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ABSTRACT

We study contextual stochastic optimization problems. Optimization problems
have uncertain parameters stemming from unknown, context-dependent, distribu-
tions. Due to the inherent uncertainty in these problems, one is often interested not
only in minimizing expected cost, but also to be robust and protect against worst
case scenarios. We propose a novel method that combines the learning stage with
knowledge of the downstream optimization task. The method prescribes decisions
which aim to maximize the likelihood that the cost is below a (user-controlled)
threshold. The key idea is (1) to discretize the feasible region into subsets so that
the uncertain objective function can be well approximated deterministically within
each subset, and (2) devise a secondary optimization problem to prescribe deci-
sions by integrating the individual approximations determined in step (1). We pro-
vide theoretical guarantees bounding the underlying regret of decisions proposed
by our method. In addition, experimental results demonstrate that our approach is
competitive in terms of average regret and yields more robust solutions than other
methods proposed in the literature, including up to 20 times lower worst-case cost
on a real-world electricity generation problem.

1 INTRODUCTION

In recent years, the field of machine learning (ML) has made remarkable strides in developing pow-
erful algorithms that can automatically extract patterns and insights from data. While prediction is
often the primary focus in many ML applications, the ultimate goal is to make optimal decisions
based on these predictions. For example, one may predict the hourly electricity demand of a power
plant for the next day. But more importantly, based off of this forecast, the operator must decide
how much electricity to generate in order to minimize cost while staying within the operational con-
straints of the plant. Another key factor is the possible distribution of the uncertain parameters and
being able to protect against worst-case scenarios. In the previous example, the decision-maker may
have the goal to maximize the probability that their operational cost is below a certain threshold.
Robustness is a crucial property in real-world decision-making since a single significantly poor de-
cision may have separate damaging effects. For instance, it could damage a company’s reputation
and trust with its customers.

Traditionally, a predict-then-optimize approach has been used in practice: the learning stage is per-
formed separately from the optimization task. First one trains a model to predict the uncertain
parameters (such as the electricity demand), then independently solve the corresponding optimiza-
tion problem. Recent work in end-to-end learning has focused on how to train a model with a loss
function that is meant to explicitly approximate the true decision cost a prediction would produce.
However these approaches only target minimizing the average cost, and do not, in general, take ro-
bustness into account. In this work, we propose a different paradigm for combining the learning and
optimization tasks. In particular our paper makes the following contributions.

1) Novel approach to contextual stochastic optimization problems that is robust and data
driven: We propose a novel data-driven method to tackle contextual stochastic optimization
problems. The proposed method is directly applicable to any class of optimization problems,
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including linear, nonlinear and discrete optimization problems. Furthermore, it gives rise to so-
lutions that are robust against uncertainty in the objective function using a single user-defined
parameter to control the degree of robustness. In contrast to more traditional robust optimiza-
tion methods, our proposed approach does not rely on constructing uncertainty sets. It is data
driven and does not need to make any assumptions about the structure of the data itself and its
distribution.

2) Analytical guarantees on the regret and the stability of the proposed approach: We prove
analytical guarantees on the regret of the proposed method. For instance, we show that the
difference between the in-sample cost and the out-of-sample cost decreases on the order of 1/

√
n,

for n datapoints. Furthermore, we prove the proposed method is stable against noise, showing
that the decisions prescribed do not change significantly if the dataset is perturbed by noise.

3) Computational experiments on a variety of applications: We show with computational exper-
iments that the proposed method is competitive in terms of the average error relative to existing
approaches in the literature. In addition to testing our approach for linear optimization appli-
cations such as portfolio optimization using historical stock data, we also consider nonlinear
optimization problem applications such as inventory allocation and electricity generation using
real-world data. Finally, through these xperiments, we show significant improvement in terms of
robustness. We obtain as much as 20 times lowers cost in the worst case when compared to other
end-to-end learning methods and 5 times lower than other robust approaches.

2 RELATED WORK

Due to space limitations we will keep this section short.

End-to-End Learning:

Traditionally, the simplest way to learn the uncertain parameters is to do so independently of the op-
timization problem by minimizing a loss function such as mean-squared error between predictions
and observed realizations. However, it has been shown that solving the predictive and decision-
making problems independently, can produce significantly suboptimal decisions Cameron et al.
(2021). As such, a large stream of the literature includes end-to-end methods where the goal is
to propose predictions whose corresponding optimal decisions minimize the downstream task loss
(e.g., the objective function). One of the earlier works related to end-to-end learning is Kao et al.
(2009) which trains a model to minimize task loss of an unconstrained quadratic optimization prob-
lem. In general, the primary difficulty in end-to-end learning approaches is the differentiability of
the constrained optimization task. Amos & Kolter (2017) extends the setting in Kao et al. (2009)
to constrained quadratic optimization, computing the gradient by differentiating through the KKT
system of equations at the optimal solution. Unfortunately, for linear optimization, the problem
becomes more complex since the gradient of the output of a linear problem with respect to its objec-
tive coefficients is either zero everywhere or undefined. Wilder et al. (2019) addresses the issue by
taking a similar approach to Amos & Kolter (2017) for linear optimization problems but also adding
a quadratic regularization term to the objective function. Other approaches have focused on other
methods of altering the loss function or the objective function to compute more useful gradients
end-to-end. For instance, for linear optimization problems, Elmachtoub & Grigas (2022) constructs
a surrogate loss function that is a convex and differentiable approximation of the objective function.
Elmachtoub et al. (2020) takes this approach and proposes a method to train decision trees with this
surrogate loss. Mandi & Guns (2020), Vlastelica et al. (2020), Berthet et al. (2020) take different
approaches to address this issue. Kotary et al. (2021) and the references therein provide a general
survey for end-to-end combinatorial learning problems.

The approach we propose is applicable directly to any class of optimization problems, while individ-
ual end-to-end methods are usually restricted to certain sub-classes of problems. Moreover, a major
difference in the approach proposed in this paper, is that it is non-parametric and proposes decisions
directly from data without requiring an intermediate forecast.

Prescriptive Analytics and Robust Optimization: To solve a stochastic optimization problem one
can apply well-known methods such as contextual Sample Average Approximation (SAA) (see for
example, Kleywegt et al. (2002)). The work of Bertsimas & Kallus (2020) extends SAA to take
advantage of the contextual nature of the problem by using covariates and weighing samples in a
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non-uniform way (unlike SAA) using ML methods such as k-nearest neighbors or decision trees. For
instance, for an out-of-sample set of features x, use the k-nearest observations in the training data to
make a decision. Alternatively, Bertsimas & Koduri (2021) generates weights using global methods,
not only by using data around a neighborhood of out-of-sample x. Bertsimas et al. (2019a) extends
the general methodology by introducing an optimal prescriptive tree framework to produce weights
that are directly dependent on the optimization problem and minimize task loss. Furthermore, Kallus
& Mao (2022) considers a similar framework using a random forest. Finally, Bertsimas & McCord
(2019) applies these prescriptive ideas to the multi-period setting.

