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ABSTRACT

Most recent work on the interpretability of audio and speech processing deep neu-
ral networks (DNNs) interprets spectral information modelled by the first layer,
relying solely on visual means of interpretation. In this work, we propose sonifi-
cation, a method to interpret intermediate feature representations of sound event
recognition (SER) convolutional neural networks (CNNs) trained on raw wave-
forms by mapping these representations back into the discrete-time input signal
domain, highlighting substructures in the input that maximally activate a feature
map as intelligible acoustic events. We use sonification to compare supervised and
self-supervised feature hierarchies and observe that deep self-supervised layers
learn more acoustically discernible representations compared to their supervised
counterparts. We also quantify similarity between the sonifications and their cor-
responding inputs using spectral coherence on a layer-by-layer basis.

1 INTRODUCTION

Interpretability of deep neural networks (DNNs) has always garnered much attention. DNNs learn
highly expressive feature hierarchies, and with the ever-growing push towards deeper and larger net-
works with tighter end-to-end integration that comes at the cost of higher abstraction, together with
the rise in popularity of self-supervised representation learning, the importance of understanding the
inner workings of DNNs continues to rise.

Visualizations have emerged as the most prominent method of interpreting DNNs, whether it be the
visualization of attention mechanisms (Woo et al., 2018; Vaswani et al., 2017; Vig, 2019; Vig &
Belinkov, 2019), or interpreting deep feature representations (Erhan et al., 2009; Simonyan et al.,
2013; Zeiler & Fergus, 2014; Springenberg et al., 2015; Mahendran & Vedaldi, 2015; Smilkov
et al., 2017; Selvaraju et al., 2020), visualizations cross boundaries of input modalities and neural
architectures. And rightly so, the visual cortex is our brain’s most essential and complex sensory
perception system (Kandel et al., 1981; Sternberg et al., 2012), possibly making visualizations more
immediate than other forms of interpretation. The audio and speech processing domain has not
remained untouched. A significant body of work attempts to interpret spectral information captured
by DNN filters and parameters by visual means (Palaz et al., 2013; 2015; Golik et al., 2015; Verma
& Schafer, 2016; Krug & Stober, 2018; Muckenhirn et al., 2018c; Palaz et al., 2019). However, if
the pertinent question is ascertaining what DNNs learn and model, would interpreting intermediate
feature representations in the audio input space where they can be directly perceived as intelligible
acoustic elements be beneficial over solely relying on visual means of description? This is the
primary motivation behind this paper: to interpret sound event recognition CNNs by sonification,
i.e. mapping intermediate feature representations back into discrete-time audio signal input space,
and can be seen as an extension of Zeiler & Fergus (2014) for raw waveform audio CNNs. More
specifically, in this paper:

• We revisit transposed convolutions (a.k.a. deconvolutions) for interpreting intermedi-
ate feature representations of raw waveform based 1D-CNNs for sound event recogni-
tion (SER) by sonification, highlighting maximally activating substructures as intelligible
acoustic events.
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• Using sonifications, we compare and contrast raw waveform based supervised and self-
supervised feature representations in the discrete-time signal input space.

• Using Spectral Coherence (Stoica & Moses, 2005), we show how sonifications compare to
corresponding input signals as we go deeper into the self-supervised and supervised feature
hierarchies.

2 RELATED WORK

Several recent works in the audio processing domain emphasize on the interpretability of DNNs, es-
pecially convolutional neural networks applied on automatic speech recognition (ASR) and speaker
recognition. In ASR, several works visualize filters learned from spectrogram inputs (Huang et al.,
2015; Krug & Stober, 2018; 2019). Huang et al. (2015) visualize spectro-temporal filters while
Krug & Stober (2019) learn topographic filter maps in the first convolutional layer. The majority
of the work on interpretability is done on raw waveform based ASR models, visualizing filter fre-
quency responses for the first convolutional layer (Palaz et al., 2013; 2015; Golik et al., 2015; Verma
& Schafer, 2016). Palaz et al. (2013; 2015) analyze frequency responses of the first convolutional
layer and show that it learns matching filters. By visualizing the magnitude spectrum of the filters
sorted by the estimated center frequency, Golik et al. (2015) showed that the majority of the filters
of the first convolutional layer have learned narrow bandpass filters. Palaz et al. (2019) show that fil-
ters in the first convolutional layer model formant related information to learn a phone-discriminant
spectral dictionary, a notion that is also supported by Mallat (2016); Papyan et al. (2017); Kabil et al.
(2018); Muckenhirn et al. (2018b). For the most part, things are quite similar in the speaker recogni-
tion domain. Muckenhirn et al. (2018c;b) visualize and interpret the cumulative frequency response
of the first convolutional layer trained on raw waveforms, and show how fundamental frequency and
formant information is modelled by the filters. Ravanelli & Bengio (2018); Zeghidour et al. (2021)
propose an interpretable raw waveform front-end, visualizing their magnitude frequency response.

