
Under review as a conference paper at ICLR 2024

DYNAMIC REPRESENTATION OF OPTIMAL TRANSPORT
VIA ENSEMBLE SYSTEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Optimal transport has gained widespread recognition in diverse areas from eco-
nomics and fluid mechanics, lately, to machine learning. However, its connection
and potential applications to the domain of dynamical systems and control remain
underexplored. To fill this gap, we establish an ensemble-systems interpretation
for modeling the optimal transport process. We interpret displacement interpola-
tion of the transport between continuous distributions as a dynamic process and
show that this can be modeled as an ensemble control system. This is achieved
by establishing moment kernel representations for describing the dynamics of op-
timal transport and ensemble systems. This methodology further gives rise to an
optimal transport based algorithm for learning controls for ensemble systems.

1 INTRODUCTION

Optimal transport (OT) has gained great popularity owing to its broad applicability to diverse sci-
entific domains, ranging from economics to fluid mechanics (Galichon, 2016; Hassanzadeh et al.,
2014). In recent years, interest in utilizing OT techniques in the domain of machine learning has
seen a particularly stellar growth, and research and development remains persistent (Villani, 2009;
Seguy et al., 2017; Torres et al., 2021). To promote new thoughts on the interplay between OT and
machine learning, this work is devoted to bridging the ideas of dynamical systems and control to
OT.

Although transport between distributions or states of physical or engineered systems is a canoni-
cal task in dynamical systems and control, the connection of these fields with OT remains under-
explored with sparse literature. Existing studies focused on the use of OT formulations to tackle
problems involving optimal control, state estimation, linear-quadratic-Gaussian control, and multi-
agent systems (Taghvaei & Mehta, 2016; Chen et al., 2016; Haasler et al., 2021). However, inter-
pretation and modeling of OT by using dynamical control systems remains an open problem.

Driven by the desire to fill this literature gap for stressing the role of dynamical systems and control
in OT and OT-based machine learning, we propose to build a machine learning model to represent
OT in terms of dynamical systems. In turn, this model also enables and facilitates learning for
control systems through the lens of OT. The integration of OT, machine learning, and dynamical
systems proposed in this work provides new insights and tools to advance these interdisciplinary
fields.

Contributions. (1) Based on the time-dependent description of OT in terms of displacement in-
terpolation (DI), we construct a machine learning model that represents an OT process in the form
of an ensemble control system defined on a function space. In this model, the control inputs are
learnable parameters used to track the OT dynamics; (2) To effectively train the model, we develop
the moment representation of the model, which draws a parallel between model training and op-
timal control of the moment-parameterized system; (3) Consequently, the task of representing OT
is mapped to learning an optimal control that drives the ensemble system along the DI trajectory
connecting the source and target distributions.

The paper is organized as follows. In Section 2, we briefly review OT and introduce DI from the
perspective of dynamical systems. In Section 3, we construct the desired machine learning model for
representing OT in terms of an ensemble system, and then introduce the moment parameterization
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to train the model by learning an optimal control for the ensemble system. Section 4 is dedicated to
simulation examples for demonstrating the applicability of the proposed framework.

2 TIME-DEPENDENT OPTIMAL TRANSPORT

OT is concerned with transporting one probability distribution to another with the minimal cost.
Mathematically, in Monge’s formulation, this can be formulated as a constrained optimization prob-
lem, minimizing the cost c subject to the desired transport from a probability measure µ on X to
another probability measure ⌫ on Y , given by

JOT = min
�:X!Y

Z

X

c(x,�(x))dµ(x),

s.t. ⌫ = �]µ, (1)

where X and Y are Polish spaces, i.e., completely metrizable separable topological spaces, c : X ⇥
Y ! R is lower semicontinuous, and �#µ denotes the pushforward of µ by the map � : X ! Y ,
and thus a measure on Y satisfying (�#µ)(B) = µ(��1(B)) for any measurable set B ✓ Y .