There has been significant work within the robust optimization literature over the years (see for
example, the books by Ben-Tal et al. (2009), Bertsimas & den Hertog (2021) as well as the survey
paper by Bertsimas et al. (2010) and the references within). In robust optimization, careful construc-
tion of the underlying uncertainty sets is required to ensure the models are not overly conservative.
Various formulations have been proposed, starting for example, with Soyster (1973), Ben-Tal & Ne-
mirovski (2000), and Bertsimas & Sim (2004). Nevertheless, uncertainty sets can be learnt as we
gain information from data. Earlier papers uses estimates of the mean and standard deviation from
the available data such as for example, Bertsimas et al. (2013) who takes a data-driven robust opti-
mization view. Uncertainty sets could vary as a function of the features, as for example in Bertsimas
& Van Parys (2021), Kannan et al. (2020) and Bertsimas et al. (2019b).

3 THE FRAMEWORK

In this section, we first formally describe the problem and the data-driven setting we study in this
paper. Given a feasible region P and decision variables w ∈ P , the goal is to minimize an ob-
jective function gν(w) parameterized by uncertain parameters ν. If we have exact knowledge of
the realized uncertainty ν values, the optimal decision could be determined through the following
problem

w∗(ν) = arg min
w∈P

gν(w). (1)

If the problem above does not a unique solution, we can instead assume that w∗(ν) is an oracle pro-
viding any optimal solution. For example, gν(w) can correspond to a linear optimization problem
objective, gν(w) = νTw or a quadratic optimization problem objective, gν(w) = qTw+wTQw,
where ν = (q,Q) corresponds to the linear and quadratic objective coefficients respectively. In a
shortest path example, the uncertainty parameters ν would correspond to the unknown travel times
along each edge while the decision w would be a vector determining which path to take. Naturally
set P constrains w to properly satisfy the path related constraints. Finally, we formally define the
notion of regret of a decision:

Definition 1 The regret Rν(w) of a decisionw with respect to a parameterization ν is given by the
difference between its objective value and the optimal one correpsonding to ν:

Rν(w) = gν(w)− gν(w∗(ν)) (2)

We make the following assumptions regarding the optimization problem:

Assumption 3.1 We assume that the maximum regret Rν(x) = gν(w) − gν(w∗(ν)) is bounded
and at most M1 > 0 for any ν,w.

In the data-driven setting, we assume that the objective’s uncertain parameters are distributed ac-
cording to an unknown distribution Dx which depends on features x. Given some vector of features
x, we need to compute decision ŵ(x). Only afterwards can we observe the realization of νx ∼ Dx
and incur a cost of gνx(ŵ(x)). We take a data driven approach and do not assume we know the
distribution Dx of the cost vector for any given feature vector x. Rather we assume we are given N
data points (x1,ν1), . . . , (xN ,νN ) consisting of observed covariates xi and observed realizations
νi ∼ Dxi . One objective is to minimize the expected regret of the decision:

min
w∈P

Eνx∼Dx [Rνx(w)] (3)

while another would be to provide a solution that is more robust to uncertainty. One may wish to
minimize the probability that the regret is above a certain threshold:

min
w∈P

Pνx∼Dx (Rνx(w) ≥ φ) . (4)
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However, this formulation, even given perfect knowledge of the distribution of w∗(νx) is not
tractable. For instance, for discrete Dx, it may be solved only by a mixed integer optimization
problem (see Appendix E). We propose an approximation to this objective: to minimize the ex-
pected regret that is larger than φ, which we denote as the minimum violation solution. If the regret
of w is below φ for a given νx, we treat it as having no regret. Otherwise, we assign it a regret of
Rνx(w) − φ, the amount by which its regret surpasses φ. This is the same as in formulation (4)
except the cost of having regret greater than φ is simply a constant of 1 in (4). Moreover, this is now
a convex problem whenever gν(x) is convex.

Definition 2 (minimum-violation) The minimum violation optimization problem is given by

min
w∈P

Eνx∼Dx [max{Rνx(w)− φ, 0}] (5)

To gain additional intuition into the choice of this formulation, we can also rewrite this objective as

min
w∈P

Pνx∼Dx(Rνx(w) ≥ φ) · Eνx∼Dx

[
Rνx(w)− φ

∣∣Rνx(w) ≥ φ
]

(6)

Notice that for φ = 0, the above formulation reduces to simply minimizing the expected regret. In
addition, for φ large enough (so that regret is always bounded by φ), the problem becomes fully
robust and produces the same solution as (4). In between, this is a combination of two objectives.
The left term is the original one in (4) to minimize the probability that regret is larger than φ. The
second term is similar to conditional value at risk (CVaR) Rockafellar & Uryasev (2002). The
CVaR objective minimizes Eνx [Rνx(w)|Rνx(w) ≥ qα(w)] where qα(w) is the αth quantile of
the regret distribution of taking decision w. To contrast this approach with ours, note that qα(w)
can change for each w while the φ term remains constant throughout. We see in the computational
experiments (section 5.1 and Figure 2) that the CVaR approach produces decisions that change
discretely as the robustness parameter changes (the quantile being targeted), whereas the minimum-
violation objective produces more continuously changing decisions.

Overview The key idea is to coarsen the problem and discretize the feasible region P into K
subsets H1, . . . ,Hk and determine the probabilities P(w∗(νx) ∈ Hk) that the optimal solution
w∗(νx) belongs to each Hk, k = 1, . . . ,K. We can use these discrete Hk as building blocks to
approximate the expectations in (3) and (5). Intuitively, we would like to construct Hk so that, if
w∗(νx) belongs to Hk, then Rνx(w) can be well approximated by some deterministic function of
w. Then, we minimize the expected regret based off of these individual approximations.

Discretization Consider constructing Hε
k for each datapoint (xk,νk) corresponding to the set of

points whose regret is at most ε:

Hε
k = {w ∈ P : gνk(w)− gνk(w∗(νk)) ≤ ε} = {w ∈ P : Rνk(w) ≤ ε} (7)

Now it remains to approximate the probability that w∗(νx) belongs to each Hε
k. We approximate

P(w∗(νx) ∈ Kε
k) by leveraging the data we already have for training. For the training data, we

compute point estimates of this probability since we have access to the realized cost parameters.
That is, for every feature point xn, we can determine whether the optimal decision w∗(νn) either
belongs to set Hε

k or not. For each pair (xn,νn) and Hε
k, we generate the following labels:

pnk =

{
1, if w∗(νn) ∈ Hε

k

0, otherwise
(8)

This creates a new multi-label data set (xn, (pnk )k=1,...,N ). We can then learn a mapping p̂εk(x)
which approximates P(w∗(νx) ∈ Hε

k). We accomplish this using any classification method such
as for example, logistic regression, decision trees, k-nearest neighbors, and neural networks among
others. Figure 1 provides an illustration and the corresponding labels we create.

Algorithm We summarize the algorithm as the following steps:

(i) Define subsets Hε
k = {w ∈ P : Rνk(w) ≤ ε} for each datapoint.

(ii) Construct labels pnk to indicate whether w∗(νn) ∈ Hε
k.
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Figure 1: w∗(ν1) and w∗(ν2) belong to Hε
1, but w∗(ν3) does not. Thus, points x1, x2 are labeled

with 1, and x3 is labeled as 0.

(iii) Train ML model p̂εk(x) on multi-label dataset (xn, (pnk )k=1,...,N ).
(iv) For out-of-sample x, take decision

ŵε,φ(x) = arg minw∈P

N∑
k=1

p̂εk(x) ·max{Rνk(w)− φ, 0} (9)

This optimization problem in (9) combines the individual predictions of which sets Hε
k the solution

should belong to. To gain some intuition on this last step, consider the case that the sets Hε
k form a

partition of the feasible region P . Note that we will relax this to the general case in Theorem 4.1.
Then, conditioning on the events w∗(νx) ∈ Hε

k, the minimum-violation problem in (5) can be
rewritten as

Eνx∼Dx [max{Rνx(w)− φ, 0}] =
∑
k

P(w∗(νx) ∈ Hk
ε )E [max{Rνx(w)− φ, 0} | w∗(νx) ∈ Hε

k] .

