
One-Shot Learning from a Demonstration
with Hierarchical Latent Language

Anonymous ACL submission

Abstract

Humans have the capability, aided by the ex-001
pressive compositionality of their language, to002
learn quickly by demonstration. They are003
able to describe unseen task-performing proce-004
dures and generalize their execution to other005
contexts. In this work, we introduce De-006
scribeWorld, an environment designed to test007
this sort of generalization skill in grounded008
agents, where tasks are linguistically and pro-009
cedurally composed of elementary concepts.010
The agent observes a single task demonstra-011
tion in a Minecraft-like grid world, and is then012
asked to carry out the same task in a new013
map. To enable such a level of generaliza-014
tion, we propose a neural agent infused with015
hierarchical latent language—both at the level016
of task inference and subtask planning. Our017
agent first generates a textual description of018
the demonstrated unseen task, then leverages019
this description to replicate it. Through mul-020
tiple evaluation scenarios and a suite of gen-021
eralization tests, we find that agents that per-022
form text-based inference are better equipped023
for the challenge under a random split of tasks.024

1 Introduction025

Humans are highly capable of learning by exam-026

ple. If a child watches their school teacher draw027

a purple winged elephant then recite the alphabet028

backwards, they can replicate the sequence of activ-029

ities at home with relative ease. This is in no small030

part due to the human ability to leverage the compo-031

sitionality of language in order to comprehend new032

situations composed of familiar concepts (Chom-033

sky, 1957). The child can restate the demonstration034

in words (as we did above), naturally decompos-035

ing it into its distinct subcomponents (the drawing,036

and the alphabet), which are themselves procedu-037

rally compositional (e.g., “pick up purple marker,038

. . . ”). Humans use their linguistic understanding of039

a task’s hierarchical compositionality to generalize040

it to a new context; without this generalization, we041

Figure 1: Framework for learning from demonstration
via latent language. The Describer module observes an
oracle demonstration of an unseen task and describes it
in text. Given the generated description, the Instructor
module infers necessary subtasks, accomplished by the
Executor module via low-level control actions.

might expect a child would overfit to the specifics 042

of the classroom context. 043

In this work, we explore whether grounded artifi- 044

cial agents can similarly generalize from a demon- 045

stration: a single expert trajectory accomplishing 046

a task. More specifically, we tackle the setting 047

where an agent observes a demonstration of an 048

unknown task, potentially never seen before, and 049

is then asked to perform the same task in a new 050

context. 051

We construct DescribeWorld, an environment 052

containing a dataset of high-level tasks involving 053

building recipes, navigation, and interaction with 054

objects and terrains.1 Test tasks are distinct from 055

training tasks, but they are procedurally composed 056

of the same subtasks and low-level actions. 057

As humans leverage language to perform such 058

generalization, we follow recent work (Ruis et al., 059

2020) by designing, alongside a traditional random 060

task split, a suite of benchmark splits that require 061

learning systematic rules governing how linguistic 062

variation affects a task’s subtask ‘recipe.’ For ex- 063

ample, the agent might be trained to build a pig 064

barn and an iron shrine, then during testing 065

1Examples available at describeworld.github.io

1

describeworld.github.io

must build the unseen composition pig shrine.066

To perform in this task environment, we devise a067

novel HLLP (standing for Hierarchical Latent Lan-068

guage Policy) agent that represents both high-level069

tasks (“build a house on field”) and subtask plans070

(“cut wood”) in natural language. As depicted in071

Figure 1, this effectively recasts the challenge of072

learning from demonstrations as a) describing the073

demonstrated unseen task, then b) following the074

predicted description in a new map. The agent075

uses text representations at two levels of abstrac-076

tion: identifying top-level verbalized tasks (via a077

describer module), and identifying a sequence of078

intermediate-level subtasks (via instructor). We079

train the agent via imitation learning on synthetic080

text associated with oracle actions.081

Our novel testing scenario for DescribeWorld is082

demonstration following, where the agent must083

replicate a demonstrated task in another randomly-084

generated map. Given its challenging nature, we085

evaluate a simpler scenario, description follow-086

ing (Weller et al., 2020), which assumes that the087

agent instead has access to a gold text description088

of the task. This ablated variant allows us to exam-089

ine performance at lower levels of abstraction by090

asking: were an agent to successfully derive a text091

description of an unseen task, could it then follow092

the task in a new context?093

We contrast approaches that leverage latent lan-094

guage policies versus those that instead use contin-095

uous representations. We find that modeling agent096

policy as latent natural language improves the abil-097

ity to generalize to demonstrations of unseen tasks.098

1.1 Contribution099

We frame the contribution of our demonstration fol-100

lowing environment, DescribeWorld, and our pro-101

posed hierarchical latent language policy agent in102

terms of Lake and Murphy (2021)’s five desiderata103

for a computational theory of semantics character-104

istic of human language use:105

1. Describing, or understanding the description106

of, a perceptually present scenario: the HLLP107

agent receives as input a multi-modal2 demonstra-108

tion of a task, and expresses it in text so as to109

generalize into a new randomly-generated map.110

2. Choosing words on the basis of internal de-111

sires, goals, or plans: the agent uses natural lan-112

guage to both describe a demonstrated high-level113

task, as well as to verbalize intermediate-level sub-114

2symbolic map images, plus text-based item inventories

tasks to complete at the level of control policy. 115

3. Responding to instructions and requests ap- 116

propriately: the agent iteratively executes action 117

sequences against the task environment in order 118

to follow the high-level descriptions and low-level 119

instructions it produces for itself. 120

4. Producing and understanding unseen con- 121

ceptual combinations: test demonstrations show 122

unseen high-level tasks composed linguistically 123

and procedurally of known concepts. 124

5. Changing one’s beliefs about the world based 125

on linguistic input: demonstrations convey envi- 126

ronmental constraints – e.g. that walking on lava 127

yields a penalty— that the agent must verbalize and 128

act upon via low-level control policy. 129

2 Related Work 130

Latent Language Policy Agents Natural lan- 131

guage has been proposed as a medium for convey- 132

ing task-specific goals (Karch et al., 2020) and con- 133

straints (Yang et al., 2021) to grounded reinforce- 134

ment learning agents. Andreas et al. (2018) show 135

the benefit of reparamatrizing a continuous policy 136

search into discrete text space for various few-shot 137

‘learn-the-rule’ tasks. They suggest that such "la- 138

tent language policy" (LLP) models are a promising 139

avenue for generalization on the basis of language 140

learning. More recent work has applied LLPs to 141

real-time strategy games (Hu et al., 2019; Jacob 142

et al., 2021), while Chen et al. (2021) show that 143

LLPs trained to generate and follow crowdsourced 144

instructions can perform few- or zero-shot simple 145

crafting tasks in a small grid world. Our work 146

considers a similar style of environment, though 147

our high-level tasks are more complex, extending 148

beyond individual crafting recipes.3 149

Grounded Language Environments Several 150

environments were developed to study language 151

grounding where an embodied agent is given high- 152

level task descriptions and/or instructions to follow 153

(e.g., LANI (Misra et al., 2018), Room2Room (An- 154

derson et al., 2018), ALFRED (Shridhar et al., 155

2020), BabyAI (Chevalier-Boisvert et al., 2018), 156

Ask Your Humans (Chen et al., 2021)). Chevalier- 157

Boisvert et al. (2018) and Hill et al. (2019) in- 158

vestigate compositional rule learning for naviga- 159

tional and pick-up/put-down skills using a synthetic 160

language of instructions in 2D and 3D environ- 161

ments, respectively. Ruis et al. (2020) construct 162

3Performance by Chen et al. (2021)’s model degrades for
crafting recipes with 5 ‘steps’, while ours have upwards of 16.

2

Subtask Graph (hidden):

Description (predicted):
place wood flooring covering all the water
then reach the workspace. avoid walking
on lava.

Inventory:
wood, stone, stick, stone pickaxe

...

Unique Tasks (End Goals + Terr. Consts.) 10604
Unique End Goals 2651
Objects 29 Pickable Objects 11
Craftable Items 19 Buildable Structures 13
Placeable Terrains 7 Natural Terrains 3

Figure 2: DescribeWorld overview. Maps are symbolic
images, while the task description, predicted by the
agent from a demonstration, and the inventory, reflect-
ing subtask completion, are encoded in text.

a grounded instruction following benchmark that163

evaluates many types of systematic generalization.164

Our effort builds upon theirs, introducing a novel165

scenario (demonstration following) as well as tasks166

with longer trajectories, subtask dependencies, and167

new action types (building/placing).168

Language-Based Generalization in Humans169

and Models Lake and Baroni (2018) show that170

RNN-based sequence models struggle to perform171

systematic compositional generalization on the ba-172

sis of abstract linguistic rules, while humans are173

extremely effective at it given few examples (Lake174

et al., 2019). Kim and Linzen (2020) similarly find175

a lack of compositional generalization in neural176

models trained for semantic parsing.177

Recent work in NLP has centered around train-178

ing large language models to perform few- and179

zero-shot problem solving given text-based instruc-180

tions and task descriptions (Weller et al., 2020;181

Mishra et al., 2021; Wei et al., 2021). However,182

evidence suggests that there exists a gap between183

current instruction following capabilities and true184

understanding of underlying task instruction se-185

mantics (Webson and Pavlick, 2021).186

Meta-Learning One way to achieve generaliza-187

tion is to learn strategies that can quickly adapt to188

novel tasks by leveraging past experiences (Schmid-189

huber, 1987; Thrun and Pratt, 1998; Hochreiter190

et al., 2001; Bengio et al., 2007). Specifically,191

our experimental setup falls under the zero- and192

few-shot imitation learning category (Duan et al.,193

2017; Finn et al., 2017a,b; Wang et al., 2017; James194

et al., 2018; Yu et al., 2018; Pan et al., 2020; Zhou195

et al., 2020), where our approach receives a single196

Environmental Constraints

End Goals

Crafting

Navigation

Composite

Building

Placing

Covering

build fence build chicken barn
on water

go to jeweler
and lumbershop

craft necklace

go to furnace

place road

place iron flooring
covering all lavas

place road
covering all fields

place wood flooring
on lava

build gold house
on iron flooring

Terrain
Traversal

rustle pig;
field gives reward

erect wood shrine;
don't walk on water

make scythe
and get coal

clear all of the
chickens

Figure 3: Categories of end goals and environmental
constraints parametrizing high-level tasks.