This transportation process can be interpreted in a dynamic fashion through the ideas of DI. To
elaborate, it is known that the transport cost depends on the path connecting the source and target
measures, namely,

JDI = min
{�t:X!X}0t1

Z

X

C
�
�t(x)

�
dµ(x),

s.t. �0 = I, (�1)#µ = ⌫, (2)

where I is the identity map on X , and �t(x0) defines a curve in X starting from x0 = �0(x0) at
t = 0 with x1 = �1(x0) at t = 1 (Peyré & Cuturi, 2017). To enforce the equivalence between (2)
and (1), it suffices to choose C(�t) =

R 1
0 c(�̇t)dt for �(t) 2 X . In addition, if c is a strictly convex

function on Rn, then it satisfies c(y�x) = inf�(t){
R 1
0 c(�̇t)dt : �0 = x, �1 = y}, and the infimum is

achieved uniquely by the straight line, i.e., �(t) = (1�t)x+ty = (1�t)�0(x)+t�1(x) connecting
x and y. Consequently, this gives the time-dependent transport function �t = (1 � t)I + t�1, and
the DI ⇢t =

⇥
(1� t)I + t�1

⇤
#
µ between µ and ⌫ (Villani, 2021).

As a simple illustration, if X = Y = R and c(x, y) = |x � y|2, then the transport map can
be explicitly calculated, given by � = G

�1 � F , provided continuity of F , where F and G are
the cumulative distribution functions of µ and ⌫, respective, and F

�1 and G
�1 are the respective

generalized inverse, defined by F
�1(s) = inf{x 2 R : F (x) > s} and G

�1(s) = inf{x 2 R :
G(x) > s} (Thorpe, 2019). Then, the DI between µ and ⌫ is given by ⇢t =

⇥
(1�t)I+tG

�1�F
⇤
#
µ

with ⇢0 = µ and ⇢1 = ⌫. In this case, the OT cost is JDI = JOT =
R 1
0 c(F�1(s), G�1(s))ds, which

coincides with the Wasserstein distance W (µ, ⌫) between µ and ⌫.

3 ENSEMBLE-SYSTEMS INTERPRETATION AND MODELING OF OPTIMAL
TRANSPORT

The time-dependent description of OT presented in Section 2 reveals its intimacy with dynamical
systems. Specifically, the map �t in (2) represents the flow of a dynamical system evolving on X

with the specified endpoints and ⇢t is the trajectory (geodesic) realizing the dynamic process of OT.
Although OT and its dynamic descriptions have been extensively investigated (Chen et al., 2021;
Montesuma et al., 2023), an unexplored essential question concerning how to build a dynamical
systems representation that models the time-dependent OT process, and, on the other hand, lever-
age the notion and tools of OT to enable learning controls for steering dynamical systems remains
unanswered.

We will address this fundamental two-way question. The solution will fully empower the capacity
of OT by integrating it with theoretical and learning-based dynamical systems tools, e.g., realization
theory, reservoir computing, recurrent neural networks, and neural ordinary differential equations
(Miao et al., 2022; Chen et al., 2018; Chang et al., 2018). Moreover, it will also expand the scope
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of OT to tackle problems involving analysis and control of dynamical systems, e.g., reinforcement
learning and optimal control design (Narayanan et al., 2019; Yu et al., 2020), which were remote
applications of OT. To this end, in this paper, we propose an ensemble systems interpretation that
enables a unified modeling framework for representing dynamic OT processes.

3.1 A GENERALIZED OPTIMAL TRANSPORT LEARNING MODEL

Because OT can be considered as a dynamic process concerning with transporting one probability
distribution to another over a probability space along the associated DI trajectory, it is meaningful to
represent this process by using a dynamical system defined on a function space. Here, we formulate
a generalized OT-learning model (GOTLM), that is, a parameterized linear control system described
by a family of ordinary differential equations of the form,

d

dt
x(t,�) = A(�)x(t,�) +

pX

i=1

bi(�)ui(t). (3)

We refer this to as an ensemble system, where A(�) 2 Rn⇥n, bi(�) 2 Rn, and � 2 ⌦ ✓ R denotes
the system parameter, x(t, ·) 2 F(⌦,Rn) is the state of the system defined on the state-space F , and
ui(t) 2 R, i = 1, . . . , p, are the control inputs. Here, in our exposition, it is sufficient to consider the
ensemble system defined on F = L

p(⌦,Rn). A typical goal of controlling an ensemble system as in
(3) is to learn the �-independent controls ui(t) that transport the ensemble from an initial functional
form (configuration), x0 2 F(⌦,Rn), to a target configuration, xT 2 F(⌦,Rn), at some time T

(Li & Khaneja, 2009; Li, 2011; Kuritz et al., 2019; Chen, 2019).

This learning representation model maps the input x0 to the output xT tracking the OT trajectory by
tuning the control inputs. Specifically, the functions A and bi are hyperparameters, and the controls
ui(t) are learnable parameters used to train the model. In the following, we will establish a systems-
theoretic approach to train GOTLMs as in (3) which represent the time-dependent transport from
an initial probability density function (model input) to a desired target probability density function
(model output). The mechanism of the proposed GOTLM is illustrated in Figure 1.

