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Age of Information in the Internet of Things: 

Concepts, Metrics, and Applications 
 

Abstract—Age of Information (AoI) is an emerging metric 
used to evaluate the timeliness of data updates in the Internet of 
Things (IoT). It has gained significant attention in recent years 
in the fields of network optimization, communication scheduling, 
and resource allocation. This paper systematically summarizes 
the fundamental concepts, key metrics, and optimization 
strategies of AoI, while exploring its applications in typical IoT 
scenarios. Special emphasis is placed on challenges and practices 
in energy-constrained devices and multi-hop networks. Finally, 
the paper discusses the future research directions of AoI in 
intelligent systems and the potential technical bottlenecks that 
may arise. 
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I. INTRODUCTION  
The rapid development of the Internet of Things (IoT) has 

significantly increased the scale and complexity of data 
exchange between devices. Real-time transmission and 
processing of environmental data are critical to ensuring the 
safety and reliability of IoT systems. For example, in 
intelligent transportation systems, the timeliness of vehicle 
position, speed, and environmental data directly impacts 
driving decisions. Similarly, in industrial automation, 
outdated data can lead to abnormal equipment operations. 

In these scenarios, updates generated by data sources, 
often timestamped, are transmitted through networks to the 
receiving end, which must access this information as promptly 
as possible. Despite advancements in low-latency networks 
such as 5G and edge computing, the challenge of maintaining 
data freshness during status updates persists. Factors such as 
network congestion, queuing delays, and suboptimal update 
frequencies can lead to delays or even failures in status 
updates. 

To address this, researchers introduced the concept of Age 
of Information (AoI), a metric that quantifies the freshness of 
information at the receiver. Unlike traditional metrics such as 
delay or throughput, AoI measures the timeliness of updates 
considering both transmission delays and the freshness of the 
received data. This makes it particularly suitable for real-time 
updates in IoT and modern cyber-physical systems. 

This paper provides a comprehensive review of AoI, 
focusing on its key challenges, current research status, and 
future directions. The structure of the paper is as follows: 
Section 2 introduces the definition, primary metrics, and 
analytical tools of AoI; Section 3 summarizes the performance 
and optimization methods of AoI in single-server queue 
systems; Section 4 explores scheduling strategies in multi-
source networks; Section 5 addresses the optimization of AoI 
in energy-constrained scenarios; Section 6 extends the 
discussion to wireless networks; and Section 7 presents future 
research directions and conclusions. 

 
Fig. 1. (a) Fresh updates from the source node are transmitted through the 
network to the destination monitor. Monitor 1 (marked as •) receives the 

fresh update packet at the network access link. (b) Since the fresh updates 
seen by Monitor 1 at time 𝑡𝑖 are treated as a point process, its information 
age process Δ1(𝑡) is reset to 0 at time 𝑡𝑗 . The destination monitor receives 
the update packet, which arrives through the network at time 𝑡𝑗

′ . Its 
information age process Δ(𝑡) is reset at time 𝑡𝑗

′ to Δ(𝑡𝑖
′) = 𝑡𝑗

′  −  𝑡𝑗 , which 
represents the age of update 𝑗  at the time of transmission. For the 𝑛-th 
transmitted update in the information age process, 𝑌_𝑛, 𝑇_𝑛 , and 𝐷_𝑛 
represent the arrival time interval, system time, and departure time interval, 
respectively, while 𝐴_𝑛  denotes the corresponding age peak. The shaded 
area 𝑄_𝑛 is used to calculate the average information age. 

II. FUNDAMENTAL ANALYSIS OF AOI 

A. Basic Definition 
The Age of Information (AoI) is defined as the time 

elapsed since the latest received update was generated. Its core 
formula is as follows: 

Δ(𝑡) = 𝑡 − 𝑢(𝑡) (1) 

where 𝑡 is the current time, and 𝑢(𝑡) is the timestamp of 
the most recently received update at the receiver. AoI reflects 
the "freshness" of information at the receiver; a smaller AoI 
indicates more timely updates. 

