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Abstract

The human cerebral cortex is folded, making sulci and gyri over the whole cortical surface.
Folding presents a very high inter-subject variability, and some neurodevelopmental disor-
ders are correlated to local folding structures, named folding patterns. However, it is tough
to characterize these patterns manually or semi-automatically using geometric distances.
Here, we propose a new methodology to represent and group individuals having similar
folding patterns. We focus on the cingulate region, known to have a clinical interest, using
so-called skeletons (3D representation of folding patterns). We compare two models, beta-
VAE and SimCLR, in an unsupervised setting to learn a relevant representation of these
patterns. Specifically, we leverage the data augmentations used in SimCLR to propose
a novel kind of augmentations based on folding topology. Best clustering with Affinity
Propagation has a silhouette score of 0.42. Comparison of cluster averages and interpo-
lation in the latent space reveal new pattern structures, and test with the other half of
the dataset demonstrates that the representation is stable. This structured representation
shows that unsupervised learning can help in the discovery of still unknown patterns. We
will gain further insights into folding patterns by using new priors in the unsupervised al-
gorithms and integrating other brain data modalities. Code and experiments are available
at github.com/neurospin-projects/2021 jchavas lguillon deepcingulate.
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1. Introduction

The human cortex is convoluted, made of folds, called gyri, separated by grooves, the sulci.
Contrary to macaque, whose cortical folding follows a systematic scheme, human cortex
folding is highly variable, making it a fingerprint of each individual. Although this diversity
seems, first, intractable, neuroanatomists have succeeded in defining a partially reproducible
scheme, which has led to the nomenclature of sulci used in neuroscience (Ono et al., 1990).
But each sulcus can have a large number of patterns, which hinders its reliable identification
(Fig. 1B). Deep learning could be a real lever to deal with this tremendous inter-individual
variability.
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Past methods to map the various folding patterns rely on supervised learning to perform
sulcus recognition and manifold learning based on pairwise geometric distances (Sun et al.,
2012). They suffer from weaknesses of the sulcus recognition systems regarding unusual
folding patterns and they do not scale up to the massive datasets available today.

This study aims to pave the way for unsupervised deep learning to systematize the
detection of folding patterns across the cortex in the future. We aim to compare two
unsupervised deep learning models in the task of obtaining a latent space structured enough
to bring out folding patterns. To achieve this goal, we developed a deep learning pipeline
that focuses on the folding pattern of predefined regions. We tested the pipeline on the
cingulate region, as it is sufficiently variable to justify the use of our methods, and it has a
clinical interest for psychiatric disorders (Yücel et al., 2003; Provost et al., 2003; Borst et al.,
2014). Then, we chose, adapted and compared two powerful and standard unsupervised
methods, namely a contrastive learning model, SimCLR (Chen et al., 2020), and a generative
model, β-VAE (Higgins et al., 2017). We ensured that the learned latent representations
are consistent and stable. Last, we proposed ways to analyze the results which are new and
challenging with respect to classical deep learning literature as the input sample topologies
are very different from classical 3D images.

2. Related works

2.1. Cortical folding patterns characterization

Studying the folding patterns can be done with various approaches. First, from the sulci,
we can derive features, such as their depth, width, and length. Statistical analyzes can
then reveal correlations with diverse pathologies. However, these ”state” features are not
stable throughout life (Cachia et al., 2016). Second, there are ”trait” features (Cachia et al.,
2016) that remain during lifespan. One such feature consists in the shape of the folding
patterns. Some works tried to decipher folding patterns and identify the most common
shapes. Historically, this was done visually (White et al., 1997), enabling to define central
sulcus knob and the omega-shape of the mid-fusiform sulcus in particular (Yousry et al.,
1997; Weiner et al., 2014). However, manually finding relevant geometrical shapes is very
hard due to the high diversity of folding patterns.