demonstration to solve novel tasks in new contexts. 197

3 DescribeWorld Environment 198

DescribeWorld is a 2D grid world implemented 199

atop the Mining domain from Sohn et al. (2018). 200

The procedurally generated map (Figure 2(a)) is 201

an 8x8 grid (with surrounding walls); cells may be 202

populated with walls, terrains, and objects. The 203

agent can perform movement, use, and place ac- 204

tions in order to complete subtasks that either add 205

resources to its inventory, build items, or place 206

craftable terrains in the agent’s current location. 207

Details can be found in Appendix A and on our 208

project webpage. The set of possible subtasks and 209

their dependencies (depicted in Appendix Figure 7) 210

is constant across all tasks; we combine subtasks 211

in unseen ways to form unique high-level tasks to 212

be learned from demonstration. 213

3.1 Compositional Tasks and Subtasks 214

Tasks and subtasks in DescribeWorld exhibit pro- 215

cedural and lexical compositionality. A list of high- 216

level task categories is shown in Figure 3. Tasks 217

may also be parameterized by environmental con- 218

straints–namely, that traversing a particular type of 219

terrain will produce either a reward or a penalty. 220

Certain building and placing subtasks option- 221

ally accept a special ingredient material, e.g. gold 222

house. The recipes for these subtasks comprise 223

those needed to acquire the material plus those 224

needed to build the object. All gold items require 225

smelted gold, while all houses, whether they are 226

3

https://describeworld.github.io

silver, gold, or regular, require wood slats, and227

iron. These subtasks require a pair of build-key228

actions to complete: the first uniquely determines229

the type of object to build, while the second deter-230

mines which special material should be used. The231

action to specify a given special ingredient is con-232

stant across all special recipes. Further details of233

such subtasks are shown in Appendix Table 5.234

3.2 World Model235

The state at time step t is represented as a tuple236

(Mt, It), where map Mt is a symbolic 8 × 8 × 3237

tensor with channels for agent, item, and terrain.238

Inventory It is a text representation (comma sep-239

arated) of the currently-held items, e.g. wood,240

stone, spade. There is a step penalty of −1, and241

we track the number of traversals over reward- and242

penalty-giving terrains; rewarding cells can only be243

triggered once per game. Trajectories end upon end244

goal completion, or hitting a 300-step time limit.245

3.3 Oracle246

We implement an oracle that navigates the grid-247

world and completes high-level tasks. The oracle248

computes the set of all necessary subtasks required249

to complete the high-level task. It then computes250

the intersection of necessary and currently eligible251

(i.e. prerequisite-satisfied) subtasks, then chooses252

one to complete according to a canonical order.4253

This process is repeated until the high-level task254

is completed. Example trajectories are provided255

in Appendix Figure 8. The oracle is used both256

to generate trajectories for demonstration follow-257

ing (rolling out a trajectory from start to finish),258

as well as to provide gold instructions and execu-259

tions during imitation learning (i.e. used on-the-260

fly to generate the next step towards completing261

the next subtask). In the former case, in order to262

convey environment-specific constraints such as263

rewards/penalties for stepping on particular terrain264

types, we ensure that it traverses all terrain types265

at least once. Ensuring traversal of all terrains can266

require a navigational detour of a couple steps.267

3.4 Data Splits268

To test various forms of compositional generaliza-269

tion in demonstration following agents, we intro-270

4We initially had the oracle complete whichever eligible
subtask required the fewest steps. However, this led to train-
ing instability due to the compounded difficulty of inferring
required subtasks and selecting an eligibility-adherent com-
pletion order based on distances in a random map. Instead, we
choose the first eligible subtask in a canonically-ordered list.

Training Tasks Evaluation Tasks

H
id

de
n

Su
bt

as
k

H
id

de
n

U
se

C
as

e
H

id
de

n
Te

rr
ai

n
D

es
tin

at
io

n
Le

ng
th

G
en

er
al

iz
at

io
n

Figure 4: Data splits testing for systematic generaliza-
tion in demonstration following agents

duce a suite of train/test splits, depicted in Figure 4, 271

each of which requires a particular form of rule- 272

based systematic generalization. 273

Random Split We compare against a simple ran- 274

dom 70/30 split, where tasks are sorted by hash- 275

ing the text of their end goal, ignoring terrain re- 276

wards/penalties. The random split test is nontriv- 277

ially challenging due to complex subtask dependen- 278

cies and unseen randomly-generated maps. 279

Hidden Subtask This split requires procedural 280

generalization on the basis of ingredient/object 281

composition. We remove from the training data 282

all end goals involving the subtask place iron 283

flooring, but leave in all other tasks that involve 284

other types of flooring, and those that use the 285

iron special ingredient. We repeat the procedure 286

with erect pig shrine and build diamond 287

house. Appendix Table 5 depicts the building 288

recipes for these subtasks, as well as those left 289

in the training set with which they linguistically 290

and procedurally overlap; those serve as the source 291

of generalization. The held-out test set contains all 292

tasks that involve any of the three unseen subtasks.5 293

This challenge is twofold: the agent must learn that 294

modifiers like pig and diamond correspond to a 295

required set of subtasks, plus a fixed specification 296

action when building a structure. 297

Hidden Use Case This split requires generaliza- 298

tion of a subtask learnt in one isolated use case. We 299

remove from training all tasks involving diamond 300

house, but leave in the plain task build diamond 301

house . At test time, the agent must use the sub- 302

5We leave out tasks requiring covering terrain from the
hidden subtask and use case test sets due to agents’ low com-
pletion rate on the category under the random split.

4

DEMONSTRATION
DESCRIBER

Transition Encoder

DESCRIPTION FOLLOWING NETWORK

EXECUTOR

INSTRUCTOR

Transformer
Encoder

Conv. Net

New Instruction
Switch MLP

Transformer
Decoder

get iron ore

Multi-head
Attention

Aggregator

make pickaxe

(forward connection only)

Consecutive
Image

Encoder
wood, stone

build gold house on road.
Water rewards you.
Avoid lava.

wood, stone,
stick, stone pickaxe

-1

Text Encoder

Multi-head
Attention

Aggregator

Transformer
Encoder

wood

Transformer
Decoder

Image
Encoder

Text
Encoder Multi-head

Attention
Aggregator

Recurrent
Memory

Executor MLP

Text
Encoder

Image
Encoder

Transition Encoder

Transition Encoder

Ti
ed

Figure 5: Architecture of hierarchical latent language policy agent. The describer module decodes a description of
a demonstration in map M dem, then the instructor/executor modules replicate the task in new map M new.

task in all other end goal categories, e.g. build303

diamond house on field. We repeat the process304

for place road and make goldware. We also test305

the generalization of iron flooring appearing306

during training only as a destination, e.g. in build307

house on iron flooring. At test time the agent308

must use the concept in all other cases, e.g. place309

iron flooring on field.310

Hidden Terrain Destination This split requires311

generalization of terrains as not only sources of312

traversal penalty/reward, but also as a building des-313

tination. We hold out all tasks that involve the ter-314

rain water as a destination, e.g. in build house315

on water. We leave in tasks that use other ter-316

rain types, e.g. lava and field, as destinations.317

We also leave in tasks that involve water as a ter-318

rain constraint, as in build house. don’t walk319

on water. This split therefore requires agents to320

generalize the fact that water can also serve as a321

destination from the dual roles of other terrains.322

Length Generalization Neural sequence mod-323

els have shown to fail to generalize to task instance324

lengths longer than those seen in training (Graves325

et al., 2014; Ruis et al., 2020). We test for this326

capacity by holding out tasks with the top 10%327

longest oracle trajectories.328

4 Hierarchical Latent Language Policy Agent329

We design a three-layer hierarchical latent language330

policy (HLLP) agent to perform one-shot demon-331

stration following. The describer module observes332

oracle demonstrations and describes them in text.333

The description following instructor and executor334

modules work in tandem to generate intermediate-335

level text instructions and choose low-level ac-336

tions. We thus parametrize our agent’s policy337

via text description D and instruction sequence338

Instr1 . . . Instri. 339

D = fdescr(M
dem
1:n , Idem

1:n , adem
1:n , r

dem
1:n)

Instri = fins(Mi, Ii, Instri−1;D)

ai = fexec(M1:i, I1:i, a1:i−1; Instr1:i)