Figure 1: Mechanism of GOTLM.

3.2 MOMENT REPRESENTATIONS OF THE GENERALIZED OPTIMAL TRANSPORT LEARNING
MODEL

Finding an appropriate parameterization (or representation) of a learning model is an essential step
to facilitate learning and data-analytics tasks. Because the proposed GOTLM in (3) is an infinite-
dimensional system, where the training (ui) and hyperparameters (A and bi) are all functions in t and
�, respectively, it requires the development of new parameterization, which quantizes the continuous
dynamics of both the OT and the ensemble system in (3).

3.2.1 ENSEMBLE MOMENTS AND MOMENT SYSTEMS

Here, we develop a parameterization for the GOTLM, by which a finite number of training and
hyperparameters are required to represent the OT and the ensemble system dynamics, i.e., to ap-
proximate them with quantifiable and controllable precision. Our development is based on the idea
of identifying a function with a sequence of numbers (Yosida, 1980). A prominent example is seen
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in the domain of probability theory, where one may uniquely determine a distribution (or a Lebesgue
density function) by using its moment sequence (See Appendix A). For example, a Gaussian distri-
bution can be determined by its first- (mean) and second-moment (variance). To exploit and attach
this property to the GOTLM, we introduce the k

th-ensemble moment of the system in (3) by

mk(t) =

Z

⌦
�
k
x(t,�)d� (4)

for each k 2 N. Then, the state function x(t, ·) can be uniquely determined by the associated
moment sequence m(t) =

�
mk(t)

�
k2N and vice versa (see Appendix A). This identification allows

us to derive the governing equation of the moment dynamics, i.e., the moment system, given by the
time-derivatives,

d

dt
mk(t) =

d

dt

Z

⌦
�
k
x(t,�)d� =

Z

⌦
�
k
d

dt
x(t,�)d�,

=

Z

⌦
�
k
⇥
A(�)x(t,�) +

pX

i=1

bi(�)ui(t)
⇤
d�, (5)

where the change of the order of differentiation and integration follows the dominant convergence
theorem (Folland, 2013). Because the moment transform T defined according to (4) by x(t, ·) 7!
m(t) is linear and a vector space isomorphism, the moment system is a linear system controlled by
the same inputs ui(t) defined on the space of moment sequences, of the form

d

dt
m(t) = Ām(t) +

pX

i=1

b̄iui(t), (6)

where Ām(t) = T⇤(Axt) with xt=̇x(t, ·) and b̄i = T⇤bi are the pushforwards of the vectors fields
Axt and bi by T , respectively (see Appendix B). Essentially, Ām(t) and b̄i = T⇤bi are the moment
sequences of Axt and bi, respectively, as functions on ⌦. The constructed moment system is dynam-
ically equivalent to the GOTLM and enables interpretable representation learning of time-dependent
OT, which is infeasible by directly using the ensemble system model in (3).

3.2.2 OPTIMAL TRANSPORT IN MOMENT REPRESENTATION

As discussed in Section 2, DI characterizes the trajectory of OT from one probability distribution
to another. Therefore, an OT task can be realized by perturbing the dynamics of GOTLM to output
an ensemble trajectory that tracks the DI trajectory. The learning for controls can be achieved by
leveraging the proposed moment representation and moment system. Recall from Section 2 that
⇢t = (�t)#⇢0 is the DI trajectory of the transport from ⇢0 at t = 0 for t 2 [0, 1], where �t

denotes the time-dependent transport map, we can then represent the OT trajectory in the moment
coordinate, namely,

m
⇤
k
(t) =

Z

Rn

I
k
d⇢t =

Z

Rn

I
k
d(�t)#⇢0 =

Z

Rn

�k

t
d⇢0 =

Z

Rn

[(1� t)I + t�1]
k
d⇢0,

with the dynamics,

d

dt
m

⇤
k
(t) =

⇢
0, k = 0,
k
R
Rn [(1� t)I + t�1]k�1(�1 � I)d⇢0, k > 0.

(7)

We will track the OT moment dynamics in (7) by designing control inputs ui(t) using the moment
system of GOTLM as in (6). In other words, we will learn u

⇤(t) = (u⇤
1(t), · · · , u⇤

p
(t))0 in (6) such

that m(t) = m
⇤(t) for all 0  t  1.