Inspired by the guided backpropagation (Springenberg et al., 2015) approach from computer vision,
several works (Muckenhirn et al., 2019; 2018a; Chowdhury & Ross, 2020) propose the usage of
gradient-based relevance signals to interpret intermediate feature representations of raw waveform
models, as they also describe periodicity information in the time domain, whereas Krug & Stober
(2018) utilize activation maximisation (Erhan et al., 2009) for global introspection. More recently, Li
et al. (2020) proposed interpreting intermediate representations learned by automatic speech recog-
nition models in the discrete-time input space by using a reconstruction model based on Highway
Networks as a probe, trained separately for each layer. Begus & Zhou (2021) interpret intermediate
representations learned by a WaveGAN (Donahue et al., 2019) model trained on raw speech data in
the time-domain by using a ciwGAN (Beguš, 2021) model as a probe.

It is evident that majority of the existing work in the audio processing domain only interprets and
visualizes spectral information modeled by the first convolution layer, with work that focuses on
intermediate representations in the time-domain few and far between. The work summarised above
finds crucial analytical and signal theoretic insights into the workings of CNNs trained on audio and
speech data (such as filter frequency responses, formation of phone-discriminant spectral dictionar-
ies), but the interpretations do not bridge representations with acoustic elements in the input. This is
unlike computer vision, where interpretations share the same modality as the input space and allow
us to observe and connect elements more seamlessly. Paired with the attention raw waveform based
deep self-supervised audio and speech representations have received recently, there is a dire need for
methods that improve interpretability of raw waveform models. To this end, the proposed work uti-
lizes transposed convolutions, a.k.a. deconvolutions (Zeiler et al., 2011) to map intermediate feature
maps back into the discrete-time signal input space, highlighting maximally-activating substructures
in the input space corresponding to the feature of interest in the form of intelligible acoustic events.
Deconvolutions have been used previously in the computer vision domain for revealing remarkable
insights about image recognition CNNs in the foundational work by Zeiler & Fergus (2014). De-
convolutions were also used by Choi et al. (2015; 2016) to interpret intermediate representations of
2D-CNNs trained on spectrogram inputs for music classification, an approach that allowed them to
treat the input space as a pixel representation in the frequency domain, facilitating analysis. Since
Choi et al. (2015; 2016) work in the frequency domain they use the inverse short-term fourier trans-
form (inverse STFT) to map representations into the discrete-time input space, as compared to the
proposed approach, which analyses raw waveform representations and maps intermediate feature
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Figure 1: Comparing band selectivity and feature map activity across supervised and contrastive
representations by visualising input-sonification pairs as log-scaled spectrograms. Note the greater
activity in the higher frequency bins of the contrastive representations for layer 8 and 9.

representations directly into the discrete-time input space. Choi et al. (2016) also do not compare
how input signals and their respective interpretations correspond with increasing network depth.

3 SONIFICATION

3.1 PREREQUISITES

To test the proposed method, we set up a simple 12-layer 1D-CNN, named CNN12 as shown in
Figure A.1, as our feature encoder, fenc(.). CNN12 has 11 conv-relu-[mp] blocks, followed by
temporal average pooling and a fully connected layer. It accepts a one-dimensional raw waveform
signal x ∈ RT , xi ∈ {−1, 1} of T samples at a sampling frequency Fs = 8000 [Hz] and maps it
into representative feature vector h = fenc(x) , h ∈ Rd=512. The sampling rate Fs = 8000 [Hz]
was picked as it facilitated faster training and experimentation. It’s worth noting that the only pre-
processing applied on the input to our feature encoder is scaling the input to unit peak amplitude,
which significantly simplifies the sonification process

Rather than going for the state-of-the-art, our objective was to establish an easy-to-follow neural
architecture which is sufficiently performant, and is not tied to a specific raw waveform front-end (
such as Ravanelli & Bengio (2018); Zeghidour et al. (2021)). This is reflected in our design choices:
CNNs with similar number of layers are quite common (Simonyan & Zisserman, 2015; Collobert
et al., 2016; Kong et al., 2020), and the kernel width and stride hyperparameters were based on
known good starting points. We do not use normalization layers like Batch Normalization and
Instance Normalization in order to keep the sonification process simple and independent from batch
statistics. This also circumvents the need for using globally synchronized normalization techniques
in distributed training, which is necessary to avoid local information leakage in contrastive self-
supervised models and learn better representations (Chen et al., 2020).