(10)

In Theorem 4.1 we will show that the term max{Rνk(w) − φ, 0} approximates the value of
max{Rνx(w) − φ, 0}, whenever w∗(νx) ∈ Hε

k. Moreover, these terms are weighted by p̂εk(x),
the approximations of P(w∗(νx) ∈ Hε

k).

Alternative interpretation for φ = ε: We would also like to present an alternative viewpoint
of our proposed method which connects the choice of objective E[max{Rv(w) − φ, 0}] to the
rest of the method and how the weights p̂k(x) are generated. This interpretation is unique to our
proposed method, and differs from that of Bertsimas & Kallus (2020) and related literature. We
can alternatively view the problem as follows. For out-of-sample features x, the goal is to find a
feasible solution w that best matches the predictions p̂εk(x) in terms of which sets Hε

k the optimal
solution w∗(νx) should belong to. For example, if we predict that w∗(νx) belongs to Hε

1 and to Hε
2

with high probability (meaning weights p̂ε1(x), p̂ε2(x) are high), then the solution we propose should
belong to the intersection of sets Hε

1 and Hε
2. The formulation in 9 performs this by implicitly

scoring each feasible solution: if a feasible solution w does not belong to Hε
k, we penalize it by

our approximation p̂εk(x) that it should have belonged to it multiplied by the distance from Hε
k.

However, if w does belong to Hε
k, then there is no penalty. This score exactly corresponds to each

term p̂εk(x) ·max{Rνk(w)− ε, 0}. We choose the feasible solution that minimizes overall penalty.

4 THEORETICAL REGRET BOUND AND PRACTICAL APPLICATION

Theorem 4.1 Under Assumption 3.1, the expected regret of a decision w ∈ P can be bounded
above by the approximate problem in (9) with probability 1− δ as follows:

E [max{Rνx(w)− θ, 0}] ≤ cε · α

(
OBJ(w) +M1E +

√
log 1/δ

2N

)
(11)

for θ = α(βε +φ) and where OBJ(w) = 1
N

∑N
k=1 p̂k(x) max{Rνk(w)−φ, 0} is the approxima-

tion we optimize over in (9). E is the mean prediction error E = 1
N

∑N
k=1 |p̂εk(x) − P(w∗(νx) ∈
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Hε
k)| and constants α, βε depending on the optimization problem. In particular, for the following

classes of objectives we have

1. bi-lipschitz objectives: for any bi-lipschitz objective, with constants L, µ such that
µ
∥∥w1 −w2

∥∥ ≤ |gν(w1) − gν(w2)| ≤ L
∥∥w1 −w2

∥∥, we have α = L/µ and βε = ε.
As an example, this holds for any quadratic optimization problem with bounded feasible
region having a positive definite quadratic term.

2. quantile loss function: given a predictionw and outcome νx, the regression loss for quan-
tile q is given by gνx(w) = max{q(νx − w), (1 − q)(w − νx)}. Then α = 1 and
βε = max{q/(1 − q), (1 − q)/q}ε. For example, this is also applicable to the inventory
stock problem in section 5.1.

Furthermore, cε is a constant factor describing for any x, how often w∗(νx) will have regret at most
ε with respect to a random other cost vector. In particular, cε = 1/minx Py(Rνy(w∗(νx)) ≤ ε).

The full proof can be found in Appendix A. Moreover, we prove stability of the output of our
proposed model under perturbations in the data. This can be found in the appendix (see Appendix
B). In short, the stability result describes the change in the decision ŵε,0(x) when the dataset is
perturbed by noise. If each of the learning algorithms used to train p̂k(x) have hypothesis stability
(defined in the appendix, see definition 3), then the output ŵε,0(x) also changes by a small amount
when the dataset is perturbed. Before the computational section, we discuss some of the main
practical issues and take-aways from Theorem 4.1. In particular, we discuss how to practically
choose ε and how this affects each term in the bound in theorem 4.1.

Discussion on choosing ε. By definition, ε determines the size of sets Hε
k. This in turn affects the

resulting multi-labelling pnk , k = 1, . . . , N . If for example, the sets Hε
k do not intersect, then each

vector pn = (pnk )k=1,...,N has a single non-zero entry. This would make p̂k(x) impossible to learn.

As such, we propose the following method of choosing ε: choose ε large enough so that for each
vector pn, at least some fraction, which we denote by γε, of its entries are non-zero. Then, from
Theorem 4.1, we argue that givenN datapoints, one should choose ε large enough so that γε ≥
1/
√
N . We can see this as follows by viewing the impact of ε on each term of the bound:

Effect on cε. Recall that if pnk = 1, this is equivalent to Rνk(w∗(νn)) ≤ ε. Therefore, a γε chosen
in this way implies that

Py(Rvy (w∗(vx)) ≤ ε) ≈ γε. (12)

Moreover, this results in cε ≈ 1/γε.

Effect on E . γε also affects the error of the ML models, namely E . For instance, labelling everything
with a zero will have an error of E = γε. In general, any ML model that improves beyond this
baseline will have E ≤ γε.
Effect on OBJ(w). We can bound OBJ(w) by

OBJ(w) =
1

N

N∑
k=1

p̂εk(x) max{Rνk(w)− φ, 0} (13)

≤M1
1

N

N∑
k=1

p̂k(x) ≤M1

(
E +

1

N

N∑
k=1

P(w∗(νx) ∈ Hε
k).

)
(14)

Finally, the term 1
N

∑N
k=1 P(w∗(νx) ∈ Hε

k) concentrates around its expectation which is γε ≈
Py(Rνy (w∗(νx)) ≤ ε). It follows that OBJ(w) / 2M1γε, given that E ≤ γε as argued previously.

Overall, this implies that the right hand side of the bound in theorem 4.1 has cε on the order of 1/γε,
while OBJ(w) and E are both on the order of γε. Putting these together, we see that these cancel
out to be overall on the order of O(M1). The only remaining term is cε ·

√
log(1/δ)/2N . Hence,

we need enough data so that this term also becomes on the order ofO(1). Therefore, we need on the
order of 1/γ2ε datapoints or that γε ≥ 1/

√
N . We present results in the computational experiments

section about the effect of ε on the quality of decisions produced.
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The remaining question is now, how small can ε be so that γε ≥ 1/
√
N? In practice, this can be

determined on a case-by-case basis for each dataset, for instance by using binary search. Of course,
γε ≥ 1/

√
N is only a rough guide to understand the magnitude needed. A process like cross-

validation can ultimately be used to choose ε. Theoretically, in the worst case either (1) such an ε
needs to be a constant fraction of the diameter of the feasible region or (2) ε is kept small but we
need an amount of data that is exponential in the dimension of the decisions. However, this is often
not the case in practice when presented with real-world data. Ultimately this largely depends on the
distribution of the decisions w∗(ν) and P itself. In real-world data, the distribution of w∗(ν) would
not pathologically uniformly cover the feasible region, but rather be more clustered around smaller
regions. Moreover, the feasible region itself plays a crucial role. Consider the case that decisions
w ∈ Rd are constrained to a feasible region P that is an s-dimensional subspace of the ambient
space Rd. For instance, if P = {w : Aw = b, w ≥ 0} where the null space of A has dimension s.