Thus, some studies automated the characterization of folding patterns. A method to
ease the process is first to use supervised learning to identify a specific sulcus in a dataset,
then to use pairwise geometric similarity measures across sulci to perform the learning of
a low dimensional manifold (Sun et al., 2012). This manifold summarizes the principal
variability of the sulcus shape, from which the main patterns emerge and can correlate with
pathology or behavior. In (Meng et al., 2018), the similarity measure relies on the sulcal
pits, namely the locally deepest points of the cortical surface and they apply a clustering to
identify the most representative patterns. (Duan et al., 2019) presented a similar method
but applied on gyri rather than sulci. More recently, (Roy et al., 2020) trained neural
network classifiers to map geometric shapes to folding patterns applied to the broken-
H shape pattern in the orbitofrontal region. However, characterizing the full diversity of
folding patterns remains out of reach for these automatic geometric methods. Unsupervised
deep learning methods is a natural next step: they have been used for learning infant and
neonatal cortical surface atlas (Cheng et al., 2020; Zhao et al., 2021) and for detecting
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anomalies in folding patterns (Guillon et al., 2021), but they have not been used yet to
characterize the normal inter-individual variability of folding patterns.

2.2. Unsupervised learning for features representation and clustering

Numerous approaches try to tackle unsupervised representation learning problems. On the
one hand, auto-encoders (AE) are generative models that build a latent space comprising
much fewer dimensions than the input, suggesting that the representations could be more
easily understood, leading eventually to pattern discovery. For example, (Guillon et al.,
2021) showed that β-VAE are promising to detect anomalies of folding patterns.

On the other hand, self-supervised methods, particularly contrastive learning models,
have proved to be very powerful. The foundation contrastive model, SimCLR (Chen et al.,
2020), learns to bring together in the output space views from the same input image (the
positive pairs) and move them away from all other views of the same batch (the negative
pairs). This method permits structuring the obtained latent space without using any labels.
Its strength lies in the possibility to integrate prior information either by choosing the
adapted random augmentations (to build the views) or by integrating into the loss function
similarity information from other modalities.

Most of the self-supervised literature lies in computer vision domain but many works
start to apply such framework to biomedical imaging. Thus, (Taleb et al., 2020) proposed 3D
versions of several self-supervised tasks on various objectives including brain tumor segmen-
tation. Self-supervised methods offer the opportunity to leverage additional prior informa-
tion from medical data. For instance, (Dufumier et al., 2021b) applied contrastive learning
to brain MRI and took advantage of available meta-data such as age and sex. (Zhang et al.,
2017) used 2D slices ordering of 3D CT images as a pretext task. This accelerating research
on nearby fields shows that it is the right moment to apply self-supervised learning to the
folding pattern characterization problem.

3. Methods

3.1. Pre-processing

From brain MRI images, we used skeletons whose concept was first introduced in (Man-
gin et al., 1995). They consist in 3D images of the cortical folds obtained with Brain-
VISA/Morphologist preprocessing pipeline (https://brainvisa.info/). Figure 1A repre-
sents crops of such skeletons. Skeletons’ voxels are divided into background and folds. Fold
voxels can hold several values depending on their topological meaning (fold bottom, fold
junction, etc.). Using this input enables to focus on the folding geometry and eliminates
some biases such as age or site. Dealing only with the geometry avoids taking into account
the classical sulci widening that comes with aging for instance.

We focus our study on the cingulate region of the right hemisphere (Fig. 1A). We
learned a mask of the cingulate and paracingulate sulci over a database where the folds
were manually labelled (Borne et al., 2020). In short, labeled subjects were first affinely
normalized to a standard brain referential (ICBMc2009); then, each subject voxel belonging
to the sulci of interest increments a sulcus-specific mask. We combined and dilated these
two resulting masks to get a simple Region of Interest (ROI). We then applied this final
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Figure 1: Pipeline to study skeletons in the cingulate region of the HCP dataset. A) Sample
crop of the cingulate region represented as voxel sets superimposed with the white
matter mesh. B) Samples of the studied crops, given as inputs to the unsupervised
algorithms. C) Whole pipeline. Left: we generate crops of the cingulate region
based on a manually labeled dataset. We divide the HCP dataset in half and
train both models (β-VAE and SimCLR) on the two halves HCP 1 and HCP 2.
Right: we infer and perform downstream analysis of all four models on HCP 1.

mask to skeleton images of any unlabeled brain. Our final input is a 2-mm resolution 3D
crop of dimension 20x40x40 (Fig. 1B) with integer values representing local topologies.