We train contrastive self-supervised feature representations on AudioSet using the SimCLR frame-
work (Chen et al., 2020), which has already been demonstrated to work well in the audio event recog-
nition domain by Fonseca et al. (2021); Saeed et al. (2021). We use an MLP with one-hidden layer
with 512 hidden units as our projection head fproj(.) to extract features z = fproj(fenc(x)), z ∈
Rd=512, on which NT-Xent loss (Chen et al., 2020) is used:

ℓij = − log
exp (sim(zi, zj)/τ)∑2N

k=1 1k ̸=i exp (sim(zi, zk)/τ)
, (1)
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Figure 2: Select supervised input-sonification pairs. For supervised models, most remarkable soni-
fications were found in the middle layers (layers 3-7).

Figure 3: Select contrastive input-sonification pairs. These samples are from layers 8 and 11, and
similarly remarkable sonifications can be found throughout all the layers.

where zi and zj are the representations for the positive, non-overlapping patches xi and xj that are
2.5 seconds each in duration, τ > 0 is a temperature scaling, 1v ̸=i ∈ {0, 1} is an indicator function
that returns 1 if v ̸= i, and N is the batch size, and sim(u,v) denotes the cosine similarity between
two ℓ2-normalized vectors.

This is followed by an analysis of supervised learning performance on AudioSet, FSD50K (Fonseca
et al., 2020) and the Speech Commands v2 (Warden, 2018) datasets to establish that the proposed
framework is performant enough for analysis. Adam optimizer (Kingma & Ba, 2015) with default
learning rate and a weight decay of 1e − 3 was used with a linear warmup for the first 10 epochs
followed by a cosine decay schedule without restarts (Loshchilov & Hutter, 2016), and all experi-
ments were done on a TPUv3-8 machine. More details, including relevant hyperparameters, data
augmentation methods used, training setup, and benchmark results can be found in Appendix A.

3.2 HOW SONIFICATION WORKS

Given an input waveform x ∈ RT with T samples and a trained CNN12 feature encoder fenc(.), let
L ∈ {1, 11} denote the conv-relu-[mp] block whose conv layer has fout total number of filters. Let
fLi ∈ {1, fout} be the index of the feature map in layer L we want to inspect, and s ∈ RT be the
corresponding sonification output. Then, the sonification process can be explained as follows:

1. Forward Pass: Execute forward pass on the CNN12 feature encoder, storing all interme-
diate feature maps and switch indices.

2. Starting feature map of interest: Starting with intermediate feature maps for the block of
interest L, all activations in layer L except fLi

are set to zero, and the resulting features are
passed on to the corresponding deconvnet for reconstruction.

3. Applying the deconvnet
i. 1D-MaxUnpooling: Depending on the block of interest, a 1D-MaxUnpooling opera-
tion (Dosovitskiy et al., 2015) is applied on the input feature maps to revert the MaxPool
operation. MaxUnpooling utilizes switch indices, which are locations of the max element
recorded during MaxPooling. We observed that using a strided convolution for downsam-
pling in the feature encoder distorts the time-domain structure of the sonified waveform
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and results in significantly worse sonifications. In contrast, MaxPooling and MaxUnpool-
ing preserve time-invariance of input signal and the sonification, i.e. for input waveform
x, and the corresponding sonification w.r.t. a feature map s, any integral offset k in input
x, i.e. x[n + k], results in equal offset s[n + k] in the corresponding sonification (see
Figure B.3). This is expected, as the only downsampling operation in the feature encoder
is reverted by max-unpooling, which preserves input structure by using switches to place
reconstructions at the correct locations.
ii. Rectification: ReLU activation is applied to the reconstructed signal since all convolu-
tion layers are accustomed to receiving positive feature maps.
iii. Transposed convolution, a.k.a deconvolution: This step is an approximate inverse of
the corresponding convolutional layer in the proposed feature encoder, reverting the feature
maps into outputs from the previous block. Transposed convolutions share weights with the
convolutional layer they invert, and require no additional training.
The above steps are repeated until we reach the input signal space, yielding the output
sonification signal s.

4. Post-processing: The output sonification signal s is then scaled to have a unit peak mag-
nitude, followed by multiplication with the maximum magnitude of the input waveform,
yielding s ∈ {−max |x|,max |x|}.

The obtained sonifications are maximally activating patterns in the input signal and not generated
samples: as demonstrated in Sec 4.1, removing these sonifications from the input signals signifi-
cantly alters feature map activity resulting in performance degradation. Pseudocode for the sonifi-
cation process can be found in B.2.

