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ABSTRACT

Most offline reinforcement learning (RL) methods suffer from the trade-off between
improving the policy to surpass the behavior policy and constraining the policy
to limit the deviation from the behavior policy as computing Q-values using out-
of-distribution (OOD) actions will suffer from errors due to distributional shift.
The recent proposed In-sample Learning paradigm (i.e., IQL), which improves
the policy by quantile regression using only data samples, shows great promise
because it learns an optimal policy without querying the value function of any
unseen actions. However, it remains unclear how this type of method handles
the distributional shift in learning the value function. In this work, we make a
key finding that the in-sample learning paradigm arises under the Implicit Value
Regularization (IVR) framework. This gives a deeper understanding of why the
in-sample learning paradigm works, i.e., it applies implicit value regularization
to the policy. Based on the IVR framework, we further propose two practical
algorithms, Sparse Q-learning (SQL) and Exponential Q-learning (EQL), which
adopt the same value regularization used in existing works, but in a complete in-
sample manner. Compared with IQL, we find that our algorithms introduce sparsity
in learning the value function, making them more robust in noisy data regimes. We
also verify the effectiveness of SQL and EQL on D4RL benchmark datasets and
show the benefits of in-sample learning by comparing them with CQL in small
data regimes. Code is available at https://github.com/ryanxhr/IVR.

1 INTRODUCTION

Reinforcement learning (RL) is an increasingly important technology for developing highly capable
AI systems, it has achieved great success in game-playing domains (Mnih et al., 2013; Silver et al.,
2017). However, the fundamental online learning paradigm in RL is also one of the biggest obstacles
to RL’s widespread adoption, as interacting with the environment can be costly and dangerous in
real-world settings. Offline RL, also known as batch RL, aims at solving the abovementioned problem
by learning effective policies solely from offline data, without any additional online interactions. It is
a promising area for bringing RL into real-world domains, such as robotics (Kalashnikov et al., 2021),
healthcare (Tang & Wiens, 2021) and industrial control (Zhan et al., 2022). In such scenarios, arbitrary
exploration with untrained policies is costly or dangerous, but sufficient prior data is available.

While most off-policy RL algorithms are applicable in the offline setting by filling the replay buffer
with offline data, improving the policy beyond the level of the behavior policy entails querying the
Q-function about values of actions produced by the policy, which are often not seen in the dataset.
Those out-of-distribution actions can be deemed as adversarial examples of the Q-function, which
cause extrapolation errors of the Q-function (Kumar et al., 2020). To alleviate this issue, prior
model-free offline RL methods typically add pessimism to the learning objective, in order to be
pessimistic about the distributional shift. Pessimism can be achieved by policy constraint, which
constrains the policy to be close to the behavior policy (Kumar et al., 2019; Wu et al., 2019; Nair
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et al., 2020; Fujimoto & Gu, 2021); or value regularization, which directly modifies the Q-function
to be pessimistic (Kumar et al., 2020; Kostrikov et al., 2021a; An et al., 2021; Bai et al., 2021).
Nevertheless, this imposes a trade-off between accurate value estimation (more regularization) and
maximum policy performance (less regularization).

In this work, we find that we could alleviate the trade-off in out-of-sample learning by performing
implicit value regularization, this bypasses querying the value function of any unseen actions, allows
learning an optimal policy using in-sample learning*. More specifically, we propose the Implicit
Value Regulazization (IVR) framework, in which a general form of behavior regularizers is added to
the policy learning objective. Because of the regularization, the optimal policy in the IVR framework
has a closed-form solution, which can be expressed by imposing weight on the behavior policy.
The weight can be computed by a state-value function and an action-value function, the state-value
function serves as a normalization term to make the optimal policy integrate to 1. It is usually
intractable to find a closed form of the state-value function, however, we make a subtle mathematical
transformation and show its equivalence to solving a convex optimization problem. In this manner,
both of these two value functions can be learned by only dataset samples.

Note that the recently proposed method, IQL (Kostrikov et al., 2021b), although derived from a
different view (i.e., approximate an upper expectile of dataset actions given a state), remains pretty
close to the learning paradigm of our framework. Furthermore, our IVR framework explains why
learning the state-value function is important in IQL and gives a deeper understanding of how IQL
handles the distributional shift: it is doing implicit value regularization, with the hyperparameter τ
to control the strength. This explains one disturbing issue of IQL, i.e., the role of τ does not have a
perfect match between theory and practice. In theory, τ should be close to 1 to obtain an optimal
policy while in practice a larger τ may give a worse result.

Based on the IVR framework, we further propose some practical algorithms. We find that the value
regularization terms used in CQL (Kumar et al., 2020) and AWR (Peng et al., 2019) are two valid
choices in our framework. However, when applying them to our framework, we get two complete
in-sample learning algorithms. The resulting algorithms also bear similarities to IQL. However, we
find that our algorithm introduces sparsity in learning the state-value function, which is missing in
IQL. The sparsity term filters out those bad actions whose Q-values are below a threshold, which
brings benefits when the quality of offline datasets is inferior. We verify the effectiveness of SQL on
widely-used D4RL benchmark datasets and demonstrate the state-of-the-art performance, especially
on suboptimal datasets in which value learning is necessary (e.g., AntMaze and Kitchen). We also
show the benefits of sparsity in our algorithms by comparing with IQL in noisy data regimes and the
robustness of in-sample learning by comparing with CQL in small data regimes.

To summarize, the contributions of this paper are as follows:

• We propose a general implicit value regularization framework, where different behavior regularizers
can be included, all leading to a complete in-sample learning paradigm.

• Based on the proposed framework, we design two effective offline RL algorithms: Sparse Q-
Learning (SQL) and Exponential Q-learning (EQL), which obtain SOTA results on benchmark
datasets and show robustness in both noisy and small data regimes.

2 RELATED WORK

To tackle the distributional shift problem, most model-free offline RL methods augment existing
off-policy methods (e.g., Q-learning or actor-critic) with a behavior regularization term. Behavior
regularization can appear explicitly as divergence penalties (Wu et al., 2019; Kumar et al., 2019;
Fujimoto & Gu, 2021), implicitly through weighted behavior cloning (Wang et al., 2020; Nair et al.,
2020), or more directly through careful parameterization of the policy (Fujimoto et al., 2018; Zhou
et al., 2020). Another way to apply behavior regularization is via modification of the critic learning
objective to incorporate some form of regularization, to encourage staying near the behavioral
distribution and being pessimistic about unknown state-action pairs (Nachum et al., 2019; Kumar
et al., 2020; Kostrikov et al., 2021a; Xu et al., 2022c). There are also several works incorporating

*The core difference between in-sample learning and out-of-sample learning is that in-sample learning uses
only dataset actions to learn the value function while out-of-sample learning uses actions produced by the policy.
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behavior regularization through the use of uncertainty (Wu et al., 2021; An et al., 2021; Bai et al.,
2021) or distance function (Li et al., 2023b).

