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ABSTRACT

Depth estimation from stereo or multi-view images is an essential technology for a
wide range of vision and robotics applications. In recent years, many deep learn-
ing based methods have been proposed for this purpose. However, training the
stereo matching network is challenging and requires a large amount of data, espe-
cially for the 3D convolution networks. Existing stereo matching approaches are
mostly data-driven, which often converge to a local minimum biased to the train-
ing data. In this paper, we propose a novel self-supervised physics regularization
framework to improve the training of the networks using physical knowledge or
constraints. More specifically, we explore the use of low-level structures as physi-
cal constraints for the regularization of the stereo-matching network via multi-task
learning. Moreover, a disparity aggregation module is proposed to aggregate the
disparity output with image features to consider the association in between. We
also find that the canny edge can be used as a pseudo ground truth to train the
network with performance comparable to the ideal ground truth edge in the Scene
Flow dataset. We combine the proposed physics regularization with four exist-
ing stereo matching algorithms. The experimental results in three public datasets,
including Scene Flow, KITTI 2012, and KITTI 2015, show the effectiveness and
generality of the proposed framework.

1 INTRODUCTION

Depth estimation from stereo or multi-view images is of substantial interest due to a wide range of
applications including robotics (Mancini et al., 2016; Saxena et al., 2007), augmented reality (Zhou
et al., 2017; Nguyen et al., 2018; Alhaija et al., 2018), medical image analysis (Ong et al., 2020),
surgery (Ye et al., 2017) and more (Chen et al., 2015; Zhang et al., 2015). The basic principle for
the stereo matching is based on corresponding pixels between the left and right camera images.
Given a pixel (x, y) in the left image which is found to be matching with a pixel at (x − d, y) in
the right image, the depth z of this pixel is linear to 1/d: z = f ·B

d , where f refers to the focal
length of the camera and B denotes the distance between centers of the two cameras. Typical
stereo matching methods involve finding the corresponding points based on matching cost and post-
processing to compute the depth (Scharstein & Szeliski, 2002). With the development of deep
learning, convolutional neural networks (CNN) have been adopted to compute the matching cost
between two image patches via similarity computation (Shaked & Wolf, 2017; Seki & Pollefeys,
2017). Later, more complex network architectures have been proposed to compute the matching
cost. These methods usually first extract image features from the left and right images via two
backbones with shared weights. Then the extracted features are used to construct a cost volume.
Finally, the cost volume is processed by cost aggregation to estimate the disparity or the depth.

Although the recent deep learning-based approaches have shown to be promising to stereo depth
estimation, they are mostly data-driven. A challenge is that the training of such data-driven models
especially the 3D convolutions is not easy and requires large amount of training data. Based on
recent progress in deep learning, it is expected that the backbone network is able to extract repre-
sentative features for the left and right images. However, the purely data-driven model optimized
for stereo matching may lead to a representation that is locally optimal for the stereo matching task
alone. To avoid that, a spontaneous idea is to use additional tasks as constraints to regularize the
training. Recent works (Ramirez et al., 2018; Zhang et al., 2019b) in semantic stereo matching have
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Figure 1: (a) The pipeline of the proposed physics-regularized network. On top of an existing stereo
matching network, we further design a physics-regularization network which introduces additional
constraints to the existing network. (b) A disparity aggregation module is introduced to integrate the
disparity estimation output into the physics-regularization.

shown that the visual clues from semantic labels can be used to improve the performance of stereo
matching. These methods can also be considered as using semantic labels as extra constraints to
regularize the training. However, it is time-consuming and expensive to annotate semantic labels in
large scale, especially for indoor scenarios where both the foreground and backgrounds are complex.