5 COMPUTATIONAL RESULTS

We consider four applications of the proposed approach. Two applications come from Donti et al.
(2017): a synthetic inventory stock problem and a real-world energy scheduling task. We show
that this discretization approach is competitive with other methods in terms of expected cost, and
has significant improvement in terms of robustness with up to 20 times lower cost in worst-case
scenarios. Moreover, we also compare against other non-contextual robust optimization methods.
Due to space limitations, we present this last experiment in appendix C.1. We also put into practice
the earlier discussion regarding the choice of ε and how its value affects the quality of the decisions
ranging from performing better at minimizing the expected cost or being robust.

5.1 INVENTORY STOCK PROBLEM

Consider the classical newsvendor problem in which a given product has uncertain demand d as well
as observed covariates x. Each day we observe the new features x and must make a decision w for
the amount of product to supply. Afterwards, the true demand is realized. For each unit of supply
above the demand, there is a unit cost of ch (for holding an item overnight in the store) and for each
unit of supply below the demand, we incur a backorder or lost sales unit cost cb (for example, cost
of expedited shipping to ensure the product arrives the next day). It has been shown that the optimal
order quantity is the cb/(cb + ch) quantile of the demand distribution (see Arrow et al. (1951)). In
principle, one could apply the quantile loss function to predict this quantity and solve the problem
in a two-stage manner. However, to consider the identical problem also presented in Donti et al.
(2017), we consider a version with additional quadratic costs to over or under-stocking as well as an
ordering cost. The objective is given as

gd(w) = c0w + cqw
2+ cb max{d− w, 0}+

1

2
qb max{d− w, 0}2+ (15)

ch max{w − d, 0}+
1

2
qh max{w − d, 0}2 (16)

Experimental setup: We use the same unit cost parameters as well as data, and compare against
the same models as in Donti et al. (2017). However, we present not only the average cost incurred
on the testing data but also on various quantiles of the cost distribution. We plot on the x-axis the
mean cost incurred by each method, and on the y-axis the cost at the qth quantile.

The problem of minw∈P E [max{Rνx(w)− φ, 0}] can also be solved by existing methods such
as Bertsimas & Kallus (2020) by thinking of the objective function not as gν(x) but rather as
max{Rνx(w) − φ, 0} directly. In this approach, weights are generated by K-nearest neighbors (or
other ML models like linear or tree models). However, these methods do not generate these weights
based on the optimization problem itself. In contrast our proposed method generates weights explic-
itly depending on the optimization task. We denote this approach as KNN + minimum-violation in
the experiments. We also compare against the method of Bertsimas & Kallus (2020) where we use
CVaR as the objective, namely E[Rνx(w)|Rνx(w) ≥ qα(Rνx(w))], where qα(Z) is the α-quantile
of a random variable Z. We consider a range of values for the quantile α in the experiments. In ad-
dition, we also compare against another data-driven contextual robust optimization methods where
one solves the following problem. For an out-of-sample x, find the K nearest neighbors in the data,
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Figure 2: Comparison of average cost of each method vs. 85th, 90th, 95th, 99th and 100th quantile
cost. We vary the degree of robustness for each method. As this robustness parameter increases, the
mean cost increases, but the quantile cost (generally) decreases for all methods.

namely,N (x,K). Unlike Bertsimas & Kallus (2020) which minimizes the average cost, we weight
the remaining K datapoints adversarially according to a distribution π that is, within a Kullback-
Leibler divergence distance of at most r from a uniform distribution, assigning weights 1/K to each
datapoint (so that DKL(π||1/K) ≤ r). Due to space limitations, details and formulations for each
of these approaches can be found in appendix C.1. Moreover, we compare against the method in
Donti et al. (2017). This is an end-to-end method which trains a neural network to predict a discrete
probability distribution for the possible values of demand. We refer to this as the task-based method
in Figure 2. This work makes use of the OptNet framework in Amos & Kolter (2017) to compute
gradients of the loss function with respect to the predicted demand d. Furthermore, we also compare
against a policy optimizer approach. Here, one does not make a forecast for demand, but rather the
neural network model directly outputs the policy/decision to take.

Each of these methods use a linear model to make predictions (or decisions, as in the case of the
policy optimizer). For the other weight-based methods (KNN + KL divergence and those based on
Bertsimas & Kallus (2020)) we use a KNN method to generate weights (with K = 10). For con-
sistency, our approach also uses a KNN model to predict the p̂k(x), also using K = 10 neighbors.
Each p̂k(x) predicts a value between 0 and 1 based on the average label assigned to the K-nearest
neighbors of x in the training data. This is done independently for each k. In contrast, for the fol-
lowing experiment in section 5.2, the models p̂k(·) are trained simultaneously by a neural network.

Results: In Figure 2 we report the mean and the 85th, 90th, 95th, 99th and 100th quantile (out-
of-sample) cost of each decision made by the approaches as we vary the level of robustness for
each approach (φ for the minimum-violation objective and α in for CVaR). The KNN + minimum-
violation method and our proposed method have the same objective, but use different methods of
solving it. We see that both approaches produce similarly shaped mean vs. quantile cost curves but
the discretization method consistently has lower qth quantile cost for the same average cost for all
q = 85 to q = 100. As this quantile approaches 100, the gap between the two decreases but of note,
at q = 100, all approaches, other than the discretization method performs poorly, worse than even
the policy method in terms of robustness. The CVaR and traditional robust methods also deteriorate
in performance as the quantile increases.

5.2 LOAD FORECASTING AND GENERATOR SCHEDULING

Next, we consider a real-world problem for generator scheduling using 8 years of real electrical grid
data from PJM, an electricity routing company coordinating the movement of electricity throughout

8
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Figure 3: Reporting for each hour of the day the mean, 99th quantile, and maximum cost of each
method. A fixed φ = 0.5 value for the discretization method was used for all results.

13 states. We use the same range of data as also used in Donti et al. (2017). Here, we must make
decisions w ∈ R24 for the amount of electricity generation for each hour of the following day.
Similar to the inventory problem, the operator incurs a cost γe for excess generation and a cost γs
for a shortage in generation. In addition, power plants have physical limitations prohibiting large
changes in generation from one hour to the next. The objective and constraints are given as:

gd(w) =

24∑
i=1

γs max{di−wi, 0}+γe max{wi−di, 0}, |wi+1−wi| ≤ r, i = 1, . . . 23 (17)

Experimental setup: We use the same setup used in Donti et al. (2017), using the same param-
eters for the problem as well as data. We make use of the same data preprocessing and feature
engineering. They use a two-layer (each layer of width 200) network with an additional residual
connection from the inputs to the outputs. We use the same architecture to learn the labeling p̂εk(x).
In addition, we compare against a cost-weighted model minimizing mean-squared error which peri-
odically reweights training samples based on their task-based cost. Finally, we also compare against
the method described in the previous section with objective to minimize CVaR.