However, in-distribution constraints used in these works might not be sufficient to avoid value function
extrapolation errors. Another line of methods, on the contrary, avoid value function extrapolation
by performing some kind of imitation learning on the dataset. When the dataset is good enough or
contains high-performing trajectories, we can simply clone or filter dataset actions to extract useful
transitions (Xu et al., 2022b; Chen et al., 2020), or directly filter individual transitions based on how
advantageous they could be under the behavior policy and then clones them Brandfonbrener et al.
(2021); Xu et al. (2021; 2022a). While alleviating extrapolation errors, these methods only perform
single-step dynamic programming and lose the ability to "stitch" suboptimal trajectories by multi-step
dynamic programming.

Our method can be viewed as a combination of these two methods while sharing the best of both
worlds: SQL and EQL implicitly control the distributional shift and learns an optimal policy by
in-sample generalization. SQL and EQL are less vulnerable to erroneous value estimation as in-
sample actions induce less distributional shift than out-of-sample actions. Similar to our work, IQL
approximates the optimum in-support policy by fitting the upper expectile of the behavior policy’s
action-value function, however, it is not motivated by remaining pessimistic to the distributional shift.

Our method adds a behavior regularization term to the RL learning objective. In online RL, there
are also some works incorporating an entropy-regularized term into the learning objective (Haarnoja
et al., 2018; Nachum et al., 2017; Lee et al., 2019; Neu et al., 2017; Geist et al., 2019; Ahmed et al.,
2019), this brings multi-modality to the policy and is beneficial for the exploration. Note that the
entropy-regularized term only involves the policy, it could be directly computed, resulting in a similar
learning procedure as in SAC (Haarnoja et al., 2018). While our method considers the offline setting
and provides a different learning procedure to solve the problem by jointly learning a state-value
function and an action-value function.

3 PRELIMINARIES

We consider the RL problem presented as a Markov Decision Process (MDP) (Sutton et al., 1998),
which is specified by a tuple M = ⟨S,A, T, r, ρ, γ⟩ consisting of a state space, an action space, a
transition probability function, a reward function, an initial state distribution, and the discount factor.
The goal of RL is to find a policy π(a|s) : S ×A → [0, 1] that maximizes the expected discounted
cumulative reward (or called return) along a trajectory as

max
π

E

[ ∞∑
t=0

γtr (st, at)

∣∣∣∣s0 = s, a0 = a, st ∼ T (·|st−1, at−1) , at ∼ π (·|st) for t ≥ 1

]
. (1)

In this work, we focus on the offline setting. Unlike online RL methods, offline RL aims to learn an
optimal policy from a fixed dataset D consisting of trajectories that are collected by different policies.
The dataset can be heterogenous and suboptimal, we denote the underlying behavior policy of D as
µ, which represents the conditional distribution p(a|s) observed in the dataset.

RL methods based on approximate dynamic programming (both online and offline) typically maintain
an action-value function (Q-function) and, optionally, a state-value function (V -function), refered
as Q(s, a) and V (s) respectively (Haarnoja et al., 2017; Nachum et al., 2017; Kumar et al., 2020;
Kostrikov et al., 2021b). These two value functions are learned by encouraging them to satisfy
single-step Bellman consistencies. Define a collection of policy evaluation operator (of different
policy x) on Q and V as

(T xQ)(s, a) := r(s, a) + γEs′|s,aEa′∼x [Q(s′, a′)]

(T xV )(s) := Ea∼π

[
r(s, a) + γEs′|s,a [V (s′)]

]
,

then Q and V are learned by minQ J(Q) = 1
2E(s,a)∼D

[
(T xQ−Q)(s, a)2

]
and minV J(V ) =

1
2Es∼D

[
(T xV − V )(s)2

]
, respectively. Note that x could be the learned policy π or the behavior

policy µ, if x = µ, then a ∼ µ and a′ ∼ µ are equal to a ∼ D and a′ ∼ D, respectively. In offline
RL, since D typically does not contain all possible transitions (s, a, s′), one actually uses an empirical
policy evaluation operator that only backs up a single s′ sample, we denote this operator as T̂ x.
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In-sample Learning via Expectile Regression Instead of adding explicit regularization to the
policy evaluation operator to avoid out-of-distribution actions, IQL uses only in-sample actions to
learn the optimal Q-function. IQL uses an asymmetric ℓ2 loss (i.e., expectile regression) to learn the
V -function, which can be seen as an estimate of the maximum Q-value over actions that are in the
dataset support, thus allowing implicit Q-learning:

min
V

E(s,a)∼D
[∣∣τ − 1

(
Q(s, a)− V (s) < 0

)∣∣(Q(s, a)− V (s)
)2]

(2)

min
Q

E(s,a,s′)∼D
[(
r(s, a) + γV (s′)−Q(s, a)

)2]
,

where 1 is the indicator function. After learning Q and V , IQL extracts the policy by advantage-
weighted regression (Peters et al., 2010; Peng et al., 2019; Nair et al., 2020):

min
π

E(s,a)∼D
[
exp (β (Q(s, a)− V (s))) log π(a|s)

]
. (3)

While IQL achieves superior D4RL benchmark results, several issues remain unsolved:

• The hyperparameter τ has a gap between theory and practice: in theory τ should be close to 1 to
obtain an optimal policy while in practice a larger τ may give a worse result.

• In IQL the value function is estimating the optimal policy instead of the behavior policy, how does
IQL handle the distributional shift issue?

• Why should the policy be extracted by advantage-weighted regression, does this technique guarantee
the same optimal policy as the one implied in the learned optimal Q-function?

4 OFFLINE RL WITH IMPLICIT VALUE REGULARIZATION

In this section, we introduce a framework where a general form of value regularization can be
implicitly applied. We begin with a special MDP where a behavior regularizer is added to the reward,
we conduct a full mathematical analysis of this regularized MDP and give the solution of it under
certain assumptions, which results in a complete in-sample learning paradigm. We then instantiate a
practical algorithm from this framework and give a thorough analysis and discussion of it.

4.1 BEHAVIOR-REGULARIZED MDPS

Like entropy-regularized RL adds an entropy regularizer to the reward (Haarnoja et al., 2018), in this
paper we consider imposing a general behavior regularization term to objective (1) and solve the
following behavior-regularized MDP problem

max
π

E
[ ∞∑

t=0

γt
(
r(st, at)− α · f

(π(at|st)
µ(at|st)

))]
, (4)

where f(·) is a regularization function. It is known that in entropy-regularized RL the regularization
gives smoothness of the Bellman operator (Ahmed et al., 2019; Chow et al., 2018), e.g., from greedy
max to softmax over the whole action space when the regularization is Shannon entropy. While in
our new learning objective (4), we find that the smoothness will transfer the greedy max from policy
π to a softened max (depending on f ) over behavior policy µ, this enables an in-sample learning
scheme, which is appealing in the offline RL setting.

In the behavior-regularized MDP, we have a modified policy evaluation operator T π
f given by

(T π
f )Q(s, a) := r(s, a) + γEs′|s,a [V (s′)]

where

V (s) = Ea∼π

[
Q(s, a)− αf

(π(a|s)
µ(a|s)

)]
.

The policy learning objective can also be expressed as maxπ Es∼D [V (s)]. Compared with the origin
policy evaluation operator T π, T π

f is actually applying a value regularization to the Q-function.
However, the regularization term is hard to compute because the behavior policy µ is unknown.
Although we can use Fenchel-duality (Boyd et al., 2004) to get a sampled-based estimation if f
belongs to the f -divergence (Wu et al., 2019), this unnecessarily brings a min-max optimization
problem, which is hard to solve and results in a poor performance in practice (Nachum et al., 2019).