3.3 OBSERVATIONS

This section covers our observations made after inspecting sonifications corresponding to the top-3
maximally activating inputs for each filter in each layer of the CNN12 feature encoder. We lis-
tened to input-sonification pairs, as well as visually inspected them in the frequency domain as
log-scaled spectrograms. You can also listen to the sonifications on our anonymous Weights and
Biases (Biewald, 2020) dashboards for supervised1 and contrastive2 representations.

3.3.1 BAND SELECTIVITY AND FEATURE MAP ACTIVITY

Both supervised and contrastive representations learn simple band-selective filters in the initial lay-
ers. Supervised learning is generally more band-selective and has less active feature maps in the
deeper layers, a notion well supported by conventional wisdom: deeper layers learn more special-
ized concepts. However, contrastive representations appear to be different than supervised represen-
tations in this aspect. Figure 1 shows input-sonification pairs obtained from Layer 1, Layer 8 and
Layer 9 of the feature encoder trained under the two regimes. It’s worth noting how band selectiv-
ity and feature map activity is similar in the first layer across the two training paradigms, whereas
deeper contrastive representations (layer 8 and 9) are comparatively more active. Similar general
trends were observed while evaluating other examples.

3.3.2 CONTRASTIVE REPRESENTATIONS YIELD MORE ACOUSTICALLY DISCERNIBLE
SONIFICATIONS

For the supervised model, we observed that most of the acoustically remarkable sonifications occur
in layers 3-7, such as a dentist’s drill or the buzzing of a fly/bee (See Figure 2). As we go deeper,
sonifications become less acoustically remarkable and more noisy: sonifications from layers 8-11
consist mostly of high frequency noise and are not acoustically discernible. Although it is difficult
to say for certain without further exploration, there are several plausible explanations:

• A simple explanation could be that reconstruction simply becomes more difficult the farther
we are from the input layer.

1https://wandb.ai/paper1517iclr2022/select-sonifications-supervised
2https://wandb.ai/paper1517iclr2022/select-sonifications-contrastive
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Figure 4: Layerwise FSD50K (left) and Speech Commands v2 (right) performance for contrastive
and supervised pretraining. mAP and classification accuracy scores on the validation set are re-
ported, respectively. Dashed lines represent performance without removing any layers. For Speech-
Commands, the red dashed line overlaps the green. 95% confidence intervals shown across several
runs. We conducted this study to rule out suspiciously low feature map activity that we observed
when evaluating sonifications for the deep layers of the supervised model and ascertain that these
layers were indeed contributing to recognition performance. More information in B

• We suspect that max-unpooling might also contribute to this phenomena: it simply replaces
maximum values at the correct indices and leaves other elements zero, possibly inducing
discontinuities and contributing to noise.

• Finally, it can simply be the nature of supervised representations itself. Deeper layers might
be emphasising the presence of discriminative cues that, although crucial for recognition
performance (Figure 4), do not correspond to intelligible acoustic events in the inputs, but
merely indicate the presence of them, as evidenced by the wider variety of input signals
that can maximally activate the feature maps (Springenberg et al., 2015).

However, we observe that contrastive representations do not follow the same trend, or at least not
to the same extent, an observation supported by experiments done in Section 4.2. Contrastive rep-
resentations from the deeper layers result in sonifications that are significantly more acoustically
discernible. We discovered remarkable sonifications as deep as layers 7-11, such as news presen-
ters, a feature map that removes heavy “thumps” from an EDM track, a feature map that removes
background music but keeps the rap lyrics, a feature map that removes instruments but keeps the
vocalizations in a folk song, and a feature map that suppresses house/trap music but keeps the beats
(see Figure 3). This indicates that the properties of supervised representations could indeed be the
major contributing factor behind the lower reconstruction quality and noise in the sonifications of
deeper layers, and needs further exploration.

We also observed that contrastive representations demonstrate stronger acoustic content coupling in
the deeper layers in comparison to supervised representations. For example, we observed that a large
number of feature maps in layer 11 modelled music and human-vocalization related information.
This is in contrast with supervised representations, where we observed a wider variety of maximally
activating input signals, inline with previous observations (Springenberg et al., 2015).