340

341

Describer module Depicted in (Figure 5, left), 342

this is a basic transformer-based “video summa- 343

rization” model. It takes a demonstration (i.e., se- 344

quence of transitions) as input. A transition at time 345

step t is a 5-tuple including the previous step’s 346

symbolic image Mt−1, the action taken at−1, the 347

resulting reward rt−1, the resulting symbolic image 348

Mt, and the text enumerating the new inventory It. 349

For each time step t, we use an image encoder to 350

encode Mt−1 and Mt, and a text encoder to encode 351

the concatenation of at−1, rt−1, and It. The re- 352

sulting encodings are aggregated using an attention 353

mechanism into a single transition representation. 354

To obtain a single demonstration representation, 355

we use a second transformer encoder over the se- 356

quence of transition encodings , then use a standard 357

attention-equipped transformer decoder to generate 358

a description of the demonstrated task. 359

Instructor module Our framework for generat- 360

ing and following instructions given a task descrip- 361

tion is similar to that of Hu et al. (2019), except we 362

use a language model decoder instead of a classifier 363

and compute separate state encodings for the two 364

modules. At each time step, the instructor mod- 365

ule (Figure 5, upper right) computes a multimodal 366

state representation via attention-based aggrega- 367

tion of separate encodings of the textual and image 368

components of the state observation. The text rep- 369

resentation is a transformer encoding of the task 370

description concatenated with the inventory text, 371

while the image representation is a convolutional 372

neural network encoding of the map. The state rep- 373

5

resentation is passed to the ‘new instruction’ clas-374

sifier, which determines whether to decode a new375

instruction or copy that of the previous timestep.6376

Executor module Shown in (Figure 5, lower377

right), this module computes a combined state rep-378

resentation using the same encoder parameters, but379

using the generated instruction text instead of the380

high-level task description. The state representa-381

tion is used to update a recurrent memory cell, the382

hidden state of which is fed to an MLP classifier383

over low-level actions.384

4.1 Training385

Models are trained to convergence on a validation386

set containing tasks with the same end goals as387

those in the training data, but with unseen combi-388

nations of terrain rewards/penalties. The describer389

is trained with typical seq2seq cross-entropy-based390

supervised learning. The instructor/executor pair is391

trained with imitation learning using DAgger (Ross392

et al., 2011). To train the instructor, we generate393

a synthetic instruction for each subtask. Because394

the description, which is not shown to the executor,395

conveys terrain rewards/penalties, we train the in-396

structor to decode them as well, e.g. in ‘go to lava397

and place road. avoid walking on water.’398

Notably, while the instructor and executor share399

text and image encoder parameters, the text encoder400

is only updated using the instructor loss, and the401

image encoder is updated using the executor loss.402

Further details are provided in Appendix C.403

5 Experiments404

Demonstration Following We test agents 15405

times for each evaluation task, using demonstra-406

tions in 5 randomly-generated maps each paired407

with 3 unique maps in which to replicate the task.408

Description Following We use the same task in-409

stances as the previous scenario, but provide the410

ground truth task description directly to the agent.411

Instruction Following To set an upper bound412

for instructor performance, we evaluate the per-413

formance of the executor given oracle instructions.414

5.1 Baselines415

Nonverbal Baseline To test the effect of com-416

puting a latent text representation of the high-417

level task, we compare against a nonverbal base-418

6This is necessary because of a lack of an explicit state
cue signifying the need for a new instruction, e.g. a change in
inventory in Chen et al. (2021).

line (NV Baseline) that at each time step com- 419

putes a continuous representation of the demon- 420

stration trajectory instead of encoding a pre- 421

dicted text description. The architecture resem- 422

bles that of the executor module, with a trans- 423

former encoder over demonstration transitions 424

(as in the describer) rather than text description. 425

Further details are provided in Appendix B.4. 426

ai = fexec(M
dem
1:n , Idem

1:n , adem
1:n , r

dem
1:n ,M1:i, I1:i, a1:i−1)

427

Latent Language Description Only We also 428

compare against a second baseline that con- 429

ditions the agent’s policy on a latent lan- 430

guage description (LLD), but does not lever- 431

age language at the level of intermediate sub- 432

task planning. The LLD architecture resem- 433

bles the HLLP without the instructor module. 434

D = fdescr(M
dem
1:n , Idem

1:n , adem
1:n , r

dem
1:n)

ai = fexec(M1:i, I1:i, a1:i−1;D)

435

6 Results 436

We average the performance of agents trained us- 437

ing 5 random seeds. Table 1 shows exact match 438

rates for the describer and instructor, measured for 439

the latter at the point of each agent-generated new 440

instruction. Table 2 shows completion rate on the 441

random task split broken down by category, while 442

Table 4 shows it on the generalization splits. 443

6.1 Random Split 444

No model converges to perfect performance on 445

the random task split. Both agents that leverage a 446

predicted task description (HLLP and LLD) outper- 447

form the nonverbal baseline. As shown in Table 1, 448

the describer module exhibits around 70% exact 449

match accuracy on a set of unseen tasks and 85% 450

on a set of training tasks paired with unseen terrain 451

rewards.7 The describer properly identifies over 452

75% of unseen tasks, which are conveyed by the 453

first sentence of each description. It struggles with 454

navigation and clearing item subtasks, which have 455

uniquely short trajectories. Description following 456

agents achieve high task completion rates given 457

the ground truth task description (Table 2, middle). 458

The HLLP agent outperforms the LLD baseline by 459

greater than 5%; however, the latter is more effec- 460

tive at terrain covering and item clearing subtasks, 461

7e.g. train on {‘build house. lava rewards you,’
‘place road. avoid water.’}, then evaluate on {‘build
house. avoid water.’}

6

EM (%)
Describer Instructor

Eval Valid Eval Eval
Tasks Full Goal Full Goal All Last

Random Split 15140 84.3 92.4 69.3 75.7 77.4± 5.1 79.8± 4.3
Navigation 700 10.1 10.6 0.9 0.9 60.1± 16.6 85.1± 1.8
Crafting 5400 98.0 98.9 87.4 88.0 88.9± 4.4 83.2± 4.7
Craft then Nav 880 88.1 99.4 84.0 88.1 89.7± 9.6 97.0± 1.3
Build on Terrain 6040 83.0 92.9 63.8 71.7 78.0± 8.1 81.7± 5.6
Cover Terrain 1680 71.5 98.5 59.5 84.3 60.7± 5.1 52.7± 3.4
Clear Items 400 95.2 95.2 37.0 37.5 72.2± 10.0 72.9± 11.0

Hid. Subtask 8900 84.8 91.4 14.5 15.8 43.6± 4.0 16.5± 4.8
Hid. Use Case 12860 84.1 90.3 19.7 22.2 40.5± 5.0 17.7± 6.8
Hid. Terr Destn 6520 84.9 91.8 0.0 0.0 26.5± 2.1 5.1± 1.4
Length Gen. 5445 85.2 92.0 69.7 92.9 62.9± 5.5 63.8± 8.1

Table 1: Describer and Instructor exact match (EM) against
gold references. Describer EM shown for Full text, and first
sentence describing end Goal. Validation tasks have same end
goals as train, but novel terrain reward/penalty combinations.
Instructor EM shown for All and Last instructions given.

Completion (%) NV Baseline LLD HLLP

Demonstration Following

Overall 25.2± 7.0 65.1± 3.2 68.4± 2.2
Navigation 45.6± 2.6 40.5± 1.3 46.5± 2.9
Crafting 44.4± 13.7 79.6± 3.2 85.5± 1.7
Craft then Nav 45.4± 14.3 89.4± 1.8 95.1± 1.4
Build on Terrain 9.1± 2.7 54.4± 4.1 63.0± 3.4
Cover Terrain 5.4± 2.9 61.2± 4.0 37.9± 1.7
Clear Items 11.6± 5.6 39.3± 0.6 27.0± 6.3

Ground Truth Description Following

Overall – 76.7± 3.6 82.1± 2.5
Navigation – 93.9± 2.3 96.2± 2.9
Crafting – 86.0± 3.3 92.0± 1.8
Craft then Nav – 90.1± 1.5 95.9± 1.6
Build on Terrain – 67.2± 4.7 81.3± 4.2
Cover Terrain – 64.8± 4.2 43.8± 2.5
Clear Items – 85.8± 3.8 67.4± 9.1

Ground Truth Instruction Following

Overall – – 97.2± 1.1
Navigation – – 95.7± 1.5
Crafting – – 98.1± 0.9
Craft then Nav – – 98.5± 0.9
Build on Terrain – – 96.6± 1.4
Cover Terrain – – 97.3± 1.1
Clear Items – – 95.2± 1.8

Table 2: Completion rates on random task split

|Traversals| Oracle NVB LLD HLLP
Tasks + − + − + − + −

0 Rew 1 Pen 5880 – 7 – 30 – 12 – 19
0 Rew 2 Pen 5595 – 17 – 63 – 29 – 39
1 Rew 0 Pen 5490 9 – 8 – 8 – 7 –
1 Rew 1 Pen 11670 9 7 7 32 8 12 7 20
2 Rew 0 Pen 5430 17 – 15 – 15 – 14 –

Table 3: Average traversals on reward (+) or penalty
(−)-giving terrains by agents on random split. Tasks
are categorized by the number of such terrain types.

which require variable numbers of repeated sub-462

tasks depending on the random map. The executor463

performs nearly perfect given oracle instructions464

(Table 2, bottom), indicating most description fol-465

lowing errors are made by the instructor.466

Adherence to Terrain Constraints Table 3 de-467

picts the rate at which demonstration following468

agents traverse terrains giving penalties or re-469

wards.8 We compare against the traversal fre-470

quency of an oracle. This comparison is made471

difficult by the variability among the times taken by472

agents to either complete a task or hit the 300-step473

limit. However, the results suggest that the HLLP474

agent is substantially worse at avoiding penalty ter-475

rains than the LLD. All agents are close to oracle476

performance at traversing reward terrains.477

6.2 Generalization Splits478

Hidden Subtask Models generally fail to gener-479

alize to unseen compositional subtasks. The de-480

scriber identifies only 16% of the unseen end goals,481

while the instructor predicts the correct final in-482

struction (usually corresponding to the hidden sub-483

task) at the same rate. Figure 6 (upper) shows484

8Maps are generated ignoring terrain reward/penalties, so
completing tasks may require traversing a penalizing terrain.

that given gold descriptions, the HLLP agent ac- 485

complishes only pig shrine tasks at all, while the 486

LLD also accomplishes diamond house at a low 487

rate. The executor often fails to handle unseen ora- 488

cle instructions9. We observe qualitatively that the 489

description following HLLP tends to acquire the 490

correct recipe items, but often does not generate the 491

correct final instruction and/or perform the right 492

pair of low-level build operations to place the struc- 493

ture. The instructor correctly generates the novel 494

pig shrine concept around 30% of the time. 495

Hidden Use Case The nonverbal demonstration 496

follower completely fails to generalize tasks to new 497

use cases. The describer module successfully iden- 498

tifies 20% of unseen use case tasks, but no latent 499

language agent completes more than 5% from pre- 500

dicted descriptions. We observe that completion of 501

the isolated training tasks is not perfect (Figure 6 502

middle), indicating that poor performance on this 503

split may be due to a lack of convergence on the 504

subtasks of interest, which underpopulate the train- 505

ing data. The executor module performs well on 506

unseen goldware and iron flooring use cases. 507

Hidden Terrain Destination Agents fail to gen- 508

eralize a terrain observed only as a reward/penalty 509

source to then being a destination for building tasks; 510

particularly for covering tasks. This is the case at 511

all abstraction levels; the executor given gold in- 512

structions completes 55% of build tasks but only 513

3% of cover tasks. The describer and instructor 514

9e.g. the final ‘build diamond house’ instruction.