4



Published as a conference paper at ICLR 2023

4.2 ASSUMPTIONS AND SOLUTIONS

We now show that we can get the optimal value function Q∗ and V ∗ without knowing µ. First, in
order to make the learning problems (4) analyzable, two basic assumptions are required as follows:

Assumption 1. Assume π(a|s) > 0 ⇒ µ(a|s) > 0 so that π/µ is well-defined.

Assumption 2. Assume the function f(x) satisfies the following conditions on (0,∞) : (1) f(1) = 0;
(2) hf (x) = xf(x) is strictly convex; (3) f(x) is differentiable.

The assumptions of f(1) = 0 and xf(x) strictly convex make the regularization term be positive
due to the Jensen’s inequality as Eµ

[
π
µf
(
π
µ

)]
≥ 1f(1) = 0. This guarantees that the regularization

term is minimized only when π = µ. Because hf (x) is strictly convex, its derivative, h′
f (x) =

f(x) + xf ′(x) is a strictly increasing function and thus (h′
f )

−1(x) exists. For simplicity, we denote
gf (x) = (h′

f )
−1(x). The assumption of differentiability facilitates theoretic analysis and benefits

practical implementation due to the widely used automatic derivation in deep learning.

Under these two assumptions, we can get the following two theorems:

Theorem 1. In the behavior-regularized MDP, any optimal policy π∗ and its optimal value function
Q∗ and V ∗ satisfy the following optimality condition for all states and actions:

Q∗(s, a) = r(s, a) + γEs′|s,a [V
∗ (s′)]

π∗(a|s) = µ(a|s) ·max

{
gf

(Q∗(s, a)− U∗(s)

α

)
, 0

}
(5)

V ∗(s) = U∗(s) + αEa∼µ

[(π∗(a|s)
µ(a|s)

)2
f ′
(π∗(a|s)
µ(a|s)

)]
(6)

where U∗(s) is a normalization term so that
∑

a∈A π∗(a|s) = 1.

The proof is provided in Appendix C.1. The proof depends on the KKT condition where the derivative
of a Lagrangian objective function with respect to policy π(a|s) becomes zero at the optimal solution.
Note that the resulting formulation of Q∗ and V ∗ only involves U∗ and action samples from µ. U∗(s)
can be uniquely solved from the equation obtained by plugging Eq.(5) into

∑
a∈A π∗(a|s) = 1,

which also only uses actions sampled from µ. In other words, now the learning of Q∗ and V ∗ can be
realized in an in-sample manner.

Theorem 1 also shows how the behavior regularization influences the optimality condition. If we
choose f such that there exists some x that gf (x) < 0, then it can be shown from Eq.(5) that the
optimal policy π∗ will be sparse by assigning zero probability to the actions whose Q-values Q∗(s, a)
are below the threshold U∗(s) + αh′

f (0) and assigns positive probability to near optimal actions in
proportion to their Q-values (since gf (x) is increasing). Note that π∗ could also have no sparsity, for
example, if we choose f = log(x), then gf = exp(x− 1) will give all elements non-zero values.

Theorem 2. Define T ∗
f the case where π in T π

f is the optimal policy π∗, then T ∗
f is a γ-contraction.

The proof is provided in Appendix C.2. This theorem means that by applying Qk+1 = T ∗
f Qk

repeatedly, then sequence Qk will converge to the Q-value of the optimal policy π∗ when k → ∞.

After giving the closed-form solution of the optimal value function. We now aim to instantiate a
practical algorithm. In offline RL, in order to completely avoid out-of-distribution actions, we want
a zero-forcing support constraint, i.e., µ(a|s) = 0 ⇒ π(a|s) = 0. This reminds us of the class of
α-divergence (Boyd et al., 2004), which is a subset of f -divergence and takes the following form
(α ∈ R\{0, 1}):

Dα(µ, π) =
1

α(α− 1)
Eπ

[(π
µ

)−α

− 1

]
.

α-divergence is known to be mode-seeking if one chooses α ≤ 0. Note that the Reverse KL
divergence is the limit of Dα(µ, π) when α → 0. We can also obtain Helinger distance and Neyman
χ2-divergence as α = 1/2 and α = −1, respectively. One interesting property of α-divergence is
that Dα(µ, π) = D1−α(π, µ).
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4.3 SPARSE Q-LEARNING (SQL)

We first consider the case where α = −1, which we find is the regularization term CQL adds to the
policy evaluation operator (according to Appendix C in CQL): Q(s, a) = T πQ(s, a)− β[π(a|s)µ(a|s) − 1].
In this case, we have f(x) = x − 1 and gf (x) = 1

2x + 1
2 . Plug them into Eq.(5) and Eq.(6) in

Theorem 1, we get the following formulation:

Q∗(s, a) = r(s, a) + γEs′|s,a [V
∗ (s′)] (7)

π∗(a|s) = µ(a|s) ·max

{
1

2
+

Q∗(s, a)− U∗(s)

2α
, 0

}
(8)

V ∗(s) = U∗(s) + αEa∼µ

[(π∗(a|s)
µ(a|s)

)2]
, (9)

where U∗(s) needs to satisfy the following equation to make π∗ integrate to 1:

Ea∼µ

[
max

{1
2
+

Q∗(s, a)− U∗(s)

2α
, 0
}]

= 1 (10)

It is usually intractable to get the closed-form solution of U∗(s) from Eq.(10), however, here we make
a mathematical transformation and show its equivalence to solving a convex optimization problem.
Lemma 1. We can get U∗(s) by solving the following optimization problem:

min
U

Ea∼µ

[
1
(1
2
+

Q∗(s, a)− U(s)

2α
> 0
)(1

2
+

Q∗(s, a)− U(s)

2α

)2]
+

U(s)

α
(11)

The proof can be easily got if we set the derivative of the objective to 0 with respect to U(s), which is
exactly Eq.(10). Now we obtain a learning scheme to get Q∗, U∗ and V ∗ by iteratively updating Q,
U and V following Eq.(9), objective (11) and Eq.(7), respectively. We refer to this learning scheme
as SQL-U, however, SQL-U needs to train three networks, which is a bit computationally expensive.

Note that the term Ea∼µ

[(π∗(a|s)
µ(a|s)

)2]
in Eq.(9) is equal to Ea∼π∗

[π∗(a|s)
µ(a|s)

]
, as π∗ is optimized to

become mode-seeking, for actions sampled from π∗, its probability π∗(a|s) should be close to the
probability under the behavior policy, µ(a|s). Note that for actions sampled from µ, π∗(a|s) and
µ(a|s) may have a large difference because π∗(a|s) may be 0.

