ML4MILP: A BENCHMARK DATASET FOR MA-CHINE LEARNING-BASED MIXED-INTEGER LINEAR PROGRAMMING

Anonymous authors

006

007

008 009 010

011

013

014

015

016

017

018

019

021

025

026 027 Paper under double-blind review

ABSTRACT

Machine learning (ML)-based approaches for solving mixed integer linear programming (MILP) problems have shown significant potential and are growing in sophistication. Despite this advancement, progress in this field is often hindered by the mixed and unsorted nature of current benchmark datasets, which typically lack carefully categorized collections of homogeneous instances. To bridge this gap, we propose ML4MILP, a new open-source benchmark dataset specifically designed for evaluating ML-based optimization algorithms in the MILP domain. Based on the proposed structure and embedding similarity metrics, we used a novel classification algorithm to carefully categorize the collected and generated instances, resulting in a benchmark dataset encompassing 100,000 instances across more than 70 heterogeneous classes. We demonstrate the utility of ML4MILP through extensive benchmarking against a comprehensive suite of algorithms in the baseline library, consisting of traditional exact solvers and heuristic algorithms, as well as ML-based approaches. Our ML4MILP is open-source and accessible at: https://anonymous.4open.science/r/ML4MILP-6BE0.

028 1 INTRODUCTION 029

Mixed Integer Linear Programming (MILP) problems are pivotal in optimization, impacting sectors
such as routing (Kaufman et al., 1998; Heydar et al., 2016; Heisterman & Lengauer, 1991), scheduling (Floudas & Lin, 2005; Zhao et al., 2020; Ku & Beck, 2016), network designing (Luathep et al., 2011; Leitner & Leitner, 2010; Gounaris et al., 2016), and resource allocation (Gertphol et al., 2002;
Alfa et al., 2016; Ramlogan & Goulter, 1989).

These problems demand optimization of a linear objective function under constraints with integer and continuous variables (Wolsey, 2007; 2020), furnishing robust solutions to complex combinato-rial challenges. Given their significance, developing advanced algorithms for MILP is crucial for efficiently solving real-world problems.

039 Traditional MILP solving strategies can broadly be categorized into two groups (Zhang et al., 2023): 040 exact solving algorithms based on branch and bound (Yokoyama et al., 2015; Adelgren & Gupte, 041 2022; He et al., 2014), and approximation algorithms based on heuristic (Fischetti & Lodi, 2010; 042 Triadó-Aymerich et al., 2016; Boujelben et al., 2016). Notable representatives of these categories 043 include pseudo-cost branching (Bénichou et al., 1971; Land & Powell, 1979), strong branching 044 (Achterberg et al., 2005; Dey et al., 2024) and hybrid branching (Achterberg & Berthold, 2009; Turner et al., 2023) in branch and bound, and techniques like feasibility pump (Fischetti et al., 2005; Bertacco et al., 2007), evolutionary computing (Rothberg, 2007; Luo et al., 2017) and large 046 neighborhood search (Nepomuceno et al., 2023; Hendel, 2022) in heuristic. However, in real-world 047 scenarios, there is often a need to solve homogeneous MILP with similar combinatorial structures. 048 In this context, traditional methods face the challenge of cold-starting (Zhang et al., 2023; Nair et al., 2020b), as they cannot leverage accumulated solving knowledge to expedite the process. 050

In response, recent advancements have leveraged machine learning to address MILP problems. In spired by Gasse's bipartite graph representation of MILP (Gasse et al., 2019), researchers are in creasingly adopting neural networks, particularly Graph Neural Networks (GNNs) (Scarselli et al., 2008), to improve the efficacy of traditional algorithms. These ML-based methods enhance branch

Figure 1: Convert MILP into bipartite graph.

062 063

087

090

092

093

095 096

097 098

099

103 104

Figure 2: The Calculation of Similarity Score.

decision-making in branch-and-bound (Gupta et al., 2020; Chen et al., 2023a; Gupta et al., 2022), neighborhood selection (Song et al., 2020; Sonnerat et al., 2021; Wu et al., 2021) and predicting high-quality initial solutions in heuristic (Ding et al., 2020; Ye et al., 2023c;b), all aimed at speeding up the solving process.

Despite the effectiveness of machine learning-based algorithms in many applications, our research into recently proposed ML-based algorithms reveals that, although several approaches claim stateof-the-art performance, they lack comprehensive benchmarking and comparison using a standardized benchmark dataset. This deficit obscures the assessment of which techniques perform best under varying conditions, thereby stalling progress in the field.

To address this gap, we present ML4MILP, a new open-source benchmark dataset for evaluating 074 machine learning algorithms in mixed integer linear programming. We hope that ML4MILP will 075 provide researchers with a convenient means to develop and evaluate their methods. Specifically, 076 we have undertaken the following three tasks: 1) Similarity Evaluation. We proposed a graph 077 statistics-based structural similarity metric and a self-supervised learning GNN-based embedding similarity metric, further achieving fine classification of MILP instances based on GNN embedding. 079 2) Benchmark Datasets. We proposed a new standardized MILP problems dataset tailored for evaluating ML-based algorithms, including 100,000 instances across more than 70 classes and their 081 nearly optimal solution gained by adaptive constraint-partitioned algorithm. 3) Baseline Library. 082 We comprehensively compared and ranked existing mainstream algorithms based on the MILP prob-083 lem dataset, including objective function values and gaps. Experimental results indicate that some 084 algorithms may not be as robust as claimed under more extensive testing, demonstrating the value of ML4MILP for advancing the field. 085

In summary, ML4MILP offers the following advantages:

- 1. **Novelty**: It provides the Learn4MILP community with a new specially designed benchmarking dataset.
- 2. **Comprehensive**: It also comprehensively tests existing mainstream algorithms, determining which methods truly excel under specific conditions.
- 3. **Scalability**: ML4MILP also offers a variety of benchmark problems and numerous integrated benchmark algorithms, with plans for regular maintenance and updates to ensure continuous (scalable) expansion.

2 RELATED WORK

2.1 MIXED INTEGER LINEAR PROGRAMMING PROBLEM

Mixed Integer Linear Programming (MILP) problem is a significant class within combinatorial optimization problems. Formally, a MILP problem can be represented as follows (Wolsey, 2007; 2020):

$$\min_{x} c^{T} x, \text{subject to } Ax \le b, l \le x \le u, x_{i} \in \mathbb{Z}, i \in \mathbb{I},$$
(1)

105 where x represents the decision variables, with dimension denoted by $n \in \mathbb{Z}$, and $l, u, c \in \mathbb{R}^n$ 106 correspond to the lower bounds, upper bounds, and coefficient values of the variables, respectively. 107 The matrix $A \in \mathbb{R}^{m \times n}$ and the vector $b \in \mathbb{R}^m$ define the linear constraints of the problem. The set $\mathbb{I} \subseteq \{1, 2, ..., n\}$ denotes the indices of variables that are constrained to be integers. As shown in Figure 1, based on the formulation of MILP, Gasse's proposed MILP bipartite graph representation (Gasse et al., 2019) achieves a lossless translation of the MILP problem into a graph format, serving as input for the neural embedding network (Nair et al., 2020b). More details about MILP and MILP bipartite graph representation are shown in Appendix D.1.

112 113

114

2.2 MACHINE LEARNING-BASED SOLVING ALGORITHM

115 As a pioneering effort in leveraging ML-based optimization algorithms for solving MILP problems, 116 Gasse et al. (2019) introduced a novel lossless graph representation approach utilizing bipartite graphs for MILP. Building upon this foundational work, Nair et al. (2020b) from DeepMind devel-117 oped the concept of neural diving, where initial solution predictions derived from GNNs are em-118 ployed to fix a majority of the decision variables. Additionally, numerous studies have focused on 119 enhancing the branch-and-bound method, targeting improvements in variable selection (Sun et al., 120 2020; Balcan et al., 2024), node selection (Labassi et al., 2022; Scavuzzo et al., 2022), and cutting 121 plane strategies (Li et al., 2024; Balcan et al., 2022). 122

Building upon previous advancements, Sonnerat et al. (2021) from DeepMind further refined the concept of neural diving by introducing NeuralLNS, which enhances the solutions obtained by training a neural network to select search neighborhoods. Following this development, several scholars have explored using reinforcement learning and imitation learning strategies to learn domain selection policies (Wu et al., 2021; Nair et al., 2020a; Chen & Tian, 2019; Liu et al., 2022). In 2023, Ye et al. (2023c) introduced the GNN&GBDT framework, the current state-of-the-art learning-based solving framework, enhancing prediction and iteration capabilities based on NeuralLNS.

Concurrently, several other studies (Ding et al., 2020; Han et al., 2023; Huang et al., 2023) also
have attempted to learn optimal solution predictions for MILP problems using GNNs and further
refine these predicted solutions. While these methods position themselves as state-of-the-art, their
effectiveness could be further validated through testing on a more unified and comprehensive dataset,
specifically tailored for ML approaches in the MILP domain.

134 135

136 2.3 RELATED BENCHMARK DATASET

137 MILP is a fundamental tool for modeling combinatorial optimization problems, and ML has in-138 creasingly been explored as a means to accelerate MILP solving. However, progress in this area is 139 hindered by the limitations of existing benchmark datasets, which often lack standardization, care-140 ful categorization, and diverse distributions of problem instances. For example, MIPLIB (Koch 141 et al., 2011) and Coral (Curtis) provide general MILP problem instances but do not offer struc-142 tured distributions or standardized test sets tailored for ML-based methods. To address some of these shortcomings, Distributional MIPLIB (Huang et al., 2024) introduced a multi-domain library 143 of MILP instances, focusing on curating problems from real-world and existing sources while clas-144 sifying them into different hardness levels. Expanding this dataset to include larger-scale problem 145 instances and a more comprehensive suite of baseline algorithms would further enhance its utility 146 for evaluating ML frameworks and conducting systematic benchmarking. 147

Our work, ML4MILP, builds on and addresses these limitations by providing a broader and more di-148 verse range of MILP instances, sourced from both real-world problems and generated cases. These 149 instances are carefully categorized into heterogeneous classes and varying hardness levels using a 150 novel classification algorithm. Unlike previous datasets, ML4MILP includes ultra-large-scale prob-151 lem instances with up to millions of decision variables and constraints, enabling the evaluation of 152 ML-based methods on more complex and challenging scenarios. Additionally, ML4MILP offers an 153 extensive library of baseline algorithms, including exact solvers and ML-based approaches, along 154 with detailed benchmarking results. These features make ML4MILP a more structured, scalable, 155 and realistic benchmark for advancing ML-guided MILP research. 156

157

3 PROPOSED ML4MILP

158 159

We have introduced ML4MILP, a new benchmark dataset specifically designed to test ML-based algorithms for solving MILP problems. ML4MILP consists of three main components: Similarity Evaluation, Benchmark Datasets, and Baseline Library. Based on this structure, we conducted

- Figure 3: An overview of ML4MILP reveals a comprehensive framework. With the extensively 178 collected and carefully designed *Benchmark Datasets*, the evaluation index within the *Similarity* 179 *Evaluation* component measures the similarity of the collected data, using classification algorithms 180 to recategorize datasets with low similarity scores. This setup facilitates the execution of a "Trainer-Tester-Logger" process through the Baseline Library, enabling rigorous testing of algorithms and 182 comparisons with classical baselines. Subsequently, the performance of the testing algorithms is 183 evaluated based on objective function values and gap estimates under fixed wall-clock times. Additionally, we score and rank the performance of each baseline under MILP and integer programming 185 (IP) conditions, culminating in a leaderboard of algorithms.