Results: We compare the average cost as well as the 98− 100th quantiles of the cost distribution
for each method. In particular, we also present results for different choices of ε. Following the
discussion of theorem 4.1, a starting point would be to choose ε so that the average number of posi-
tive labels , γε, is around 1/

√
N . We choose different epsilon so that γε = 0.015, 0.025, 0.04, 0.05

where 1/
√
N ≈ 0.02 (here we have N = 2, 553 training points). As ε and γε decrease, we find

that the solutions better target minimizing the expected cost, while increasing ε will improve per-
formance on higher quantiles of the cost distribution. In particular, when γε = 0.025, the method
outperforms even the task-based method on average cost at peak demand hours of the day (hours
15-22). At the other extreme at ε = 0.05, we find that the worst case cost across the entire day is
nearly constant and up to more than 20 times lower than the CVaR and other methods. However,
setting ε = 0.01 to be too small does not introduce enough robustness. While it performs best in
terms of average cost, its worst-case cost spikes suddenly.

6 CONCLUSIONS

We proposed a novel method for contextual stochastic optimization based off of discretizing the
feasible region into subsets and learning how the optimal solution maps to each subset. We proved
analytical guarantees on the bound between the expected out-of-sample cost compared to the ap-
proximate objective proposed in 9. Finally, we present computational experiments on three datasets,
including a real-world electricity generation problem, and show our proposed method is competitive
against other end-to-end approaches and provides significantly more robust solutions, even when
compared to other robust optimization methods. Future directions of research may include devising
different constructions of the subsets Hε

k and to consider uncertainty in constraints as well.
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A PROOF OF THEOREM 1

Theorem 1: Under basic boundedness assumptions on the optimization problem (see Assump-
tion 3.1), the expected regret of a decisionw ∈ P can be bounded above by the approximate problem
in 9 with probability 1− γ as follows:

E [(Rνx(w)− θ) · 1(Rνx(w) ≥ θ)] ≤ cε · α

(
OBJ(w) +M1E +

√
log 1/γ

2N

)
(18)

for θ = αβε + αφ and where OBJ(w) = 1
N

∑N
k=1 p̂

ε
k(x) max{Rνk(w)− φ, 0} is the approxima-

tion we optimize over in 9. E is the mean prediction error E = 1
N

∑N
k=1 |p̂εk(x)−P(w∗(νx) ∈ Hk)|

and constants α, βε depending on the optimization problem. In particular, for the following classes
of objectives we have

1. bi-lipschitz objectives: for any bi-lipschitz objective, with constants L, µ such that
µ
∥∥w1 −w2

∥∥ ≤ |gν(w1) − gν(w2)| ≤ L
∥∥w1 −w2

∥∥, we have α = L/µ and βε = ε.
As an example, this holds for any quadratic optimization problem with bounded feasible
region having a positive definite quadratic term.

2. quantile loss function: given a prediction w and outcome νx, the regression loss for quan-
tile q is given by gνx(w) = max{q(νx − w), (1 − q)(w − νx)}. Then α = 1 and
βε = max{q/(1− q), (1− q)/q}ε.

Furthermore, cε is a constant factor describing for any x, how often w∗(νx) will have regret at most
ε with respect to a random other cost vector. In particular, cε = 1/minx Py(Rνy(w∗(νx)) ≤ ε).

Proof: We prove this statement for a broader class of objectives. In particular, for functions having
the following condition: whenever Rνy (w∗(νx)) ≤ ε (where y is a feature vector like x), then we
must have that Rνx(w) ≤ αRνy (w) +βε. We will then show this holds for instance for bi-lipschitz
and quantile loss functions. We proceed to prove this as follows. We first consider our formulation
in 9 when the approximations p̂εk(x) are exact. Let

OBJ∗(w) =
1

N

N∑
k=1

P(w∗(νx ∈ Hε
k) max{gνk(w)− φ, 0} (19)

We will show that

c · α

(
OBJ∗(w) +

√
log 1/δ

2N

)
≥ Ex [max{Rνx(w)− α(φ+ βε), 0}] (20)

Then, we prove the general statement for OBJ(w) by showing that |OBJ(w) − OBJ∗(w)| ≤
M1/N

∑N
k=1 |p̂εk(x)− P(w∗(νx) ∈ Hk)|.

First, we show 20. We have

OBJ∗(w) =
1

N

N∑
k=1

P(w∗(νx) ∈ Hε
k) max{gνk(w)− φ, 0} (21)

= Ex

[
1

N

N∑
k=1

1(Rνk(w∗(νx) ≤ ε)) max{gνk(w)− φ, 0}

]
(22)

Next, we can treat the νk as realizations of a random variable as well. The inner term in the expec-
tation, Ex[ 1

N

∑N
k=1 1(Rνk(w∗(νx) ≤ ε)) max{gνk(w) − φ, 0}], is concentrated around its mean,

µ. The νk are identically distributed and independent. Therefore, so is a function of these random
variables. Let y be a random variable from the same distribution as all the νk. Then, by Hoeffding’s
inequality,

Py

(
1

N

N∑
k=1

P(w∗(νx) ∈ Hε
k) max{gνk(w)− φ, 0} − µ ≥ t

)
≤ exp

(
−2Nt2

)
(23)
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Therefore, with probability 1− δ,

OBJ∗(w) ≥ Ex
[
Ey
[
P(Rνy (w∗(νx) ≤ ε) max{gνy (w)− φ, 0}

]]
−
√

log 1/δ

2N
(24)

with y a random variable identically distributed like the νk. Rewriting the expectation over y by
conditioning over the event Rνy (w∗(νx) ≤ ε), we have

OBJ∗(w) ≥ Ex
[
Py(Rνy (w∗(νx) ≤ ε)Ey[max{gνy (w)− φ, 0} | Rνy (w∗(νx) ≤ ε]

]
−
√

log 1/δ

2N
(25)

By assumption, we simply bound the term Py(Rνy (w∗(νx) ≤ ε) ≥ 1/c. And again by assumption
on the structure of the objective function, we can bound

Ey[max{gνy (w)− φ, 0} | Rνy (w∗(νx) ≤ ε] ≥ max{ 1

α
Rνx(w)− βε − φ, 0} (26)

Combining this with 25, and rearranging, shows that with probability 1− δ,

c · α

(
OBJ∗(w) +

√
log 1/δ

2N

)
≥ Ex [max{Rνx(w)− αβε − αφ, 0}] (27)

Next, we show that |OBJ(w)−OBJ∗(w)| ≤ E = M1/N
∑N
k=1 |p̂εk(x)−P(w∗(νx) ∈ Hk)|. We

have

|OBJ(w)−OBJ∗(w)| ≤ 1

N

N∑
k=1

(p̂εk(x)− P(w∗(νx) ∈ Hk))Rνk(w) (28)

By assumption 3.1 Rνk(w) ≤ M1 and hence the claim follows. Finally, it remains to show the
initial conditions hold.