3.4 USING SONIFICATIONS TO VISUALIZE TRAINING TIME FEATURE EVOLUTION

Sonifications can also be used to visualize how features evolve during training time. We find the
maximally activating input for randomly selected feature maps in the AudioSet evaluation set for
the final contrastive model checkpoint. Using these feature map indices and their corresponding
input waveforms, we go back in training time, performing sonifications for each feature map of
interest. Doing this gives us a smoother visualization of training time feature progression than
Zeiler & Fergus (2014), where sudden jumps appeared in the visualization whenever the maximally
activating input changed. Figure 5 shows training time feature evolution for some feature maps. For
several feature maps, sonifications at the first checkpoint show a full spectrogram, even for the dead
units, which changes over training time.
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Figure 5: Contrastive feature evolution in the select feature maps from several layers. Note how
certain frequency bins are being increasingly emphasised in the layer 5 feature map, while dead
feature map in layer 10 starts with a full spectrogram, but fades away later.

4 EXPERIMENTS AND ANALYSIS

4.1 VERIFYING THAT SONIFICATIONS INDEED STIMULATE FEATURE MAPS

Section 3.2 discussed how sonifications for a feature map correspond to maximally activating sub-
structures in the input audio space. We now verify that these sonifications stimulate the feature maps
by analyzing how removing them from the input signal affects event recognition performance on the
FSD50K evaluation set.

To demonstrate how sonifications stimulate feature maps, for every input signal x ∈ RT in the
FSD50K evaluation set, we subtract the sonified signal s ∈ RT corresponding to the most active
feature map of the layer from the input signal to yield a residual input signal r ∈ RT . This is
possible since inputs and sonifications are time-invariant, and thus every timestep in the sonification
signal corresponds to the same timestep in the input signal. The residual signal r represents the input
signal stripped of the audio segments that maximally activate the feature map of interest. We then
calculate the mean average precision (mAP) score over the evaluation set, comparing it with baseline
performance. From Figure 6, it’s evident that sonifications represent elements crucial to recognition
performance, as mAP scores are drastically reduced. The variance in performance reduction across
layers is lower for fc-only models, whereas a fully finetuned model is more robust.

4.2 QUANTIFYING SIMILARITY BETWEEN INPUTS AND SONIFICATIONS

In Section 3.3 we observed how sonifications for the contrastive model lead to more intelligible
acoustic events as compared to the supervised model, specially for the deeper layers. It raises the
question as to how similar the sonifications and their corresponding inputs are, and how do they
compare across supervised and contrastive models. Given the nature of deconvolution, one can
expect that similarity between inputs and sonifications decreases as we go deeper into the network,
since reconstruction becomes more difficult with increasing depth. However, the question is how
can this be quantified? To this end we use spectral analysis of the input and the corresponding
sonification obtained with respect to a feature map.

4.2.1 MEAN TOP-K MAGNITUDE-SQUARED COHERENCE

Magnitude-squared coherence between two discrete-time signals is a function of their frequency
content and indicates how well the signals correspond to each other at each frequency, indicated by
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Figure 6: Effect of removing sonifications on a layer-by-layer basis from the input on FSD50K
eval performance. Contrastive model pretrained on AudioSet was finetuned. Dashed lines represent
baseline performance. Removing sonifications from the input signal drastically reduces model per-
formance, indicating that they represent acoustic elements essential for recognition. 95% confidence
intervals are computed over several runs.

values in the [0, 1] range, with higher values showing higher coherence. Specifically, the magnitude-
squared coherence between two discrete-time signals x and y is defined as

Cxy(f) =
|Pxy(f)|2

Pxx(f) ∗ Pyy(f)
(2)

where Pxy is the cross-spectral density of x and y, and Pxx and Pyy are spectral densities of x and
y, respectively (Stoica & Moses, 2005).

We measure the mean magnitude-squared coherence of the 5 most coherent frequency components
between the input signal xi and the corresponding sonification si of the most active feature map,
over the AudioSet Evaluation Set, on a layer-by-layer basis (Equation 3).

Mc =
1

kN

N∑
i=1

∑
max

k
(Cxisi(f)), (3)

where N is the number of samples in the AudioSet evaluation set, and k = 5.

We use scipy’s (Virtanen et al., 2020) implementation to measure magnitude-squared coherence,
which utilizes Welch’s method (Welch, 1967) for spectral density estimation. Figure 7 shows that
while the measure decreases with layer depth for both the contrastive and the supervised models,
which was expected, it decays significantly faster for the latter and is consistent with the observations
made in Section 3.3, and highlights a significant, quantifiable difference between contrastive and
supervised representations.