187 188

uniform training and testing of baseline algorithms, followed by a comprehensive evaluation and ranking of the results. The framework of ML4MILP is illustrated in Figure3.

189 190 191

192

3.1 SIMILARITY EVALUATION

193 Since MILP problems can be losslessly encoded as bipartite graphs, Graph Neural Networks (GNNs) have become a common choice for machine learning-based MILP optimization frameworks. Pre-194 vious studies have demonstrated that machine learning techniques excel in extracting insights from 195 homogeneous MILP datasets (Nair et al., 2020b; Lin et al., 2022), which leads to the fact that the 196 lack of homogeneity poses significant challenges. This issue is not only related to the findings (Oono 197 & Suzuki, 2019), where it was analyzed that GNNs struggle to go deeper due to over-smoothing, resulting in models with insufficient parameters, ultimately affecting generalization in heterogeneous 199 problems; but also to the theoretical analysis (Chen et al., 2023b), which discusses the inadequacy 200 of GNNs in representing general MILPs. We also acknowledge that in recent years, large models 201 with strong out-of-distribution generalization capabilities may have the potential to learn from het-202 erogeneous datasets. However, during the pre-training stage, fine-grained category label distinctions 203 undoubtedly help large models learn the structural differences between different problem categories, 204 which could benefit the development of large model technologies in the optimization community.

205 Therefore, whether for current machine learning techniques or future new technologies based on 206 large models, fine-grained classified homogeneous datasets are necessary, demonstrating the im-207 portance of MILP problem datasets with category labels. However, most collected MILP datasets 208 typically lack homogeneity, which poses significant challenges in identifying and managing dataset 209 uniformity. To overcome these challenges, we introduce innovative Similarity Evaluation Metrics 210 and developed a *Classification Algorithm* for re-screening and re-classifying heterogeneous datasets.

211

212 SIMILARITY EVALUATION METRICS 3.1.1

213 To improve the assessment of similarity among instances within a dataset, we initially introduced 214 two embedding methods for MILP instances. Specifically, for structure embedding, we detail an 215 embedding approach that represents MILP instances as a 10-dimensional embedding, capturing key

Figure 4: The overview of graph self-supervised learning. For the bipartite graph representation of MILP, we use the encoder-decoder structure for reconstruction, and the loss is computed by comparing the output with the features of the nodes in the original representation.

aspects of the mathematical formulation and bipartite graph characteristics outlined in Section 2.1. This vector includes metrics such as the Fraction of non-zero entries in the coefficient matrix, Mean and standard deviation of the degrees of constraint vertices. The details are shown in Appendix B.2.

However, structural embedding alone may not fully reflect the intricacies introduced by coefficients
and local connectivity within problems. To address this, we introduce a neural embedding method
using a graph self-supervised learning paradigm, inspired by Graph Autoencoders (Kipf & Welling,
2016). As shown in Figure 4, MILP instances from the MIPLIB Collection are represented as bipartite graphs, which are then encoded using a graph convolutional neural network. During training,
parts of this neural embedding are randomly masked, and the model is tasked with reconstructing
these missing segments, minimizing the discrepancy between the reconstructed and original graphs.

To quantify the similarity among a set of MILP instances \mathcal{I} , we employ the following formula:

Embedding Distance =
$$\frac{\sum_{\mathcal{I}_i, \mathcal{I}_j \in \mathcal{I}, i \neq j} \text{Distance}(\mathcal{I}_i, \mathcal{I}_j)}{|\mathcal{I}| (|\mathcal{I}| - 1)},$$
(2)

where Distance $(\mathcal{I}_i, \mathcal{I}_j)$ denotes the Euclidean distance between the embeddings of instances \mathcal{I}_i and \mathcal{I}_j . As shown in the left of Figure 2, we use the average distance between instance embeddings as a measure to evaluate problem similarity. A lower Embedding Distance indicates a higher degree of homogeneity among the instances, thus affirming their isomorphism within the dataset.

249 3.1.2 CLASSIFICATION ALGORITHM

225

226

227

228 229

230

231

232

241 242

243

248

263

For datasets that exhibit low similarity, we have developed a novel strategy for re-screening and re-classifying these datasets, thereby retaining only those subsets that demonstrate homogeneity.

Specifically, we consider classifying datasets with low internal similarity into multiple sub-datasets. After graph self-supervised learning shown in Figure 4, we use the GNN encoder to obtain the neural embedding of each problem using the method mentioned in 3.1.1. Then, we employ a spectral clustering algorithm to cluster the neural embeddings within the dataset and recalculate the similarity between the newly formed sub-datasets.

258 3.2 BENCHMARK DATASETS

To accommodate the learning needs of machine learning-based algorithms for solving MILP problems, our dataset comprises two main components: MILP Instances and the corresponding reference
 Solutions and Gap estimates.

264 3.2.1 MILP INSTANCES

Our MILP instances originate from two primary sources: a new includes real-world scenarios care fully curated and vetted from existing open-source datasets, while the second comprises problems constructed according to standard mathematical formulations.

Firstly, we have carefully gathered a substantial number of MILP instances through various means. These include mainstream open-source, comprehensive datasets such as MIPlib (Koch et al., 2011), 270 AClib (Hutter et al., 2014), Regions200 (Leyton-Brown et al., 2000), MIRPlib (Papageorgiou et al., 271 2014), and COR@L (Curtis); domain-specific academic papers, for example, those focusing on the 272 robustness verification of neural networks (Nair et al., 2020b), cut selection (Wang et al., 2023), lot-273 sizing polytope (Atamtürk & Munoz, 2004), maximizing diffusion in networks (Ahmadizadeh et al., 274 2010), network designing (Atamtürk, 2002), fixed-charge flow polytope (Atamtürk, 2001), valid inequalities (Atamtürk et al., 2001), conic cuts (Atamtürk & Narayanan, 2010; Şen et al., 2015), 275 and 0-1 knapsack (Atamtürk & Narayanan, 2009); and competitions related to MILP, such as the 276 ML4CO competition in NeurIPS 2021 (Gasse et al., 2022) and the competition on Reoptimization 277 2023 (Bolusani et al., 2023). The details of each open-source dataset are shown in Appendix A.1. 278

279 Secondly, given that the collected problem instances are often small in scale, lacking large-scale 280 examples with millions of decision variables and constraints, we generated a substantial number of standard problem instances based on nine canonical MILP problems: Maximum Independent 281 Set (Tarjan & Trojanowski, 1977), Minimum Vertex Covering (Dinur & Safra, 2005), Set Covering 282 (Caprara et al., 2000), Mixed Integer Knapsack Set (Atamtürk, 2003), Balanced Item Placement 283 (Qu et al., 2022), Combinatorial Auctions (De Vries & Vohra, 2003), Capacitated Facility Location 284 (An et al., 2017). Inspired by Distributional MIPLIB (Huang et al., 2024), we also generated two 285 real-world problem instances: Middle-mile Consolidation Problem with Waiting Times (Greening 286 et al., 2023), and Steiner Network Problem with Coverage Constraints (Huang & Dilkina, 2020). 287 For each type of problem, we generated instances at three levels of difficulty—easy, medium, and 288 hard—corresponding to problem scenarios with tens of thousands, hundreds of thousands, and mil-289 lions of decision variables, respectively. The details are shown in Appendix A.3. 290

Upon acquiring the MILP instances, we will utilize the Similarity Evaluation Metrics outlined in Section 3.1.1 to assess the homogeneity of the collected data. For datasets that display significant internal variability, we will apply the Classification Algorithm described in Section 3.1.2 to re-screen and reclassify the problems. This procedure enhances the homogeneity of our benchmarking and facilitates the development of MILP Instances that accurately represent real-world scenarios.

296 3.2.2 SOLUTION AND GAP

For the MILP problem instances, obtaining reference solutions (preferably optimal solutions) and estimating the solution gaps is necessary. To this end, we initially utilize the state-of-the-art solver Gurobi to solve problems for a fixed duration (e.g., 8 hours), during which most problems achieve optimal solutions. These optimal solutions are then packaged into pickle files and the problem instances and saved as part of the ML4MILP training dataset.

303 However, for some larger-scale problems, particularly the generated standard problems, it is often 304 challenging to obtain optimal solutions within a reasonable time frame. The solutions obtained 305 directly from Gurobi exhibit significant gaps that do not meet the quality requirements for training 306 data reference solutions. Therefore, we introduce the most advanced iterative improvement methods, 307 utilizing an Adaptive Constraints Partition (ACP)-based strategy (Ye et al., 2023a) to iteratively improve the solutions obtained from Gurobi, detailed in Appendix B.1. Then, based on the solution 308 \overline{x} obtained from Gurobi and the associated gap estimate \overline{q} , we can compute the gap estimate q^* for 309 the improved solution x^* derived from ACP. Assuming a minimization problem, the gap estimate 310 can be calculated using the following formula $g^* = \frac{x^* - (1 - \overline{g})\overline{x}}{x^*}$. 311

Additionally, we have randomly partitioned the problem data into training and testing datasets. Detailed information about the partitioning scheme and results can be found in Appendix A.4.

- 314 315
- 3.3 BASELINE LIBRARY

To validate the effectiveness of the proposed dataset, we organized the existing mainstream methods into a Baseline Library and conducted comparisons using Benchmark Datasets against these mainstream baselines. The algorithms in the Baseline Library are divided into three parts. a new part includes state-of-the-art large-scale solvers, such as SCIP (version 4.3.0) (Achterberg, 2009) and Gurobi (version 11.0.1) (Gurobi Optimization, 2021), which represent the leading levels of opensource academic and commercial solvers, respectively. We implemented calls to these solvers using their interfaces to solve specific problems. The second part consists of classic solving algorithms, including General Large Neighborhood Search (version ramdom-LNS) (Song et al., 2020) and Adaptive Constraint Partition Based Optimization Framework (version ACP2) (Ye et al., 2023a), which
we reproduced based on their pseudocode. The third part comprises the latest machine learningbased solving algorithms, including Learn2branch (Gasse et al., 2019), GNN&GBDT-guided framework (Ye et al., 2023c), Neural Diving (Nair et al., 2020b), Predic&Search (Han et al., 2023), Hybrid_Learn2branch (Gupta et al., 2020), and GNN-MILP (Chen et al., 2022). Both algorithms can
be trained and tested after adapting them to the problem data.