To tackle this tracking problem, we will exploit finite-dimensional truncation of the moment system
in (6). Formally, we denote b· the truncation operation and let q be the order of truncation. For
example, bm⇤(t) is the truncation of m

⇤(t) of order q, and bA is the endomorphism obtained by
restricting Ā to the space of truncated moment sequences of order q. Algebraically, we may represent
any such truncated moment sequence as an qn⇥qn matrix, defined by the identity dAbm(t) = bAbm(t).
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Then, the learning problem can be formulated as an optimal tracking problem,

Kpq : min
u

Z 1

0
kbm⇤(t)� bm(t)k2dt

s.t.
d

dt
bm(t) = bAbm(t) + bBu(t), bm⇤(0) = bm(0), (8)

where the truncated OT moment sequences bm⇤(t) can be computed for a given target distribution,
k · k is a norm on Rqn, bB is a qn ⇥ p matrix with columns denoted by bbi, i = 1, . . . , p, and
u(t) = (u1, . . . , up)0 2 Rp. The goal is to learn the control vector u(t) such that the tracking error
e(t)

.
= bm⇤(t)� bm(t) is minimized, where bm⇤(t) can be viewed as a known reference trajectory to

be tracked.

Although this is reduced to a standard optimal tracking problem involving a finite-dimensional lin-
ear control system, it is required here to solve a sequence of such problems with respect to different
choices of truncation order q and the number of control inputs p. We develop a systematic approach
by reformulating this learning problem as a sequence of time-varying regression problems. To elab-
orate, we first observe that the time-evolution of the learning error obeys ė(t) = d

dt
bm⇤(t)� bAbm(t)�

bBu(t) with the initial condition e(0) = 0. This then gives, by some algebraic manipulations, the
inequality kė(t)k 

�� d

dt
bm⇤(t)� bAbm(t)� bBu(t)

��. By the Gronwall’s inequality, we obtain an upper
bound on the learning error, given by ke(t)k 

R
t

0

�� d

ds
bm⇤(s) � bAbm(s) � bBu(s)

��ds .
= ↵(t). We

know that the convergence of the truncated moment sequences bm⇤(t) and bm(t) to m
⇤(t) and m(t),

respectively, guarantees that min ke(t)k = min ↵(t) as the truncation order p ! 1. Therefore, it
suffices to learn the control input u(t) minimizing ke(t)k at each time t 2 [0, 1]. This in turn gives
rise to a time-varying least-squares problem with the optimal solution given by

u
⇤(t) = ( bB0 bB)�1 bB0

h
d

ds
bm⇤(t)� bAbm(t)

i
, (9)

provided that bB is of full-column rank p; or equivalently, the columns of bB, bb1, . . . , bbp are linearly
independent over Rqn. Condequently, the GOTLM driven by the learned optimal control u⇤(t), i.e.,
d

dt
x(t,�) = f(�)x(t,�) +

P
p

i=1 bi(�)u
⇤
i
(t), gives the desired ensemble system representation of

the OT from ⇢0 to ⇢1. This learning algorithm is displayed in Algorithm 1.

Algorithm 1 Generalized OT-learning model
Input: ⇢0, ⇢1, A, and bi for i = 1, . . . , q
Output: x

⇤(t,�)
Initialization : Given p and 0 = t0  t1  · · ·  tM = 1

2: Compute the OT map �.
Find the order p truncated moment parameterization bA, bbi for i = 1, . . . , p, and bm⇤(t) for
0  t  1

4: Solve v(bm(t)) = argmina2Rqnk d

dt
bm⇤(t)� bAbm(t)� bBak = ( bB0 bB)�1 bB0� d

dt
m

⇤(t)� bAbm(t)
�

in terms of bm(t) for all 0  t  1, where bB = [ bb1 | · · · | bbq ]
Solve d

dt
bm(t) = bAbm(t) + bBv(bm(t)) by an ordinary differential equation solver for bm(t) on

t 2 [0, 1] with the initial condition bm(0) = bm⇤(0)
6: u

⇤(t) v(bm(t)) as a function of t 2 [0, 1]

Compute x
⇤(t,�) = e

tA(�)
x0(�) +

R
t

0 e
(t�s)A(�)

B(�)u⇤(t)dt with x0 the density function of
⇢0 and B(�) = [ b1(�) · · · bq(�) ]

8: return x
⇤(t,�)

4 EXAMPLES AND NUMERICAL SIMULATIONS

In this section, the applicability of Algorithm 1 will be demonstrated through two illustrative exam-
ples, including OT between Lebesgue density functions and probability distributions over a compact
and a non-compact support along the geodesics. In particular, we will show that in these two dif-
ferent cases, the trajectories of the learned GOTLMs converge to the OT trajectories in different
modes.
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4.1 OPTIMAL TRANSPORT OF DISTRIBUTIONS OVER A COMPACT SUPPORT

To illustrate the idea and operation of our dynamical systems modeling and learning approaches for
OT, without loss of generality, we consider probability distributions with the support ⌦ = [0, 1].
Our first illustration is to consider OT between two probability density functions.