Instead of using semantic labels, we propose to use low-level structures to provide the visual clues.
We consider the low-level structures as a type of physical constraints as they indicate the local
change of intensities and provide physical clues for disparity or depth. For example, the depths of
the neighbouring pixels from the same side of a structure are more likely to closer than those from
different sides. Low-level structure information has shown to be useful in many other applications.
Zhou et al. (2021) proposed to use the low-level structure as a complementary to semantic structure
in anomaly detection. The annotation cost of low-level structures is cheaper than the semantic labels.
The advantages of using low-level structure is two-fold. First, it improves the representation capa-
bility of the feature extraction module. As low-level structures detection is explainable with physical
meanings, it helps to drive the trained model from purely data-driven toward physics-driven. Sec-
ond, it is easier to obtain the low-level structures than the semantic labels. The low-level structures
can be estimated by pretrained deep learning models or traditional handcrafted methods such as
Canny edge detector (Canny, 1986). In this paper, we propose to use the Canny edge as a pseudo
ground truth of the low-level structure. As the Canny edge can be obtained automatically without
manual annotation, we call our framework as self-supervised physics regularization framework.

A straight forward way to use the low-level structure information is to use it via multi-task learning.
However, this may ignore the relationship between the low-level structure and the disparity changes.
In practice, we often observe that a large change in disparity or depth often leads to a substantial
change in intensities. This is reasonable as the objects with difference depths are often under differ-
ent viewing angles and lightning conditions, which make them appear differently even if they have
the same original colors. Motivated from this, we further propose a disparity aggregation module
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to enhance the association in between. We name this module as disparity aggregation module as it
aggregates the disparity estimation with feature maps from RGB.

Figure 1 illustrates the proposed self-supervised physics regularization framework. As enclosed by
dashed lines in black, current stereo matching network such as ACVNet (Xu et al., 2022) usually
contains a feature extraction module, a cost volume construction module and a cost aggregation
module. We introduce a physics regularization network, enclosed by the dashed lines in red. The
proposed physics regularization is essentially a low-level structure detection module via multi-task
learning. Moreover, a disparity aggregation module is proposed to aggregate the estimated disparity
from the original stereo matching with RGB features for low-level structure detection. It shall be
noted that we are not proposing a new disparity estimation method. Instead, we propose a general
framework that can be applied to regularize current stereo matching methods and improve their
performances. The proposed physics regularization network takes features from one image (left
image is used in this work) and the estimated disparity as inputs to compute low-level structures.

We conduct comprehensive experiments to validate the effectiveness of the proposed framework on
Scene Flow(Mayer et al., 2016), KITTI 2012 (Geiger et al., 2012), and KITTI 2015 (Menze et al.,
2015) datasets. The major contributions of this paper are:

• We propose a novel framework to regularize the stereo matching using physical constraints
from low-level structures.

• We propose a disparity aggregation module to leverage on the association between the
disparity and RGB information in the physics regularization.

• We propose to use the Canny edge as self-supervised labels for regularization and find that
the Canny edge works comparably to ground truth structure in Scene Flow dataset.

• We integrate the proposed physics regularization with four different stereo matching net-
works, experimental results show that it is generic for different networks.

2 RELATED WORKS

2.1 STEREO MATCHING

Many deep learning based algorithms have been proposed for stereo matching. In GC-Net, Kendall
et al. (2017) proposed end-to-end learning to estimate disparity using 3D CNN to filter the cost
volume. In PSMNet, Chang & Chen (2018) proposed to use spatial pyramid pooling and a stacked
hourglass 3D CNN for regularizing cost volume. In GA-Net, Zhang et al. (2019a) integrated semi-
global matching (Hirschmuller, 2005) into 3D CNN for cost filtering. In AANet, Xu & Zhang
(2020) replaced the time consuming 3D CNN with cost aggregation algorithms. In DeepPruner,
Duggal et al. (2019) developed a differentiable patch match module to reduce disparity searching
space. In GwcNet, Guo et al. (2019) proposed group-wise correlation to obtain efficient represen-
tations for measuring feature similarities. Recently, Xu et al. (2022) proposed to compute attention
weights to suppress redundant information and enhance the concatenation volume. Besides the per-
formance, computational cost is another major factor. PSMNet requires more than 6 seconds on an
NVIDIA Jetson TX2 module, which is too slow for practical applications on edge side devices such
as robots. In RTNet, Chang et al. (2020), proposed to learn adaptive fusion of multi-scale features
in a similar way and achieved 12-33 frames per second with a trade-off in performance. In AnyNet,
Wang et al. (2019) proposed successive update in multi-scale resolutions for trade-off between com-
putation and accuracy. In STTR, Li et al. (2021) revisited the stereo matching from a transformer
perspective and replace cost volume construction with dense pixel matching. These end-to-end ap-
proaches demonstrated the state-of-the-art performance on stereo matching. However, these models
are mainly data-driven.