3.2. Learning cingulate region representations

We compared two unsupervised deep learning models : an autoencoder-based model and a
contrastive learning framework.

β-VAE. AE-based models are commonly used to learn representations and to model the
inter-subject variability. With an encoder θ, they enable to project data from input space
X onto a latent space Z comprising much fewer dimensions. The latent code is then recon-
structed thanks to a decoder ϕ. β-VAE (Higgins et al., 2017), an extension of VAE (Kingma
and Welling, 2014), is particularly interesting as the latent space is constrained to follow a
prior distribution and input data are encoded as a distribution. The objective function is
a combination of the reconstruction error and the matching of two distributions using the
Kullback-Liebler (KL) divergence. β-VAE is trained to maximize:

L(θ, ϕ;x, z, β) = Eqϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||p(z)) (1)

where p(z) corresponds to the prior distribution (here, a reduced centered Gaussian dis-
tribution) and qϕ(z|x), the posterior distribution. We ran the model on binarized skeletons.

SimCLR. SimCLR is an instance discrimination contrastive model. For each sample
x of the batch of size N, we generate at each epoch two views xi and xj , whose model
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outputs are respectively zi and zj . The model trains to bring together views from the same

image, that is to minimize
∑N

i=1 ℓi,j=pos(i) +
∑N

j=1 ℓj,i=pos(i), ℓi,j being the loss function for
a positive pair of examples (τ is a temperature parameter) :

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1,k ̸=i exp(sim(zi, zk)/τ)
, (2)

View generations are the algorithms specific to our problem: they use the discrete
topology of the fold skeleton. For each fold, the bottom line voxels can be distinguished
from the inner part of the fold surface because they do not split the skeleton background into
two different local connected components (Mangin et al., 1995), see also Appendix A. Then,
the bottom line tag permits to define a topology-based augmentation, which conserves the
bottom lines in all views but removes the inner part of some folds. The first view combines
random [-10,10]° rotations over all axes and a 60% rolling cutout with only bottom lines
kept inside the cutout volume. The second view combines random [-10,10]° rotations over
all axes followed by a 60% rolling cutout with the whole skeleton conserved inside the
cutout whereas only bottom values are kept outside the cutout volume. All views are then
binarized. This topology-based augmentation forces the model to learn the sheet-based
structure of the fold-based skeleton.

3.3. Identifying folding patterns

Characterizing folding shapes. To identify folding patterns, data are encoded to the
latent space of both models and reduced to a 2-dimensions space with t-SNE algorithm.
The reduction to two dimensions enables to get more hints of the learned representations
and to analyze subjects groups more easily. A clustering is then performed with hierarchical
affinity propagation (AP) algorithm (Frey and Dueck, 2007). One advantage of AP is that
the number of expected clusters does not have to be precised. However it may output a
very large number of clusters, making it difficult to understand from an anatomical point
of view. Hence, following the method used in (Meng et al., 2018), we applied the algorithm
in an iterative way until a maximum number of five clusters is found.

The analysis of the main anatomical characteristics of the clusters can be done on the
latent codes or on the input space based on cluster labels. The first method is specific to the
β-VAE and enables to understand the encoded characteristics in the latent dimensions. We
generated images corresponding to clusters’ centroids from their latent codes which are next
decoded. Then we travelled between clusters through the latent space to analyse variations
across dimensions. The second method computes the local per -cluster averaging pattern in
the input space (Sun et al., 2012).