Furthermore, we also experimented with other solving algorithms such as Feasible Pump (Fischetti et al., 2005) and Simulated Annealing (Abramson & Randall, 1999). However, since these methods failed to obtain feasible solutions within a reasonable computational timeframe for most problems, we ultimately did not include them.

005		Structure Distance	Embedding Distance
333	MIS_easy	0.011	1.50e-08
336	MVC_easy	0.010	1.24e-08
227	SC_easy	0.009	3.69e-08
337	Aclib	25.402	2.52e-06
338	Cut	7.122	1.47e-05
330	fc.data	5.867	9.68e-07
000	Hem_knapsack	0.566	8.75e-07
340	Hem_mis	0.356	4.29e-07
341	Hem_setcover	0.286	5.33e-07
	Hem_corlat	5.956	3.34e-07
342	Hem_mik	226.520	9.54e-06
343	item_placement	0.037	7.03e-12
0.4.4	load_balance	0.436	6.97e-07
344	anonymous	222.061	8.99e-06
345	nn_verification	18.460	3./1e-06
246	vary_bounds_s1	0.001	7.08e-08
340	vary_bounds_s2	0.009	5.20e-08
347	vary_bounds_s3	0.009	1.908-08
2/10	vary_matrix_rhs_bounds_s1	0.011	1.740.08
340	vary_mautx_ms_bounds_st	3 180 06	8 30e 07
349	vary obj s?	1.22e-05	2.64e-07
350	vary rhs s1	0.007	9.83e-08
000	vary rhs s2	0.550	1.11e-05
351	vary rhs s4	0.601	1.47e-05
352	Transportation	148.368	1.10e-05
050	Coral	1056768.799	6.03e-03
303	ECOGCNN	468055.052	5.41e-02
354	MIPlib	7002615758.102	8.82e-02
355	Nexp	5511575859.716	2.48e-01

Table 1: The distance of graph structure and neural embedding in each heterogeneous class. The blue background color indicates classical MILP datasets.

Figure 5: Structure & embedding distance matrix within classes.

4 EXPERIMENTS

334

356

357

358

359 360

361 362

364

366

367

368 369 370 To validate the effectiveness of ML4MILP, we first conducted a detailed comparison with classic MILP datasets such as MIPLib (Section 4.1), demonstrating the advantage of ML4MILP. Then, we show the distance matrix between categories(Section 4.2), demonstrating the effectiveness of the classification algorithm. Further, based on a selected set of the problem categories from the instance dataset, we conducted comparative tests with algorithms from the Benchmark Library (Section 4.3), indicating that some of the purportedly advanced algorithms did not perform as well as claimed in more comprehensive tests, highlighting ML4MILP's positive role in advancing the field.

4.1 DATASET ANALYSIS

To validate the benefits of ML4MILP over traditional MILP datasets such as MIPLib, Coral, and Nexp in evaluating ML-based optimization algorithms, we conducted a comparative analysis of problem similarity within ML4MILP. The settings are shown in Appendix C.2.

The results, detailed in Table 1, reveal a stark contrast in problem similarity. For graph structural embedding, the distances between instances in traditional MILP datasets like MIPLib were found to be several orders of magnitude larger—by hundreds of millions of times—than those in ML4MILP. Similarly, the neural embedding distances in traditional MILP datasets were often tens of thousands

Figure 6: Training loss before and after reclassification.

Figure 7: Validation loss before and after reclassification.

of times greater than those in ML4MILP. These findings demonstrate that ML4MILP provides significantly lower variability between instances, both in terms of problem structure and neural embedding. This confirms ML4MILP's substantial advantages in promoting homogeneity among dataset instances, making it a superior choice for testing ML-based optimization algorithms.

395 396 397

398

378

379

380

381

382

383

384

385

386

387 388

389

390 391 392

393

394

4.2 DATASET RECLASSIFICATION

399 To address the complexities arising from mixed problem instances in datasets, particularly those 400 sourced from open repositories, we employed the spectral clustering algorithm for effective cat-401 egorization. Taking MIPLib as an illustrative case, we implemented this algorithm, successfully segregating the dataset into six distinct classes. As illustrated on the right side of Figure 2, we uti-402 lized the average Euclidean distance to evaluate similarities between these classes. The distances 403 among instances within each class are depicted in Figure 5. Our analysis revealed that the structure 404 and neural embedding distances among a new five classes were notably small, indicating a high 405 degree of similarity. Conversely, the sixth class exhibited significantly larger intra-class and inter-406 class distances, suggesting the presence of outlier instances. Based on these findings, we opted to 407 exclude this sixth class from the MIPLib dataset to ensure a more homogeneously classified dataset 408 for subsequent baseline testing. 409

To further substantiate the importance of a homogeneous dataset and the effectiveness of our classi-410 fication approach, we conducted additional experiments using a semi-convolutional structured GNN 411 (Nair et al., 2020b), a widely recognized neural network. We set the learning rate to 1×10^{-3} and 412 divided the dataset into training and validation sets in a 6:4 ratio. Our tests on the MIPLib dataset 413 before and after reclassification, with results displayed in Figures 6 and 7, demonstrated significant 414 differences. The training loss for the original MIPLib, characterized by numerous heterogeneous 415 problems, exhibited slow decreases and considerable fluctuations in validation loss, occasionally 416 leading to NaN (not a number) values. This indicated instability in the GNN training process and 417 a lack of effective learning. In contrast, following reclassification, both training and validation losses decreased steadily, underscoring the critical role of homogeneous datasets in enhancing the 418 performance of machine learning-based MILP optimization frameworks. These findings highlight 419 the necessity of our proposed dataset and reinforce the effectiveness of our classification strategy. 420 Detailed classification results for other datasets, are provided in Appendix C.3. 421

422 423

424

4.3 BENCHMARKING STUDY

To validate the effectiveness of ML4MILP and assess the performance of baseline algorithms across various problem classes, we conducted comparative experiments focused on objective function values and gap estimation under the same wall-clock time limit. Results for six representative baseline methods on benchmark problems are shown in Tables 2 and 3, with full experimental details found in Appendix C.5.

Our findings reveal that, despite many ML-based methods claiming to surpass Gurobi, it consistently outperforms other approaches in most instances, particularly in real-world scenarios like load_balancing and Transportation. This underscores the robustness of classical solvers like Gurobi,

432		Gurobi	LNS	ACP	Learn2branch	GNN&GBDT	Predict&Search	Time
133	MIS_hard	2.17e+05	2.17e+05	2.27e+05	+	2.27e+05	+	4000s
100	MVC_hard	2.83e+05	2.74e+05	2.76e+05	+	2.72e+05	+	4000s
434	SC_hard	3.20e+05	1.73e+05	1.70e+05	+	2.29e+05	+	4000s
135	MIPlib	1.84e+04	1.98e+04	1.84e+04	1.89e+04	-	1.84e+04	150s
100	Coral	3805.7000	4.67e+08	1.40e+08	+	-	14.5999	4000s
436	Cut	2.89e+04	3.35e+04	3.07e+04	3.71e+04	-	2.93e+04	4000s
137	ECOGCNN	7.56e+05	7.58e+05	7.57e+05	+	-	7.56e+05	4000s
407	HEM_knapsack	422.6000	422.6000	422.6000	422.6000	422.6000	422.6000	100s
438	HEM_corlat	251.0000	248.8000	251.0000	!	-	251.0000	100s
130	HEM_mik	-6.28e+04	-6.25e+04	-6.18e+04	!	-	-6.28e+04	100s
400	item_placement	5.3000	12.8000	10.7000	16.5000	-	5.5310	4000s
440	load_balancing	708.8000	723.2000	709.3000	+	-	708.8000	1000s
4.4.1	anonymous	2.50e+05	2.04e+06	5.29e+05	+	-	2.46e+05	4000s
	Nexp	1.16e+08	1.18e+08	1.16e+08	1.18e+08	-	1.16e+08	4000s
442	Transportation	1.24e+06	1.40e+06	1.28e+06	1.31e+06	-	1.25e+06	4000s
143	vary_bounds_s1	1.24e+04	2.07e+04	1.24e+04	1.29e+04	-	1.24e+04	400s
110	vary_matrix_s1	61.6000	61.6000	61.6000	62.7000	-	61.5939	100s
444	vary_obj_s1	8625.4000	8642.0000	8625.4000	8633.6000	8625.4000	8625.4000	100s
145	vary_rhs_s1	-349.5000	-54.4000	-291.5000	+	-	-349.4640	100s
110	Aclib	8.24e+04	8.25e+04	8.28e+04	!	-	8.24e+04	100s
446	fc.data	378.6000	490.4000	378.6000	!	-	378.6000	100s
447	nn_verification	-8.3000	-9.7000	-9.7000	!	-	-8.2514	100s

Table 2: Objective function value of baselines. + represents the problem of scale being too large to accept the time to collect training samples. ! represents the problem of errors during band training. - represents MILP problems that the IP framework, GNN&GBDT, cannot solve.

	Gurobi	LNS	ACP	Learn2branch	GNN&GBDT	Predict&Search	Time
MIS_hard	0.1714	0.1714	0.1184	+	0.1169	+	4000s
MVC_hard	0.1310	0.1018	0.1077	+	0.0951	+	4000s
SC_hard	0.9920	0.9852	0.9850	+	0.9887	+	4000s
MIPlib	0.0000	0.2157	0.0004	0.3363	-	1.23e-06	150s
Coral	2.85e+04	3.05e+04	3.05e+04	+	-	2.33e+04	4000s
Cut	0.1490	0.2744	0.1651	0.5782	-	0.1568	4000s
ECOGCNN	0.2512	0.2730	0.2516	+	-	0.2512	4000s
HEM_knapsack	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100s
HEM_corlat	0.0000	0.0129	0.0000	!	-	0.0000	100s
HEM_mik	0.0000	0.0034	0.0146	!	-	3.00e-15	100s
item_placement	0.6481	0.8431	0.8076	4.17e+07	-	0.6595	4000s
load_balancing	0.0028	0.0227	0.0035	+	-	0.0028	1000s
anonymous	0.3088	0.9256	0.5449	+	-	0.2909	4000s
Nexp	0.0787	0.1095	0.0754	0.1629	-	0.0759	4000s
Transportation	0.1512	0.2490	0.1767	0.2725	-	0.1568	4000s
vary_bounds_s1	0.0000	0.3956	0.0000	0.1518	-	0.0003	400s
vary_matrix_s1	0.0000	0.0008	0.0008	0.4002	-	0.0000	100s
vary_obj_s1	0.0000	0.0019	0.0000	0.0054	0.0000	0.0000	100s
vary_rhs_s1	0.0003	5.5134	0.2037	+	-	0.0000	100s
Aclib	0.0000	0.0006	0.0028	!	-	0.0000	100s
fc.data	0.0000	0.1729	0.0000	!	-	0.0000	100s
nn_verification	0.0001	0.1493	0.1493	!	-	0.0000	100s

Table 3: Gap estimation of baselines.

especially when optimality and feasibility guarantees are critical. In contrast, exact ML-based algorithms like learn2branch, despite their theoretical guarantees, struggle with the exponential increase in search space for large-scale problems, as seen in benchmarks like Coral and Cut, where they require significant computational time.