In practical systems, the AoI typically exhibits a 
"sawtooth" pattern: when a new update arrives, the AoI resets 
to 0; otherwise, it increases linearly over time (see Figure 1). 
Updates transmitted through the network to the destination 
monitor experience changes in AoI with each new update. 

B. Key Metrics 
• Time-Average AoI: The time-average AoI 

evaluates the system's long-term performance and is 
calculated as: 

𝛥𝑎𝑣𝑔 = (
1

𝑇
) ∫ 𝛥(𝑡)𝑑𝑡

𝑇

0

(2) 

It is particularly suitable for periodic tasks and long-
term operations [1]. 



• Peak AoI: The Peak AoI represents the maximum 
AoI observed before an update arrives, which 
evaluates the worst-case timeliness of updates [2]. It 
is defined as:  

𝛥𝑝𝑒𝑎𝑘 = max(𝛥(𝑡)) , 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖] (3) 

Where 𝑡𝑖−1  and 𝑡𝑖  are the time points of two 
consecutive updates. Referring to Fig. 1, the AoI 
reaches its peak value at- 𝑡𝑛

′  before the arrival of 
update 𝑗 : 

𝐴𝑛 = 𝑇𝑛−1 + 𝐷𝑛 (4) 

• AoI Distribution: For systems with random arrivals 
and services, the AoI can be analyzed using its 
probability distribution, typically represented by the 
probability density function 𝑓𝛥(𝑥) or the cumulative 
distribution function 𝐹𝛥(𝑥). 

C. Analytical Tools 
• Geometric Decomposition: By decomposing the 

sawtooth-shaped AoI curve into multiple geometric 
shapes (e.g., triangles or trapezoids), the time-
average AoI or peak AoI can be calculated directly. 
For example, in periodic update systems, the time-
average AoI can be quickly derived using geometric 
area formulas. 

• Stochastic Hybrid Systems (SHS): Stochastic 
Hybrid Systems combine Markov chains with 
continuous-time dynamic processes to analyze AoI 
in complex networks. For example, SHS can be used 
to evaluate the impact of update frequency and 
transmission delay of multiple source systems on 
overall AoI. 

• Nonlinear Analysis Methods: In some application 
scenarios, the impact of AoI may be nonlinear. For 
example, in state estimation tasks, system errors may 
increase exponentially or saturate with AoI. To 
quantify such nonlinear losses, researchers often 
introduce penalty functions 𝑝(𝛥(𝑡))  to indirectly 
optimize AoI by minimizing nonlinear losses. 

D. Optimization Trade-offs of Information Age 
When designing update mechanisms, optimizing 

information age typically requires balancing update frequency, 
network resource utilization, and latency: excessively high 
update frequencies may lead to network congestion or task 
backlog, increasing the transmission delay of updates; 
conversely, too low a frequency might cause the receiving end 
to remain in an outdated information state for extended 
periods, negatively affecting system performance. This 
optimization trade-off is reflected in the design of queue 
management and transmission scheduling strategies. For 
example, in multi-source systems, prioritizing the processing 
of source data with higher information age can reduce overall 
information age; in energy-constrained networks, dynamically 
adjusting update intervals can maintain timely information 
updates while prolonging device lifespan. 

E. Relationship Between Information Age and Other 
Performance Metrics 
As an emerging performance metric, information age 

significantly differs from traditional network performance 
metrics (such as latency and throughput): 

• Difference from Latency: Latency measures the 
transmission time of a single data packet, while 
information age focuses on both the generation time 
of the packet and its transmission timeliness. For 
example, a packet with very low transmission delay 
may still have a high information age if it contains 
outdated information. 

• Relationship with Throughput: High throughput 
does not necessarily imply low information age. 
Excessively high throughput may lead to packet 
backlog, thereby increasing update delays and 
causing the receiving end to receive outdated 
information. 

• Relationship with Utilization: Strategies that 
maximize system utilization may conflict with the 
goal of minimizing information age. For instance, 
excessively high utilization can lead to task queuing 
and service delays, which in turn increase 
information age. 