Ensuring representation generalization. To test the generalization ability of our la-
tent representations, we trained both models (β-VAE and SimCLR) twice, on two different
datasets leading to two encoders per model. We refer to them as E1 and E2. We then
encoded the first dataset with the two encoders (Fig. 1C). The different embeddings are
reduced to a lower dimension space with t-SNE. E1 embeddings are clustered and we re-
port the labels to E2 embeddings. We assess the generalization ability both visually and
quantitatively: visually, we assess if the first visualization (E1) remains localized in the
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Figure 2: β-VAE and SimCLR latent spaces analysis. For both models, training is made
on HCP 1 (model 1) and HCP 2 (model 2). The inference on HCP 1 leads to the
encodings E1 and E2, encodings of the latent space obtained respectively with
model 1 and model 2. To visualize the stability of the model and of its analysis,
the t-SNE representation of model 1 is clustered (A.) and we report the labels
on the t-SNE representation of model 2 (B.). Lowest and uppermost patterns of
(C.) are respectively the decoded latent code of cluster 0 and 1 centroids of the
β-VAE model. Intermediate patterns are obtained traveling through the latent
space and then decoded.

second visualization (E2), meaning that the learned representations are not dependent on
the training data but have captured some general features; quantitatively we measure the
adjusted mutual information score (AMI) (Vinh et al., 2010).

4. Experiments and results

Datasets. We use HCP database1 in which MRI images were obtained with a Siemens
Skyra Connectom scanner with isotropic resolution of 0.7 mm. We focused only on the
right hemisphere of the 1101 subjects. As presented on Fig. 1C, we divided equally HCP
into two subsets HCP 1 and HCP 2. In both subsets, 80% of subjects were used for training
and the remaining 20% were used for validation.

Model implementation. Our β-VAE comprises a fully convolutional encoder and decoder
of symmetrical architectures with three convolutional blocks and two fully connected layers.
The backbone of our SimCLR model is the DenseNet (Huang et al., 2017), followed by two
fully connected projection overheads based on (Dufumier et al., 2021a) benchmark on 3D
MRI images. To adapt to our smaller input, we reduced the size of the DenseNet network
down to two dense blocks. We call latent space, the representation space of the SimCLR
model, which has a better representation quality than output space (Chen et al., 2020).
Hyperparameter choice method and implementation details are presented in Appendix F.

1. https://www.humanconnectome.org/
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Grid search gave a latent space size of 4 for both models.

Latent space structure. Fig. 2A presents clustering results obtained on HCP 1 using
embeddings E1. The silhouette score with AP on the latent space is 0.17 and 0.42, respec-
tively for β-VAE and SimCLR. It becomes 0.43 and 0.44 when applied to the t-SNE space,
indicating a tendency towards a clustered distribution with close clusters. This range of
score is common when dealing with complex data such as neuroimaging modalities (Leben-
berg et al., 2019). For both models, four clusters were identified but the organization of the
latent space is different: β-VAE latent space seems to distinguish four groups of subjects,
separated only with a thin boundary whereas SimCLR latent space is more structured and
could be interpreted as a manifold, consistent with the biological reality of folding patterns.
The comparison of the two clusterings (Fig. 2A and B) shows that some clusters remain
more stable than others. With β-VAE embeddings, subjects of the blue cluster are still
grouped. With SimCLR, the orange cluster remains, whereas the yellow cluster is split in
two. But overall, clusters’ subjects remain close. These observations are confirmed by the
AMI score, which is 0.37 for the β − V AE and 0.31 for SimCLR.

Deciphering the patterns. Figure 2C shows generations based on the centroids’ codes.
Generated sulcus patterns differ in the two clusters: cluster 0 shows a split cingulate sulcus,
whereas cluster 1 seems to present a cingulate sulcus and a long paracingulate. Both
patterns are described in the literature (Meng et al., 2018). Interpolating from one cluster to
another shows that the latent space is continuous and regular, and we can progressively see
the change of patterns as indicated by the arrows. More detailed and complete interpolations
are presented in Appendix B and C.