1. bi-lipschitz objectives: For any x,y, we have

gνx(w)− gνx(w∗(νx)) ≤ L ‖w − w∗(νx)‖ (29)

≤ L

α
|gνy (w)− gνy (w∗(νx))| (30)

≤ L

α
|gνy (w)− gνy (w∗(νy)) + gνy (w∗(νy)− gνy (w∗(νx))|

(31)

≤ L

α
|gνy (w)− gνy (w∗(νy))|+ ε (32)

The last inequality follows by noting that by definition gνy (w) − gνy (w∗(νy)) =
Rνy (w∗(νx)) ≤ ε. So indeed,

Rνx(w) ≤ L

α
Rνy (w) + ε (33)

2. quantile loss function: First, note that Rνx(w) = gx(w) and w∗(νx) = νx for any x,w.
Further, note that the condition Rνy (w∗(νx)) ≤ ε then implies that

max{q(νy − νx), (1− q)(νx − νy)} ≤ ε (34)

|νx − νy| ≤min

{
1

q
,

1

1− q

}
ε (35)

Moreover, Rνx(w) = gνx(w) = gνx−νy+νy (w). So,

Rνx(w) = max{q(νx − νy + νy −w) + (1− q)(w − (νx − νy + νy)} (36)
≤ gνy (w) + max{q, 1− q}|νx − νy| (37)

≤ gνy (w) + max{q, 1− q}min

{
1

q
,

1

1− q

}
ε (38)

≤ gνy (w) + max

{
1− q
q

,
q

1− q

}
ε (39)
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B STABILITY OF DECISIONS UNDER DATA UNCERTAINTY

In this section we consider the change in output ŵε,0(x) when the training dataset changes under
noise. In particular, we define stability as follows. Let Z = {νn}Nn=1 and let Z̃ = {νn + δn}Nn=1
be a perturbation of the dataset Z by noise δn with bounded norm ‖δn‖2 ≤ α. We wish to bound
the difference in decisions when training under Z and any noisy perturbation Z̃. We first make the
following assumption regarding the algorithm used learn the labelling p̂:

Definition 3 (Hypothesis Stability) Let pZ(x) ∈ [0, 1] be the prediction output of a learning algo-
rithm trained on a dataset Z of sizeN for a binary classification problem. We say pZ has hypothesis
stability βN if

∀i = 1, . . . , N, Ex
∣∣∣pZ(x)− pZ

\i
(x)
∣∣∣ ≤ βN , (40)

where Z\i is the same data set as Z, but with the ith point removed. If βN decreases at a rate of
O(1/N) with data size N , the algorithm is called stable.

Note that this is a significantly different notion of stability — it only accounts for the addition of
a single new datapoint, whereas in our setting every datapoint is perturbed by noise. Moreover,
many learning algorithms have this stability property. For example, support vector machines and
regularized least squares (Bousquet & Elisseeff (2000)), K-NN classifiers with a {0, 1} loss function
(Devroye & Wagner (1979)), and all learning algorithms (such as neural networks) with Tikhonov
regularization (Roscasco & Poggio (2009)).

Assumption B.1 The learning algorithm to train and generate each predictor p̂k(·) has hypothesis
stability with rate βN,k = O(1/N) where N is the size of the dataset.

We also make the following assumptions about the optimization problem itself:

Assumption B.2 The function gν(w) is linear with respect to the uncertain parameters ν, although
it may be nonlinear with respect to w. Moreover, gν(w) is L1-Lipschitz with respect to w for any
ν. So, for w1,w2:

|gν(w1)− gν(w2)| ≤ L1 ‖w1 −w2‖ (41)

and w∗(ν) is L2-Lipschitz with respect to ν. That is, for ν1,ν2,∥∥w∗(ν1)− w∗(ν2)
∥∥ ≤ L2

∥∥ν1 − ν2
∥∥ (42)

For example, any convex unconstrained minimization problem with Lipschitz objective function.
Additionally, quadratic optimization problems with any linear constraints also satisfy these assump-
tions (see for instance Coroianu (2016)).

Theorem B.1 Let ŵZ(x) be the decision ŵε,0(x) as defined in (9) when given training a dataset
Z. Under the stability Assumption B.1 and Assumption B.2, for dataset Z = {(xi,νn)}Nn=1 and
perturbed dataset Z̃ = {(xi,νn + δn}Nn=1 with any, including potentially adversary, noise ‖δn‖ ≤
α,

Ex
∥∥∥ŵZ(x)− ŵZ̃(x)

∥∥∥
2
≤ c0λ(α) (43)

for some constant c0. Additionally, λ(α) is an increasing function of the noise level α and λ(0) = 0
defined explicitly by

λ(α) = max
k

Px
(
w∗(νx) ∈ Hε+αL

k \Hε−αL
k

)
. (44)

Moreover, this change is concentrated around its mean:

Px
(∥∥∥ŵZ(x)− ŵZ̃(x)

∥∥∥− E
∥∥∥ŵZ(x)− ŵZ̃(x)

∥∥∥ ≥ t) ≤ exp

(
−2t2

N

)
. (45)
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Figure 4: Any point w∗(ν) belonging to the cap of size ε− Lα or outside of the cap of size ε+ Lα
will never change its label after noise is added. In the figure, this is any point outside of the strip
defined by the dotted lines. Otherwise, points within the strip may change their label.

Proof: First, we show that the labelling pnk as defined in 8 does not change for a constant fraction
of the data even under noisy perturbations. In particular, note that for any vn such that w∗(νn) ∈
Hε−L·α
k we also have w∗(νn + δn) ∈ Hε

k. Indeed, if gνk(w∗(νn) − gνk(w∗(νk)) ≤ ε − Lα,
then by the Lipschitz property B.2, we have gu(w∗(νn + δn) − gνk(w∗(νk)) ≤ ε. Therefore, the
labeling of w∗(ν) and w∗(νn + δn) would both be equal to 1 for any noise ‖δ‖n ≤ α. Similarly,
if w∗(νn) 6∈ Hε+αL

k then also w∗(νn + δn) 6∈ Hε
k and so the labels would both be 0. On the

other hand, if w∗(νn) ∈ Hε+Lα
k \Hε−Lα

k then it is possible for the label to change. See Figure 4.
However, this can only be true for at most a constant fraction of the data, independent of the size of
the data. Let this fraction be λ(α). That is,

λ(α) = max
k

P
(
w∗(ν) ∈ Hε+Lα

k \Hε−Lα
k

)
(46)

Clearly, this is an increasing function with λ(0) = 0.

Notice that the learners p̂k(x) are trained only on these labels. Let p̂Zk (x) be the model learned when
training with data from Z and similarly let p̂Z̃k (x) be the model when trained on labels resulting
from Z̃. Note that from the argument above, the number of labels that are different in each case is
bounded in expectation by λ(α). Now, we bound

∥∥∥ŵZ(x)− ŵZ̃(x)
∥∥∥. By definition and linearity

from Assumption B.2,

ŵε,0(x) = arg min
w∈P

1

N

N∑
i=1

p̂i(x) max{Rνi(w), 0} (47)

= arg min
w∈P

1

N

N∑
i=1

p̂i(x)gνi(w) (48)

= arg min
w∈P

g 1
N

∑N
i=1 p̂i(x)ν

i(w) (49)

= w∗

(
1

N

∑
i

p̂i(x)νi

)
(50)
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Then,∥∥∥ŵZ(x)− ŵZ̃(x)
∥∥∥ =

∥∥∥∥∥w∗
(

1

N

∑
i

p̂Zi (x)νi

)
− w∗

(
1

N

∑
i

p̂Z̃i (x)νi

)∥∥∥∥∥ (51)

≤ L2

∥∥∥∥∥ 1

N

∑
i

(p̂Zi (x)− p̂Z̃i (x))νi

∥∥∥∥∥ ≤ L2
1

N

∑
i

|p̂Zi (x)− p̂Z̃i (x)|
∥∥νi∥∥

(52)

Now, noting that
∥∥νi∥∥ ≤ 1 by assumption,

E
∥∥∥ŵZ(x)− ŵZ̃(x)

∥∥∥ ≤ L2
1

N

∑
i

E|p̂Zi (x)− p̂Z̃i (x)| (53)

Given that a λ(α) · N labels change in expectation, using lemma A.1 gives us that E|p̂Zi (x) −
p̂Z̃i (x)| ≤ 2λ(α)NβN,i. It follows that

E
∥∥∥ŵZ(x)− ŵZ̃(x)

∥∥∥ ≤ 2L2
1

N

N∑
i=1

λ(α)NβN,i = O(L2λ(α)) (54)

Moreover, the final tail bound follows directly from Hoeffding’s inequality.