III. AOI IN SINGLE-SERVER QUEUE SYSTEMS 

A. Fundamental Queue Models 
In single-server queue systems, the arrival and service 

processes of information updates are typically random. 
Common models include M/M/1 queues, M/D/1 queues, and 
D/M/1 queues. The analysis and optimization of AoI in these 
models have well-established theoretical results, providing a 
foundation for studying AoI optimization in more complex 
networks. 

For consistency in the following analysis, we define:  

𝜆 = 1/𝐸[𝑌]: the arrival rate of updates;  

𝜇 = 1/𝐸[𝑆]: the service rate;  

𝜌 = 𝜆/𝜇: the system load factor. 

• M/M/1 Queue: For an M/M/1 queue, assuming the 
service time and inter-arrival times follow 
exponential distributions, and the service follows the 
First-Come-First-Served (FCFS) rule, the average 
AoI is given by [1]: 

ΔM/M/1 =
1

μ
(1 +

1

ρ
+

ρ2

1 − ρ
) (5) 

The average AoI comprises three components: the 
update arrival rate, queuing delay, and service time. 
When the system load 𝜌 approaches 1 (i.e., the queue 
becomes saturated), the average AoI increases rapidly, 
indicating the significant impact of service delays on 
update timeliness. This formula shows that 
optimizing AoI does not simply equate to maximizing 
the update sending rate but requires finding a balance 
between the update arrival rate and system load. 

• M/D/1 Queue: In an M/D/1 queue, the arrival times 
of updates follow a Poisson distribution, but the 
service time is deterministic. The average AoI for 
this model is given by [3]: 

𝛥𝑀/𝐷/1 =
1

μ
(

1

2(1 − ρ)
+

1

2
+

(1 − ρ) exp(ρ)

ρ
) (6) 

Compared to the M/M/1 queue, the fixed service time 
in the M/D/1 model reduces the uncertainty in service 
time, thereby improving AoI. The three terms in the 



formula represent different influencing factors: fixed 
service time, the inverse effect of the load factor, and 
the exponential growth term under high load. When 
ρ→1\rho \to 1ρ→1, the queue becomes saturated, and 
the average AoI increases rapidly. 

• D/M/1 Queue: In a D/M/1 queue, the arrival times 
of updates are deterministic, while the service time 
follows an exponential distribution. The average AoI 
for this model is [4]:  

𝛥𝐷/𝑀/1 =
1

μ
(

1

2ρ
+

1

1 + ρ𝒲(− exp[−1/ρ] /ρ)
) (7) 

Here, 𝒲(⋅) is the Lambert-W function, which solves 
equations of the form 𝑥 ⋅ 𝑒𝑥 = 𝑐. 

The fixed arrival intervals in this model make updates 
more uniform, but the randomness of service time still 
significantly affects AoI. The presence of the 
Lambert-W function indicates that the analysis of 
average AoI in the D/M/1 queue is more complex, but 
its core characteristics still depend on the update load 
𝜌. By adjusting the arrival intervals and service rates, 
AoI can be effectively optimized. 

B. Comparison of Models 
The characteristics of the M/M/1, M/D/1, and D/M/1 

queue models and their respective average AoI formulas are 
summarized in Table 1: 

TABLE I.  COMPARISON OF AVERAGE AOI FORMULAS FOR 
DIFFERENT QUEUE MODELS 

Queue 
Model Average AoI Formula Characteristics 

M/M/1 
1

μ
(1 +

1

ρ
+

ρ2

1 − ρ
) 

Suitable for 
random arrivals 

and services, 
AoI is 

significantly 
affected by load 
and service rate. 

M/D/1 
1

μ
(

1

2(1 − ρ)
+

1

2
+

(1 − ρ) exp(ρ)

ρ
) 

Fixed service 
time reduces AoI 

fluctuations, 
suitable for 

stability under 
high load. 

D/M/1 
1

μ
(

1

2ρ
+

1

1 + ρ𝒲(− exp[−1/ρ] /ρ)
) 

Fixed arrival 
times offer better 

predictability; 
service 

randomness still 
impacts AoI. 