7

Completion (%) NV Baseline LLD HLLP

Demonstration Following

Hidden Subtask 2.5± 1.4 1.3± 0.4 0.4± 0.3
Hidden Use Case 0.3± 0.5 5.1± 1.5 5.9± 3.3
Hidden Terr Destn 1.6± 0.9 4.6± 0.5 3.7± 0.7
Length Gen. 6.0± 2.1 62.6± 3.8 57.9± 9.0

Description Following

Hidden Subtask – 7.4± 2.3 8.0± 3.1
Hidden Use Case – 8.2± 1.9 11.8± 6.9
Hidden Terr Destn – 1.8± 1.2 2.8± 1.2
Length Gen. – 65.7± 4.1 60.9± 9.1

Instruction Following

Hidden Subtask – – 15.6± 7.2
Hidden Use Case – – 48.6± 5.0
Hidden Terr Destn – – 35.3± 7.2
Length Gen. – – 96.6± 1.3

Table 4: Completion rates on generalization splits

modules fails to identify the end goal and end in-515

struction at all; however, in 49% of describer fail-516

ure cases, the predicted end goal differs from the517

ground truth only by the specified destination (e.g.518

on field instead of the desired on water).519

Length Generalization Both latent language520

agents achieve moderate success on length gen-521

eralization, particularly relative to the nonverbal522

baseline (6% vs 60%). The describer is extremely523

successful at identifying long-trajectory tasks, even524

better than on the random split.525

6.3 Discussion526

Our results suggest that language serves as an527

expressive, generalization-promoting representa-528

tion for artificial one-shot demonstration following529

agents. Intermediate-level planning on the basis of530

LM decoding provides incremental improvements531

upon nonverbal description- and demonstration-532

following baselines on a random task split, sug-533

gesting improved generalization to other maps and534

unseen tasks sampled from the same distribution as535

those seen during training. However, we find that536

instruction-level latent language does not mean-537

ingfully improve systematic compositional general-538

ization in either demonstration or description fol-539

lowing scenarios. Reformulating policy search as540

sequence search simplifies it in certain useful ways–541

the improved flexibility and interpretability of text-542

based reasoning allows for pinpointing errors at543

multiple levels of decision making, abstracts away544

low-level execution decisions that do not pertain545

to certain forms of generalization, as we observe546

in our hidden use case results. However, a latent547

language policy alone is not a compositional gen-548

eralization silver bullet. Indeed, such challenges549

Figure 6: Hidden subtask and use case tests by subtask.

remain largely unsolved, though recent approaches 550

have suggested incremental progress in specific 551

cases (Andreas, 2020; Qiu et al., 2021; Conklin 552

et al., 2021). We hope that our benchmark adds 553

to this discourse, and that future work considers 554

our evaluation framework. We also welcome future 555

work exploring settings with complex subdepen- 556

dencies under time limits. To improve training 557

stability, our instructor chooses subtasks in an in- 558

optimal canonical order that requires text-based 559

reasoning about high-level tasks, but not spatial 560

reasoning about object proximity. 561

7 Conclusion 562

Our goal is to design agents that learn new tasks 563

from single examples, with behavior rooted in lan- 564

guage. This motivated the construction of De- 565

scribeWorld, a task environment for testing one- 566

shot learning of complex tasks from demonstra- 567

tions. DescribeWorld allowed for the development 568

and evaluation of our hierarchical latent language 569

policy agent, which performs decision making on 570

the basis of text at multiple levels of abstraction. 571

We found that models leveraging latent language 572

can improve upon nonverbal alternatives in multi- 573

ple evaluation scenarios, but that they can struggle 574

with forms of systematic generalization. We ob- 575

serve that models can accomplish systematically 576

novel tasks provided the correct decision is made 577

at a higher level of abstraction, which exemplifies 578

how hierarchical latent language provides a mecha- 579

nism for isolating the level of policy abstraction in 580

which a generalization might occur. 581

8

References582

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,583
Mark Johnson, Niko Sünderhauf, Ian D. Reid,584
Stephen Gould, and Anton van den Hengel.585
2018. Vision-and-language navigation: Interpreting586
visually-grounded navigation instructions in real en-587
vironments. 2018 IEEE/CVF Conference on Com-588
puter Vision and Pattern Recognition, pages 3674–589
3683.590

Jacob Andreas. 2020. Good-enough compositional591
data augmentation. In Proceedings of the 58th An-592
nual Meeting of the Association for Computational593
Linguistics, pages 7556–7566, Online. Association594
for Computational Linguistics.595

Jacob Andreas, Dan Klein, and Sergey Levine. 2018.596
Learning with latent language. In Proceedings of597
the 2018 Conference of the North American Chap-598
ter of the Association for Computational Linguistics:599
Human Language Technologies, Volume 1 (Long Pa-600
pers), pages 2166–2179, New Orleans, Louisiana.601
Association for Computational Linguistics.602

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.603
Hinton. 2016. Layer normalization. CoRR,604
abs/1607.06450.605

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and606
Jan Gecsei. 2007. On the optimization of a synaptic607
learning rule.608

Valerie Chen, Abhinav Gupta, and Kenneth Marino.609
2021. Ask your humans: Using human instructions610
to improve generalization in reinforcement learning.611
In International Conference on Learning Represen-612
tations.613

Maxime Chevalier-Boisvert, Dzmitry Bahdanau,614
Salem Lahlou, Lucas Willems, Chitwan Saharia,615
Thien Huu Nguyen, and Yoshua Bengio. 2018.616
Babyai: A platform to study the sample efficiency617
of grounded language learning. In International618
Conference on Learning Representations.619

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-620
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger621
Schwenk, and Yoshua Bengio. 2014. Learning622
phrase representations using RNN encoder–decoder623
for statistical machine translation. In Proceedings of624
the 2014 Conference on Empirical Methods in Natu-625
ral Language Processing (EMNLP).626

Noam Chomsky. 1957. Syntactic Structures. De627
Gruyter Mouton.628

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan629
Titov. 2021. Meta-learning to compositionally gen-630
eralize. In Proceedings of the 59th Annual Meet-631
ing of the Association for Computational Linguistics632
and the 11th International Joint Conference on Nat-633
ural Language Processing (Volume 1: Long Papers),634
pages 3322–3335, Online. Association for Computa-635
tional Linguistics.636

Yan Duan, Marcin Andrychowicz, Bradly C. Stadie, 637
Jonathan Ho, Jonas Schneider, Ilya Sutskever, 638
P. Abbeel, and Wojciech Zaremba. 2017. One-shot 639
imitation learning. ArXiv, abs/1703.07326. 640

Chelsea Finn, P. Abbeel, and Sergey Levine. 2017a. 641
Model-agnostic meta-learning for fast adaptation of 642
deep networks. In ICML. 643

Chelsea Finn, Tianhe Yu, Tianhao Zhang, P. Abbeel, 644
and Sergey Levine. 2017b. One-shot visual imita- 645
tion learning via meta-learning. In CoRL. 646

Alex Graves, Greg Wayne, and Ivo Danihelka. 647
2014. Neural turing machines. arXiv preprint 648
arXiv:1410.5401. 649

Matthew Hausknecht and Peter Stone. 2015. Deep 650
recurrent q-learning for partially observable mdps. 651
arXiv preprint arXiv:1507.06527. 652

Felix Hill, Andrew Lampinen, Rosalia Schneider, 653
Stephen Clark, Matthew Botvinick, James L Mc- 654
Clelland, and Adam Santoro. 2019. Environmental 655
drivers of systematicity and generalization in a situ- 656
ated agent. In International Conference on Learning 657
Representations. 658

Sepp Hochreiter, Arthur Steven Younger, and Peter R. 659
Conwell. 2001. Learning to learn using gradient de- 660
scent. In ICANN. 661

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuan- 662
dong Tian, and Mike Lewis. 2019. Hierarchical de- 663
cision making by generating and following natural 664
language instructions. In Advances in Neural Infor- 665
mation Processing Systems, volume 32. Curran As- 666
sociates, Inc. 667

Athul Paul Jacob, Mike Lewis, and Jacob Andreas. 668
2021. Multitasking inhibits semantic drift. In Pro- 669
ceedings of the 2021 Conference of the North Amer- 670
ican Chapter of the Association for Computational 671
Linguistics: Human Language Technologies, pages 672
5351–5366, Online. Association for Computational 673
Linguistics. 674

