 700 N N+E 1 0 01 0.15 0.2 1
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Figure 2: (Left and middle) Ablation study of L,y on Office-Home and VisDA respectively.
(Right) Performance with different r on VisDA.

can also be helpful, but only when combined with the affinity values A (72.2 on Office-Home).
Using expanded neighborhoods without affinity obtains bad performance (65,2 on Office-Home). We
conjecture that those expanded neighborhoods, especially those neighbors of nRNN, may be noisy as
discussed in Sec. Removing the affinity A means we treat all those neighbors equally, which is
not reasonable.

We also show that duplication in the expanded neighbors is important in the last row of Table [3
where the £z means we remove duplication in Eq.[8] The results show that the performance will
degrade significantly when removing them, implying that the duplicated expanded neighbors are
indeed more important than others.

Next we ablate the importance of the expanded neighborhood in the right of Tabld5] We show that
if we increase the number of datapoints considered for class-consistency by simply considering a
larger K, we obtain significantly lower scores. We have chosen K so that the total number of points
considered is equal to our method (i.e. 5+5%5=30 and 3+3*2=9). Considering neighbors of neighbors
is more likely to provide datapoints that are close on the data manifold [43], and are therefore more
likely to share the class label with the ego feature.

Runtime analysis. Instead of storing all feature vectors in the memory bank, we follow the same
memory bank setting as in [S]] which is for nearest neighbor retrieval. The method only stores a fixed
number of target features, we update the memory bank at the end of each iteration by taking the n
(batch size) embeddings from the current training iteration and concatenating them at the end of the
memory bank, and discard the oldest n elements from the memory bank. We report the results with
this type of memory bank of different buffer size in the Table[6] The results show that indeed this
could be an efficient way to reduce computation on very large datasets.

Ablation study on self-regularization. In the left and middle of Fig[2]| we show the results with
and without self-regularization L.;y. The L. ¢ can improve the performance when adopting only
nearest neighbors A or all neighbors N+ E. The results imply that self-regularization can effectively
reduce the negative impact of the potential noisy neighbors, especially on the Office-Home dataset.

Sensitivity to hyperparameter. There are three hyperparameters in our method: K and M which
are the number of nearest neighbors and expanded neighbors, r which is the affinity value assigned
to nRNN. We show the results with different 7 in the right of Fig. 2] Note we keep the affinity
of expanded neighbors as 0.1. r = 1 means no affinity. 7 = —1 means treating supervision of
nRNN feature as totally wrong, which is not always the case and will lead to quite lower result.
7 = 0 can also achieve good performance, signifying RNN can already work well. Results with
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Figure 3: (Left) The three curves are (on VisDA): target accuracy (Blue), ratio of features which have
5-nearest neighbors all sharing the same predicted label (dashed Red), and ratio of features which
have 5-nearest neighbors all sharing the same and correct predicted label (dashed Black). (Right)
Ablation study on choice of K and M on VisDA.
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Figure 4: (Left) Ratio of different type of nearest neighbor features which have the correct predicted
label, before and after adaptation. (Right) Visualization of target features after adaptation.

r = 0.1/0.15/0.2 show that our method is not sensitive to the choice of a reasonable . Note in
DA, there is no validation set for hyperparameter tuning, we show the results varying the number of
neighbors in the right of Tab. 3] demonstrating the robustness to the choice of K and M.

Training curve. We show the evolution of several statistics during adaptation on VisDA in the left
of Tab.[3] The blue curve is the target accuracy. The dashed red and black curves are the ratio of
features which have 5-nearest neighbors all sharing the same (dashed Red), or the same and also
correct (dashed Black) predicted label. The curves show that the target features are clustering during
the training. Another interesting finding is that the curve "Per Shared’ correlates with the accuracy
curve, which might therefore be used to determine training convergence.

Accuracy of supervision from neighbors. We also show the accuracy of supervision from neighbors
on task Ar—Rw of Office-Home in Fig. d[left). It shows that after adaptation, the ratio of all types of
neighbors having more correct predicted label, proving the effectiveness of the method.

t-SNE visualization. We show the t-SNE feature visualization on task Ar—Rw of target features
before (Fig. [Ta)) and after (Fig. f{right)) adaptation. After adaptation, the features are more
compactly clustered.

5 Conclusions

We introduce a source-free domain adaptation (SFDA) method by uncovering the intrinsic target
data structure. We propose to achieve the adaptation by encouraging label consistency among local
target features. We differentiate between nearest neighbors, reciprocal neighbors and expanded
neighborhood. Experimental results verify the importance of considering the local structure of the
target features. Finally, our experimental results on both 2D image and 3D point cloud datasets testify
the efficacy of our method.
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