From Table 1, the time-average AoI is influenced by the 
following factors: 

• Update Arrival Rate (𝜆): As the update arrival rate 
increases, queuing delays also increase, leading to 
higher AoI. 

• Service Rate (𝜇): As the service rate increases, the 
system's processing capacity improves, significantly 
reducing AoI. 

• Service Time Distribution: Deterministic service 
times (e.g., in M/D/1 and D/M/1) generally result in 
lower average AoI than exponential distributions 
(e.g., in M/M/1), as randomness in service time is 
reduced. 

Figure 2 illustrates the comparison of average AoI as a 
function of the load factor 𝜌 = 𝜆/𝜇 for the M/M/1, M/D/1, 
and D/M/1 queue systems [1]. 

 
Fig. 2. Average Age as a Function of Offered Load ρ for M/M/1, M/D/1, 

and D/M/1 Queue Models 

C. Preemption and Discarding Strategies 
When the queue system is under high load, simply 

increasing service capacity may not significantly reduce AoI. 
Therefore, researchers have proposed various preemption and 
discarding strategies to optimize the update mechanism within 
the queue and minimize overall AoI. 

• Preemptive Servicing: Preemptive servicing allows 
newly arrived updates to interrupt the service of 
outdated updates, significantly reducing AoI under 
high-load conditions. Under the Last Generated First 
Served (LGFS) strategy, the most recently generated 
update is prioritized for service. The reduction in AoI 
arises from avoiding delays caused by servicing 
outdated updates. For example, in an M/M/1 queue, 
adopting the LGFS strategy yields a lower time-
average AoI compared to the traditional First Come 
First Served (FCFS) strategy.  

• Intelligent Discarding Policies: In systems with 
limited service capacity, intelligent discarding of 
low-priority or outdated updates can prevent queue 
backlogs and reduce AoI. Examples include:  

Drop the Oldest (DTO): This strategy eliminates the 
oldest update in the queue, reducing delay caused by 
outdated data. 

Drop Based on Priority (DBP): Updates are 
discarded based on their importance, prioritizing 
high-value updates to minimize AoI. 

IV. AOI IN MULTI-SOURCE AND MULTI-SERVER 
SYSTEMS 

Multi-source and multi-server scenarios are common in 
network communications. Compared to single-server systems, 
these scenarios introduce greater complexity, requiring 
dynamic resource allocation and prioritization to minimize 
AoI. 

A. Multi-Server Systems 
In multi-server queue systems, multiple service nodes 

process data streams in parallel, significantly reducing 
queuing delays and optimizing AoI. For example, in the 
M/M/2 model, increasing the number of service nodes reduces 
update waiting times, thereby lowering the average AoI. 

Key optimization strategies include: 

• Task Allocation: Intelligent scheduling algorithms 
dynamically allocate tasks based on the urgency of 
updates and the current load of servers. Under low 
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task loads, balancing server workloads improves 
resource utilization and reduces AoI. Under high 
loads, prioritizing updates with high AoI ensures 
system timeliness. 

• Preemptive Service Adjustment: High-priority 
updates can interrupt low-priority tasks, ensuring 
critical updates maintain low AoI.  

In smart manufacturing scenarios, updates generated by 
different sensors may have varying priorities. Through 
dynamic task allocation and priority adjustment, it is possible 
to ensure that the status updates of critical equipment (such as 
industrial robotic arms) maintain low information age while 
ensuring that updates from non-critical devices do not lag 
significantly. 

B. Information Age Scheduling in Multi-Source Systems 
Multi-source update scheduling represents another major 

challenge in optimizing information age. In multi-source 
systems, data streams from different devices need to share the 
same network resources, making dynamic bandwidth 
allocation and update task scheduling crucial. 

The main issues in multi-source systems are: 

• Competing Resource Conflicts: Multiple data 
streams share network bandwidth or server resources. 
Improper scheduling may lead to excessively high 
information age for some data sources, negatively 
impacting overall system performance. 

• Differences in Data Priority: Different data sources 
may have varying importance and real-time 
requirements. For example, vehicle location data 
updates are more critical than entertainment data 
updates. 