Stephen James, Michael Bloesch, and Andrew J. Davi- 675
son. 2018. Task-embedded control networks for few- 676
shot imitation learning. ArXiv, abs/1810.03237. 677

Tristan Karch, Nicolas Lair, Cédric Colas, Jean- 678
Michel Dussoux, Clément Moulin-Frier, Pe- 679
ter Ford Dominey, and Pierre-Yves Oudeyer. 2020. 680
Language-goal imagination to foster creative 681
exploration in deep rl. 682

Najoung Kim and Tal Linzen. 2020. COGS: A com- 683
positional generalization challenge based on seman- 684
tic interpretation. In Proceedings of the 2020 Con- 685
ference on Empirical Methods in Natural Language 686
Processing (EMNLP), pages 9087–9105, Online. As- 687
sociation for Computational Linguistics. 688

Diederik P. Kingma and Jimmy Ba. 2015. Adam: 689
A method for stochastic optimization. In ICLR 690
(Poster). 691

9

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/N18-1197
https://openreview.net/forum?id=Y87Ri-GNHYu
https://openreview.net/forum?id=Y87Ri-GNHYu
https://openreview.net/forum?id=Y87Ri-GNHYu
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.421
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Brenden Lake and Marco Baroni. 2018. Generalization692
without systematicity: On the compositional skills693
of sequence-to-sequence recurrent networks. In In-694
ternational conference on machine learning, pages695
2873–2882. PMLR.696

Brenden Lake, Tal Linzen, and Marco Baroni. 2019.697
Human few-shot learning of compositional instruc-698
tions. In CogSci.699

Brenden Lake and Gregory Murphy. 2021. Word mean-700
ing in minds and machines. Psychological Review.701

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and702
Hannaneh Hajishirzi. 2021. Cross-task general-703
ization via natural language crowdsourcing instruc-704
tions.705

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind706
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.707
Mapping instructions to actions in 3d environments708
with visual goal prediction. In EMNLP.709

Xinlei Pan, Tingnan Zhang, Brian Ichter, Aleksandra710
Faust, Jie Tan, and Sehoon Ha. 2020. Zero-shot imi-711
tation learning from demonstrations for legged robot712
visual navigation. 2020 IEEE International Con-713
ference on Robotics and Automation (ICRA), pages714
679–685.715

Ofir Press and Lior Wolf. 2017. Using the output em-716
bedding to improve language models. In Proceed-717
ings of the 15th Conference of the European Chap-718
ter of the Association for Computational Linguistics:719
Volume 2, Short Papers, pages 157–163, Valencia,720
Spain. Association for Computational Linguistics.721

Linlu Qiu, Hexiang Hu, Bowen Zhang, Peter Shaw,722
and Fei Sha. 2021. Systematic generalization on723
gSCAN: What is nearly solved and what is next?724
In Proceedings of the 2021 Conference on Empiri-725
cal Methods in Natural Language Processing, pages726
2180–2188, Online and Punta Cana, Dominican Re-727
public. Association for Computational Linguistics.728

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.729
2011. A reduction of imitation learning and struc-730
tured prediction to no-regret online learning. In Pro-731
ceedings of the fourteenth international conference732
on artificial intelligence and statistics.733

Laura Ruis, Jacob Andreas, Marco Baroni, Diane734
Bouchacourt, and Brenden M Lake. 2020. A bench-735
mark for systematic generalization in grounded lan-736
guage understanding. Advances in Neural Informa-737
tion Processing Systems, 33.738

Jurgen Schmidhuber. 1987. Evolutionary principles in739
self-referential learning. on learning now to learn:740
The meta-meta-meta...-hook. Diploma thesis, Tech-741
nische Universitat Munchen, Germany, 14 May.742

Mohit Shridhar, Jesse Thomason, Daniel Gordon,743
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,744
Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED:745

A Benchmark for Interpreting Grounded Instruc- 746
tions for Everyday Tasks. In The IEEE Confer- 747
ence on Computer Vision and Pattern Recognition 748
(CVPR). 749

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. 2018. 750
Hierarchical reinforcement learning for zero-shot 751
generalization with subtask dependencies. In Ad- 752
vances in Neural Information Processing Systems, 753
pages 7156–7166. 754

Sebastian Thrun and Lorien Y. Pratt. 1998. Learning to 755
learn. arXiv: Learning, pages 354–354. 756

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 757
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 758
Kaiser, and Illia Polosukhin. 2017. Attention is all 759
you need. In Advances in Neural Information Pro- 760
cessing Systems 30. 761

Jane X. Wang, Zeb Kurth-Nelson, Hubert Soyer, Joel Z. 762
Leibo, Dhruva Tirumala, Rémi Munos, Charles 763
Blundell, Dharshan Kumaran, and Matthew M. 764
Botvinick. 2017. Learning to reinforcement learn. 765
ArXiv, abs/1611.05763. 766

Albert Webson and Ellie Pavlick. 2021. Do prompt- 767
based models really understand the meaning of their 768
prompts? 769

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin 770
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 771
drew M. Dai, and Quoc V. Le. 2021. Finetuned lan- 772
guage models are zero-shot learners. 773

Orion Weller, Nicholas Lourie, Matt Gardner, and 774
Matthew E. Peters. 2020. Learning from task de- 775
scriptions. In Proceedings of the 2020 Conference 776
on Empirical Methods in Natural Language Process- 777
ing (EMNLP), pages 1361–1375, Online. Associa- 778
tion for Computational Linguistics. 779

Tsung-Yen Yang, Michael Hu, Yinlam Chow, Peter 780
Ramadge, and Karthik R Narasimhan. 2021. Safe 781
reinforcement learning with natural language con- 782
straints. 783

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, 784
Tianhao Zhang, P. Abbeel, and Sergey Levine. 785
2018. One-shot imitation from observing hu- 786
mans via domain-adaptive meta-learning. ArXiv, 787
abs/1802.01557. 788

Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sor- 789
doni, Romain Laroche, Remi Tachet des Combes, 790
Matthew Hausknecht, and Adam Trischler. 2018. 791
Counting to explore and generalize in text-based 792
games. arXiv preprint arXiv:1806.11525. 793

Allan Zhou, Eric Jang, Daniel Kappler, Alexander Her- 794
zog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, Mri- 795
nal Kalakrishnan, Sergey Levine, and Chelsea Finn. 796
2020. Watch, try, learn: Meta-learning from demon- 797
strations and reward. ArXiv, abs/1906.03352. 798

10

http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
http://arxiv.org/abs/2104.08773
https://www.aclweb.org/anthology/E17-2025
https://www.aclweb.org/anthology/E17-2025
https://www.aclweb.org/anthology/E17-2025
https://aclanthology.org/2021.emnlp-main.166
https://aclanthology.org/2021.emnlp-main.166
https://aclanthology.org/2021.emnlp-main.166
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://openreview.net/forum?id=Ua5yGJhfgAg
https://openreview.net/forum?id=Ua5yGJhfgAg
https://openreview.net/forum?id=Ua5yGJhfgAg
https://openreview.net/forum?id=Ua5yGJhfgAg
https://openreview.net/forum?id=Ua5yGJhfgAg

Contents in Appendices:799

• In Appendix A, we provide further details of800

the DescribeWorldframework.801

• In Appendix B, we describe modeling details802

of all our proposed agents and baselines.803

• In Appendix C, we provide training and im-804

plementation details of our agents.805

• In Appendix D, we show additional experi-806

ment results.807

A Environment Details808

As depicted in Figure 2, the procedurally generated809

map (Figure 2(a)) is an 8x8 (10x10 with a wall bor-810

der) grid whose cells may be populated with walls,811

terrains and interactable objects. Terrains are either812

lava, field or water. Some objects disappear813

upon interaction (tree, stone. . .) or transform814

(furnace→ lit furnace), or are permanent fix-815

tures (lumbershop, workspace . . .) at which the816

agent can perform crafting operations.817

The set of possible agent actions comprises di-818

rectional movement ({up, down, left, right}, in-819

teract actions ({pick up, use-1 . . . use-5}, and820

place actions ({place-1 . . . place-4}) Subtasks821

generally have a set of prerequisite subtasks (e.g.822

make stone pickaxe requires get wood and get823

stone). The requirements for a subtask do not824

change across tasks, i.e. make stone pickaxe825

always requires the same prerequisites and ac-826

tion/location combination.827

Crafting tasks require the agent to perform a spe-828

cific interact action while in the cell of a specific829

object (make stone pickaxe requires the agent830

to perform use-1 while on top of the workspace.831

Building tasks require the agent to perform a use832

action on a cell without an item already inside it.833

place-based tasks can be performed anywhere re-834

gardless of the presence of an item or existing ter-835

rain.836

If the agent performs actions that render an end837

goal unattainable (e.g. build house on field838

but the agent covers all fields with other objects),839

the game immediately ends and produces a large840

negative reward.841

A.1 Task Recipes842

Figure 7 depicts the full set of DescribeWorld sub-843

tasks and their dependencies.844

B Modeling Details 845

In this section, we provide detailed information 846

of our agents. In Appendix B.1, we will describe 847

some common basic components in the agent ar- 848

chitecture. Later on, we will describe each of the 849

proposed agents mentioned in Section 5. 850

Notations 851

We use game step t to denote one round of interac- 852

tion between an agent with the environment. We 853

use ot to denote text observation at game step t. ot 854

may contain different components depending on a 855

specific context, we will describe individual cases 856

in later subsections. Brackets [·; ·] denote vector 857

concatenation. We use |s| to represent the length 858

of (number of tokens in) a sequence s. We use h 859

and w to denote the height and width of an input 860

image, when the image is flattened, the vector size 861

is hw. 862

B.1 Common Modules 863

B.1.1 Text Encoder 864

We use a transformer-based text encoder, which 865

consists of an embedding layer and a transformer 866

block (Vaswani et al., 2017). Specifically, we tok- 867

enize an input ot with the HuggingFace GPT-2 tok- 868

enizer10. We convert the tokens into 128-dimension 869

embeddings, the embedding matrix is initialized 870

randomly. 871

The transformer block consists of a stack of 4 872

convolutional layers, a self-attention layer, and a 873

2-layer MLP with a ReLU non-linear activation 874

function in between. Within the block, each convo- 875

lutional layer has 128 filters, with a kernel size of 7. 876

The self-attention layers use a block hidden size of 877

128, with 4 attention heads. Layer normalization 878

(Ba et al., 2016) is applied after each layer inside 879

the block. Following standard transformer training, 880

we add positional embeddings into each block’s 881

input. 882

At every game step t, the text encoder encodes 883

ot ∈ R|ot| and results a representation hot ∈ 884

R|ot|×H , H = 128 is the hidden size. 885

B.1.2 Image Encoder 886

We propose two image encoder architectures, each 887

tackling a different type of input: 888

10https://huggingface.co/transformers/model_
doc/gpt2.html#gpt2tokenizer

11

https://huggingface.co/transformers/model_doc/gpt2.html#gpt2tokenizer
https://huggingface.co/transformers/model_doc/gpt2.html#gpt2tokenizer

Figure 7: Full subtask dependency graph for the DescribeWorld task environment.