Lemma B.1 Given that j labels change in the training data, the difference in prediction for any
fixed j is bounded as Ex|p̂Zk (x)− p̂Z̃k (x)| ≤ 2jβN,k for a βN,k-stable algorithm used to learn each
p̂k.

We now prove Lemma B.1 by induction. Let Z1, . . . , Zj be a sequence of datasets where Z1 = Z
and Zj = Z̃ and where there is exactly one label changed from dataset Zi to Zi+1. Then applying
the lemma for the case j = 1 to each pair of consecutive datasets Zi, Zi+1 will prove the result.

We now prove the result for j = 1. Here we have exactly one label that is changed from Z to Z̃.
Let s be the index of the datapoint which has its label changed. Consider an intermediate dataset
Ẑ which is equal to Z but which has datapoint s removed. Note that Ẑ is also equal to Z̃ but with
datapoint s removed as well. We can now apply the definition of hypothesis stability to find that

Ex
∣∣∣p̂Zk (x)− p̂Z̃k (x)

∣∣∣ ≤ Ex
∣∣∣p̂Zk (x)− p̂Ẑk (x)

∣∣∣+ Ex
∣∣∣p̂Ẑk (x)− p̂Z̃k (x)

∣∣∣ (55)

≤ βN.k + βN,k = 2βN,k (56)

which proves the claim for j = 1 and hence the lemma.

C FORMULATIONS AND EXPERIMENTS

C.1 INVENTORY STOCK PROBLEM

Recall the objective is given as

gd(w) = c0w + cqw
2+ cb max{d− w, 0}+

1

2
qb max{d− w, 0}2+ (57)

ch max{w − d, 0}+
1

2
qh max{w − d, 0}2 (58)

where d is the uncertain demand and w is the allocation decision for a product. We provide some
details on the approaches we compare against:

Minimum-violation objective with Bertsimas & Kallus (2020). Here we aim to solve the prob-
lem of minw∈P E [max{Rνx(w)− φ, 0}] by the method of Bertsimas & Kallus (2020) by thinking
of the objective function not as gν(x) but rather as max{Rνx(w)− φ, 0} directly. The formulation
is given as

min
w∈P

N∑
i=1

πi(x) max{Rνx(w)− φ, 0} (59)
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where the πi(x) are weights are generated by K-nearest neighbors (or other ML models like linear
or tree models as described in Bertsimas & Kallus (2020)). However, these methods not generate
this weighting based on the optimization problem itself. In contrast our proposed methods generates
weights explicitly depending on the optimization task.

CVaR objective. We also compare against the CVaR objective, which is very similar to ours.
Specifically, the objective is given as E[Rνx(w)|Rνx(w) ≥ qα(Rνx(w))] where qα(Z) is the α-
quantile of a random variable Z. According to Rockafellar & Uryasev (2002) the problem can be
reformulated to have objective

β +
1

ε
max{Rνx(w)− β, 0} (60)

where β is a newly introduced auxiliary variable. Using the method of Bertsimas & Kallus (2020),
we solve the following formulation:

min
w∈P,β∈R

N∑
i=1

πi(x)

(
β +

1

ε
max{Rνi(w)− β, 0}

)
(61)

where again πi(x) are determined by the K = 10 nearest training neighbors of the out-of-sample
point x.

Traditional robust optimization. We also compare against a more traditional robust optimiza-
tion approach. Specifically, for out-of-sample x, find the K nearest neighbors in the data, namely
N (x,K). Unlike Bertsimas & Kallus (2020) which simply minimizes the average cost, we weight
the remaining K datapoints adversarially according to a distribution π that is within a Kullback-
Leibler divergence distance of at most r from uniform distribution assigning weights 1/K to each
datapoint (so DKL(π||1/K) ≤ r). The formulation is

arg min
w∈P

max
π:DKL(π||1/K)≤r

∑
i∈N (x,K)

πigνi(w). (62)

This Kullback-Leibler uncertainty set was introduced in Ben-Tal et al. (2013) in the feature-less
setting. We use the methods in this paper to solve the proposed method in (62).

C.2 LOAD FORECASTING

gd(w) =

24∑
i=1

γs max{di −wi, 0}+ γe max{wi − di, 0}+
1

2
(wi − di)2 (63)

with additional ramping constraints wi+1 − wi| ≤ r, limiting the change in electricity generation
from one hour to the next. The optimization problem, given a forecast of ν is given by

w∗(d) = arg minw
∑24
i=1 γs max{di −wi, 0}+ γe max{wi − di, 0}+ 1

2 (wi − di)2
subject to |wi+1 −wi| ≤ r, i = 1, . . . , 23

w ≥ 0
(64)

We can rewrite the terms max{di−wi, 0},max{wi−di, 0} by variables hi and bi with constraints
hi ≥ di − wi,hi ≥ 0 and similar for bi. Since the objective is to minimize the overall cost, the
variable hi will take the minimum possible value while satisfying the constraints. So, it would equal
the maximum of 0 and di −wi. The problem can be reformulated as

w∗(d) = arg minw
∑24
i=1 γshi + γebi + 1

2 (wi − di)2
subject to |wi+1 −wi| ≤ r, i = 1, . . . , 23

hi ≥ di −wi, i = 1, . . . , 24
bi ≥ wi − di, i = 1, . . . , 24
w,h, b ≥ 0

(65)
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The method of Donti et al. (2017) views the problem as a stochastic optimization problem where
they predict a distribution for the demand d and solves the corresponding stochastic problem:

minw
∑24
i=1 Ed∼p(d|x)

[
γs max{di −wi, 0}+ γe max{wi − di, 0}+ 1

2 (wi − di)2
]

subject to |wi+1 −wi| ≤ r, i = 1, . . . , 23
w ≥ 0

(66)
where p(d|x) is the prediction made (end-to-end) of the demand distribution. The paper predicts
the mean and variance of the distribution, then assume it follows the corresponding gaussian distri-
bution. They solve the stochastic problem by sequential quadratic programming (SQP) to iteratively
approximate the problem. This is computationally much more expensive to do than the simple de-
terministic quadratic problem one must solve using the discretization method proposed.

C.3 PORTFOLIO OPTIMIZATION

We are given d investment options whose random returns are denoted by ri, i = 1, . . . , d. Let D be
the joint distribution of the ri. As data, we use historical stock prices of 8 companies starting from
January 2021, until August 2023. Denote by r(1), . . . , r(n) the returns observed on the train data

We wish to make decisions xi for the fraction of a portfolio to invest in option i. In this robust setting,
we wish to make a decision that maximizes the probability that the return is above a threshold t. In
particular, take decision given by

maxx Pr∼D
(
rTx ≥ t

)
subject to

∑d
i=1 xi = 1

xi ≥ 0
(67)

which we solve approximately by minimizing the expected violation across the data:

minx,j
∑n
j=1 qj

subject to qj ≥ (r(j))Tx− t∑d
i=1 xi = 1

x ≥ 0, q ≥ 0

(68)

Budget Uncertainty: We additionally compare against existing robust optimization approaches.
constructs an budget uncertainty set. They solve the problem

maxx minr∈UB

∑d
i=1(µi + σiri)xi

subject to
∑d
i=1 xi = 1

xi ≥ 0

(69)

where the uncertainty set is given by

UB = {r : ‖r‖∞ ≤ 1, ‖r‖1 ≤ Γ} (70)

and Γ is the co-called budget of uncertainty which needs to be tuned.