5 CONCLUSION

In this paper, we revisited transposed convolutions to interpret intermediate feature representations
of raw waveform-based CNNs for sound event recognition by mapping feature representations back
into the discrete-time input signal space, resulting in their interpretation as intelligible acoustic
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Figure 7: Comparing inputs and sonifications of the best contrastive and supervised models trained
on AudioSet using magnitude squared coherence, with 95% confidence intervals over three runs.

events. Using the proposed method, we compare supervised and contrastive self-supervised fea-
ture representations and quantify similarity between inputs and corresponding sonifications using
spectral coherence, highlighting key differences between the two paradigms. In future work, we
will move towards further improving the proposed approach, particularly reducing reliance on the
MaxUnpooling operation and adding the ability to measure the cumulative response of the entire
layer. We hope that this paper will inspire more work on the interpretability of audio processing
DNNs in the time-domain input signal space.
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Harris, Anne M Archibald, Antônio H Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy .
Contributors. Scipy 1.0: fundamental algorithms for scientific computing in python. Nature
Methods, 17(3):261–272, 2020.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

P. Welch. The use of fast fourier transform for the estimation of power spectra: A method based on
time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroa-
coustics, 15(2):70–73, 1967.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European conference on computer vision (ECCV), pp.
3–19, 2018.

Neil Zeghidour, Olivier Teboul, Félix de Chaumont Quitry, and Marco Tagliasacchi. Leaf: A learn-
able frontend for audio classification. In ICLR 2021: The Ninth International Conference on
Learning Representations, 2021.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In 13th
European Conference on Computer Vision, ECCV 2014, pp. 818–833, 2014.

Matthew D Zeiler, Graham W Taylor, and Rob Fergus. Adaptive deconvolutional networks for
mid and high level feature learning. In 2011 International Conference on Computer Vision, pp.
2018–2025. IEEE, 2011.

12

https://www.aclweb.org/anthology/P19-3007


Under review as a conference paper at ICLR 2022

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In International Conference on Learning Representations, 2017.

13



Under review as a conference paper at ICLR 2022

A SETTING UP THE BASELINE

A.1 1D-CNN FEATURE ENCODER

Figure A.1 shows the CNN12 feature encoder used. We also benchmark an encoder that has 2x the
number of filters in each convolutional layer, which we refer to as CNN12 x2. All the experiments
in the main text are conducted on CNN12.

Figure A.1: CNN12 feature encoder

A.2 CONTRASTIVE PRETRAINING

Setting τ fconly (mAP) full (mAP)

CNN12 with randomgain 0.1 0.112± 0.002 0.203± 0.001
+ gaussiannoise 0.1 0.142± 0.001 0.210± 0.003
+ timemask 0.1 0.142± 0.001 0.211± 0.002
+ random SNR 0.1 0.148± 0.003 0.215± 0.001

CNN12 (all) 0.2 0.120± 0.001 0.205± 0.002
CNN12 (all) 0.3 0.105± 0.001 0.200± 0.001

CNN12 x2 (all) 0.1 0.151± 0.003 0.217± 0.005

Table A.1: AudioSet Contrastive pretraining linear eval performance for various hyperparameters
when trained on the balanced train subset. fconly represents linear-eval, whereas full represents
finetuning the entire model

As mentioned before, a MLP with one-hidden layer with 512 hidden units as our projection head
fproj(.) to extract features z = fproj(fenc(x)), z ∈ Rd=512, on which NT-Xent loss (Chen et al.,
2020) was used (Eq 1).

Additive Gaussian noise, random timestep masking, random gain augmentation and finally, back-
ground noise injection preserving random signal-to-noise ratio (SNR), which is similar to mix-back
augmentation utilized by Fonseca et al. (2021), are used (Table A.1). Linear evaluation, i.e. training
a classifier on top of the features extracted from a “frozen” feature encoder, was used for quanti-
fying contrastive model performance. Hyperparameter tuning was done on a random holdout set
comprising 10% of the “unbalanced train” samples. Adam optimizer with default learning rate and
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a weight decay of 1e-3 was used with a linear warmup for the first 10 epochs followed by a co-
sine decay schedule without restarts (Loshchilov & Hutter, 2016). All experiments were done on a
TPUv3-8 machine, with a batch size of 2048. All contrastive experiments use τ = 0.1, unless stated
otherwise.

A.3 SUPERVISED LEARNING EXPERIMENTS

For supervised learning, we add a fully connected layer on top of fenc, trained by solving a classi-
fication loss, which is either multilabel binary cross-entropy (for AudioSet, FSD50K) or multiclass
categorical cross-entropy (Speech Commands v2). Apart from experiments that require training the
entire model on the entire AudioSet dataset, all supervised learning experiments were done on a sin-
gle core of a TPUv3-8 machine using Adam optimizer with a linear warmup for 10 epochs followed
by a cosine decay. Random gain, additive gaussian noise, random time masking and mixup (Zhang
et al., 2017) augmentations were used for all supervised models. Evaluation was done on the entire
audio clip at once, and 95% confidence intervals are reported. No class rebalancing is applied for
any dataset.