Heuristic-based algorithms, such as GNN&GBDT, excel in large-scale problems like MIS_hard and
SC_hard due to effective dimensionality reduction techniques, making them suitable for ultra-large
instances. However, GNN&GBDT struggles with certain MILP problems, reflecting the need for
more versatile approaches. Predict&Search, which combines machine learning with traditional
search techniques, also demonstrates competitive performance, achieving near-optimal results in
problems like vary_matrix_s1 and vary_rhs_s1. However, like other heuristic methods, it lacks the
guarantees of exact solvers and may fail to find feasible solutions for highly constrained problems.

Our experiments suggest that hybrid strategies—combining heuristics with traditional methods like
 Predict&Search—can improve results for complex MILP problems by balancing solution quality
 and efficiency. This highlights the importance of categorized datasets like ML4MILP, which support

Figure 8: Scores for IP (blue) and MILP (red) problems in ML4MILP for different baselines.

detailed performance analysis and foster the development of more robust hybrid methods leveraging the strengths of existing algorithms.

511 To enable a direct comparison of baseline algorithms across different problems, we quantified each 512 algorithm's performance by scoring their gap estimates on identical problems. The scores were 513 transformed into a 0–100 scale using a normal distribution function, $\operatorname{Score}(x) \sim \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, where x represents the gap estimation. 514 where x represents the gap estimation. This approach aligns with the central limit theorem, ensuring 515 a more objective performance assessment. Despite the claims of state-of-the-art performance by 516 algorithms like LNS, ACP, Learn2branch, GNN&GBDT, and Predict&Search, the results, depicted 517 in Figure 8, shows that these methods often lack comprehensive evaluation across diverse and large-518 scale scenarios. For instance, while GNN&GBDT performs exceptionally well in large-scale integer 519 programming problems, other methods like Predict&Search struggle due to higher computational 520 complexity. Conversely, in MILP problems, Predict&Search slightly surpasses Gurobi, yet most 521 other methods fall short of Gurobi's robust performance.

522 These discrepancies highlight a critical issue: many of the existing machine learning-based algo-523 rithms have been evaluated in selective or limited scenarios, failing to provide a clear, holistic view 524 of their true performance across a wide range of problem types and scales. Without a standardized 525 benchmarking and comprehensive comparison, it is difficult to accurately assess which techniques 526 excel under specific conditions. This is where the ML4MILP framework proves invaluable. By 527 offering a unified, rigorous benchmark across various problem domains and scales, ML4MILP en-528 ables a much-needed, in-depth comparison of algorithm performance. This framework allows for a clearer understanding of each method's strengths and weaknesses, ultimately driving progress in the 529 field by providing a robust basis for future algorithm development and optimization. 530

531 532

533

506

507 508 509

510

5 CONCLUSION AND FUTURE WORK

We propose ML4MILP, a new open-source benchmark dataset designed to evaluate machine learn ing algorithms in MILP. Through extensive testing, we uncovered significant challenges faced by
 current ML-based optimization algorithms, highlighting the need for further research to drive ad vancements in this domain. While ML4MILP has made considerable strides, we recognize areas for
 improvement. We plan to expand the problem set to include a wider variety of MILP tasks, ensuring
 richer and more complex challenges. These efforts will ensure ML4MILP remains a crucial tool for
 advancing ML-based optimization algorithms in MILP, fostering developments in the field.

540 REFERENCES

551

552

553

554

555

559

565

567

568

569

575

576 577

578

579

580

- David Abramson and Marcus Randall. A simulated annealing code for general integer linear pro grams. Annals of Operations Research, 86(0):3–21, 1999.
- Tobias Achterberg. Scip: solving constraint integer programs. *Mathematical Programming Computation*, 1:1–41, 2009.
- Tobias Achterberg and Timo Berthold. Hybrid branching. In Integration of AI and OR Techniques
 in Constraint Programming for Combinatorial Optimization Problems: 6th International Confer ence, CPAIOR 2009 Pittsburgh, PA, USA, May 27-31, 2009 Proceedings 6, pp. 309–311. Springer, 2009.
 - Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. *Operations Research Letters*, 33(1):42–54, 2005. ISSN 0167-6377.
 - Nathan Adelgren and Akshay Gupte. Branch-and-bound for biobjective mixed-integer linear programming. *INFORMS Journal on Computing*, 34(2):909–933, 2022.
- Kiyan Ahmadizadeh, Bistra Dilkina, Carla P Gomes, and Ashish Sabharwal. An empirical study of optimization for maximizing diffusion in networks. In *International Conference on Principles and Practice of Constraint Programming*, pp. 514–521. Springer, 2010.
- Attahiru S Alfa, Bodhaswar T Maharaj, Shruti Lall, and Sougata Pal. Mixed-integer programming
 based techniques for resource allocation in underlay cognitive radio networks: A survey. *Journal of Communications and Networks*, 18(5):744–761, 2016.
- Hyung-Chan An, Mohit Singh, and Ola Svensson. Lp-based algorithms for capacitated facility
 location. *SIAM Journal on Computing*, 46(1):272–306, 2017.
- A. Atamtürk and V. Narayanan. The submodular 0-1 knapsack polytope. 6:333–344, 2009.
 - A. Atamtürk and V. Narayanan. Conic mixed-integer rounding cuts. *Mathematical Programming*, 122:1–20, 2010.
- A. Atamtürk, , G. L. Nemhauser, and M. W. P. Savelsbergh. Valid inequalities for problems with additive variable upper bounds. *Mathematical Programming*, 91:145–162, 2001.
- Alper Atamtürk. Flow pack facets of the single node fixed-charge flow polytope. Operations Research Letters, 29(3):107–114, 2001.
 - Alper Atamtürk. On capacitated network design cut-set polyhedra. *Mathematical Programming*, 92:425–437, 2002.
 - Alper Atamtürk. On the facets of the mixed-integer knapsack polyhedron. *Mathematical Program*ming, 98(1-3):145–175, 2003.
 - Alper Atamtürk and Juan Carlos Munoz. A study of the lot-sizing polytope. *Mathematical Programming*, 99(3):443–465, 2004.
- Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch: Generalization guarantees and limits of data-independent discretization. *Journal of the ACM*, 71 (2):1–73, 2024.
- Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural analysis of branch-and-cut and the learnability of gomory mixed integer cuts. *Advances in Neural Information Processing Systems*, 35:33890–33903, 2022.
- Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and Olivier
 Vincent. Experiments in mixed-integer linear programming. *Mathematical programming*, 1:76–94, 1971.
- 593 Livio Bertacco, Matteo Fischetti, and Andrea Lodi. A feasibility pump heuristic for general mixedinteger problems. *Discrete Optimization*, 4(1):63–76, 2007.

594 595 596 597	Suresh Bolusani, Mathieu Besançon, Ambros Gleixner, Timo Berthold, Claudia d'Ambrosio, Gon- zalo Muñoz, Joseph Paat, and Dimitri Thomopulos. The mip workshop 2023 computational competition on reoptimization. <i>arXiv preprint arXiv:2311.14834</i> , 2023.
598 599 600	Mouna Kchaou Boujelben, Celine Gicquel, and Michel Minoux. A milp model and heuristic approach for facility location under multiple operational constraints. <i>Computers & Industrial Engineering</i> , 98:446–461, 2016.
601 602 603	Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for the set covering problem. <i>Annals of Operations Research</i> , 98:353–371, 2000.
604 605 606	Li Chen, Hua Xu, Ziteng Wang, Chengming Wang, and Yu Jiang. Self-paced learning based graph convolutional neural network for mixed integer programming (student abstract). In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 37, pp. 16188–16189, 2023a.
607 608 609	Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza- tion. <i>Advances in neural information processing systems</i> , 32, 2019.
610 611 612	Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro- grams by graph neural networks. <i>arXiv preprint arXiv:2209.12288</i> , 2022.
613 614 615	Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer linear programs by graph neural networks, 2023b. URL https://arxiv.org/abs/2210.10759.
616 617 618	A. Şen, A. Atamtürk, and P. Kaminsky. A conic integer programming approach to constrained assortment optimization under the mixed multinomial logit model. Research Report BCOL.15.06, IEOR, University of California–Berkeley, October 2015.
619 620 621	<pre>Frank E. Curtis. Cor@l mip dataset. https://coral.ise.lehigh.edu/data-sets/ mixed-integer-instances/.</pre>
622 623 624	Sven De Vries and Rakesh V Vohra. Combinatorial auctions: A survey. <i>INFORMS Journal on computing</i> , 15(3):284–309, 2003.
625 626	Santanu S Dey, Yatharth Dubey, Marco Molinaro, and Prachi Shah. A theoretical and computational analysis of full strong-branching. <i>Mathematical Programming</i> , 205(1):303–336, 2024.
627 628 629 630	Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac- celerating primal solution findings for mixed integer programs based on solution prediction. In <i>Proceedings of the aaai conference on artificial intelligence</i> , volume 34, pp. 1452–1459, 2020.
631 632	Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover. <i>Annals of mathematics</i> , pp. 439–485, 2005.
633 634 635	Matteo Fischetti and Andrea Lodi. Heuristics in mixed integer programming. Wiley Encyclopedia of Operations Research and Management Science, 2010.
636 637 638	Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. <i>Mathematical Programming</i> , 104:91–104, 2005.
639 640	Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear programming in process scheduling: Modeling, algorithms, and applications. <i>Annals of Operations Research</i> , 139:131–162, 2005.
641 642 643 644	Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi- natorial optimization with graph convolutional neural networks. <i>Advances in neural information</i> <i>processing systems</i> , 32, 2019.
645 646 647	Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The machine learning for combinatorial optimization competition (ml4co): Results and insights. In <i>NeurIPS 2021 competitions and demonstrations track</i> , pp. 220–231. PMLR, 2022.