Data driven, KL-divergence and variation distance: Furthermore, we also compare against a
data-driven method, as in . Here, one treats the dataset as an empirical distribution and construct an
uncertainty set of all probability distributions (on the same support) that has KL-divergence at most
some ε. In particular, let π̂j = 1/n,∀j = 1, . . . , n be the uniform empirical distribution for the n
datapoints. Then, define UKL as the set of all probability π whose KL-divergence is at most ε from
π̂:

UKL = {π : π ≥ 0,

n∑
j=1

πj = 1,

n∑
j=1

πj log(πj/π̂j) ≤ ε} (71)

Then, the robust decision is given by solving the following:

maxx minπ∈UKL

∑n
j=1 πj · (r(j))Tx

subject to
∑d
i=1 xi = 1

xi ≥ 0

(72)
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However, this is a computationally expensive problem as it requires exponential cone constraints.
We see this in the increased running time required to solve the problem. Therefore, we also compare
with the same data-driven approach but using a simpler uncertainty set. In, particular consider the
set of probability distributions π that within a 1-norm distance of ε from the empirical π̂j = 1/n.
We denote this the variation distance uncertainty set UV D:

UV D = {π : π ≥ 0,

n∑
j=1

πj = 1,

n∑
j=1

|πj − π̂j | ≤ ε} (73)

C.4 INVENTORY ALLOCATION WITH NO FEATURES

We now consider an inventory allocation problem with K products from a store and must decide
on a number xk of items of type k, k = 1, . . . ,K to order. Let d(1), . . . , d(M) denote the demand
vectors on each of the M days of data. d(m)

k denotes the demand of product k on day m. We assume
a uniform holding cost of H for each unit of product that is not sold and a lost opportunity cost C
for each unit of demand is left unmet. The cost of allocating x units when the true demand is d is
given by

K∑
k=1

C ·max{dk − xk, 0}+H ·max{xk − dk, 0}. (74)

Furthermore, there is a capacity S on the total supply of products allowed in the store. So,∑K
k=1 xk ≤ S. We wish to make a decision x which maximizes the probability that its cost is

below a certain threshold t with demand d coming from some unknown distribution D:

maxx Pd∼D
(∑K

k=1 C ·max{dk − xk, 0}+H ·max{xk − dk, 0} ≤ t
)

subject to
∑K
k=1 xk ≤ S

xi ≥ 0

(75)

Using the framework of minimizing the expected violation, we reformulate the problem as

maxx,yh,yc,q
∑M
m=1 qm

subject to qm ≥
∑K
k=1H · hmk + C · cmk − t

hmk ≥ xk − d
(m)
k , hmk ≥ 0

cmk ≥ d
(m)
k − xk, cmk ≥ 0∑K

k=1 xk ≤ S, xi ≥ 0

(76)

where we introduce variables hmk and cmk to indicate the number of units that contribute to holding
and opportunity costs, respectively.

Adaptive robust optimization: We also compare against an adaptive robust optimization ap-
proach. Note that this is inherently a two-stage problem: after a demand realization is made, one
must fulfil the demand. So, xk are the first stage allocation decision, and hk(d), ck(d) are the second
stage variables that describe the fulfilment of demand d. Let U denote the uncertainty set for the
uncertain demand d. Then, the adaptive robust optimization problem is given as

minx maxd∈U
∑K
k=1H · hk(d) + C · ck(d)

subject to hk(d) ≥ xk − dk, hk(d) ≥ 0
ck(d) ≥ dk − dk, hk(d) ≥ 0∑d
i=1 xi = 1

xi ≥ 0

(77)

However, as written this is an infinite dimensional problem, requiring a different variable hk(d) for
each d ∈ U . As is commonly done, we use linear decision rules for the second stage variables.
Hence, hk(d), ck(d) are now linear functions of d:

hk(d) = h0k +

K∑
j=1

hjk · dj (78)

ck(d) = c0k +

K∑
j=1

cjk · dj (79)
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for new variables h0k, . . . , h
K
k , c

0
k, . . . , c

K
k , k = 1, . . . ,K to define the linear functions of d. As an

uncertainty set, we use again a budget uncertainty set:

U =

{
d :

K∑
k=1

dk − µk
σk

≤ Γ

}
(80)

where µk, σk are the empirical mean and variance of the demand of the kth product. Again, Γ is the
budget of uncertainty that must be tuned.

Data driven, KL-divergence and variation distance. As in the previous section, we consider
the data-driven method, robust against all empirical distributions that are within a fixed distance
from the observed empirical distribution. Again, let π̂m denote the uniform distribution over the
data d(1), . . . , d(M). We consider the two uncertainty sets of KL-diveregence UKL and Variation
Distance UV D as in (71) and (73). The problem can then be formulated as

minx,yh,yc maxπ∈UKL/V D

∑M
m=1 πm · (

∑K
k=1H · hmk + C · cmk )

subject to hmk ≥ xk − d
(m)
k , hmk ≥ 0

cmk ≥ d
(m)
k − xk, cmk ≥ 0∑K

k=1 xk ≤ S, xi ≥ 0

(81)

Results: For each decision made by all four approaches described above we calculate all costs on
test data and report the worst case costs incurred. In figures 5,6 we see the costs of the worst 5%
examples for each decision at various different supply capacities. We see that overall our proposed
approach is the minimum of the other approaches at almost every quantile. Furthermore, as the
capacity increases, and the more freedom we have in the decisions we can make, the larger the
gaps become. At the very highest quantiles (99%-100%), we see our approach performing up to
15-20% better than the other approaches. Moreover, in the 95%-97% quantiles, our approach and
the adaptive approach have a cost lower by up to 18% compared to the KL and VD approaches when
the capacity is 800. At a capacity of 1100, they have a cost up to 25% lower.

Figure 5: Worst-case costs at 800 capacity. Figure 6: Worst-case costs at 1000 capacity.

D IMPLEMENTATION AND TRACTABILITY

We now discuss some details of implementation and improving the running time of the method.
There are two parts to the approach, first to learn the labelling pnk and second to solve the optimiza-
tion problem to determine ŵε,φ(x).

E MAXIMIZING PROBABILITY OF LOW REGRET

Finally, we have a brief discussion on the difficulty of the original robust problem proposed in 4:

max
w∈P

Pνx∼Dx (Rνx(w) ≤ φ) . (82)

In general, if the distribution Dx is discrete, having point masses ν1
x, . . . ,ν

k
x with probabilities

p1, . . . , pk, the problem can be formulated as an mixed integer optimization problem:

20



Published as a conference paper at ICLR 2024

maxw,q
∑k
j=1 pj · qj

subject to Rνj
x
(w) ≤ ε+M(1− qj)

w ∈ P
q ∈ {0, 1}k

(83)

If Rνj
x
(w) > ε, the constraint forces that qj = 0. Therefore, qj is a binary variable that reflects

whether Rνj
x
(w) ≤ ε or not. If indeed the regret is less than ε, then qj can take either the value 0 or

1. But the objective is to maximize the weighted sum of the qj , therefore at optimality, it will take
the value of 1 whenever the regret of w with respect to νjx is at most ε.
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