A.3.1 SER ON AUDIOSET

Training was done on 5-sec random crops, with a 10% random holdout set was used for setting the
hyperparameters, after which the model was trained on the entire training set. A per-tpu-core batch
size of 128 was used, which equates to an effective batch size of 1024 for experiments on the entire
AudioSet dataset and 128 for AudioSet balanced setting. mAP, mAUC and dprime metrics are used
for monitoring performance, and are calculated on the entire audio clip. Results can be found in
tables A.2 and A.3.

Model Pretraining fconly mAP mAUC dprime

CNN12 False NA 0.299± 0.001 0.954± 0.000 2.378± 0.007
CNN12 True True 0.197± 0.003 0.918± 0.006 1.966± 0.057
CNN12 True False 0.327± 0.009 0.958± 0.001 2.436± 0.011
CNN12 x2 True False 0.332± 0.005 0.959± 0.001 2.438± 0.020

Table A.2: AudioSet Supervised Learning performance. Pretraining indicates whether contrastive
pretrained weights were used

A.3.2 IN-DOMAIN TRANSFER LEARNING: SER ON FSD50K

Training was done on 2.5-sec random crops, and the validation set was used for hyperparameter
tuning. A per-tpu-core batch size of 64 worked best. mAP and dprime metrics are reported (Tables
A.4, A.5).

Model # Params Fs features mAP mAUC dprime

CNN14 (Kong et al., 2020) 80M 16 kHz log-melspec 0.431 0.973 2.732
CNN14 (Kong et al., 2020) 80M 8 kHz log-melspec 0.406 0.97 2.654
CNN14 (Zeghidour et al., 2021) 80M 16 kHz SincNet - 0.97 2.66
CNN14 (Zeghidour et al., 2021) 80M 16 kHz LEAF - 0.974 2.74
CNN14 (Zeghidour et al., 2021) 80M 16 kHz Wavegram - 0.961 2.5
1D+2D ResNet (Chen et al., 2019) - 16 kHz raw signal 0.372 0.968 2.614

CNN12 14M 8 kHz raw signal 0.323 0.957 2.436
CNN12 x2 53M 8 kHz raw signal 0.332 0.959 2.438

Table A.3: AudioSet SER performance with comparable baselines. Confidence intervals omitted.
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Model Pretraining fconly mAP mAUC dprime

CNN12 None NA 0.362± 0.006 0.909± 0.001 1.889± 0.010
CNN12 Contrastive True 0.306± 0.007 0.873± 0.003 1.611± 0.024
CNN12 Contrastive False 0.424± 0.004 0.921± 0.001 2.001± 0.006
CNN12 Supervised True 0.463± 0.002 0.935± 0.001 2.144± 0.015
CNN12 Supervised False 0.448± 0.004 0.928± 0.003 2.068± 0.028
CNN12 x2 Contrastive True 0.307± 0.006 0.869± 0.004 1.584± 0.020
CNN12 x2 Contrastive False 0.432± 0.003 0.924± 0.001 2.032± 0.004

Table A.4: FSD50K eval performance. Pretraining refers to type of pretraining on AudioSet

Model #Params Fs features mAP dprime

CRNN (Fonseca et al., 2020) 0.96M 22.05 kHz log-melspec 0.417 2.068
VGG-like (Fonseca et al., 2020) 0.27M 22.05 kHz log-melspec 0.434 2.167
ResNet-18 (Fonseca et al., 2020) 11.3M 22.05 kHz log-melspec 0.373 1.883
DenseNet-121 (Fonseca et al., 2020) 12.5M 22.05 kHz log-melspec 0.425 2.112
Large Transformer (Verma & Berger, 2021) 2.3M 16 kHz raw signal 0.537 -

CNN12 (supervised-fconly) 14M 8 kHz raw signal 0.463 2.144
CNN12 (contrastive) 14M 8 kHz raw signal 0.424 2.001

Table A.5: FSD50k eval performance v/s comparable baselines. Confidence intervals omitted.

A.3.3 OUT-OF-DOMAIN TRANSFER LEARNING: STOPWORD IDENTIFICATION ON THE
SPEECH COMMANDS(V2) DATASET

All audio samples are ≤ 1 sec in duration, so no random cropping was done while training. A batch
size of 128 was used for all experiments. Table A.6 reports classification accuracy of the proposed
feature encoder as well as recent comparable baselines.