648 649 650 651	Sethavidh Gertphol, Yang Yu, Shriram B Gundala, Viktor K Prasanna, Shoukat Ali, Jong-Kook Kim, Anthony A Maciejewski, and Howard Jay Siegel. A metric and mixed-integer-programming-based approach for resource allocation in dynamic real-time systems. In <i>Proceedings 16th International Parallel and Distributed Processing Symposium</i> , pp. 10–pp. IEEE, 2002.
652 653 654 655 656 657 658	Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano. MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. <i>Mathematical Programming Computation</i> , 2021. doi: 10.1007/s12532-020-00194-3. URL https: //doi.org/10.1007/s12532-020-00194-3.
659 660 661	Jens Gottlieb and Lutz Paulmann. Genetic algorithms for the fixed charge transportation problem. In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 330–335. IEEE, 1998.
662 663 664	Chrysanthos E Gounaris, Karthikeyan Rajendran, Ioannis G Kevrekidis, and Christodoulos A Floudas. Designing networks: A mixed-integer linear optimization approach. <i>Networks</i> , 68(4): 283–301, 2016.
665 666 667	Lacy M Greening, Mathieu Dahan, and Alan L Erera. Lead-time-constrained middle-mile con- solidation network design with fixed origins and destinations. <i>Transportation Research Part B:</i> <i>Methodological</i> , 174:102782, 2023.
668 669 670 671	Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio. Hybrid models for learning to branch. <i>Advances in neural information processing systems</i> , 33: 18087–18097, 2020.
672 673	Prateek Gupta, Elias B Khalil, Didier Chetélat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and M Pawan Kumar. Lookback for learning to branch. <i>arXiv preprint arXiv:2206.14987</i> , 2022.
674	LLC Gurobi Optimization. Gurobi optimizer reference manual. 2021.
676 677 678	Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi- aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming. <i>arXiv preprint arXiv:2302.05636</i> , 2023.
679 680	He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms. <i>Advances in neural information processing systems</i> , 27, 2014.
682 683 684	Jörg Heisterman and Thomas Lengauer. The efficient solution of integer programs for hierarchical global routing. <i>IEEE transactions on computer-aided design of integrated circuits and systems</i> , 10(6):748–753, 1991.
685 686	Gregor Hendel. Adaptive large neighborhood search for mixed integer programming. <i>Mathematical Programming Computation</i> , 14(2):185–221, 2022.
687 688 689 690	Mojtaba Heydar, Jie Yu, Yue Liu, and Matthew EH Petering. Strategic evacuation planning with pedestrian guidance and bus routing: a mixed integer programming model and heuristic solution. <i>Journal of Advanced Transportation</i> , 50(7):1314–1335, 2016.
691 692 693	Taoan Huang and Bistra Dilkina. Enhancing seismic resilience of water pipe networks. In <i>Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies</i> , pp. 44–52, 2020.
694 695	Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina. Con- trastive predict-and-search for mixed integer linear programs. 2023.
696 697 698	Weimin Huang, Taoan Huang, Aaron M Ferber, and Bistra Dilkina. Distributional miplib: a multi- domain library for advancing ml-guided milp methods. <i>arXiv preprint arXiv:2406.06954</i> , 2024.
699 700 701	Frank Hutter, Manuel López-Ibánez, Chris Fawcett, Marius Lindauer, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. Aclib: A benchmark library for algorithm configuration. In Learning and Intelligent Optimization: 8th International Conference, Lion 8, Gainesville, FL, USA, February 16-21, 2014. Revised Selected Papers 8, pp. 36–40. Springer, 2014.

702 703 704	David E Kaufman, Jason Nonis, and Robert L Smith. A mixed integer linear programming model for dynamic route guidance. <i>Transportation Research Part B: Methodological</i> , 32(6):431–440, 1998.
705 706 707	Thomas N Kipf and Max Welling. Variational graph auto-encoders. <i>arXiv preprint arXiv:1611.07308</i> , 2016.
708 709 710 711	Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold, Robert E Bixby, Emilie Danna, Gerald Gamrath, Ambros M Gleixner, Stefan Heinz, et al. Miplib 2010: mixed integer programming library version 5. <i>Mathematical Programming Computation</i> , 3:103–163, 2011.
712 713 714	Wen-Yang Ku and J Christopher Beck. Mixed integer programming models for job shop scheduling: A computational analysis. <i>Computers & Operations Research</i> , 73:165–173, 2016.
715 716 717	Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch and bound with graph neural networks. <i>Advances in neural information processing systems</i> , 35: 32000–32010, 2022.
718 719 720	A Land and S Powell. Computer codes for problems of integer programming. In <i>Annals of Discrete Mathematics</i> , volume 5, pp. 221–269. Elsevier, 1979.
721 722 723	Markus Leitner and Markus Leitner. Solving two network design problems by mixed integer pro- gramming and hybrid optimization methods. na, 2010.
724 725 726	Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi- natorial auction algorithms. In <i>Proceedings of the 2nd ACM conference on Electronic commerce</i> , pp. 66–76, 2000.
727 728 729	Sirui Li, Wenbin Ouyang, Max Paulus, and Cathy Wu. Learning to configure separators in branch- and-cut. Advances in Neural Information Processing Systems, 36, 2024.
730 731	Jiacheng Lin, Jialin Zhu, Huangang Wang, and Tao Zhang. Learning to branch with tree-aware branching transformers. <i>Knowledge-Based Systems</i> , 252:109455, 2022.
732 733 734	Jeffrey T Linderoth and Ted K Ralphs. Noncommercial software for mixed-integer linear program- ming. In <i>Integer programming</i> , pp. 269–320. CRC Press, 2005.
735 736	Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In <i>Proceedings of the aaai conference on artificial intelligence</i> , volume 36, pp. 3796–3803, 2022.
737 738 739 740	Paramet Luathep, Agachai Sumalee, William HK Lam, Zhi-Chun Li, and Hong K Lo. Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach. <i>Transportation Research Part B: Methodological</i> , 45(5):808–827, 2011.
741 742 743	Jiaxiang Luo, Jiyin Liu, and Yueming Hu. An milp model and a hybrid evolutionary algorithm for integrated operation optimisation of multi-head surface mounting machines in pcb assembly. <i>International Journal of Production Research</i> , 55(1):145–160, 2017.
744 745 746	Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020a.
747 748 749	Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren- dan O'Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed integer programs using neural networks. <i>arXiv preprint arXiv:2012.13349</i> , 2020b.
750 751 752 753	Napoleão Nepomuceno, Ricardo Saboia, and André Coelho. A milp-based very large-scale neigh- borhood search for the heterogeneous vehicle routing problem with simultaneous pickup and delivery. In <i>Proceedings of the Genetic and Evolutionary Computation Conference</i> , pp. 330–338, 2023.
755	Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification. <i>arXiv preprint arXiv:1905.10947</i> , 2019.

756	
750	Dimitri J Papageorgiou, George L Nemhauser, Joel Sokol, Myun-Seok Cheon, and Ahmet B Keha.
757	Mirplib-a library of maritime inventory routing problem instances: Survey, core model, and
758	benchmark results. European Journal of Operational Research, 235(2):350–366, 2014.
759	
760	Qingyu Qu, Xijun Li, Yunfan Zhou, Jia Zeng, Mingxuan Yuan, Jie Wang, Jinhu Lv, Kexin Liu, and
761	Kun Mao. An improved reinforcement learning algorithm for learning to branch. arXiv preprint
701	arXiv:2201.06213, 2022.
702	
763	RN Ramlogan and IC Goulter. Mixed integer model for resource allocation in project management.
764	Engineering optimization, 15(2):97–111, 1989.
765	
766	Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
767	INFORMS Journal on Computing, 19(4):534–541, 2007.
768	
760	Franco Scarselli, Marco Gori, An Chung Isol, Markus Hagenbuchner, and Gabrele Montardim.
709	The graph neural network model. <i>IEEE transactions on neural networks</i> , 20(1):61–80, 2008.
770	Loro Society Dear Chan Didior Chitalat Maxima Cosco Andrea Lodi Neil Verka Smith and
771	Lata Scavizzo, Felig Chen, Didler Chetelat, Maxime Gasse, Andrea Loui, Neil Torke-Smith, and
772	Karen Aardai. Learning to branch with tree mdps. Advances in Neural Information Processing
773	<i>Systems</i> , 35:18514–18526, 2022.
774	Alexander Schrijver, Theory of linear and integer programming, John Wiley & Song, 1008
775	Alexander Schrijver. Theory of unear and integer programming. John whey & Sons, 1998.
775	lialin Song Yisong Yue Bistra Dilkina et al. A general large neighborhood search framework
//6	for solving integer linear programs, Advances in Neural Information Processing Systems 33:
777	20012 2002 2020
778	20012-20023, 2020.
779	Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
780	neighborhood search algorithm for mixed integer programs, arXiv preprint arXiv:2107.10201
781	2021
700	2021.
702	Haoran Sun, Wenbo Chen, Hui Li, and Le Song. Improving learning to branch via reinforcement
783	learning, 2020.
784	6
785	Robert Endre Tarjan and Anthony E Trojanowski. Finding a maximum independent set. SIAM
786	Journal on Computing, 6(3):537–546, 1977.
787	
788	Joan Triadó-Aymerich, Laia Ferrer-Martí, Alberto García-Villoria, and Rafael Pastor. Milp-based
780	heuristics for the design of rural community electrification projects. Computers & Operations
705	Research, 71:90–99, 2016.
790	
791	Mark Turner, Timo Berthold, Mathieu Besançon, and Thorsten Koch. Branching via cutting plane
792	selection: Improving hybrid branching. arXiv preprint arXiv:2306.06050, 2023.
793	This Wong View Li Lie Wong Viewi Kuong Minamur View Lie Zang Vanala Zhang L
794	Zninai wang, Xijun Li, Jie wang, Tutei Kuang, Mingxuan Tuan, Jia Zeng, Tongdong Znang, and
795	reng wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
796	model. arxiv preprint arxiv:2302.00244, 2023.
707	Laurance & Walsay Mixed integer programming Wiley Encyclonedia of Computer Science and
191	Engineering pp 1 10 2007
798	<i>Engineering</i> , pp. 1–10, 2007.
799	Laurence A Wolsey, Integer programming, John Wiley & Sons 2020
800	
801	Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
802	for integer programming. Advances in Neural Information Processing Systems. 34:30075–30087.
803	2021.
80/	
004	Tianxing Yang, Huigen Ye, Hua Xu, and Hongyan Wang. Mipgen: Learning to generate scalable
805	mip instances. 2023.
806	-
807	Huigen Ye, Hongyan Wang, Hua Xu, Chengming Wang, and Yu Jiang. Adaptive constraint partition
808	based optimization framework for large-scale integer linear programming (student abstract). In
809	Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 16376–16377,
-	2023a.

810 811 812	Huigen Ye, Hua Xu, and Hongyan Wang. Light-milpopt: Solving large-scale mixed integer linear programs with small-scale optimizer and small training dataset. In <i>The Twelfth International Conference on Learning Representations</i> , 2023b.
813 814 815 816	Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast opti- mizing framework for large-scale integer programming. In <i>International Conference on Machine Learning</i> , pp. 39864–39878. PMLR, 2023c.
817 818 819 820	Ryohei Yokoyama, Yuji Shinano, Syusuke Taniguchi, Masashi Ohkura, and Tetsuya Wakui. Op- timization of energy supply systems by milp branch and bound method in consideration of hi- erarchical relationship between design and operation. <i>Energy conversion and management</i> , 92: 92–104, 2015.
821 822 823 824	Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan. A survey for solving mixed integer programming via machine learning. <i>Neurocomputing</i> , 519: 205–217, 2023.
825 826 827 828	Ziyan Zhao, Shixin Liu, MengChu Zhou, and Abdullah Abusorrah. Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem. <i>IEEE/CAA Journal of Automatica Sinica</i> , 8(6):1199–1209, 2020.
829 830 831	
832 833	
834 835 836	
837 838 839	
840 841 842	
843 844 845	
846 847 848	
849 850	
852 853	
854 855 856	
857 858 859	
860 861 862	
863	

864 APPENDIX

This Appendix is divided into four sections. Appendix A provides details of the benchmark dataset. Appendix B outlines the specifics of the algorithms. Appendix C presents additional experimental results to further demonstrate the effectiveness and efficiency of ML4MILP. Finally, Appendix D includes supplementary information on mixed-integer linear programs.