2.2 SEMANTIC INFORMATION EXTRACTION

Depth and semantic information are often needed for high-level tasks such as reasoning, planning,
collision prevention and etc. To reduce the computational cost, joint optimization of semantic seg-
mentation and disparity estimation yields mutual benefit to both tasks while saving the computa-
tional cost in backbone feature extraction. The depth estimation in the challenging portions of the
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images corresponding to reflective surfaces can be improved by knowing that they belong to an
object with defined 3D properties. On the other hand, depth information can be used to reduce am-
biguity in the segmentation of vegetation and terrain. Ramirez et al. (2018) proposed to leverage on
semantics and geometry by enforcing spatial proximity between depth discontinuities and semantic
for monocular depth estimation. Zhang et al. (2019b) proposed a structure and smoothness loss to
fuse semantic segmentation with disparity estimation. Wu et al. (2019) proposed pyramid cost vol-
umes to capture semantic and multi-scale spatial information for semantic stereo matching. Dovesi
et al. (2020) proposed real-time semantic stereo network for jointly solving the depth estimation
task and semantic segmentation task. Although the above approaches improve the performance,
semantic labels are required in the training, which is expensive to obtain. For outdoor self-driving
scenario which is highly structured, at least 10 to 20 major objects need to be detected in 3D, in-
cluding cars, trucks, pedestrians, motorcycles, traffic signs, etc. For indoor scenario which is less
structured and more complex, more objects need to be detected. Besides semantic segmentation,
low-level structure detection such as edge detection is another option. Song et al. (2020) proposed
EdgeStereo to incorporate edge information into the disparity branch by the edge feature embedding
and edge-aware smoothness loss. Similarly, Yang et al. (2022) proposed to use edge supervision via
multi-task learning. These methods still need manual annotation of edges.

Compared with semantics, low-level structure information is easier to be computed. For example,
traditional methods such as Canny operator (Canny, 1986) and Sobel operator (Sobel & Feldman,
1973), can be used to compute the low-level structures. Pretrained deep learning models can also be
used. In some of recent work, synthetic images are used to train the deep learning models, where
the edges can be easily obtained. In SketchGAN, Zhang et al. (2019c) proposed a method composed
of sketch generation followed by image painting. Therefore, obtaining images with corresponding
edges is much easier and faster.

2.3 AGGREGATION

Attention has been widely utilized in computer vision to aggregate the most important features. Hu
et al. (2018) proposed SENet to recalibrate feature responses by modelling interdependencies among
different channels. Li et al. (2019) proposed SKNet to select kernel sizes and adjust the receptive
field size based on on multiple scale input. Wang et al. (2018) introduced a non-local operation
to explore the similarity of paired points in space. Attention has shown to be able to strengthen
context information in segmentation. Yu et al. (2018) introduced channel attention to select more
discriminative features for semantic segmentation. Fu et al. (2019) proposed dual attention modules
to capture the semantic inter-dependencies in both spatial and channel dimensions. Chen et al.
(2020b) proposed SA gate for cross-modality feature aggregation and noise suppression from RGBD
data. Although we have depth information from disparity estimation which makes our data similar
to RGBD, the depth is computed from the RGB images and is not independently obtained.

3 METHOD

As we discussed, joint semantic and depth network requires semantic labels which are costly. In this
paper, we propose to use low-level structure information for physics regularization when training
the deep stereo matching model. This is also inline with the inspiration that the visual cognitive
mechanism of the ventral stream simulates shallow neurons to extract low-level biologically inspired
features. In deep learning for stereo matching, the feature extraction module is expected to obtain a
good representation of the data. Therefore, it shall also provide information for other tasks such as
low-level structure detection.