The corresponding optimization strategies are as follows: 

• Priority Scheduling: By assigning different update 
priorities, prioritize data streams with high 
information age or critical tasks. For instance, in 
intelligent transportation systems, prioritize updates 
on real-time vehicle location and speed information. 

• Bandwidth Allocation: Dynamically adjust the 
bandwidth allocation ratio for each data source, 
triggering updates based on information age 
thresholds. 

• Polling Scheduling: Implement a polling 
mechanism that ensures each source has a fair 
opportunity while dynamically adjusting the 
scheduling frequency to prioritize sources with 
higher information age. 

For example, in smart cities, streetlights, traffic lights, and 
vehicle sensors may simultaneously send data to a central 
server. For regular streetlight updates, a lower priority can be 
assigned since their update frequency has less impact on the 
system; however, traffic light status updates need to be 
prioritized, as high information age could lead to traffic 
accidents or congestion. Vehicle sensor data requires the 
highest real-time responsiveness, necessitating dynamic 
bandwidth adjustments to ensure timely data updates. 

C. Joint Optimization of Multi-Servers and Multi-Sources 
In complex networks, multi-server and multi-source 

updates often coexist. Research indicates that combining 
multi-server task allocation with multi-source scheduling 
strategies can further reduce overall system information age. 

The joint optimization framework is as follows: 

• Multi-Level Scheduling: At the server level, use 
dynamic task allocation to optimize the load on 
individual servers; at the multi-source level, enhance 
the update performance of critical tasks through 
priority scheduling. 

• Cross-Layer Resource Allocation: Coordinate 
bandwidth allocation and server scheduling to 
minimize overall information age. For example, 
reserve a portion of bandwidth or service capacity for 
high-priority update tasks. 

In industrial IoT, multiple sensors and actuators on the 
production line connect to multiple servers: temperature and 
humidity sensors generate high data traffic but have lower 
real-time requirements; fault detection sensors generate lower 
data traffic but have higher requirements for information age; 
updates for industrial robotic arms should combine priority 
scheduling and dynamic task allocation to ensure that their 
information age remains at a minimum level. 

V. INFORMATION AGE IN ENERGY-CONSTRAINED 
SCENARIOS 

In IoT scenarios, many sensor nodes face resource 
constraints, particularly those relying on energy harvesting. 
Energy-constrained sensor nodes need to perform state 
updates under energy budget constraints, with the key 
challenge being how to optimize information age within a 
limited energy budget, ensuring that the receiving end obtains 
sufficiently fresh status update information. 

A. Basic Research Background 
Energy-constrained sensors typically have the following 

characteristics: 

Key optimization strategies include: 

• Intermittent Operating Capability: Relying on 
external sources such as solar energy, vibrational 
energy, or radio frequency energy, sensors can only 
update their status when energy is sufficient. 

• Limited Energy Storage: The battery capacity of 
sensors is finite, and limitations on energy harvesting 
rates and storage capacity affect their update 
frequency. 

These characteristics necessitate that design strategies for 
optimizing information age consider both the timing and 
frequency of updates, achieving a balance between energy and 
update efficiency. 

B. Dynamic Threshold Strategy 
A common optimization strategy is the dynamic threshold 

update strategy, where updates are triggered when the 
information age reaches a certain threshold value. This 
approach is suitable for periodic energy harvesting scenarios, 
such as solar-powered sensor networks, where sensors can 
dynamically adjust their update frequency based on changes 
in sunlight. Research indicates that threshold strategies can 



effectively reduce average information age under limited 
energy conditions [8][9]. 

C. Combining Energy Harvesting with Scheduling 
Optimization 
In complex networks, sensors must not only optimize their 

own update frequencies but also coordinate with other nodes 
to avoid conflicts. For example, in multi-hop wireless sensor 
networks, a node's update strategy must consider the energy 
consumption and congestion of the transmission path. 
Introducing intelligent scheduling algorithms (such as 
adaptive scheduling based on reinforcement learning) can 
dynamically allocate update tasks based on network 
conditions to minimize overall network information age. 