Action 2

Base Item Prerequisites Action 1 use_1 use_2 use_3 use_4 use_5

flooring spade place_2 wood flooring iron flooring silver flooring gold flooring diamond flooring
barn hay, wood slats use_2 barn chicken barn pig barn
house iron, wood slats use_3 house silver house gold house diamond house
shrine gold ore, silver ore use_4 wood shrine iron shrine chicken shrine pig shrine diamond shrine

Table 5: List of two-action compositional building/placing recipes

Basic: The basic image encoder is adopted from889

the BabyAI baseline model (Chevalier-Boisvert890

et al., 2018). Specifically, given a symbolic im-891

age input M ∈ Zh×w×c
≥0 , we use an image bag-892

of-word (BOW) embedding layer to convert the893

integer inputs into real-valued embeddings with894

size h×w × c×H , where h, w and c denotes the895

height, width, and channels of the image, H = 128896

is the embedding size. We sum up the channel897

dimension, resulting EM ∈ Rh×w×H .898

Next, the image embeddings are fed into a899

stacked residual convolutional blocks:900

hl+1 = ResidualBlockl(hl),

h0 = EM .
(1)901

Each residual block consists of two convolutional902

layers, with kernel size of 3 and output channel size903

of 128. Batch normalization is applied after every904

convolutional layer, followed by a ReLU non-linear905

activation function. Before the last ReLU, we apply906

a residual connection, which adds the block input907

into the output of the last batch norm layer.908

The output size of the stacked residual blocks909

is h× w ×H , we flatten its spatial dimensions to910

result the image encoding hM ∈ Rhw×H .911

Consecutive: In the consecutive image encoder, 912

we aim to capture the difference between two 913

consecutive images. Given two images Mt−1 ∈ 914

Zh×w×c
≥0 and Mt ∈ Zh×w×c

≥0 , we first compute their 915

difference Mdiff ∈ Zh×w×c. We convert the integer 916

inputs into real-valued vectors using image BOW 917

embedding layers, resulting Et−1 ∈ Rh×w×H , 918

Et ∈ Rh×w×H and Ediff ∈ Rh×w×H . Note Mdiff 919

uses a separate image BOW embedding layer. 920

To aggregate the three image embeddings, we 921

feed their concatenation into an Multilayer Percep- 922

tron (MLP): 923

EM = Tanh(Linear([Et−1;Et;Ediff])), (2) 924

where EM ∈ Rh×w×H . We use the same convo- 925

lutional architecture to produce image encoding 926

hM ∈ Rhw×H as in the basic image encoder. 927

B.1.3 Aggregator 928

To aggregate two input encodings P ∈ R|P |×H and 929

Q ∈ R|Q|×H , we use the standard multi-head atten- 930

tion mechanism (Vaswani et al., 2017). Specifically, 931

we use P as the query, Q as the key and value. This 932

results an output PQ ∈ R|P |×H , where at every 933

time step i ∈ [0, |P |), P i
Q is the weighted sum of 934

12

Q, the weight is the attention of P i on Q. We re-935

fer readers to (Vaswani et al., 2017) for detailed936

information.937

We apply a residual connection on top of938

the multi-head attention mechanism in order to939

maintain the original information contained in P .940

Specifically,941

hPQ = Tanh(Linear([PQ;P])), (3)942

where hPQ ∈ R|P |×H .943

B.1.4 Text Decoder944

We use a transformer-based text decoder to gener-945

ate text. The decoder consists of a word embedding946

layer, a stacked transformer blocks and a projection947

layer.948

Similar to the text encoder, the embedding layer949

is initialized with random embedding matrix. In-950

side the transformer block, there is one self atten-951

tion layer, one multi-head attention layer and a952

2-layer MLP with ReLU non-linear activation func-953

tions in between. Taking word embedding vectors954

as input, the self-attention layer first generates a955

contextual encoding vectors for the words. These956

vectors are then fed into the multi-head attention957

layer, to compute attention with representations958

produced by the encoder, which contains informa-959

tion from multiple modalities. The resulting vec-960

tors are fed into the 2-layer MLP. The block hidden961

size of this transformer is 128.962

Subsequently, the output of the stacked trans-963

former blocks is fed into the projection layer, which964

is a linear transformation with output size same as965

the vocabulary size. We follow (Press and Wolf,966

2017), tying the input embeddings and this projec-967

tion layer. The logits resulted from the projection968

layer are then normalized by a softmax to gener-969

ate a probability distribution over all tokens in the970

GPT-2 vocabulary.971

Following common practice, we use a mask to972

prevent the decoder transformer to access “future”973

information during training. We set the max num-974

ber of generated tokens to be 30. During inference,975

the decoder will stop generating whenever gener-976

ates the end-of-sequence special token, or exhausts977

all its budget.978

B.2 Hierarchical Latent Language Policy979

Agent (HLLP)980

B.2.1 Describer981

As briefly mentioned in Section 4, the describer982

module “summarizes” a demonstration into a short983

text, where a demonstration typically a sequence 984

of multi-modal transitions. As shown in Figure 5, 985

at every step t of a demonstration, the transition 986

contains the symbolic images at previous step and 987

current step: Mt−1 and Mt, and the text input 988

ot = [at−1; rt−1; It], where at−1, rt−1, It denote 989

the action taken at previous step, the resulting re- 990

ward, and the inventory state at current step, respec- 991

tively. 992

We first encode the text input with an text en- 993

coder described in Appendix B.1.1, similarly, we 994

encode the image inputs with an consecutive image 995

encoder described in Appendix B.1.2. We sub- 996

sequently use two attention blocks described in 997

Appendix B.1.3 to compute the image encoding’s 998

attention over text (tokens), and vice versa, the text 999

encoding’s attention over image (pixels). We aver- 1000

age both the attention-aggregated outputs, resulting 1001

himg→text ∈ R×H and htext→img ∈ R×H , to com- 1002

pute the overall representation of this time step: 1003

1004

ht = Tanh(Linear([himg→text;htext→img])), (4) 1005

where ht ∈ R×H , H = 128 is the hidden size. 1006

At the episode level, we use a Transformer-based 1007

encoder, with similar architecture to the one in our 1008

text encoder. Specifically, the episode encoder is 1009

a stacked 2-layer Transformer blocks, which out- 1010

puts hdemoi ∈ R|demoi|×H , |demoi| is the number 1011

of steps of a demonstration demoi, H is hidden 1012

size. 1013

Finally, we use a text decoder, as described in 1014

Appendix B.1.4, to generate text descriptions. 1015

In the describer module, we use a 2-layer text 1016

encoder, a 5-layer image encoder, a 2-layer episode 1017

encoder, and a 3-layer decoder. 1018

B.2.2 Instructor 1019

As shown in Figure 5, the instructor consists a 1020

text encoder, a basic graph encoder, an attention 1021

mechanism, a text decoder, and a new instruction 1022

classifier. 1023

Specifically, at a game step t, the image encoder 1024

takes the image input Mt as input, generates im- 1025

age representations vt ∈ Rhw×H , where h and 1026

w are the height and width of the image. At the 1027

same time, the text encoder encodes the text in- 1028

put ot = [D; It; Instrt−1], where D, It and Instrt−1 1029

denote the task description (either generated by 1030

the describer, or provided by an oracle), the in- 1031

ventory state at current step, and the instruction 1032

13

at previous game step. The text encoder outputs1033

wt ∈ R|ot|×H . Next, an attention block as de-1034

scribed in Appendix B.1.3 aggregates vt and wt,1035

resulting st ∈ R|ot|×H that contains information1036

from both modalities, where |ot| denotes number1037

of tokens in ot.1038

The new instruction classifier is an MLP switch1039

module that decides whether or not the instruction1040

generated at previous step is still valid (i.e., is it1041

necessary to generate a new instruction):1042

s′t = MaskedMean(st),

pt = Argmax(L1(Tanh(L0(s′t)))).
(5)1043

In which, L0 and L1 are linear transformations with1044

hidden size of 128 and 2, respectively. The output1045

pt ∈ {0, 1} is the discrete switch.1046

In the case where pt = 0, we directly pass the1047

instruction generated at previous step along as out-1048

put; otherwise, a text decoder as described in Ap-1049

pendix B.1.4 will generate a new instruction word-1050

by-word conditioned on st.1051

In the describer module, we use a single layer1052

text encoder, a 2-layer image encoder, and a 2-layer1053

decoder. The text encoder and image encoder are1054

tied with the corresponding layers in the executor1055

module. During training, we do not update the1056

image encoder.1057

B.2.3 Executor1058

Given the intermediate level text instruction, our1059