3.1 PHYSICS REGULARIZATION

We propose to integrate low-level structure with stereo matching via multi-task learning and dis-
parity aggregation. The physics-regularization network (PRNet) includes three decoder blocks, a
disparity aggregation module, a deconvolution layer and two convolutional layers, as enclosed by
the dashlines in red in Figure 1. Each decoder block includes a 1×1 convolution, a 3×3 transposed
convolution and a 1 × 1 convolution consecutively. The disparity aggregation module is inspired
from our observation that large change in disparity or depth often leads to change in RGB inten-
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Figure 2: Comparison between proposed aggregation and other options. (a) Multi-task without
aggregation (b) Edge aggregation (c) Mutual aggregation via SA gate Chen et al. (2020b) (d) Concat
aggregation (e) Proposed disparity aggregation

sities. Therefore, it can be expected that the disparity output shall be helpful for low-level feature
extraction. The structure of the disparity aggregation is introduced in details in Section 3.2.

The benefit of the integration is four-fold. First, the joint training of multiple tasks reduce the chance
of over-fitting and often benefit each other. Second, low-level structure and depth map complement
each other in nature as the edges in the depth map are often edges in RGB images. Third, the
low-level structure detection module can be trained using pseudo labels from conventional edge
detection without any manual annotation. Finally, it improves the model explainability and pushes
the data-driven model toward physics-driven.

3.2 DISPARITY AGGREGATION

The diagram of the proposed disparity aggregation module is illustrated in Figure 1b. Given RGB
features f and disparity d, we first concatenate them to get c = Concat(f,d). Then we define two
functions to map c to two different spatial-wise gates Gf and Gd via two 1 × 1 convolution. We
obtain

Af = Gf(c), Ad = Gd(c). (1)
A softmax function is further applied as:

Sf =
eAf

eAf + eAd
, Sd =

eAd

eAf + eAd
. (2)

A merged feature m can be computed by weighted sum of the two maps:
m = f · Sf + d · Sd. (3)

We then compute µ as average of m and the RGB feature f for subsequent low-level structure detec-
tion.

µ =
f + m
2

. (4)

Besides the above way to aggregate the disparity estimation with image features, there are some
other options. In this paper, we would investigate the different options and evaluate their perfor-
mances. In Figure 2, we compare these options with the proposed disparity aggregation using dia-
grams. The first option is that we simply use it as multi-task without any aggregation, denoted as
‘Multi-task’ (see Figure 2a). The second option is to add the output of low-level structure detection
into disparity, denoted as ‘EA’ (see Figure 2b). The third option is to have mutual aggregation be-
tween disparity and low-level structures, i.e., we add the output of the two branches into each other.
In our implementation, we use the latest SA gate (Chen et al., 2020a) to achieve mutual aggrega-
tion, denoted as ‘SA’ (see Figure 2c). The forth option is to aggregate the disparity into low-level
structure detection via simple concatenation, denoted as ‘Concat’ (see Figure 2d). Our experiments
results in Section 4.5 show that the proposed disparity aggregation works better than other options.
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3.3 LOW LEVEL STRUCTURES

One critical issue in the proposed framework is the ground truth used to train PRNet, i.e., low-level
structure detection module. Using edges as additional supervision information is not a new concept.
For example, Chen et al. (2016) have shown that incorporating edge detection via multi-task learning
is helpful for segmentation task. However, in segmentation task where the segmentation mask is
given, it is easy to compute the boundary of the mask as edge. In stereo matching, we do not have
semantic labels and manual annotation of the edges is costly. In this paper, we explore a cheap way
to obtain the edges. As shown in Figure 1, we compute edges using Canny operator(Canny, 1986).
As the Canny edge is obtained in an unsupervised way, the PRNet can be considered as playing
a role of self-supervised regularization. This is different from Chen et al. (2016) where the edge
detection plays a role of filtering. Surprisingly, our results show that the Canny edge works similar
to the ideal ground truth edge in improving the stereo matching in Scene Flow dataset. More details
are given Section 4.5.