Hence in SQL we make an approximation by assuming Ea∼π∗
[π∗(a|s)

µ(a|s)
]
= 1, this removes one

network as U∗ = V ∗ − α. Replacing U∗ with V ∗, we get the following learning scheme that only
needs to learn V and Q iteratively to get V ∗ and Q∗:

min
V

E(s,a)∼D

[
1
(
1 +

Q(s, a)− V (s)

2α
> 0
)(

1 +
Q(s, a)− V (s)

2α

)2
+

V (s)

α

]
(12)

min
Q

E(s,a,s′)∼D

[(
r(s, a) + γV (s′)−Q(s, a)

)2]
(13)

After getting V and Q, following the formulation of π∗ in Eq.(8), we can get the learning objective
of policy π by minimizing the KL-divergence between π and π∗:

max
π

E(s,a)∼D

[
1
(
1 +

Q(s, a)− V (s)

2α
> 0
)(

1 +
Q(s, a)− V (s)

2α

)
log π(a|s)

]
. (14)

4.4 EXPONENTIAL Q-LEARNING (EQL)

Now let’s consider another choice, α → 0 which is the Reverse KL divergence. Note that AWR
also uses Reverse KL divergence, however, it applies it to the policy improvement step and needs to
sample actions from the policy when learning the value function. In this case, we get f(x) = log(x)
and gf (x) = exp(x− 1). Plug them into Eq.(5) and Eq.(6) in Theorem 1, we have

Q∗(s, a) = r(s, a) + γEs′|s,a [V
∗ (s′)]

6
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π∗(a|s) = µ(a|s) · exp
(
Q∗(s, a)− U∗(s)

α
− 1

)
V ∗(s) = U∗(s) + αEa∼µ

[(π∗(a|s)
µ(a|s)

)2 µ(a|s)
π∗(a|s)

]
,

note that Ea∼µ[(
π∗(a|s)
µ(a|s) )

2 µ(a|s)
π∗(a|s) ] is equal to 1, so we get V ∗(s) = U∗(s) + α, this eliminates

the existence of U∗ without any approximation. Replacing U∗ with V ∗, we get the following
formulation:

Q∗(s, a) = r(s, a) + γEs′|s,a [V
∗ (s′)]

π∗(a|s) = µ(a|s) · exp
(
Q∗(s, a)− V ∗(s)

α

)
Note that π∗ should be integrated to 1, we use the same mathematical transformation did in SQL and
get the closed-form solution of V ∗(s) by solving the following convex optimization problem.
Lemma 2. We can get V ∗(s) by solving the following optimization problem:

min
V

Ea∼µ

[
exp

(Q∗(s, a)− V (s)

α

)]
+

V (s)

α

Now the final learning objective of Q, V and π is:

min
V

E(s,a)∼D

[
exp

(Q(s, a)− V (s)

α

)
+

V (s)

α

]
(15)

min
Q

E(s,a,s′)∼D

[(
r(s, a) + γV (s′)−Q(s, a)

)2]
(16)

max
π

E(s,a)∼D

[
exp

(Q(s, a)− V (s)

α

)
log π(a|s)

]
, (17)

we name this algorithm as EQL (Exponential Q-Learning) because there is an exponential term in the
learning objective.

To summarize, our final algorithm, SQL and EQL, consist of three supervised stages: learning
V , learning Q, and learning π. We use target networks for Q-functions and use clipped double
Q-learning (take the minimum of two Q-functions) in learning V and π. We summarize the training
procedure in Algorithm 1.

4.5 DISCUSSIONS

Algorithm 1 Sparse or Exponential Q-Learning
Require: D, α.
1: Initialize Qϕ, Qϕ′ , Vψ , πθ
2: for t = 1, 2, · · · , N do
3: Sample transitions (s, a, r, s′) ∼ D
4: Update Vψ by Eq.(12) or Eq.(15) using Vψ , Qϕ′

5: Update Qϕ by Eq.(13) or Eq.(16) using Vψ , Qϕ

6: Update Qϕ′ by ϕ′ ← λϕ+ (1− λ)ϕ′

7: Update πθ by Eq.(14) or Eq.(17) using Vψ , Qϕ′

8: end for

SQL and EQL establishes the connection with
several prior works such as CQL, IQL and AWR.

Like CQL pushes down policy Q-values and
pushes up dataset Q-values, in SQL and EQL,
the first term in Eq.(12) and Eq.(15) pushes
up V -values if Q − V > 0 while the second
term pushes down V -values, and α trades off
these two terms. SQL incorporates the same
inherent conservatism as CQL by adding the
χ2-divergence to the policy evaluation operator.
However, SQL learns the value function using only dataset samples while CQL needs to sample
actions from the policy. In this sense, SQL is an "implicit" version of CQL that avoids any out-of-
distribution action. Like AWR, EQL applies the KL-divergence, but implicitly in the policy evaluation
step. In this sense, EQL is an "implicit" version of AWR that avoids any OOD action.

Like IQL, SQL and EQL learn both V -function and Q-function. However, IQL appears to be a
heuristic approach and the learning objective of V -function in IQL has a drawback. We compute the
derivative of the V -function learning objective with respect to the residual (Q− V ) in SQL and IQL
(see Figure 2 in Appendix A). We find that SQL keeps the derivative unchanged when the residual
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Table 1: Averaged normalized scores of SQL against other baselines. The scores are taken over the final 10
evaluations with 5 seeds. SQL or EQL achieves the highest scores in 14 out of 18 tasks.

Dataset BC 10%BC BCQ DT One-step TD3+BC CQL IQL SQL EQL
halfcheetah-m 42.6 42.5 47.0 42.6 48.4 48.3 44.0 ±0.8 47.4 ±0.2 48.3±0.2 47.2±0.3
hopper-m 52.9 56.9 56.7 67.6 59.6 59.3 58.5 ±2.1 66.3 ±5.7 75.5 ±3.4 70.6±2.6
walker2d-m 75.3 75.0 72.6 74.0 81.8 83.7 72.5 ±0.8 72.5 ±8.7 84.2 ±4.6 83.2±4.4
halfcheetah-m-r 36.6 40.6 40.4 36.6 38.1 44.6 45.5 ±0.5 44.2 ±1.2 44.8±0.7 44.5±0.5
hopper-m-r 18.1 75.9 53.3 82.7 97.5 60.9 95.0 ±6.4 95.2 ±8.6 101.7 ±3.3 98.1±3.6
walker2d-m-r 26.0 62.5 52.1 66.6 49.5 81.8 77.2±5.5 76.1 ±7.3 77.2±3.8 81.6±4.2
halfcheetah-m-e 55.2 92.9 89.1 86.8 93.4 90.7 90.7±4.3 86.7±5.3 94.0±0.4 94.6 ±0.5
hopper-m-e 52.5 110.9 81.8 107.6 103.3 98.0 105.4±6.8 101.5 ±7.3 111.8 ±2.2 111.5±2.1
walker2d-m-e 107.5 109.0 109.0 108.1 113.0 110.1 109.6±0.7 110.6±1.0 110.0±0.8 110.2±0.8