Figure 3 presents the cluster average of the folding pattern based on the input space.
For both models, we observe different shapes depending on the clusters. The study of the
shapes informs on what could be encoded in the latent space. For β-VAE, we can identify
specificities for each one of the averages. Blue average seems to be the simplest pattern, a
long cingulate without paracingulate or vertical branches. Indigo presents a sulcus parallel
to the cingulate divided into several pieces that may look like a sketch of the paracingulate
sulcus. In return, the pink average includes several branches, vertical to the cingulate, that
could not merge to create a parallel sulcus. Lastly, the green shows a pattern defined in the
literature (Meng et al., 2018), a split anterior cingulate sulcus.

It is interesting to link these observations to the patterns generated thanks to the
β − V AE reconstructions. We find a similar shape for the green average (cluster 0): cin-
gulate split in two. Conversely, for the blue cluster, based only on the average pattern, we
interpreted a simple cingulate, but in the light of the reconstructions, the swollen anterior
part could represent a paracingulate. Cingulate and paracingulate could be merged in the
average representation due to positional variations among subjects.

The structure of SimCLR latent space makes the interpretation also interesting as it is
organized as a manifold with continuous evolution. Here, the black average could correspond
to a simple anterior cingulate. Subjects of the brown cluster could have a sketch of the
paracingulate sulcus, which increases in length in the orange average to present two long
parallel sulci. Finally, the yellow average also includes a sketch of a sulcus parallel to
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Figure 3: Representative patterns as cluster averages. A) Description of typical folding
structures in our ROI using the icbm152 average template. B), C) Local average
sulci obtained for each cluster with β-VAE and SimCLR encodings respectively.
Colors match cluster colors of Fig. 2. Averages are done on HCP 1.

the anterior cingulate, but in the left part of the ROI, where it is not usually called a
paracingulate sulcus in anatomical literature.

5. Discussion and conclusion

Our work proposes several method contributions that can be useful for the community.
We introduced topology-based augmentations in the SimCLR setting, which is directly
applicable for studies working on skeletons or similar inputs (Harrison et al., 2021; Rao
et al., 2021). Moreover, we used for the first time local average folding patterns (Sun
et al., 2012) in a Deep learning pipeline. Last, we proposed a preprocessing based on
a mask, enabling to focus on the region of interest, while avoiding the disadvantages of
parallelepipedic bounding boxes used in (Guillon et al., 2021).

Our work also finds a structured latent space for the cingulate region with both models,
β-VAE and SimCLR. The organization obtained with SimCLR seems more consistent with
anatomical reality of folding patterns and can be linked to folding manifolds (Mangin et al.,
2016). In return, the generative aspect of the β − V AE is a real lever to understand
the learned representations and ease the analysis of this complex region. To encourage a
structured and well separated latent space, we wish to introduce in future cluster objectives
in the learning phase both for generative models (Danks and Yau, 2021), and for contrastive
models (Caron et al., 2018, 2021; Li et al., 2021).

Another line of research will be to adapt our model further to the folding topology
by developing other topology-based augmentations and by introducing other specific priors
such as the geometry-based similarity measure between input samples (Sun et al., 2012).

Finally, we found cluster averages to be similar to known cingulate patterns that cor-
relate with executive functions and psychiatric disorders. This similarity makes us firmly
believe that such latent space structures could correlate with medically relevant parameters.
This correlation will be the object of a follow-up study.
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Appendix A. Illustration of skeleton topologies

Figure 4 illustrates what represents the skeleton and the corresponding bottom lines. Skele-
ton lies between gyri. The corresponding bottom line follows the sheet structure of the
skeleton. We can see from this figure that the bottom line can be a good proxy of the
folding shape.