In this paper, we add the disparity output into the low-level structure detection module, as shown in
Figure 2d. Noted that we do not add the low-level structure detection output into the disparity esti-
mation for two reasons. First, in the current design, the PRNet can be discarded after the training. In
another word, current method does not lead to any extra computation in the inference stage. Second,
the color changes often appear in RGB images and they may not correspond to depth changes.

3.4 LOSS FUNCTION

As described in 3.3, we manage to obtain the supervisory edge information from the conventional
Canny operator, trained in a self-supervised learning manner. To remedy the imbalanced samples in
pseudo edge information, we adopt the focal loss to supervise the output of the PRNet, as shown in
Equation (5):

F (p) = −(1− p)γ log(p), (5)
where p defines the probability of the pixel being an edge pixel, and γ is empirically set as 2.

The overall loss is computed as the sum of the loss function Lo of the original stereo matching
network and the new loss from PRNet, as shown in Equation (6):

L = Lo + λ · F (p), (6)

where λ controls the balance of the two items. In this paper, we use λ = 0.01 for ACVNet such that
neither of the items would dominate the results.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EVALUATION CRITERIA

In this paper, we use the following datasets to train and validate our algorithms, including Scene
Flow (Mayer et al., 2016), KITTI 2012 (Geiger et al., 2012), and KITTI 2015 (Menze et al., 2015).

4.1.1 SCENE FLOW

Scene Flow (Mayer et al., 2016) is a large-scale synthetic dataset containing 35,454 training and
4,370 testing images with dimension 540 × 960. Following previous work, pixels with disparities
larger than our limit D = 192 are excluded in the loss computation in our experiments. For eval-
uation in Scene Flow dataset, we use the commonly used end-point error (EPE) and percentage of
disparity outliers D1 as evaluation criteria. The outliers are defined as the pixels whose disparity
errors are greater than max(3px, 0.05d), where d denotes the ground-truth disparity.

4.1.2 KITTI 2012/2015

KITTI 2012 (Geiger et al., 2012) and KITTI 2015 (Menze et al., 2015) are real-world datasets with
street views from driving cars. KITTI 2012 contains 194 training stereo image pairs with sparse
ground truth disparities obtained using LiDAR and 195 testing image pairs. KITTI 2015 contains
200 training stereo image pairs and another 200 testing pairs. We further divided the whole training
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SceneFlow KITTI 2012 KITTI 2015
Method EPE D1 2-noc 2-all 3-noc 3-all D1-bg D1-fg D1-all

RTNet 3.90 17.9 10.64 11.69 6.10 6.94 6.27 13.95 7.54
RTNet+PR 3.27 15.7 5.92 6.77 3.72 4.34 4.41 10.98 5.50
PSMNet 1.09 3.89 2.44 3.01 1.49 1.89 1.86 4.62 2.32
PSMNet+PR 0.64 2.13 2.13 2.72 1.31 1.70 1.58 3.75 1.94
GwcNet 0.76 2.71 2.16 2.71 1.32 1.70 1.74 3.93 2.11
GwcNet+PR 0.65 2.23 2.12 2.69 1.36 1.78 1.58 3.69 1.93
ACVNet 0.48 1.59 1.83 2.35 1.13 1.47 1.37 3.07 1.65
ACVNet+PR 0.45 1.48 1.77 2.26 1.11 1.43 1.36 3.09 1.65

Table 1: Effectiveness of physics regularization for RTNet, PSMNet, GwcNet and ACVNet in
SceneFlow, KITTI2012 and KITTI2015.

data into a training set (80%) and a validation set (20%) to determine the hyper-parameters. For
KITTI 2012, we report the percentage of pixels with errors larger than x disparities in both non-
occluded (x-noc) and all regions (x-all). For KITTI 2015, we report D1 metric in background
regions (bg), foreground areas (fg), and all.