executor module translates them into low level ac-1060

tions to interact with the environment. As shown1061

in Figure 5, the executor consists a text encoder,1062

a basic graph encoder, an attention block, and a1063

recurrent action generator.1064

Similar to the instructor module, the image en-1065

coder and text encoder convert image input (Mt)1066

and text input (It and Instrt]) into hidden repre-1067

sentations. Note in the executor, to facilitate in-1068

teraction between the instruction Instrt] with other1069

text inputs, we encode It and Instrt] separately and1070

aggregate them using an attention mechanism.1071

Subsequently, given the image representation vt1072

and the aggregated text representation wt, we apply1073

attention block (as described in Appendix B.1.3)1074

from both directions:1075

hvw = Attention(vt, wt),

hwv = Attention(wt, vt),

h′vw = MaskedMean(hvw),

h′wv = MaskedMean(hwv),

st = Tanh(Linear([h′vw;h
′
wv])),

(6)1076

in which, st ∈ RH , H = 128 is hidden dimension. 1077

In order to encourage the action generator to 1078

condition on history information, we equip it with 1079

a recurrent memory (Cho et al., 2014): 1080

s1:t = GRU(st, s1:t−1), (7) 1081

the hidden size of the GRU is 128. We stack an 1082

MLP on top of the recurrent memory to obtain the 1083

output distribution over all actions: 1084

ht = Tanh(Linear(s1:t)),

pat = Softmax(Linear(ht)),

at = Argmax(pat).

(8) 1085

In the executor module, we use a single layer 1086

text encoder and a 2-layer image encoder. The text 1087

encoder and image encoder are tied with the corre- 1088

sponding layers in the instructor module. During 1089

training, we do not update the text encoder. 1090

B.3 Latent Language Description Only 1091

Baseline (LLD) 1092

The LLD baseline shares the same describer archi- 1093

tecture, and a similar executor architecture with 1094

HLLP, its main difference is the absence of an in- 1095

structor. 1096

In its executor, at a game step t, the inputs are 1097

an image Mt and a short text ot = [D; It], where 1098

D is the description generated by the describer (or 1099

the oracle description during training), It is the 1100

agent’s inventory state. To obtain the text repre- 1101

sentation wt, the LLD agent simply encode ot with 1102

the text encoder as described in Appendix B.1.1, 1103

without performing attention between D and It (as 1104

in HLLP). The rest of the executor components are 1105

identical to HLLP (Appendix B.2.3). 1106

In the LLD baseline, we use a single layer text 1107

encoder and a 2-layer image encoder. 1108

B.4 Nonverbal Baseline (NV) 1109

In the nonverbal baseline, we do not use lan- 1110

guage as latent representations between modules. 1111

Specifically, given a demonstration demoi, we 1112

use a describer similar to the one outlined in Ap- 1113

pendix B.2.1, but without decoding the demonstra- 1114

tion representation into text. The output of the 1115

describer is hdemoi ∈ R|demoi|×H , where |demoi| is 1116

the number of steps in demoi, H is hidden size. 1117

In our nonverbal baseline’s executor, at game 1118

step t, a text encoder encodes the inventory state It 1119

into wt; an image encoder encodes an input image 1120

14

Mt into vt. We use multi-head attention blocks1121

(Appendix B.1.3) to aggregate information carried1122

by image (vt), text (wt), and demonstration repre-1123

sentation (hdemoi):1124

h′demoi = MaskedMean(hdemoi),

hdemo→img = Attention(h′demoi , vt),

hdemo→text = Attention(h′demoi , wt),

htext→img = Attention(wt, vt),

himg→text = Attention(vt, wt),

h′text→img = MaskedMean(htext→img),

h′img→text = MaskedMean(himg→text).

(9)1125

Subsequently, we use an MLP to combine them:1126

hcombined =[h′demoi ;

hdemo→img;hdemo→text;

h′text→img;h
′
img→text],

st =Tanh(Linear(hcombined)),

(10)1127

in which, the output st ∈ RH , H = 128 is hidden1128

dimension.1129

The remainder of the executor is identical to the1130

executor used in the HLLP agent, as described in1131

Appendix B.2.3.1132

In the nonverbal baseline, we use a single layer1133

text encoder and a 2-layer image encoder.1134

C Training and Implementation Details1135

For all experiments, we use Adam (Kingma and Ba,1136

2015) as the optimizer. The learning rate is set to1137

0.001 with a clip gradient norm of 5.1138

C.1 Describer Training via Supervised1139

Learning1140

We use a set of pre-collected expert demonstra-1141

tions paired with ground-truth descriptions to train1142

the describer module in HLLP. Because demonstra-1143

tions are long sequences of agent transitions, which1144

can be memory consuming, we cut long demon-1145

strations and only keep their last 100 transition1146

steps. Since the length of demonstration varies, we1147

speed up training by sorting the data points by their1148

demonstration length, and split them by buckets1149

with a bucket size of 2,000. For every mini-batch1150

(we use a batch size of 20), we first randomly sam-1151

ple a bucket, then randomly sample a batch of data1152

point from that bucket. We train the describer for 51153

million episodes (250,000 batches).1154

C.2 Description Follower Training via 1155

DAgger 1156

We train the description follower modules (instruc- 1157

tor and executor in HLLP, executor in LLD, and 1158

the entire nonverbal baseline) using DAgger (Ross 1159

et al., 2011), an imitation learning method. 1160

Specifically, during the training process, the 1161

agent starts with totally following the expert 1162

demonstrations, then we gradually let the agent 1163

to take over the control. We collect such trajec- 1164

tories (i.e., sequences of transitions, along the ex- 1165

pert demonstrations if the agent takes over control), 1166

without updating the network, into a replay buffer 1167

of size 500,000. We periodically (after every 5 data 1168

collection steps) sample batches of transitions from 1169

the replay buffer, and update the network. Specif- 1170

ically, following the training strategy used in the 1171

recurrent DQN literature (Hausknecht and Stone, 1172

2015; Yuan et al., 2018), we sample batches of tran- 1173

sition sequences (of length 8), we use the first 4 1174

transitions to estimate the recurrent states, and the 1175

last 4 transitions for updating the model parameters. 1176

We use a mini-batch of size 32 in replay data collec- 1177

tion, and a batch size of 64 for update. We linearly 1178

anneal the fraction of expert assistance in DAgger 1179

from 100% to 1% within 500,000 episodes. 1180

When training the HLLP agent, as depicted in 1181

Figure 5, we tie the encoder parameters between 1182

the instructor and the executor. In which, the image 1183

encoder is only updated through the executor loss, 1184

whereas the text encoder is only updated through 1185

the instructor loss. To stabilize the training, we 1186

update the instructor and executor modules in an 1187

alternate manner, with a frequency of 2,000 (expe- 1188

rience data collection) episodes. 1189

We train the description following agents for 1 1190

million episodes maximally, however, in practice, 1191

the agents mostly converge sooner. We set an pa- 1192

tience of 100,000 episodes, the training process 1193

will terminate if there is no improvement within 1194

this period. 1195

D Supplementary Results 1196

Table 1 Shows describer module exact match per- 1197

formance against gold references in all splits and 1198

task categories. 1199

Table 7 shows full task completion performance 1200

by agents on the hidden terrain destination gener- 1201

alization set set decomposed by task category. Ta- 1202

ble 8 shows the same for the length generalization 1203

set. 1204

15

Valid Eval
Full Task End Goal Full Task End Goal

Random Split 84.3 92.4 69.3 75.7
Navigation 10.1 10.6 0.9 0.9
Crafting 98.0 98.9 87.4 88.0
Craft then Nav 88.1 99.4 84.0 88.1
Building on Terrain 83.0 92.9 63.8 71.7
Covering Terrain 71.5 98.5 59.5 84.3
Clearing Items 95.2 95.2 37.0 37.5

Hidden Subtask 84.8 91.4 14.5 15.8
Crafting 97.8 98.4 36.1 36.4
Craft then Nav 88.2 98.3 32.8 32.8
Building on Terrain 84.6 93.0 6.4 7.5
Covering Terrain 74.9 97.6 7.2 12.1

Hidden Use Case 84.1 90.3 19.7 22.2
Crafting 95.1 95.6 29.1 29.3
Craft then Nav 90.4 99.7 46.2 47.5
Building on Terrain 84.6 93.9 20.3 23.5
Covering Terrain 75.3 97.7 4.0 7.4

Hidden Terrain Destination 84.9 91.8 0.0 0.0
Building on Terrain 84.0 94.4 0.0 0.0
Covering Terrain 71.9 97.7 0.0 0.0

Hidden Length 85.2 92.0 69.7 92.9
Crafting 97.3 98.1 95.6 99.1
Craft then Nav 89.9 99.6 89.1 100.0
Building on Terrain 82.9 93.2 74.4 91.0
Covering Terrain 76.8 97.1 58.9 92.6
Clearing Items 98.8 99.1 100.0 100.0

Table 6: Expanded performance of Describer module
against gold references in all splits and task categories.
Validation scores for task categories not in an eval set
are not shown.