Example 1 In this example, we consider OT from a square to a triangle wave representing prob-
ability density functions x0(�) = 1, � 2 [0, 1], and x1(�) = 8

3� [0, 34 ]
(�) � 8(� � 1) ( 3

4 ,1]
(�),

respectively, in which I is the indicator function of the set I ⇢ ⌦, that is, I(�) = 1, if � 2 I , and
I(�) = 0, otherwise. Let Xi denote the cumulative distribution function of xi for i = 0, 1, then

the transport map is given by �1(�) = X
�1
1 �X0(�) =

p
3�
2 [0, 34 ]

(�)+
�
1�

p
1��

2

�
( 3
4 ,1]

(�). This

yields the moment parameterized DI dynamics as d

dt
m

⇤
0(t) = 0 and d

dt
m

⇤
k
(t) =

R 1
0 k

�
(1 � t)� +

t�1(�)
�k�1

(�1(�)� �)x0(�)d� for k � 1. For example, the dynamics of the first three orders are
d

dt
m

⇤
1(t) =

1
12 , d

dt
m

⇤
2(t) =

7t
480 + 3

160 , and d

dt
m

⇤
3(t) =

t
2

448 + 19t
2240 + 19

6720 .

Now, let us consider a GOTLM of the form,

d

dt
x(t,�) = �x(t,�) +

pX

i=1

�
i�1

ui(t), (10)

where A(�) = �, and bi(�) = �
i�1, i = 1, . . . p, and � 2 [0, 1]. Then, the associated moment

system cay be derived using the transform in (4), which gives

d

dt
mk(t) = mk+1(t) +

pX

i=1

1

k + i
ui(t), k 2 N. (11)

We then construct problem Kpq as presented in (8), where the truncated moment system of order q
driven by p control inputs takes the form,

d

dt
bm(t) = bAbm(t) + bBu(t)

=

2

6664

0 1

0
. . .
. . . 1

0

3

7775

2

664

bm0(t)
bm1(t)

...
bmq(t)

3

775+

2

6664

1 1
2 · · · 1

p
1
2

1
3 · · · 1

p+1
...

...
. . .

...
1

q+1
1

q+2 · · · 1
q+p

3

7775

2

664

u1(t)
u2(t)

...
up(t)

3

775 . (12)

where bm(t) 2 Rq+1, bA 2 R(q+1)⇥p, bB 2 R(q+1)⇥p, and ui 2 Rp. We applied Algorithm 1 to
solve this problem, where we set p = 7 and q = 10. The learned control inputs are shown in Figure
2b. As the model confines the evolution time in [0, 1], the input controls have overshoots initially.
This effect can be diluted by re-scaling the time period, e.g., simply to [0, T ] for T > 1. The time-
evolution of the ensemble states in (10) following the learned control inputs are shown in Figure 2d,
which are approaching the desired transport interpreted by DI, as shown in Figure 2c, as t! 1.

The performance of the constructed GOTLM can be made better by increasing the values of (p, q),
i.e., by adding more control inputs and enhancing the approximation precision of the moment system
in (10) to the GOTLM in (11). In this example, we evaluation such convergence behavior by varying
p from 1 to 10 and q from 2 to 10, under the condition p < q to formulate well-defined least-squares
problems of Kpq . Figure 3 shows the sum of squares error between the final and the target state for
both the ensemble and truncated moment systems, i.e.,

R 1
0 |bx1(�)�x1(�)|2d� and

P100
k=0 |bmk(1)�

m
⇤
k
(1)|, with respect to (p, q), where bx1 denotes the final state of the controlled ensemble system in

(10), and bmj = 0, for j > q. This indicates the convergence with respect to (p, q), specifically in the
L
2 and `

2 sense for the ensemble and the moment system, respectively. Theoretically, the learned
trajectory will converge to the desired DI trajectory as p , q !1.