Research has also found that for sensors with low energy 
harvesting rates, delayed updates and batch transmission 
strategies can significantly enhance energy utilization 
efficiency while maintaining low information age in certain 
scenarios. 

D. Theoretical Limits of Information Age 
In energy-constrained systems, the optimal theoretical 

limit of information age depends on the energy harvesting 
model and transmission conditions. For sensors with fixed 
interval harvesting, mathematical modeling can be used to 
calculate the time average of information age, thereby 
optimizing the update interval. In scenarios with uncertainty 
in energy harvesting (such as random vibrational energy 
sources), stochastic dynamic programming methods can be 
employed to derive the expected value of information age and 
its upper and lower bounds. 

VI. INFORMATION AGE IN WIRELESS NETWORKS 
In wireless networks, information age is influenced by 

various factors such as network topology, transmission 
protocols, and channel interference. Compared to wired 
networks, wireless networks have greater uncertainty, 
including signal interference, data loss, and transmission 
failures, all of which can significantly increase information 
age. In response, researchers have proposed a range of 
optimization strategies and techniques aimed at reducing 
information age in wireless networks and enhancing the 
system's responsiveness to real-time data. 

A. Channel Models and Information Age 
In wireless networks, the quality of the channel determines 

the success rate of data packet transmission. Common channel 
models used for studying information age include: 

• Ideal Channel: Assumes data transmission occurs 
without interference, primarily used for theoretical 
analysis to assess the potential performance of 
scheduling strategies. 

• Random Channel: Considers the randomness of 
channel states and is suitable for scenarios with 
significant interference. Studies show that 
appropriately increasing redundant transmissions 
can reduce information age under unstable channel 
conditions. 

• Limited Bandwidth Channel: In bandwidth-
constrained networks, competition among different 
data sources increases update delays, making 
optimized scheduling strategies crucial. 

B. Automatic Repeat and Hybrid Automatic Repeat 
In wireless networks, Automatic Repeat reQuest (ARQ) 

and Hybrid Automatic Repeat reQuest (HARQ) are common 
transmission mechanisms used to enhance data transmission 
reliability: 

• ARQ: When the receiver detects an error in a data 
packet, it requests the sender to retransmit until the 
packet is successfully received. Although ARQ 
improves data accuracy, frequent retransmissions 
can lead to cumulative update delays, increasing 
information age. 

• HARQ: Combines forward error correction and 
retransmission mechanisms, only retransmitting the 
differing portions of data after the first transmission 
fails, thereby reducing the number of retransmissions 
and lowering information age. 

C. Scheduling and Priority Mechanisms 
In multi-source, multi-receiver wireless networks, 

effective scheduling strategies are central to reducing 
information age. The following typical strategies have been 
proposed: 

• High Information Age Priority Strategy: 
Prioritizes the transmission of data packets with the 
highest current information age to reduce the 
maximum information age in the system. This 
strategy is suitable for scenarios with high real-time 
requirements, such as vehicle status updates in 
vehicular networks. 

• Channel State-Based Scheduling: Dynamically 
adjusts the transmission order of packets based on 
channel quality, prioritizing data from nodes with 
good channel conditions to improve overall 
transmission efficiency. 

• Polling Scheduling Strategy: Allocates fixed 
transmission time slots to each node, effectively 
avoiding competition among data sources, but may 
perform poorly under high load. 

D. Cross-Layer Optimization of Information Age 
Optimizing information age in wireless networks relies not 

only on physical layer channel modeling but also on multi-
level collaborative design: 

• Physical Layer: Reduces channel interference 
through dynamic power control and beamforming, 
thereby improving the success rate of data 
transmission. 

• Link Layer: Designs efficient retransmission 
mechanisms (such as HARQ) to minimize 
information delay caused by transmission failures. 

• Network Layer: Optimizes routing protocols to 
avoid increased transmission delays and information 
age due to poor path selection. 

• Application Layer: Develops priority allocation 
strategies based on specific scenario requirements 
(e.g., autonomous driving or industrial monitoring) 
that are oriented toward information age. 