869 870 871

872

866

867

868

A DETAILS OF BENCHMARK DATASET

873 A.1 OPEN-SOURCE DATASETS

874 We have meticulously assembled a substantial collection of mixed integer linear programming 875 (MILP) instances from a variety of sources, including open-source, comprehensive datasets such 876 as MIPlib (Koch et al., 2011), AClib (Hutter et al., 2014), Regions200 (Leyton-Brown et al., 2000), 877 COR@L (Curtis), and MIRPLIB (Papageorgiou et al., 2014); domain-specific academic papers, for 878 example, those focusing on the robustness verification of neural networks (Nair et al., 2020b), cut 879 selection (Wang et al., 2023), lot-sizing polytope (Atamtürk & Munoz, 2004), maximizing diffu-880 sion in networks (Ahmadizadeh et al., 2010), network designing (Atamtürk, 2002), fixed-charge 881 flow polytope (Atamtürk, 2001), valid inequalities (Atamtürk et al., 2001), conic cuts (Atamtürk & 882 Narayanan, 2010; Sen et al., 2015), and 0-1 knapsack (Atamtürk & Narayanan, 2009); and competitions related to MILP, such as the ML4CO competition in NeurIPS 2021 (Gasse et al., 2022) and the 883 competition on Reoptimization 2023 (Bolusani et al., 2023). Details such as the number of instances 884 per problem (size of training and testing datasets), the average number of decision variables, and the 885 average number of constraints are all listed in Table 4. Due to double-blind review requirements, 886 the source URLs for the datasets have been excluded and will be made available after the review 887 process is complete.

Our analysis reveals that the ML4MILP dataset is well-populated and robust in terms of instance
 count and scale. It encompasses a wide range of problem characteristics, including various numbers
 of decision variables, constraint counts, and densities of coefficient matrices. This diversity makes
 ML4MILP a broadly comprehensive and extensive dataset suitable for evaluating different aspects
 of MILP problem-solving through machine learning techniques.

894

895 A.2 USED ASSETS

ML4MILP is an open-sourced tool, and it can be accessed at: Link. Table 5 lists the resources or assets utilized in ML4MILP, along with their respective licenses. It is important to note that we adhere strictly to these licenses during the development of ML4MILP.

"Need to cite" means there is no explicit license, but the repository states that the corresponding 900 article needs to be cited to use the dataset. For datasets prefixed with "vary" in the ML4MILP 901 collection, these originate from the MIP Workshop 2023 Computational Competition (MIPcc23) 902 (Bolusani et al., 2023). It is essential to cite the corresponding literature when using these datasets. 903 Similarly, datasets such as Coral (Linderoth & Ralphs, 2005), MIPlib (Gleixner et al., 2021), and 904 Transportation (Gottlieb & Paulmann, 1998) also require proper citations when utilized. This en-905 sures that all sources are appropriately acknowledged and that the scholarly contributions of these 906 resources are recognized in any analysis or publication that employs them. This practice not only upholds academic integrity but also supports the continuity and openness of research in the field of 907 mixed integer linear programming. 908

"Readme" means there is no explicit license, but the repository's Readme file explains that it can
be used without restriction. For the datasets labeled as Aclib, Cut, fc.data, and Nexp, detailed
information and guidelines can be found in the Readme files hosted at the Link. For the ECOGCNN
dataset, the Readme file is available at Link.

913

914 A.3 STANDARD PROBLEM INSTANCE 915

We generated a substantial number of standard problem instances based on nine canonical MILP
 problems: Maximum Independent Set (MIS) (Tarjan & Trojanowski, 1977), Minimum Vertex Covering (MVC) (Dinur & Safra, 2005), Set Covering (SC) (Caprara et al., 2000), Mixed Integer Knap-

948 949

064

918	Name(Path)	Number(Train)	Number(Test)	Avg.Vars	Avg.Constrains
919	nn_verification	3613	9	7144.02	6533.58
	item_placement	9990	10	1083	195
920	load_balancing	9990	10	61000	64307.19
921	anonymous	134	4	34674.03	44498.19
	HEM_knapsack	9995	5	720	72
922	HEM_mis	9979	5	500	1953.48
923	HEM_setcover	9995	5	1000	500
004	HEM_corlat	1979	5	466	486.17
924	HEM_mik	85	5	386.67	311.67
925	vary_bounds_s1	45	5	3117	1293
0.26	vary_bounds_s2	45	5	1758	351
920	vary_bounds_s3	45	5	1758	351
927	vary_matrix_s1	45	5	802	531
028	vary_matrix_rhs_bounds_s1	45	5	27/10	16288
520	vary_matrix_rhs_bounds_obj	45	5	7973	3558
929	vary_obj_s1	45	5	360	252
030	vary_obj_s2	45	5	/45	26159
550	vary_obj_s3	45	5	9599	27940
931	vary_rns_s1	45	5	12760	1250
932	vary_ms_s2	43	5	62000	1230
002	vary_ms_ss	43	5	1000	1250
933	vary_IIIS_54	45	5	00082	22/28
934	vary rhs objest	45	5	4626	8274
005	Aclib	80	10	181	180
935	Coral	272	7	18420.92	11831.01
936	Cut	11	3	4113	1608 57
0.07	ECOGCNN	41	3	36808.25	58768.84
937	fc.data	15	5	571	330.5
938	MIPlib	46	4	7719.98	6866.04
020	Nexp	72	5	9207.09	7977.14
333	Transportation	27	5	4871.5	2521.467
940	MIPLIB_collection_easy	639	10	119747.4	123628.3
941	MIPLIB_collection_hard	102	5	96181.4	101135.8
5-11	MIPLIB_collection_open	199	5	438355.9	258599.5
942	MIRPLIB_Original	67	5	36312.2	11485.8
943	MIRPLIB_Maritime_Group1	35	5	13919.5	19329.25
	MIRPLIB_Maritime_Group2	35	5	24639.8	34053.25
944	MIRPLIB_Maritime_Group3	35	5	24639.8	34057.75
945	MIRPLIB_Maritime_Group4	15	5	4343.0	6336.0
040	MIRPLIB_Maritime_Group5	15	5	48330.0	66812.0
940	MIRPLIB_Maritime_Group6	15	5	48330.0	66815.0

Table 4: Detailed parameter information for each open source dataset.

sack Set (MIKS) (Atamtürk, 2003), Balanced Item Placement (BIP) (Qu et al., 2022), Combinatorial Auctions (CA) (De Vries & Vohra, 2003), Capacitated Facility Location (CFL) (An et al., 2017), Middle-mile Consolidation Problem with Waiting Times (MMCW) (Greening et al., 2023), and Steiner Network Problem with Coverage Constraints (SNPCC) (Huang & Dilkina, 2020).

For each type of problem, we generated instances at three levels of difficulty—easy, medium, and hard—corresponding to problem scenarios with tens of thousands, hundreds of thousands, and millions of decision variables, respectively. The details of each problem type and the specific parameters used for generating instances at different difficulty levels are provided below.

959 Maximum Independent Set problem: Consider an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, a subset of nodes 960 $\mathcal{S} \in \mathcal{V}$ is called an independent set iff there is no edge $e \in \mathcal{E}$ between any pair of nodes in \mathcal{S} . The 961 maximal independent set problem is to find an independent set in \mathcal{G} of maximum cardinality. If we 962 set binary variable vector x as the decision variables. $x_v = 1$ determines node $v \in \mathcal{V}$ is is chosen in 963 the independent set, and 0 otherwise, MIS problem can be represented as follows.

$$\begin{array}{ll} max \sum_{v \in \mathcal{V}} x_v \\ g_{66} \\ g_{67} \\ g_{68} \\ x_v \in \{0,1\}, \forall v \in \mathcal{V}. \end{array} \tag{3}$$

970 Minimum Vertex Covering problem: Consider an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, a subset of nodes 971 $\mathcal{S} \in \mathcal{V}$ is called a covering set iff for any edge $e \in \mathcal{E}$ at least one of its endpoints is included in the set \mathcal{S} . The minimum vertex covering problem is to find a covering set in \mathcal{G} of minimum cardinality.

976			
977			
078			
570			
979			
980			
981			
000			
982			
983	Name(Path)	License	Source
984	nn_verification	CC BY 4.0	Link
007	item_placement	BSD 3-Clause License	Link
985	load_balancing	BSD 3-Clause License	Link
986	HEM knapsack	MIT	Link
087	HEM mis	MIT	Link
501	HEM_setcover	MIT	Link
988	HEM_corlat	MIT	Link
989	HEM_mik	MIT	Link
000	vary_bounds_s1	Need to cite	Link
990	vary_bounds_s2	Need to cite	Link
991	vary_bounds_s3	Need to cite	Link
992	vary_matrix_s1	Need to cite	Link
552	vary_matrix_rhs_bounds_s1	Need to cite	Link
993	vary_matrix_rhs_bounds_obj	Need to cite	Link
994	vary_obj_s1	Need to cite	Link
005	vary obj_s2	Need to cite	Link
990	vary rhs sl	Need to cite	Link
996	vary_rhs_s2	Need to cite	Link
997	vary_rhs_s3	Need to cite	Link
000	vary_rhs_s4	Need to cite	Link
998	vary_rhs_obj_s1	Need to cite	Link
999	vary_rhs_obj_s2	Need to cite	Link
1000	Aclib	Readme	Link
1000	Coral	Need to cite	Link
1001	Cut	Readme	Link
1002	ECOGCINN fc data	Readme	Link
1003	MIPlib collection easy	Need to cite	Link
1000	MIPlib_collection_bard	Need to cite	Link
1004	MIPlib_collection_open	Need to cite	Link
1005	MIRPLIB_Original	BSD 3-Clause License	Link
1006	MIRPLIB_Maritime_Group1	BSD 3-Clause License	Link
1000	MIRPLIB_Maritime_Group2	BSD 3-Clause License	Link
1007	MIRPLIB_Maritime_Group3	BSD 3-Clause License	Link
1008	MIRPLIB_Maritime_Group4	BSD 3-Clause License	Link
1000	MIRPLIB_Maritime_Group5	BSD 3-Clause License	Link
1009	Nexp	Readme	Link
1010	Transportation	Need to cite	Link
1011	······		

1012Table 5: License of each open source dataset. "Need to cite" means there is no explicit license, but1013the repository states that the corresponding article needs to be cited to use the dataset and it can be1014used without restriction. "Readme" means there is no explicit license, but the repository's Readme1015file explains that it can be used without restriction.

1026 If we set binary variable vector x as the decision variables. $x_v = 1$ determines node $v \in \mathcal{V}$ is chosen in the covering set, and 0 otherwise, MVC problem can be represented as follows.