4.2 OPTIMAL TRANSPORT OF DISTRIBUTIONS OVER A NON-COMPACT SUPPORT

In this section, we illustrate the application of our method for OT of distributions defined on a
non-compact support.
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(a) (b)

(c) (d)

Figure 2: OT of compactly supported distributions for p = 7 and q = 10. (a) Initial (top) and
final distribution (bottom); (b) learned control inputs; (c) DI trajectories; and (d) ensemble system
trajectories.

Example 2 We use the example of well-studied OT between one-dimensional normal distributions
to demonstrate our learning representation approach. Because normal distributions are defined over
R, we introduce a discount factor in the GOTLM to guarantee that the learned ensemble system
remains bounded as � !1. In particular, we consider the GOTLM of the form,

d

dt
x(t,�) = �x(t,�) +

pX

i=1

e
�|�|

(i� 1)!
�
i�1

ui(t), (13)

where A(�) = �, bi(�) = �
i�1

(i�1)! , i = 1, . . . , p, and e
�|�| is a discount function compensating for

the growth of the state x(t,�) with respect to �. In addition, because the statistical moments of
normal distributions form an increasing sequence, we introduce a discount factor to the ensemble
moments of the system in (13) as well, by a rescaling, i.e., mk(t) = 1

k !

R1
�1 �

k
x(t,�)d�, which

leads to the moment system,

d

dt
mk(t) = (k + 1)mk+1(t) +

mX

i=1

✓
k + i

i

◆
[1 + (�1)i]ui(t). (14)

To fix ideas, we consider the OT from the normal distribution N (0, 1) to N (1, 1), where we chose
p = 10 and q = 10. The learned controls ui(t) are plotted in Figure 4b, and the the final state the
ensemble system in (13) is shown in Figure (4a), which agrees with the desired transport to N (1, 1).
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(a) (b)

Figure 3: Sum of squares error with respect to the number of control p and order of truncation q

between the final and the target (a) states and (b) moment sequences.

(a) (b)

Figure 4: OT of normal distribution transport from N (0, 0) to N (1, 0) for p = 10 q = 10 . (a) Final
state distribution, and (b) control inputs.

Example 3 In practice, to avoid evaluating distributions defined on unbounded domains, it is com-
mon to approximate such distributions by those with compact supports, e.g., the use of confidence
intervals in statistical learning theory (Cumming & Calin-Jageman, 2017). To incorporate this
idea into the proposed GOPLM framework, we consider a relaxed transport from N (0, 0.52) to
N (0.2, 0.32) with desired confidence, quantified by a confidence interval. Specifically, in this ex-
ample, we require more than 95% of mass concentrated on the compact interval ⌦ = [�1, 1] after
the transport. Denoting their probability density functions by p0 and p1, respectively, we aim to
learn the representation of the transport from x0 = p0 [�1,1]/⇢0(⌦) to x1 = p1 [�1,1]/⇢1(⌦),
where ⇢0(⌦) and ⇢1(⌦) are normalization constants for x0 and x1 to be probability density func-
tions. Due to the compactness of ⌦, it is possible to use GOPLM presented in (10) to represent this
transport. Here, we choose p = 10 and q = 10. The time-evolution of the ensemble states and the
final state steered by the learned control inputs are shown in Figures ?? and ??, where we observe
that the desired transport is completed.

5 CONCLUSION

In this work, we proposed a generalized OT-learning model (GOTLM) to learn an ensemble system
representation of OT. The central idea is to use the controls applied to the system as the learnable
parameters to train GOTLM, so that GOTLM outputs the DI trajectory connecting the desired source
and target probability distributions. In particular, for the purpose of effective model training, we
developed the moment representation to parameterize the model, and hence the ensemble system, in
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(a) (b)

Figure 5: OT of concentrated normal distribution transport from N (0, 0.52) to N (0.2, 0.32) for
p = 10, q = 10. (a) System trajectories of the ensemble system, and(b) final state distribution.

terms of moment sequences. In turn, GOTLM further gives rise to a systematic optimal transport-
based approach to learning optimal controls for ensemble systems. The applicability of GOTLM
is then demonstrated by constructing ensemble system representations of OT between probability
distributions with both compact and non-compact supports. Moreover, it is worth noting that the use
of moments also indicates the applicability of GOTLM in a purely data-driven environment, which
sheds light on broadening the scope of GOTLM to include tasks, such as data-driven control, pattern
recognition, and image classification, to its application domain.
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