4.2 IMPLEMENTATION DETAILS

The proposed method was implemented using PyTorch. The training parameters are kept the same
as the original network. We follow the setting in ACVNet (Xu et al., 2022). All models were trained
with Adam (β1 = 0.9, β2 = 0.999). The maximum disparity was set to 192. The training images
were randomly cropped to size 288 × 576. For the integration of PRNet with ACVNet, we follow
the ACVNet and train the attention weights first with 64 epochs, followed by training of the entire
model. For integration with other models, we trained the network end-to-end. The learning rate is
set to 0.001 and decayed by half after epoch 20, 32, 40, 48 and 56. For Scene Flow, the trained
model was directly used for testing. For validation in KITTI 2012 and KITTI 2015, we finetune the
pretrained models for 500 epochs. The learning rate of the fine-tuning is set at 0.001 for the first 300
epochs and 0.0005 for the rest of 200 epochs. For KITTI submission, we fine-tuned the pre-trained
model on the combination of KITTI 2012/2015 for 500 epochs. The learning rate of this fine-tuning
began at 0.0005 for the first 300 epochs and 0.0001 for the remaining 200 epochs. The batch size
was set to 8 for the training with two RTX3090 GPU cards. All the codes developed in this paper
would be released upon the publication of the work.

4.3 EFFECTIVENESS OF PRNET

To demonstrate the effectiveness and generality of PRNet, we integrate it with four different stereo
matching networks, i.e. RTNet(Chang et al., 2020), PSMNet(Chang & Chen, 2018), GwcNet(Guo
et al., 2019) and ACVNet(Xu et al., 2022), which are denoted as RTNet+PR, PSMNet+PR, Gwc-
Net+PR, ACVNet+PR respectively. We first train the models in Scene Flow data and then finetune
the models using KITTI 2012/2015 datasets. Table 1 shows all the results. As we can see from
the table, the EPE in Scene Flow dataset is reduced by 16.2%, 41.3%, 14.5% and 6.3% for RTNet,
PSMNet, GwcNet and ACVNet baselines respectively. In KITTI 2012 and KITTI 2015, PRNet also
improves the performance in most scenarios. It is also noted that the improvement is relatively larger
for approach with lightweight backbone such as RTNet. This is important as the some trade-off in
performance is inevitable for practical deployment which requires high speed. The proposed method
has good potential for such algorithms for real-world use. Figure 3 also show several examples for
visual comparison. As we can see, the regularization improves the results with more smooth depths.

4.4 COMPARISON WITH OTHER METHODS

In order to evaluate how the regularized model compares with other methods, we use the latest
ACVNet (Xu et al., 2022) as the baseline and integrate it with the PRNet as a new proposed stereo
matching method. Six different methods are compared, including GANet(Zhang et al., 2019a),
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Figure 3: Sample Results. From left to right are (a) RGB image (b) disparity estimated by original
network (c) disparity estimated by physics regularized network. From to bottom, the first two rows
are based on GwcNet architecture, and the last two rows are based on ACVNet architecture.

KITTI 2012 KITTI 2015
Method 2-noc 2-all 3-noc 3-all D1-bg D1-fg D1-all run-time

GANet (2019) 1.89 2.50 1.19 1.60 1.48 3.46 1.81 1.8
AcfNet (2020) 1.83 2.35 1.17 1.54 1.51 3.80 1.89 0.48
HITNet (2021) 2.00 2.65 1.41 1.89 1.74 3.20 1.98 0.02
CFNet (2021) 1.90 2.43 1.23 1.58 1.54 3.56 1.88 0.18
LEAStereo (2020) 1.90 2.39 1.13 1.45 1.40 2.91 1.65 0.3
ACVNet(2022) 1.83 2.35 1.13 1.47 1.37 3.07 1.65 0.2
Proposed 1.77 2.26 1.11 1.43 1.36 3.09 1.65 0.2

Table 2: Comparison of proposed method (ACVNet+PR) vs. other methods in KITTI 2012 and
KITTI 2015.