1029 1030

$$\min \sum_{v \in \mathcal{V}} x_v \\ s.t. \ x_u + x_v \ge 1, \forall (u, v) \in \mathcal{E}, \\ x_v \in \{0, 1\}, \forall v \in \mathcal{V}.$$

(4)

1032 1033 1034

1031

Minimum Vertex Covering problem: Given a finite set $\mathcal{U} = \{1, 2, ..., n\}$ and a collection of m subsets S_1, \ldots, S_n of \mathcal{U} , where each subset S_i is associated with a cost c_i . The SC problem involves selecting a combination of these subsets such that every element in the universal set \mathcal{U} is included in at least one of the chosen subsets, while minimizing the total cost of the selected subsets. In mathematical terms, we define a binary selection variable x_i for each subset S_i , where $x_i = 1$ indicates that the subset S_i is selected and $x_i = 0$ otherwise. SC problem can be represented as follows.

- 1042
- 1043 1044

1045

1049

 $\min \sum_{i=1}^{m} x_i * c_i$ s.t. $\sum_{i=1}^{m} x_i * (U_j \in S_i) \ge 1, \forall j \in [1, n],$ $x_i \in \{0, 1\}, \forall i.$ (5)

Mixed Integer Knapsack Set Problem: The Mixed Integer Knapsack Set (MIKS) problem is a 1050 variant of resource allocation problems, where a collection of sets is used to cover a set of items, but 1051 with the flexibility that some sets can be partially selected while others must be fully included. This 1052 problem is commonly encountered in logistics, data center management, and resource allocation, 1053 where both discrete and continuous decisions are required. Given N sets and M items, each item 1054 must be covered by at least one of the sets. The goal is to minimize the total cost of selecting the 1055 sets, where some decision variables are binary (indicating full inclusion or exclusion of a set) and 1056 others are continuous (allowing partial inclusion). Let x_i represent the decision variable for set i, where $x_i = 1$ if set i is fully selected, and $0 \le x_i \le 1$ if set i is partially selected. Each item j must 1057 be covered by at least one set that contains it. The problem can be formulated as follows: 1058

1059

1061

1062

 $\min \sum_{i=1}^{N} c_i x_i$ $s.t. \sum_{i:j \in S_i} x_i \ge 1, \quad \forall j \in \{1, 2, \dots, M\},$ $0 \le x_i \le 1, \quad \forall i \in \{1, 2, \dots, N\},$ $x_i \in \{0, 1\} \text{ or } [0, 1], \quad \forall i \in \{1, 2, \dots, N\}.$ (6)

1067

1064

1068 Where x_i is the decision variable associated with set *i*, c_i is the cost associated with selecting set *i*, 1069 and S_i is the subset of items covered by set i. a new constraint ensures that each item j is covered 1070 by at least one selected set, while the second constraint bounds the decision variables between 0 and 1071 1. Some decision variables are binary, meaning sets must be fully selected or excluded, while others can take continuous values, allowing partial selection. The objective is to minimize the total cost of 1072 the selected sets while ensuring that every item is covered by at least one set. This mixed-integer 1073 formulation is particularly useful in scenarios where full or partial inclusion of resources is possible, 1074 providing a more flexible and realistic solution to resource allocation problems. 1075

Balanced Item Placement problem: The Balanced Item Placement (BIP) problem arises in scenarios where items must be distributed across a set of buckets in such a way that the total load is balanced across the buckets. Each bucket has multiple resource constraints, and the goal is to minimize the imbalance in the bucket loads across these resource dimensions. This problem is commonly encountered in logistics, load balancing in distributed systems, and resource allocation in

1080 cloud computing, where items (or tasks) need to be placed into buckets (or servers) under capacity constraints. Given N items and B buckets, each bucket has R resource dimensions (such as 1082 weight, volume, or processing time). The objective is to distribute the items such that the maximum imbalance (deficit) across resource dimensions is minimized. The deficit in a particular dimension 1084 refers to the difference between the total resource used in that dimension and the target balanced load for that dimension across all buckets. Let $x_{i,j}$ be a binary decision variable where $x_{i,j} = 1$ if item i is placed in bucket j, and $x_{i,j} = 0$ otherwise. Let deficit_{i,r} represent the deficit for bucket j 1086 in resource dimension r, and let \max_{r} deficit_r represent the maximum deficit across all buckets for 1087 resource dimension r. The BIP problem is formulated as follows: 1088

1104

1089

1105 Where $x_{i,j}$ is a binary decision variable indicating whether item i is placed in bucket j; $w_{i,j,r}$ is the 1106 weight (or resource consumption) of item i in bucket j for resource dimension $r; C_{j,r}$ is the capacity 1107 of bucket j in resource dimension r; W_r is the total weight across all buckets for dimension r (used 1108 for normalization); deficit_{*i*,*r*} measures the imbalance in resource usage for bucket j in dimension 1109 r; and max_deficit_r is the maximum deficit across all buckets for dimension r. The objective is to minimize the sum of the maximum deficits across all resource dimensions, ensuring that the load is 1110 as balanced as possible across buckets for each resource dimension. 1111

1112 Combinatorial Auction Problem: The Combinatorial Auction (CA) problem arises in auctions 1113 where bidders can place bids on combinations of items, rather than on individual items. The auc-1114 tioneer's goal is to select a combination of bids that maximizes the total revenue while ensuring that 1115 each item is allocated to at most one bidder. This problem is commonly encountered in spectrum 1116 auctions, logistics, and online marketplaces, where items are complementary, and bidders value combinations of items more than individual ones. Given N bids and M items, each bid corresponds 1117 to a subset of items and has an associated value. The objective is to select a set of bids that maxi-1118 mizes the total value, subject to the constraint that each item can be allocated to at most one bid. Let 1119 x_i represent a binary decision variable where $x_i = 1$ if bid i is selected and $x_i = 0$ otherwise. The 1120 problem can be formulated as follows: 1121

1122 1123

1124 1125

1126 1127

1128 1129 $\max \sum_{i=1}^{N} c_i x_i$ s.t. $\sum_{i:j \in S_i} x_i \le 1, \quad \forall j \in \{1, 2, \dots, M\},$ (8) $x_i \in \{0, 1\}, \quad \forall i \in \{1, 2, \dots, N\}.$

Where x_i is a binary decision variable indicating whether bid i is selected, c_i is the value (or cost) 1130 associated with bid i, and S_i is the subset of items associated with bid i. a new constraint ensures 1131 that each item i is allocated to at most one bid by restricting the sum of the selected bids that include 1132 item j to be less than or equal to 1. The objective is to maximize the total value of the selected bids 1133 while ensuring that no item is allocated to more than one bidder. In this problem, each bid can be

1134 interpreted as a subset of items, and the goal is to find the optimal set of non-overlapping bids that 1135 yields the maximum revenue. 1136

Capacitated Facility Location Problem: The Capacitated Facility Location (CFL) problem is a 1137 classical optimization problem in logistics and operations research. The objective is to determine 1138 the optimal locations for facilities (such as factories or warehouses) and the allocation of customers 1139 to these facilities, while respecting the capacity constraints of each facility and minimizing the total 1140 cost. In this problem, there are N customers, M facilities, and K possible connections between 1141 customers and facilities. Each facility has a limited capacity, and each customer has a demand that 1142 must be met by one or more facilities. The aim is to minimize the overall cost, which includes the 1143 cost of opening facilities and the cost of assigning customers to open facilities. Let $x_{i,i}$ be a binary decision variable where $x_{i,j} = 1$ if customer i is assigned to facility j, and $y_j = 1$ if facility j is 1144 opened. The problem can be formulated as follows: 1145

min $\sum_{i=1}^{N} \sum_{j=1}^{M} c_{i,j} x_{i,j} + \sum_{j=1}^{M} f_j y_j$ 1148 1149

1150

115

1169

Where $x_{i,j}$ is a binary decision variable denoting whether customer i is assigned to facility j, and 1159 y_i is a binary decision variable indicating whether facility j is opened. The objective function 1160 minimizes the total cost, which includes the assignment costs $c_{i,i}$ of connecting customer i to facility 1161 j, and the fixed costs f_i of opening facility j. a new set of constraints ensures that each customer 1162 *i* is assigned to exactly one facility. The second set of constraints ensures that the total demand 1163 of customers assigned to facility j does not exceed its capacity C_i if the facility is opened (i.e., 1164 if $y_i = 1$). The third and fourth constraints enforce the binary nature of the decision variables, 1165 meaning that customer assignments and facility openings are either fully made or not made. 1166

Middle-Mile Consolidation with Waiting Times: The Middle-Mile Consolidation problem shows 1167 as follows. 1168

$$\sum_{r \in \mathcal{R}} C_r x_r + \sum_{l \in \mathcal{L}} \sum_{m \in \mathcal{M}_l} (A_{lm} f_{lm} + B_{lm} v_{lm})$$

$$\sum_{r \in \mathcal{R}} C_r x_r + \sum_{l \in \mathcal{L}} \sum_{m \in \mathcal{M}_l} (A_{lm} f_{lm} + B_{lm} v_{lm})$$

$$\sum_{r \in \mathcal{R}_k} x_r = 1, \quad \forall k \in \mathcal{K},$$

$$\sum_{r \in \mathcal{R}_k} v_{lm} = \sum_{k \in \mathcal{K}} V_k x_r, \quad \forall l \in \mathcal{L},$$

$$\sum_{m \in \mathcal{M}_l} v_{lm} = \sum_{k \in \mathcal{K}} V_k x_r, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} Q_{lm}^{min} f_{lm}, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \leq 1, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \leq F_{lm} y_{lm}, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \in \{0, 1\}, \quad \forall r \in \mathcal{R},$$

$$y_{lm} \in \{0, 1\}, \quad \forall r \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \in \{0, 1\}, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \in \{0, 1\}, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \in \{0, 1\}, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \in \{0, 1\}, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \in \{0, 1\}, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \geq 0, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \geq 0, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \geq 0, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \geq 0, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

$$\sum_{m \in \mathcal{M}_l} y_{lm} \geq 0, \quad \forall l \in \mathcal{L}, \forall m \in \mathcal{M}_l,$$

It focuses on selecting appropriate freight routes and determining load dispatch frequencies to min-1187 imize total transportation costs while ensuring that all commodity volumes are transported feasibly. Shipment lead times are determined by the legs and transfer terminals along each route. The goal is to select a joint set of freight routes and load dispatch frequencies such that all commodity volumes are transported while minimizing the overall transportation cost. In this formulation, the cost to be minimized includes the handling cost for selecting routes and the cost of load dispatches and volumes transported on each lane. The constraints ensure that each commodity is assigned exactly one route, volumes on each lane are correctly allocated, and dispatches fall within the required capacity limits.

Steiner Network Problem with Coverage Constraints: The Steiner Network Problem with Coverage Constraints is a variation of the classical Steiner Tree Problem, where we seek to connect a set of terminal nodes in a graph such that certain coverage and flow constraints are met. The problem can be formulated as the following flow-based Mixed-Integer Linear Program (MILP). The goal is to minimize the total cost of selected edges while ensuring that coverage constraints are satisfied.