Model Fs features Accuracy%

EfficientNet-B0 (Saeed et al., 2021) 16 kHz log-mel 95.5
EfficientNet-B0 (Zeghidour et al., 2021) 16 kHz LEAF 93.4

CNN12 8 kHz raw signal 92.3± 0.5
CNN12 (Supervised-fconly) 8 kHz raw signal 36.0± 1.4
CNN12 (Supervised-full) 8 kHz raw signal 92.9± 0.7
CNN12 (Contrastive-fconly) 8 kHz raw signal 29.5± 0.6
CNN12 (Contrastive-full) 8 kHz raw signal 93.4± 0.7

Table A.6: Speech Commands v2 Test Accuracy. Recent comparable baselines for reference. Paran-
thesis indicate pretrained weights used in the proposed work (bold)

It is evident from the results on the above mentioned benchmark datasets that while the proposed
method doesn’t achieve state-of-the-art performance, it is sufficiently performant for the purpose of
the study.

B ANALYZING LAYER IMPORTANCES

We explore how layers from the contrastive and the supervised model contribute to recognition
performance on the FSD50K and the Speech Commands validation set by incrementally increasing
retained layers, followed by temporal average pooling and adding a classifier on top. We conducted
two separate experiments, fine-tuning the entire model (full) and training just the classifier added on
top (fconly).

Figure 4 shows steady improvement as we add layers for both contrastive and supervised pretraining
in both settings. Contrastive pretraining leads to better performance for the initial layers, for both
the in-domain and the out-of-domain transfer tasks, more so for the fconly setting. However, for the
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in-domain FSD50K dataset, supervised pretraining outperforms contrastive pretraining significantly
when deeper layers are added, especially for the fconly setting. This demonstrates the importance
of class-specific concepts learned during supervised training by the deeper layers, which do a lot
of the heavy lifting. For the out-of-domain Speech Commands dataset (right), contrastive pretrain-
ing performs better than supervised pretraining in all but the final two layers. Interestingly, linear
evaluation (linear classifier on top of the full feature encoder) performs worse than adding a linear
classifier on top of middle of the stack, suggesting that the frozen feature representations learned in
both cases were too specific to sound event recognition.

def sonification(f_enc, deconvnets, x, L, f_map_index):
"""
Pseudocode for Sonification in Pythonic syntax
Parameters
---------

f_enc: CNN12 feature encoder
deconvnets: dictionary with DeconvNet for every layer such that

key -> block index
value -> DeconvNet corresponding to the block

x: input raw waveform signal
L: {conv-relu-[mp]} block of interest, 1 <= L <= 11
f_map_index: index of feature map to inspect

Returns
-------

s: sonification signal
"""
feature_maps, switch_indices = f_enc(x)
# where feature_maps and switch indices are
# named key:value pairs corresponding to all layers in the block
temp = feature_maps[L]
# where zeros_like creates placeholder tensor of same shape
current_map = zeros_like(temp)
# setting all feature maps except f_map_index to zero
current_map[f_map_index] = temp[f_map_index]
curr_block_index = L
while curr_block_index >= 1:

# get deconvnet for current block
deconv_curr_block = deconvnets[curr_block_index]
# apply current deconvnet
if switch_indices[curr_block_index]:

# Applying Max Unpooling operation
current_map = deconvnet.max_unpool(current_map,

switch_indices[curr_block_index])
current_map = relu(current_map)
# Transposed Convolution layer with shared weights
current_map = deconvnet.transposed_convolution(current_map)
curr_block_index -= 1

# we get sonification signal in the input space
s = current_map
# Scale s to have unit maximum magnitude
s = max_abs_scale(s, min=-1, max=1)
# s is scaled to {-max|x|, max|x|}
s *= max(abs(x))
return s

Figure B.2: Sonification Pseudo-code
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Figure B.3: Time-invariance of the input and corresponding sonifications. In the figure, sonification
of an input offset by (randomly selected) +8645 steps is centered with the original input by left-
shifting it by the same amount. Other samples demonstrated the same

18


	Introduction
	Related work
	Sonification
	Prerequisites
	How sonification works
	Observations
	Band Selectivity and Feature Map Activity
	Contrastive representations yield more acoustically discernible sonifications

	Using sonifications to visualize training time feature evolution

	Experiments and Analysis
	Verifying that sonifications indeed stimulate feature maps
	Quantifying similarity between inputs and sonifications
	mean top-k magnitude-squared coherence


	Conclusion
	Acknowledgments
	Reproducibility Statement
	Setting up the baseline
	1D-CNN Feature Encoder
	Contrastive Pretraining
	Supervised learning experiments
	SER on AudioSet
	In-domain transfer learning: SER on FSD50k
	Out-of-domain transfer learning: Stopword Identification on the Speech Commands(v2) dataset


	Analyzing layer importances