VII. SUMMARY AND OUTLOOK 
Despite significant progress in the research on information 

age, many challenges remain, and future research can further 
explore the following directions: 

• Intelligent Scheduling and Dynamic 
Optimization: Current optimization of information 
age mainly focuses on update strategies and queue 
scheduling; however, as network scale increases and 
the number of devices grows, how to intelligently 
schedule information updates in dynamic 
environments remains an urgent issue. Incorporating 
artificial intelligence and machine learning 
scheduling methods, particularly reinforcement 
learning (RL) and deep learning (DL) algorithms, 
can help systems automatically adjust update 
strategies based on real-time network states and 
device needs, thereby optimizing information age. 
This data-driven dynamic optimization approach 
may become a key technology for addressing 
timeliness issues in large-scale IoT environments. 

• Cross-Layer Optimization and Collaborative 
Design: Information age is not merely a performance 
issue at the communication layer; it is closely related 
to the design of the application layer, transport layer, 
and even the perception layer. Future research needs 
to explore cross-layer optimization methods, 
integrating the needs of the network layer, transport 
layer, and application layer to collaboratively design 
system architectures. By reasonably configuring 
network resources, adjusting transmission protocols, 
and optimizing data collection methods, information 
age can be significantly reduced, enhancing overall 
system performance. Cross-layer optimization 
strategies will also help achieve optimal balance of 
information age across different application 
scenarios. 

• Integration of Edge Computing and 5G/6G 
Networks: With the rapid development of edge 
computing and future 5G/6G networks, the 
optimization of information age will no longer rely 
solely on traditional data center processing methods. 
Edge computing allows data to be processed closer 
to the devices, reducing data transmission delays and 
optimizing information age performance. Future 
research can focus on exploring solutions that 
combine edge computing with 5G/6G networks, 
examining how to increase the frequency of 
information updates and reduce information age 
accumulation, especially in applications with high 
mobility and dynamic environments. 

• Data Privacy and Security: In IoT and cyber-
physical systems, as data collection frequency 
increases and information updates accelerate, issues 
of data privacy and security become more prominent. 
Ensuring user data privacy and system security while 
maintaining timely information updates is an 
important direction for future research. Particularly 
in scenarios involving sensitive data (such as 
healthcare, finance, smart homes, etc.), exploring 
how to resolve conflicts between information age 
optimization and data security through encryption 
technologies, privacy protection protocols, and 

secure communication mechanisms will be a 
worthwhile topic for in-depth discussion. 

• Information Age Management in Large-Scale 
Networks: The explosive growth of IoT devices 
presents new challenges for optimizing information 
age. How to manage information age in large-scale, 
heterogeneous network environments and ensure 
that different types of devices and application 
scenarios receive appropriate information update 
strategies will be an important direction for future 
research. Distributed and decentralized management 
methods, cross-network coordination mechanisms, 
and efficient resource scheduling algorithms may 
become key solutions to this problem. 

• Further Expansion of Application Areas: 
Currently, research on information age primarily 
focuses on smart transportation, industrial 
automation, and telemedicine. As IoT technology 
continues to evolve, the application areas of 
information age will expand. For instance, in smart 
city development, optimizing the flow of data in 
urban management systems to enhance the 
responsiveness of urban infrastructure; in smart 
agriculture, leveraging real-time data updates to 
improve crop production efficiency; and in 
environmental monitoring, reducing information age 
to enhance the accuracy and timeliness of climate 
change warnings are all future research directions 
worth exploring. 

• Intelligent Scheduling and Dynamic 
Optimization: Despite significant progress in the 
research on information age, many challenges 
remain, and future research can further explore the 
following directions: 

As an emerging performance metric, information age 
shows great application potential in real-time communication 
systems. By optimizing information update frequency, queue 
scheduling, and resource allocation, information age can be 
effectively reduced, enhancing the real-time performance and 
responsiveness of systems. In the future, with the continuous 
development of IoT, 5G/6G, and edge computing 
technologies, research on information age will evolve toward 
more intelligent and dynamic approaches, providing better 
solutions for various low-latency, high-performance 
application scenarios. 
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