antmaze-u 54.6 62.8 78.9 59.2 64.3 78.6 84.8±2.3 85.5 ±1.9 92.2±1.4 93.2 ±2.2
antmaze-u-d 45.6 50.2 55.0 53.0 60.7 71.4 43.4±5.4 66.7 ±4.0 74.0 ±2.3 70.4±2.7
antmaze-m-p 0 5.4 0 0.0 0.3 10.6 65.2±4.8 72.2 ±5.3 80.2 ±3.7 77.5±4.3
antmaze-m-d 0 9.8 0 0.0 0.0 3.0 54.0±11.7 71.0 ±3.2 75.1 ±4.2 74.0±3.7
antmaze-l-p 0 0.0 6.7 0.0 0.0 0.2 38.4±12.3 39.6 ±4.5 50.2 ±4.8 45.6±4.2
antmaze-l-d 0 6.0 2.2 0.0 0.0 0.0 31.6±9.5 47.5 ±4.4 52.3 ±5.2 49.5±4.7
kitchen-c 33.8 - - - - - 43.8 ±11.2 61.4 ±9.5 76.4 ±8.7 70.3±7.1
kitchen-p 33.9 - - - - - 49.8±10.1 46.1 ±8.5 72.5 ±7.4 70.5±8.8
kitchen-m 47.5 - - - - - 51.0±6.5 52.8 ±4.5 67.4 ±5.4 61.6±5.2

is below a threshold, while IQL doesn’t. In IQL, the derivative keeps decreasing as the residual
becomes more negative, hence, the V -function will be over-underestimated by those bad actions
whose Q-value is extremely small. Note that SQL and EQL will assign a zero or exponential small
probability mass to those bad actions according to Eq.(14) and Eq.(17), the sparsity is incorporated
due to the mode-seeking behavior of χ2-divergence and KL-divergence.

Also, IQL needs two hyperparameters (τ and β) while SQL only needs one (α). The two hyper-
parameters in IQL may not align well because they represent two different regularizations. Note
that objective (17) is exactly how IQL extracts the policy! However, the corresponding optimal
V -function learning objective (15) is not objective (2). This reveals that the policy extraction part in
IQL gets a different policy from the one implied in the optimal Q-function.

5 EXPERIMENTS

We present empirical evaluations of SQL and EQL in this section. We first evaluate SQL and EQL
against other baseline algorithms on benchmark offline RL datasets. We then show the benefits of
sparsity introduced in SQL and EQL by comparing them with IQL in noisy data regimes. We finally
show the robustness of SQL and EQL by comparing them with CQL in small data regimes.

5.1 BENCHMARK DATASETS

We first evaluate our approach on D4RL datasets (Fu et al., 2020). It is worth mentioning that Antmaze
and Kitchen datasets include few or no near-optimal trajectories, and highly require learning a value
function to obtain effective policies via "stitching". We compare SQL with prior state-of-the-art
offline RL methods, including BC (Pomerleau, 1989), 10%BC (Chen et al., 2021), BCQ (Fujimoto
et al., 2018), DT (Chen et al., 2021), TD3+BC (Fujimoto & Gu, 2021), One-step RL (Brandfonbrener
et al., 2021), CQL (Kumar et al., 2020), and IQL (Kostrikov et al., 2021a). Aggregated results are
displayed in Table 1. In MuJoCo tasks, where performance is already saturated, SQL and EQL
show competitive results to the best performance of prior methods. In more challenging AntMaze
and Kitchen tasks, SQL and EQL outperform all other baselines by a large margin. This shows the
effectiveness of value learning in SQL and EQL. We show learning curves and performance profiles
generated by the rliable library (Agarwal et al., 2021) in Appendix D.

We then compare our approach with other baselines on high-dimensional image-based Atari datasets
in RL Unplugged (Gulcehre et al., 2020). Our approach also achieves superior performance on these
datasets, we show aggregated results, performance profiles and experimental details in Appendix D.
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5.2 NOISY DATA REGIME
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Figure 1: Performance of different methods in noisy data regimes.

In this section, we try to validate our
hypothesis that the sparsity term our
algorithm introduced in learning the
value function will benefit when the
datasets contain a large portion of
noisy transitions. To do so, we make
a "mixed" dataset by combining ran-
dom datasets and expert dataset with
different expert ratios. We test the per-
formance of SQL, EQL and IQL under different mixing ratios in Fig. 1.

It is shown that SQL and EQL outperforms IQL under all settings. The performance of IQL is
vulnerable to the expert ratio, it has a sharp decrease from 30% to 1% while SQL and EQL still retain
the expert performance. For example, in walker2d, SQL and EQL reaches near 100 performance
when the expert ratio is only 5%; in halfcheetah, IQL is affected even with a high expert ratio (30%).

5.3 SMALL DATA REGIME

Table 2: The normalized return (NR) and Bellman error
(BR) of CQL, SQL and EQL in small data regimes.

Dataset (AntMaze) CQL SQL EQL
NR BE NR BE NR BE

Medium

Vanilla 65.2 13.1 75.1 1.6 74.0 2.2
Easy 48.2 14.8 56.2 1.7 57.5 1.1

Medium 14.5 14.7 43.3 2.1 39.7 2.3
Hard 9.3 64.4 24.2 1.9 19.6 1.8

Large

Vanilla 38.4 13.5 50.2 1.4 49.6 1.7
Easy 28.1 12.8 40.5 1.5 40.4 1.7

Medium 6.3 30.6 36.7 1.3 35.3 1.8
Hard 0 300.5 34.2 2.6 31.6 1.6

In this section, we try to explore the benefits of
in-sample learning over out-of-sample learning.
We are interested to see whether in-sample learn-
ing brings more robustness than out-of-sample
learning when the dataset size is small or the
dataset diversity of some states is small, which
are challenges one might encounter when using
offline RL algorithms on real-world data.

To do so, we make custom datasets by discard-
ing some transitions in the AntMaze datasets.
For each transition, the closer it is to the target location, the higher probability it will be discarded
from the dataset. This simulates the scenarios (i.e., robotic manipulation) where the dataset is fewer
and has limited state coverage near the target location because the (stochastic) data generation policies
maybe not be successful and are more determined when they get closer to the target location (Kumar
et al., 2022). We use a hyperparameter to control the discarding ratio and build three new tasks:
Easy, Medium and Hard, with dataset becomes smaller. For details please refer to Appendix D. We
compare SQL with CQL as they use the same inherent value regularization but SQL uses in-sample
learning while CQL uses out-of-sample learning,

We demonstrate the final normalized return (NR) during evaluation and the mean squared Bellman
error (BE) during training in Table 2. It is shown that CQL has a significant performance drop when
the difficulty of tasks increases, and the Bellman error also exponentially grows up, indicating that
the value extrapolation error becomes large in small data regimes. SQL and EQL remain a stable yet
good performance under all difficulties, the Bellman error of SQL is much smaller than that of CQL.
This justifies the benefits of in-sample learning, i.e., it avoids erroneous value estimation by using
only dataset samples while still allowing in-sample generalization to obtain a good performance.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a general Implicit Value Regularization framework, which builds the bridge
between behavior regularized and in-sample learning methods in offline RL. Based on this framework,
we propose two practical algorithms, which use the same value regularization in existing works, but
in a complete in-sample manner. We verify the effectiveness of our algorithms on both the D4RL
benchmark and customed noisy and small data regimes by comparing it with different baselines. One
future work is to scale our proposed framework to online RL or offline imitaiton learning (Li et al.,
2023a). Another future work is, instead of only constraining action distribution, constraining the
state-action distribution between dπ and dD as considered in Nachum et al. (2019).
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A A STATISTICAL VIEW OF WHY SQL AND EQL WORK