In the topology-based augmentations, only the orange part is deleted in different parts
of the volume.

Figure 4: Understanding bottom lines of skeletons. Orange represents the skeleton of the
ROI. Red represents the corresponding bottom line. Grey is the white matter.
Skeleton is represented here on 1 mm resolution. Note that the skeleton includes
its bottom line, we use two colors to facilitate understanding.
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Appendix B. Visualization of β-VAE learned latent representation

Figure 5 presents an analysis and visualization of β-VAE learned latent representation.
Between the blue cluster (C0) and the green one (C1), the intermediate pattern shows a
split of the cingulate sulcus. It demonstrates that the latent space is continuous and that
the four dimensions of the latent space have encoded anatomically relevant features. More
detailed variations interpolations are presented in figure 6 of Appendix C.

Figure 5: Visualisation of β-VAE learned clusters’ representations. Framed patterns cor-
respond to generations of centroids’ latent representation thanks to the β-VAE
decoder part. Between two centroids Ci and Cj , an intermediate point is sampled
and decoded in order to highlight variations between clusters.
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Appendix C. Detailed β-VAE interpolation

Figure 6 illustrates in details the interpolations between each pair of cluster travelling
through β − V AE latent space.

Figure 6: Travelling through β-VAE latent space from one cluster to another. The extreme
left and right columns represent patterns generated from the centroids latent
codes, the colors refers to Fig.2. Between centroids patterns, new sampled ob-
tained travelling through β−V AE latent space illustrate the variations from one
cluster’s particularities to another.
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Appendix D. Closest and furthest examples in the output space of
SimCLR

Figure 7 illustrates four closest pairs and four furthest pairs for SimCLR, using the similarity
measure of SimCLR in the output space.

Figure 7: Closest and furthest examples in the output of SimCLR model. The left column
and right column represent respectively four pairs of closest examples and four
pairs of furthest examples using as distance the similarity between output encod-
ings of SimCLR model.

Closest pairs demonstrate similarities such as the cingulate shape, the number of parallel
sulci for the third instance for example, or a similar complexity of sulcus shapes. Furthest
pairs seem indeed less alike than the closest.

16



Unsupervised Learning and Cortical Folding

Appendix E. Closest and furthest examples in the latent space of β-VAE
and SimCLR

Figure 8 illustrates closest and furthest examples in the latent space as encoded by both
models.

Figure 8: Closest and furthest examples in latent space of both β-VAE and SimCLR. The
two left columns represent closest and furthest examples for the β-VAE model.
Similarly, the two right columns represent closest ad furthest examples for the
SimCLR model. In both models, the distance is the Euclidean distance in the
latent space.

For both models, closest and furthest crops were determined based on their Euclidean
distance in the latent space.

Though it is tough to characterize folding patterns visually, it seems that for β-VAE,
the proximity of samples is based on the similarity of the cingulate shape and the likeness of
vertical branches. For SimCLR, closest pairs demonstrate similarities such as the cingulate
shape, the merging of the paracingulate in the cingulate for the second pair for instance.
Note that the first pair was also classified as ”closest” in the output space (Appendix
D). In both cases, furthest pairs seem indeed less alike than the closest. However, these
visualizations remind us of the challenge of interpreting such complex patterns visually.
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Appendix F. Hyperparameter tuning and implementation details

To find the best hyperparameters (size of the latent space for both models, β value for
β-VAE and temperature τ for SimCLR), we performed a gridsearch on HCP 1 where the
best combination is chosen based on the loss value, the silhouette score on the latent space
and the reconstruction abilities for β-VAE. We obtained β=2 and τ=0.1. For both models,
we selected a latent size of 4, which enabled to balance between the model performance and
the clustering quality. Training of 300 epochs lasted for approximately 1 hour and 2 hours
for β-VAE and SimCLR respectively, on an Nvidia Quadro RTX5000 GPU.
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