NV Baseline LLD HLLP

Demonstration Following

Overall 1.6± 0.9 4.6± 0.5 3.7± 0.7
Building on Terrain 2.5± 1.5 7.4± 0.8 6.0± 1.1
Covering Terrain 0.0± 0.0 0.1± 0.0 0.0± 0.0

Ground Truth Description Following

Overall – 1.8± 1.2 2.8± 1.2
Building on Terrain – 2.9± 2.0 4.5± 1.9
Covering Terrain – 0.0± 0.0 0.1± 0.1

Ground Truth Instruction Following

Overall – – 35.3± 7.2
Building on Terrain – – 55.1± 11.2
Covering Terrain – – 3.1± 0.8

Table 7: Performance on hidden terrain destination
split broken down by task category

Figure 8 depicts example unrolled trajectories1205

produced by the oracle. Figure 9 depicts example1206

failure cases by the HLLP agent on the generaliza-1207

tion splits.1208

Tasks NVB LLD HLLP

Demonstration Following

Overall 6.0± 2.1 62.6± 3.8 57.9± 9.0
Crafting 1905 29.9± 8.1 82.5± 3.5 86.0± 11.6
Build on Terr 6330 4.9± 2.9 58.9± 4.5 69.6± 13.2
Cover Terr 7830 0.3± 0.4 59.7± 3.9 41.1± 5.4
Craft then Nav 165 36.4± 3.8 91.8± 4.6 88.6± 8.9
Clear Itm 105 18.5± 9.1 87.8± 5.1 42.1± 11.3

Ground Truth Description Following

Overall – 65.7± 4.1 60.9± 9.1
Crafting 1905 – 82.8± 3.4 86.3± 11.6
Build on Terr 6330 – 62.4± 4.9 75.1± 13.8
Cover Terr 7830 – 63.3± 4.1 42.9± 5.3
Craft then Nav 165 – 91.8± 4.6 88.4± 9.2
Clear Itm 105 – 87.8± 5.1 42.1± 11.3

Ground Truth Instruction Following

Overall – – 96.6± 1.3
Crafting 1905 – – 97.4± 1.9
Build on Terr 6330 – – 97.1± 1.2
Cover Terr 7830 – – 95.9± 1.4
Craft then Nav 165 – – 98.7± 0.9
Clear Itm 105 – – 96.6± 1.6

Table 8: Length generalization results

16

build fence on silver flooring, then reach the jeweler.
avoid walking on the field. walking on the lava will reward you.
==
I0: cut wood, stepping on lava and avoiding field (9 steps)
I1: get stone, stepping on the lava and avoiding the field

(3 steps)
I2: get string, stepping on the lava and avoiding the field

(4 steps)
I3: get spade, stepping on the lava and avoiding the field

(4 steps)
I4: make stick, stepping on the lava and avoiding the field

(6 steps)
I5: make wood slats (1 steps)
I6: make stone pickaxe, stepping on the lava and avoiding

the field (7 steps)
I7: get coal, stepping on the lava and avoiding the field

(4 steps)
I8: get silver ore, stepping on the lava and avoiding the

field (11 steps)
I9: light furnace, stepping on the lava and avoiding the

field (3 steps)
I10: smelt silver (1 steps)
I11: place silver flooring on empty cell, stepping on the lava

and avoiding the field (3 steps)
I12: build fence on silver flooring (1 steps)
I13: go to jeweler, stepping on the lava and avoiding the

field (5 steps)
game ended after 62 steps

make net and place silver flooring covering all the
water in any order. avoid walking on the field.
==
I0: cut wood, avoiding the field (5 steps)
I1: get stone, avoiding the field (7 steps)
I2: get string, avoiding the field (7 steps)
I3: get spade, avoiding the field (7 steps)
I4: make firewood, avoiding the field (6 steps)
I5: make stick (1 steps)
I6: make net (1 steps)
I7: make stone pickaxe, avoiding the field (5 steps)
I8: get silver ore, avoiding the field (2 steps)
I9: light furnace, avoiding the field (10 steps)
I10: smelt silver (1 steps)
I11: place silver flooring covering water, avoiding the field

(4 steps)
I12: place silver flooring covering water, avoiding the field

(3 steps)
I13: place silver flooring covering water, avoiding the field

(3 steps)
I14: place silver flooring covering water, avoiding the field

(3 steps)
I15: place silver flooring covering water, avoiding the field

(3 steps)
I16: place silver flooring covering water, avoiding the field

(3 steps)
I17: place silver flooring covering water, avoiding the field

(3 steps)
game ended after 88 steps

dig dirt covering all the water, then reach the workspace.
==
I0: get spade (8 steps)
I1: dig dirt covering water (2 steps)
I2: dig dirt covering water (2 steps)
I3: dig dirt covering water (3 steps)
I4: dig dirt covering water (2 steps)
I5: dig dirt covering water (2 steps)
I6: dig dirt covering water (2 steps)
I7: dig dirt covering water (3 steps)
I8: dig dirt covering water (2 steps)
I9: dig dirt covering water (3 steps)
I10: dig dirt covering water (2 steps)
I11: dig dirt covering water (2 steps)
game ended after 32 steps

clear all of the grasses and the irons.
==
I0: cut wood (6 steps)
I1: get stone (5 steps)
I2: get string (5 steps)
I3: make stick (12 steps)
I4: make stone pickaxe (2 steps)
I5: make scythe (1 steps)
I6: get iron ore (4 steps)
I7: get iron ore (3 steps)
I8: cut hay (4 steps)
I9: cut hay (4 steps)
I10: cut hay (10 steps)
game ended after 56 steps

build pig barn on dirt and build diamond house on silver flooring
in any order.
==

I0: cut wood (8 steps)
I1: get stone (3 steps)
I2: get string (2 steps)
I3: get spade (12 steps)
I4: make stick (12 steps)
I5: make trap (1 steps)
I6: make net (1 steps)
I7: make wood slats (1 steps)
I8: make stone pickaxe (7 steps)
I9: catch pig (3 steps)
I10: make scythe (3 steps)
I11: get coal (16 steps)
I12: get iron ore (15 steps)
I13: get silver ore (5 steps)
I14: cut hay (5 steps)
I15: dig dirt on empty cell (2 steps)
I16: light furnace (12 steps)
I17: build pig barn on dirt (13 steps)
I18: smelt iron (12 steps)
I19: smelt silver (1 steps)
I20: make iron pickaxe (4 steps)
I21: get diamond ore (3 steps)
I22: place silver flooring on empty cell (5 steps)
I23: build diamond house on silver flooring (2 steps)
game ended after 148 steps (task was completed)

place diamond flooring on field, then reach the lumbershop.
==
I0: cut wood (11 steps)
I1: get stone (5 steps)
I2: get spade (4 steps)
I3: make stick (6 steps)
I4: make stone pickaxe (7 steps)
I5: get coal (5 steps)
I6: get iron ore (7 steps)
I7: light furnace (6 steps)
I8: smelt iron (1 steps)
I9: make iron pickaxe (6 steps)
I10: get diamond ore (3 steps)
I11: place diamond flooring on field (5 steps)
I12: go to lumbershop (4 steps)
game ended after 70 steps

Figure 8: Example unrolled oracle trajectories

17

Hidden Subtask

erect pig shrine.
==

I.0: cut wood
I.1: get stone
I.2: get string
I.3: make stick
I.4: make trap
I.5: make net
I.6: make stone pickaxe
I.7: catch pig
I.8: get coal
I.9: get iron ore
I.10: get silver ore
I.11: light furnace
I.12: smelt iron
I.13: make iron pickaxe
I.14: get gold ore <pig shrine now eligible>
I.15: erect pig shrine <agent erects iron shrine>
I.16: erect pig shrine <agent erects iron shrine on same cell>
<repeats until time limit>
game ended after 300 steps (task incomplete)

build diamond house.
==
I.0: cut wood
I.1: get stone
I.2: get string
I.3: make stick
I.4: make wood slats
I.5: make stone pickaxe
I.6: get coal
I.7: get iron ore
I.8: light furnace
I.9: smelt iron
I.10: make iron pickaxe
I.11: get gold ore
I.12: get diamond ore <diamond house now eligible>
I.13: erect diamond shrine <agent erects diamond shrine unsuccessfully>
I.13: erect diamond shrine <agent erects diamond shrine unsuccessfully>
<repeats until time limit>
game ended after 300 steps (task incomplete)

Hidden Use Case

place iron flooring covering all the lava and erect pig shrine
on silver flooring in any order.
==
I.0: cut wood
I.1: get stone
I.2: get string
I.3: get spade
I.4: make stick
I.5: make trap
I.6: make net
I.7: make stone pickaxe
I.8: catch pig
I.9: get coal
I.10: get iron ore
I.11: get silver ore
I.12: light furnace
I.13: smelt iron
I.14: smelt silver
I.15: make iron pickaxe
I.16: place iron flooring covering lava
I.17: place iron flooring covering lava
I.18: place iron flooring covering lava
I.19: place iron flooring covering lava <lava fully covered>
I.20: place iron flooring covering lava
<repeats until time limit>
game ended after 300 steps (task incomplete, no pig shrine)

build chicken barn on road and get gold ore in any order.
==
I.0: cut wood
I.1: get stone
I.2: get string
I.3: catch chicken
I.4: make stick
I.5: make wood slats
I.6: make stone pickaxe
I.7: make scythe
I.8: get coal
I.9: get iron ore
I.10: cut hay
I.11: light furnace
I.12: build chicken barn on empty cell
I.13: smelt iron
I.14: make iron pickaxe
I.15: get gold ore
<repeats until time limit>
game ended after 300 steps (task incomplete, barn not in road)

Hidden Terrain Destination

place silver flooring covering all the water.
==
I.0: cut wood
I.1: get stone
I.2: get spade
I.3: make stick
I.4: make stone pickaxe
I.5: get coal
I.6: get silver ore
I.7: light furnace
I.8: smelt silver
I.9: place silver flooring covering field
<repeats until time limit>
game ended after 300 steps (task incomplete, water not covered)

build fence on water.
==
I.0: cut wood
I.1: get string
I.2: make wood slats
I.3: build fence on empty cell
<repeats until time limit>
game ended after 300 steps (task incomplete, fence not on water)

Figure 9: Example agent failure cases on generalization splits

18