Inspired by the analysis in IQL, we give another view of why SQL and EQL could learn the optimal
policy. Consider estimating a parameter mα for a random variable X using samples from a dataset D,
we show that mα could fit the extrema of X by using the learning objective of V -function in SQL:

argmin
mα

Ex∼D

[
1
(
1 +

x−mα

2α
> 0
)(

1 +
x−mα

2α

)2
+

mα

α

]
,

or using the learning objective of V -function in EQL:

argmin
mα

Ex∼D

[
exp

(x−mα

α

)
+

mα

α

]
In Figure 2 and Figure 3, we give an example of estimating the state conditional extrema of a two-
dimensional random variable, as shown, α → 0 approximates the maximum operator over in-support
values of y given x. This phenomenon can be justified in our IVR framework as the value function
becomes more optimal with less value regularization. However, less value regularization also brings
more distributional shift, so we need a proper α to trade-off optimality against distributional shift.
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Figure 2: Left: The loss with respect to the residual (Q − V ) in the learning objective of V in SQL with
different α. Center: An example of estimating state conditional extrema of a two-dimensional random variable
(generated by adding random noise to samples from y = sin(x)). Each x corresponds to a distribution over y.
The loss fits the extrema more with α becoming smaller. Right: The comparison of the derivative of loss of
SQL and IQL. In SQL, the derivative keeps unchanged when the residual is below a threshold.
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Figure 3: Left: The loss with respect to the residual (Q − V ) in the learning objective of V in EQL with
different α. Center: An example of estimating state conditional extrema of a two-dimensional random variable
(generated by adding random noise to samples from y = sin(x)). Each x corresponds to a distribution over y.
The loss fits the extrema more with α becoming smaller. Right: The comparison of the derivative of loss of
EQL and IQL. In EQL, the derivative softly decreases and keeps (nearly) unchanged when the residual is below
a threshold.

B HOW DOES SPARSITY BENEFIT VALUE LEARNING IN SQL?

In this section, we add more experiments about the sparsity characteristic of SQL. We use a toy
example in the tabular setting to demonstrate how sparsity benefits value learning in SQL. We study
the relationship of normalized score and sparsity ratio with α in the continuous action setting to
clearly show that sparsity plays an important role in the performance of SQL.

13



Published as a conference paper at ICLR 2023

Figure 4: Evaluation of IQL and SQL on the Four Rooms environment. SQL learns a more optimal value
function and produces a better policy than IQL when the dataset is heavily corrupted by suboptimal actions.

Table 3: The relationship of the normalized score (left) and non-sparsity ratio (right) with α in MuJoCo datasets.

α 0.5 1 2 5 10
metrics score ratio score ratio score ratio score ratio score ratio
halfcheetah-m 48.3 0.72 48.7 0.91 48.1 0.96 47.4 0.97 47.1 1.00
hopper-m 62.5 0.84 74.5 0.90 74.1 0.98 68.5 0.99 62.4 0.99
walker2d-m 22.3 0.03 65.3 0.93 84.2 0.98 83.7 0.99 84.1 0.99
halfcheetah-m-r 43.2 0.65 44.2 0.84 44.8 0.89 44.9 0.97 44.8 0.99
hopper-m-r 43.5 0.53 95.5 0.74 100.7 0.78 63.3 0.94 74.2 0.99
walker2d-m-r 5.9 0.51 38.2 0.70 82.2 0.89 80.3 0.97 81.3 1.00
halfcheetah-m-e 40.2 0.38 39.3 0.33 35.8 0.27 94.2 0.99 94.8 0.99
hopper-m-e 18.6 0.07 106.3 0.89 106.6 0.94 111.9 0.96 111.5 0.99
walker2d-m-e 9.2 0.01 110.2 0.95 111.3 0.96 109.5 0.99 111.2 0.99
mujoco-mean 30.4 0.41 69.2 0.80 76.4 0.85 78.1 0.97 79.0 0.99

Table 4: The relationship of the normalized score (left) and non-sparsity ratio (right) with α in AntMaze datasets.

α 0.2 0.3 0.5 0.7 0.9 1.0 2.0
metrics score ratio score ratio score ratio score ratio score ratio score ratio score ratio
antmaze-m-d 40.3 0.01 62.6 0.39 75.1 0.35 68.6 0.70 61.6 0.82 63.4 0.77 17.5 0.92
antmaze-m-p 0.0 0.03 70.2 0.32 80.2 0.62 67.5 0.81 69.3 0.83 67.3 0.75 2.0 0.88
antmaze-l-d 35.3 0.0 55.2 0.56 50.2 0.70 39.5 0.75 18.3 0.91 20.5 0.88 4.1 0.98
antmaze-l-p 0 0.48 38.3 0.33 52.3 0.51 18.2 0.70 20.3 0.89 11.5 0.80 2.1 0.95
antmaze-mean 18.9 0.13 56.6 0.40 64.5 0.79 48.5 0.74 42.4 0.86 40.7 0.80 7.5 0.94

B.1 SPARSITY IN THE TABULAR SETTING

In Appendix A, we show the comparison of loss’s derivative of SQL and IQL, we found that SQL
keeps the derivative unchanged when the residual is below a threshold while IQL doesn’t, the
V -function in IQL will be over-underestimated by those bad actions whose Q-value is small.

To justify this claim, we use the Four Rooms environment, where the agent starts from the bottom-left
and needs to navigate through the four rooms to reach the goal in the up-right corner in as few steps
as possible. There are four actions: A = {up, down, right, left}. The reward is zero on each time
step until the agent reaches the goal-state where it receives +10. The offline dataset is collected by a
random behavior policy which takes each action with equal probability. We collect 30 trajectories
and each trajectory is terminated after 20 steps if not succeed, γ is 0.9.

It can be seen from Fig. 4 that the value learning in IQL is corrupted by those suboptimal actions in
this dataset. Those suboptimal actions prevent IQL from propagating correct learning signals from
the goal location to the start location, resulting underestimated V -values and some mistaken Q-values.
Particularly, incorrect Q-values at (1, 1) and (5, 9) make the agent fail to reach the goal. While in
SQL, V -values and Q-values are more identical to the true optimal ones and the agent succeeds in
reaching the goal location. This reveals that the sparsity term in SQL helps to alleviate the effect of
bad dataset actions and learn a more optimal value function.
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B.2 SPARSITY IN THE CONTINUOUS ACTION SETTING

The value of non-sparsity ratio (i.e., E(s,a)∼D[1(1+(Q(s, a)−V (s))/2α > 0)]) is controlled by the
hyperparameter α. In the continuous action setting, we show the relationship of the normalized score
and non-sparsity ratio with α in Table 3 and Table 4. It can be seen that typically a larger α gives less
sparsity, sparsity plays an important role in the performance of SQL and we need to choose a proper
sparsity ratio to achieve the best performance. The best sparsity ratio depends on the composition of
the dataset, for example, the best sparsity ratios in MuJoCo datasets (around 0.1) are always larger
than those in AntMaze datasets (around 0.4), this is because AntMaze datasets are kind of multi-task
datasets (the start and goal location are different from the current ones), there is a large portion of
useless transitions contained so it is reasonable to give those transitions zero weights by using more
sparsity.