AcfNet(Zhang et al., 2019d), HITNet(Tankovich et al., 2021), CFNet(Shen et al., 2021), and LEASt-
ereo(Cheng et al., 2020) and ACVNet(Xu et al., 2022). We focus on the real-world datasets and
compare these methods in KITTI 2012 and KITTI 2015. Table 2 summarizes the results. As we can
see, the proposed method outperforms these methods in most scenarios.

4.5 ABLATION STUDIES

To validate the effectiveness of each component proposed PRNet, we conducted the following abla-
tion studies on Scene Flow dataset. The baseline approach is the original stereo matching network,
denoted as ‘Baseline’. To validate the effectiveness of the proposed components, we validate them
with four different stereo matching algorithms, including RTNet, PSMNet, GwcNet and ACVNet.
We compare the baseline approach with ‘Multi-task’ to justify the benefit of low-level structure
regularization. To justify the use of disparity aggregation, we compare the proposed disparity ag-
gregation with ‘EA’, ‘SA’ and ‘Concat’. The results from the ablation studies are shown in Table 3.
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Method RTNet PSMNet GwcNet ACVNet

Baseline 3.90 1.09 0.76 0.48
Multi-task 3.38 0.70 0.67 0.46
Concat 3.32 0.68 0.66 0.46
EA 3.29 0.70 0.67 0.47
SA 3.35 0.75 0.70 0.50
Proposed 3.20 0.65 0.64 0.45

Table 3: Ablation study for PRNet in Scene Flow dataset

Method RTNet PSMNet GwcNet ACVNet

Canny Edge 3.265 0.644 0.650 0.449
Ground Truth Edge 3.200 0.649 0.641 0.448

Table 4: Comparison of regularization using ground truth edge vs. Canny edge as labels

As shown in Table 3, both the multi-task strategy and the disparity aggregation improve the perfor-
mance of the stereo matching. Moreover, as we do not use the output of PRNet, the regularization
can be discarded in the inference stage. Therefore, the proposed PRNet does not change the actual
network architecture for disparity estimation. Therefore, it does not lead to extra computational cost
in inference. ‘EA’ does not perform better than the proposed disparity aggregation, this is inline
with our intuition that edge of disparity map is often the edge of RBG images but not the vice versa.
Although ‘SA’ has shown to be promising for RGBD data, our experimental results show that it is
not optimal for stereo matching. Its performance is slightly lower than that of simple multi-task
without aggregation. This might be because SA is originally proposed for multi-modal aggregation
where the RGB and the depth are obtained independently. However, our depth is estimated from
RGB images.

We also investigate how the Canny operator affects the results. We compare the performances when
we use the Canny edge as ground truth versus the case when the ideal ground truth is available.
From the Scene Flow dataset, the object segmentation is available. Although the object segmentation
labels are randomly assigned without consistency and cannot be used as semantic labels, they can
be used to compute edges. We use these edges as the ideal ground truth edges. Table 4 compares
the results. The performances of disparity estimation by the two different labels as ground truth are
comparable. Although the idea to use Canny edge to replace ideal ground truth edge as training
label is simple, the results are significant as Canny edge can be obtained efficiently without manual
annotations.

5 CONCLUSIONS

The training of stereo matching network has been a challenging issue. In this paper, we propose
a novel physics regularization framework, which can be applied on existing stereo matching al-
gorithms to improve their performances. By combining the physics regularization with RTNet,
PSMNet, GwcNet and ACVNet, we improve the performance of original stereo matching network
consistently in Scene Flow, KITTI 2012 and KITTI 2015 datasets. Moreover, our experiments also
show that the use of disparity estimation is better than other options of aggregation. We also find
that by using pseudo ground truth edges extracted by Canny operator, we achieve comparable per-
formances in stereo matching compared with those using ideal ground truth. This is significant as
the Canny edge can be obtained automatically without manual annotation. A limitation is that this is
only validated in the Scene Flow dataset which is a synthetic dataset instead of a real-world dataset.
A further study on real-world data sets would be helpful. This could be investigated by improving
the edge detection algorithms.
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