C PROOFS

C.1 PROOF OF THEOREM 1

In this section, we give the detailed proof for Theorem 1, which states the optimality condition of the
behavior regularized MDP. The proof follows from the Karush-Kuhn-Tucker (KKT) conditions where
the derivative of a Lagrangian objective function with respect to policy π(a|s) is set zero. Hence, our
main theory is necessary and sufficient.

Proof. The Lagrangian function of (4) is written as follows

L(π, β, u) =
∑
s

dπ(s)
∑
a

π(a|s)
(
Q(s, a)− αf

(
π(a|s)
µ(a|s)

))

−
∑
s

dπ(s)

[
u(s)

(∑
a

π(a|s)− 1

)
−
∑
a

β(a|s)π(a|s)

]
,

where dπ is the stationary state distribution of the policy π, u and β are Lagrangian multipliers for
the equality and inequality constraints respectively.

Let hf (x) = xf(x). Then the KKT condition of (4) are as follows, for all states and actions we have

0 ≤ π(a|s) ≤ 1 and
∑
a

π(a|s) = 1 (18)

0 ≤ β(a|s) (19)
β(a|s)π(a|s) = 0 (20)

Q(s, a)− αh′
f

(
π(a|s)
µ(a|s)

)
− u(s) + β(a|s) = 0 (21)

where (18) is the feasibility of the primal problem, (19) is the feasibility of the dual problem, (20)
results from the complementary slackness and (21) is the stationarity condition. We eliminate dπ(s)
since we assume all policies induce an irreducible Markov chain.

From (21), we can resolve π(a|s) as

π(a|s) = µ(a|s) · gf
(
1

α
(Q(s, a)− u(s) + β(a|s))

)
Fix a state s. For any positive action, its corresponding Lagrangian multiplier β(a|s) is zero due to
the complementary slackness and Q(s, a) > u(s) + αh′

f (0) must hold. For any zero-probability
action, its Lagrangian multiplier β(a|s) will be set such that π(a|s) = 0. Note that β(a|s) ≥ 0,
thus Q(s, a) ≤ u(s) + αh′

f (0) must hold in this case. From these observations, π(a|s) can be
reformulated as

π(a|s) = µ(a|s) ·max

{
gf

(
1

α
(Q(s, a)− u(s))

)
, 0

}
(22)
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By plugging (22) into (18), we can obtain an new equation

Ea∼µ

[
max

{
gf

(
1

α
(Q(s, a)− u(s))

)
, 0

}]
= 1 (23)

Note that (23) has and only has one solution denoted as u∗ (because the LHS of (23) can be seen as a
continuous and monotonic function of u), so u∗ can be solved uniquely. We denote the corresponding
policy π as π∗.

Next we aim to obtain the optimal state value V ∗. It follows that

V ∗(s) = T ∗
f V ∗(s)

=
∑
a

π∗(a|s)
(
Q∗(s, a)− αf

(
π∗(a|s)
µ(a|s)

))
=
∑
a

π∗(a|s)
(
u∗(s) + α

π∗(a|s)
µ(a|s)

f ′
(
π∗(a|s)
µ(a|s)

))
= u∗(s) + α

∑
a

π∗(a|s)2

µ(a|s)
f ′
(
π∗(a|s)
µ(a|s)

)

= u∗(s) + αEa∼µ

[(
π∗(a|s)
µ(a|s)

)2

f ′
(
π∗(a|s)
µ(a|s)

)]

The first equality follows from the definition of the optimal state value. The second equality holds
because π maximizes T ∗

f V ∗(s). The third equality results from plugging (21).

To summarize, we obtain the optimality condition of the behavior regularized MDP as follows

Q∗(s, a) = r(s, a) + γEs′|s,a [V
∗ (s′)]

π∗(a|s) = µ(a|s) ·max

{
gf

(Q∗(s, a)− u∗(s)

α

)
, 0

}
V ∗(s) = u∗(s) + αEa∼µ

[(π∗(a|s)
µ(a|s)

)2
f ′
(π∗(a|s)
µ(a|s)

)]

C.2 PROOF OF THEOREM 2

Proof. For any two state value functions V1 and V2 , let πi be the policy that maximizes T ∗
f Vi,

i ∈ 1, 2. Then it follows that for any state s in S,(
T ∗
f V1

)
(s)−

(
T ∗
f V2

)
(s)

=
∑
a

π1(a|s)
[
r + γEs′ [V1 (s

′)]− αf

(
π1(a|s)
µ(a|s)

)]
−max

π

∑
a

π(a|s)
[
r + γEs′ [V2 (s

′)]− αf

(
π(a|s)
µ(a|s)

)]
≤
∑
a

π1(a|s)
[
r + γEs′ [V1 (s

′)]− αf

(
π1(a|s)
µ(a|s)

)]
−
∑
a

π1(a|s)
[
r + γEs′ [V2 (s

′)]− αf

(
π1(a|s)
µ(a|s)

)]
= γ

∑
a

π1(a|s)Es′ [V1 (s
′)− V2 (s

′)] ≤ γ ∥V1 − V2∥∞

By symmetry, it follows that for any state s in S,(
T ∗
f V1

)
(s)−

(
T ∗
f V2

)
(s) ≤ γ ∥V1 − V2∥∞

Therefore, it follows that ∥∥T ∗
f V1 − T ∗

f V2

∥∥
∞ ≤ γ ∥V1 − V2∥∞
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D EXPERIMENTAL DETAILS

D4RL experimental details For MuJoCo locomotion and Kitchen tasks, we average mean returns
over 10 evaluations every 5000 training steps, over 5 random seeds. For AntMaze tasks, we average
over 100 evaluations every 0.1M training steps, over 5 random seeds. Followed by IQL, we standardize
the rewards by dividing the difference in returns of the best and worst trajectories in MuJoCo and
kitchen tasks, we subtract 1 to rewards in AntMaze tasks.

Our implementation of 10%BC is as follows, we first filter the top 10 % trajectories in terms of the
trajectory return, and then run behaviour cloning on those filtered data. We re-run IQL on all datasets
and report the score of IQL by choosing the best score from τ in [0.5, 0.6, 0.7, 0.8, 0.9, 0.99], using
author-provided implementation† We re-run CQL on AntMaze datasets as we find the performance
can be improved by carefully sweeping the hyperparameter min-q-weight in [0.5, 1, 2, 5, 10],
using the PyTorch-version implementation‡. Other baseline results are taken directly from their
corresponding papers.

In SQL and EQL, we use 2-layer MLP with 256 hidden units, we use Adam optimizer (Kingma & Ba,
2015) with a learning rate of 2 · 10−4 for all neural networks. Following Mnih et al. (2013); Lillicrap
et al. (2016), we introduce a target critic network with soft update weight 5 · 10−3. We implement
our method in the framework of JAX. The only hyperparameter α used in SQL and EQL is listed in
Table 5. The sensitivity of α in SQL can be found in Table 3 and Table 4. The sensitivity of τ in IQL
can be found in Table 3. The runtime of different algorithms can be found in Table 7.

Table 5: α used for SQL and EQL

Env α (SQL) α (EQL)
halfcheetah-medium-v2 2.0 2.0
hopper-medium-v2 2.0 2.0
walker2d-medium-v2 2.0 2.0
halfcheetah-medium-replay-v2 2.0 2.0
hopper-medium-replay-v2 2.0 2.0
walker2d-medium-replay-v2 2.0 2.0
halfcheetah-medium-expert-v2 5.0 5.0
hopper-medium-expert-v2 5.0 5.0
walker2d-medium-expert-v2 5.0 5.0
antmaze-umaze-v2 0.5 0.5
antmaze-umaze-diverse-v2 5.0 5.0
antmaze-medium-play-v2 0.5 0.5
antmaze-medium-diverse-v2 0.5 0.5
antmaze-large-play-v2 0.5 0.5
antmaze-large-diverse-v2 0.5 0.5
kitchen-c 2.0 2.0
kitchen-p 2.0 2.0
kitchen-m 2.0 2.0

Table 6: The sensitivity of τ in IQL.

τ 0.5 0.6 0.7 0.8 0.9 0.99
hopper-m-r 57.1 71.3 95.2 74.4 59.5 2.8
hopper-m-e 99.7 101.1 94.5 22.5 13.5 30.4
walker2d-m-r 74.3 76.1 72.3 41.7 20.3 4.3
walker2d-m-e 109.94 106.7 109.6 109.3 78.2 50.3
antmaze-m-d 0 0 2.5 51.6 71.0 12.1
antmaze-m-p 0 0 8.0 51.2 72.1 11.5
antmaze-l-d 0 0 1.2 12.4 47.5 7.6
antmaze-l-p 0 0 1.3 10.4 39.6 5.3

RL Unplugged experimental details We use d3rlpy (Seno & Imai, 2021), a modularized offline
RL library that contains several SOTA offline RL algorithms and provides an easy-to-use wrapper

†https://github.com/ikostrikov/implicit_q_learning
‡https://github.com/young-geng/CQL
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Table 7: The runtime of different algorithms.

algorithms BC 10%BC BCQ DT One-step TD3+BC CQL IQL SQL EQL
runtime 20m 20m 60m 950m 20m 25m 80m 20m 20m 20m

for the offline Atari datasets introduced in (Agarwal et al., 2020). There are three types of Atari
datasets in d3rlpy: mixed: datasets collected at the first 1M training steps of an online DQN agent,
medium: datasets collected at between 9M steps and 10M training steps of an online DQN agent,
expert: datasets collected at the last 1M training steps of an online DQN agent. To make the task
more challenging, we use only 10% or 5% of origin datasets. We choose three image-based Atari
games: Breakout, Qbert and Seaquest.

We implement the discrete version of SQL (D-SQL) and IQL (D-IQL) based on d3rlpy. The
implementation of discrete CQL (D-CQL) and discrete BCQ (D-BCQ) are directly taken from d3rlpy.
We use consistent preprocessing and network structures to ensure a fair comparision.

For baselines, we report the score of D-IQL by choosing the best score from τ in [0.5, 0.7, 0.9], we
report the score of D-CQL by choosing the best score from min-q-weight in [1, 2, 5], we report
the score of D-BCQ by choosing the best score from τ in [0.1, 0.3, 0.5]. For D-SQL, we use α = 1.0
for all datasets.

Nosiy data regime experimental details In this experiment setting, we introduce the noisy
dataset by mixing the expert and random dataset with different expert using MuJoCo locomotion
datasets. The number of total transitions of the noisy dataset is 100, 000. We provide details in Table
8. We report the score of IQL by choosing the best score from τ in [0.5, 0.6, 0.7, 0.8, 0.9].

Table 8: Noisy dataset of MuJoCo locomotion tasks with different expert ratios.

Env Expert ratio Total transitions Expert transitions Random transitions

Walker2d

1% 100,000 1,000 99,000
5% 100,000 5,000 95,000

10% 100,000 10,000 90,000
20% 100,000 20,000 80,000
30% 100,000 30,000 70,000

Halfcheetah

1% 100,000 1,000 99,000
5% 100,000 5,000 95,000

10% 100,000 10,000 90,000
20% 100,000 20,000 80,000

Small data regime experimental details We generate the small dataset using the following
psedocode 1, its hardness level can be found at Table 9. We report the score of CQL by choosing the
best score from min-q-weight in [0.5, 1, 2, 5, 10].

Listing 1: The sketch of generation procedure of small data regimes with different hard levels. Given an
AntMaze environment and a hardness level, we discard some transitions by following the rule in the Coding List.
Intuitively, the closer the transition is to the GOAL, the higher the probability that it will be discarded.

# LEVEL = {’easy’, ’medium’, ’hard’}
obs = dataset[’observations’]
length = dataset[’observations’].shape[0]
POSITIONS = env.get_position(obs)
GOAL = env.get_goal()
MINIMAL_POSITION = env.get_minimal_position()
# get maximal Euclidean distance
MAX_EU_DIS = (GOAL - MINIMAL_POSITION)**2
DIS = ((POSITIONS - MINIMAL_POSITION)**2) / MAX_EU_DIS
save_idx = np.random.random(size=length) > (DIS * hardness[’LEVEL’])
small_data = collections.defaultdict()
for key in dataset.keys():

small_data[key] = dataset[key][save_idx]
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Table 9: Details of small data regimes with different task difficulties.

Dataset (AntMaze) Hardness Total transitions Reward signals

medium-play

Vanilla NA 100, 000 10,000
Easy 0 56,000 800
Medium 0.07 48,000 150
Hard 0.1 45,000 10

large-play

Vanilla NA 100,000 12500
Easy 0 72,000 5,000
Medium 0.3 42,000 1,000
Medium 0.35 37,000 500
Hard 0.38 35,000 100
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Figure 5: Learning curves of SQL on D4RL MuJoCo locomotion datasets.
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Figure 6: Learning curves of SQL on D4RL AntMaze datasets.
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Figure 7: Learning curves of SQL on D4RL Kitchen datasets.

Figure 8: Performance profiles of CQL, IQL and SQL generated by the rliable library (Agarwal et al., 2021) on
D4RL datasets based on score distributions (left), and average score distributions (right). Shaded regions show
pointwise 95% confidence bands based on percentile bootstrap with stratified sampling.

Table 10: Performance in setting with 10% (top) and 5% (bottom) Atari dataset. SQL achieves the best
performance in 10 out of 12 games.

Task D-BCQ D-IQL D-CQL D-SQL
breakout-medium-v0 (10%) 3.5 20.1 15.1 28.0
qbert-medium-v0 395.4 3717.5 4141.5 5213.4
seaquest-medium-v0 438.1 404.9 359.4 465.3
breakout-mixed-v0 8.1 10.9 9.3 13.3
qbert-mixed-v0 557.5 1000.3 890.2 1244.3
seaquest-mixed-v0 300.3 326.1 337.5 330.4
breakout-medium-v0 (5%) 1.6 13.9 13.3 16.5
qbert-medium-v0 301.6 2788.7 3147.3 2970.6
seaquest-medium-v0 301.9 294.5 272.5 361.3
breakout-mixed-v0 5.3 10.5 8.7 11.8
qbert-mixed-v0 576.4 931.1 925.3 965.0
seaquest-mixed-v0 275.5 292.2 321.4 336.7
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