1216 In this formulation, the objective function minimizes the total cost of selected edges. a new con-1217 straint ensures that flow conservation is maintained at each node, with nodes absorbing flow if they 1218 are in the coverage set C. The second constraint ensures that each edge between nodes i and j is 1219 selected at most once. The third constraint guarantees that at least one edge from each set S(r) is 1220 selected. The fourth constraint relates the flow on edge e to its selection. The fifth and sixth con-1221 straints ensure that the total flow injected into the system corresponds to the required flow to cover 1222 the nodes in C and selected edges. Finally, the decision variables x_e are binary, indicating whether 1223 an edge is selected or not.

As shown in Table 6, for each of the nine problem types, we generated instances of three different scales (easy, medium, and hard) to ensure that our benchmarks cover a wide range of complexities and sizes. Each scale is designed to accommodate different computational capacities and research needs, including large-scale problems. The table below summarizes the number of instances, average number of variables, and average number of constraints for each problem type and scale.

1229

1230 A.4 TRAINING AND TESTING DATASET PARTITION 1231

For training and testing, we have randomly partitioned the problem data into training and testing datasets, the result of testing dataset is shown in Table 7 and Table 8.

1234

¹²³⁵ B DETAILS OF ALGORITHM

1236

1237 B.1 Adaptive Constraint Partition Based Optimization Framework 1238

Starting with the initial feasible solution gained from Gurobi, the Adaptive Constraint Partition
 Based Optimization Framework (ACP) attempts to iteratively enhance the current solution. Initially,
 constraints are randomly partitioned into disjoint blocks. In each iteration, only one block is considered, and the variables within this block are optimized while the values of other variables are fixed at

1242	Name (Path)	Number of Instances	Avg. Vars	Avg. Constraints
1243	MIS_easy	50	20000	60000
12.10	MIS_medium	50	100000	300000
1244	MIS_hard	50	1000000	3000000
1245	MVC_easy	50	20000	60000
1040	MVC_medium	50	100000	300000
1246	MVC_hard	50	1000000	3000000
1247	SC_easy	50	40000	40000
1040	SC_medium	50	200000	200000
1248	SC_hard	50	2000000	2000000
1249	BIP_easy	50	4081	290
1050	BIP_medium	50	14182	690
1250	BIP_hard	50	54584	2090
1251	CAT_easy	50	2000	2000
1050	CAT_medium	50	22000	22000
1252	CAT_hard	50	2000000	2000000
1253	CFL_easy	50	16040	80
105/	CFL_medium	50	144200	320
1234	CFL_hard	50	656520	800
1255	MIKS_easy	50	5000	5000
1256	MIKS_medium	50	55000	55000
1250	MIKS_hard	50	1000000	1000000
1257	MMCw_easy	50	5760	2880
1258	MMCW_medium	50	55260	27630
1230	NIVICW_hard	50	253980	126990
1259	SNPCC_easy	50	3000	30 151
1260	SNPCC_medium	50	15000	151
1200	SNPCC_hard	50	240000	2405
1261				

¹²⁶² 1263

Table 6: Summary of Generated Instances for Nine Problem Types

the levels of the current optimal feasible solution. The number of blocks is adaptively updated based on the objective value improvement observed over the last two iterations, using a preset threshold. After the designated time (e.g., 8 hours), ACP terminates, and the improved solution x^* is used to update the Gurobi-derived solution \overline{x} and is packaged into a pickle file along with the problem instance.

1270

1272

1271 B.2 SIMILARITY EVALUATION METRICS

Specifically, we detail an embedding approach representing MILP instances as a 10-dimensional embedding, capturing fundamental aspects of the mathematical formulation and bipartite graph characteristics. This vector includes metrics such as Fraction of non-zero entries in the coefficient matrix, Mean and standard deviation of the degrees of constraint vertices, Mean and standard deviation of the degrees of variable vertices, Mean and standard deviation of non-zero entries in the coefficient matrix, Mean and standard deviation of RHS values, and Modularity of the bipartite graph representation.

It is noted that, using embeddings alone is not sufficient to determine the isomorphism of datasets. To 1280 ensure the robustness of our classification, we employed two levels of similarity evaluation metrics. 1281 a new metric assesses the structural similarity of problem instances within the dataset, while the 1282 second metric evaluates the similarity at the embedding level. These two metrics complement each 1283 other, providing a more comprehensive assessment of the dataset's classification quality. Figure 5 1284 in the main text illustrates the similarity of subproblems after classification, showing that structural 1285 and embedding similarities corroborate each other, indicating a degree of robustness. Additionally, 1286 the experimental results discussed in Figure 6 and 7, comparing before and after reclassification, 1287 further validate the effectiveness of our graph classification approach.

- 1288 1289
- 1290 C DETAILS OF EXPERIMENTS
- 1291

92 C.1 EXPERIMENTS ENVIRONMENTS

1293

 All experiments are run on a machine with Intel Xeon Platinum 8375C @ 2.90GHz CPU and four
 NVIDIA TESLA V100(32G) GPUs. Each scale of any Benchmark MILP is tested on several instances, and the results shown are the average of the five results.

1299				
1300				
1301				
1202				
1002		30_70_4.5_0.5_10.lp		anonymous_5.1p
1303	MIPLIB	30_70_4.5_0.5_100.lp	anonymous	anonymous_29.1p
1304	(Minimize)	mkc1.ip neos14.lp	(Minimize)	anonymous_39.1p
1305		neos-548251.lp		n3701.lp
1306		neos-582605.1p		n3704.lp
1307	Coral	neos-584146.lp	Transportation	n3705.lp
1007	(Minimize)	neos-84/302.1p neos-935496 lp	(Minimize)	n3707.1p n3709.1p
1300		neos-935674.1p		novosnp
1309		neos-1430811.1p		
1310	Cut	n3-3.1p	ECOGCNN	ns3337549.lp
1311	(Minimize)	n9-3.1p n15-3.1p	(Minimize)	u40t24ramp lp
1312		item_placement_0.1p		load_balancing_15.lp
1313		item_placement_3.1p		load_balancing_16.lp
1010		item_placement_18.lp		load_balancing_18.lp
1314	item_placement	item_placement_27.lp	load_balancing	load_balancing_34.lp
1315	(Minimize)	item_placement_34.1p	(Minimize)	load_balancing_61.lp
1316		item_placement_35.1p		load_balancing_67.lp
1317		item_placement_45.lp		load_balancing_/3.lp
1318		item_placement_49.1p		load_balancing_87.lp
1310		germanrr.lp		bnd_s1_i01.lp
1010	Nexp	p6b.lp	vary_bounds_s1	bnd_s1_i02.lp
1320	(Minimize)	sevmour.disi-10.lp	(Minimize)	bnd_s1_i04.lp
1321		sp98ar.1p		bnd_s1_i05.lp
1322		bnd_s2_i01.lp		bnd_s3_i01.lp
1323	vary_bounds_s2	bnd_s2_102.lp	vary_bounds_s3	bnd_s3_102.1p
1324	(Minimize)	bnd_s2_i04.1p	(Minimize)	bnd_s3_i04.1p
1325		bnd_s2_i05.lp		bnd_s3_i05.lp
1020		mat_s1_i01.lp		mat_rhs_bnd_s1_i09.lp
1320	vary_matrix_s1	mat_s1_102.1p mat_s1_i03.1p	vary_matrix_rhs_bounds_s1	mat_rns_bnd_s1_117.1p
1327	(Minimize)	mat_s1_i04.lp	(Minimize)	mat_rhs_bnd_s1_i43.lp
1328		mat_s1_i05.lp		mat_rhs_bnd_s1_i47.lp
1329		mat_rhs_bnd_obj_s1_i01.lp		obj_s1_i01.lp
1330	vary_matrix_rhs_bounds_obj	mat_rhs_bnd_obj_s1_i04.lp	vary_obj_s1	obj_s1_i02.ip
1331	(Minimize)	mat_rhs_bnd_obj_s1_i15.lp	(Minimize)	obj_s1_i04.1p
1220		mat_rhs_bnd_obj_s1_i38.lp		obj_s1_i05.lp
1002		obj_s2_111.1p obi_s2_i21_lp		obj_\$3_101.1p obi_\$3_102.1p
1333	vary_obj_s2	obj_s2_i22.lp	vary_obj_s3	obj_s3_i03.1p
1334	(iviiiimize)	obj_s2_i44.lp	(iviiiimize)	obj_s3_i04.lp
1335		obj_s2_i49.lp		obj_s3_i05.lp
1336		rhs_s1_i01.ip		rhs_s2_i01.ip
1337	vary_rhs_s1	rhs_s1_i03.lp	vary_rhs_s2	rhs_s2_i03.1p
1000	(winninze)	rhs_s1_i04.1p	(winninge)	rhs_s2_i04.1p
1000		rhs_s1_i36.lp		rhs_s2_i05.lp
1339		rhs_s3_i02.1p		rhs_s4_i02.lp
1340	(Minimize)	rhs_s3_i33.1p	vary_rhs_s4 (Minimize)	rhs_s4_i03.lp
1341	(initiative)	rhs_s3_i35.lp	(mininize)	rhs_s4_i04.1p
1342		1118_85_159.1p		1118_84_103.1p

Table 7: The result of testing dataset partition, Part A.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
vary.nbs.obj.s1 (Minimize) (rhs_obj_s1_i19.lp		rhs_obj_s2_i01.lp
(Minimize) Ths.obj.s1.47.1p ths.obj.s1.48.1p (Minimize) Ths.obj.s2.26.1p ths.obj.s2.243.1p IS.easy.instance.5.1p IS.medium.instance.0.1p Ths.obj.s2.226.1p IS.easy.instance.7.1p IS.medium.instance.0.1p IS.easy.instance.7.1p IS.medium.instance.2.1p IS.easy.instance.2.1p IS.medium.instance.2.1p IS.hard IS.hard.instance.2.1p IS.hard.instance.2.1p IS.medium.instance.2.1p IS.hard.instance.1.5.1p fc.data IS.hard.instance.1.6.1p fc.data IS.hard.instance.1.5.1p fc.data IS.hard.instance.1.5.1p fc.data IS.hard.instance.1.5.1p fc.ditb Its.1.297.proto.1p cls.790.0.2.1F00.0.3.1p test.1082.proto.1p cls.790.0.2.1F00.0.3.1p test.1087.proto.1p cls.790.0.2.1F00.0.3.1p test.1087.proto.1p cls.790.0.2.1F00.0.3.1p test.197.proto.1p cls.790.0.2.1F00.0.3.1p test.1987.proto.1p cls.790.0.2.1F00.0.3.1p test.1987.proto.1p cls.790.0.2.1F00.0.3.1p MVC.easy.instance.1.1p MVC.medium.instance.2.1p MVC.easy.instance.2.1p	vary_rhs_obj_s1	rhs_obj_s1_i21.lp	vary_rhs_obj_s2	rhs_obj_s2_113.lp
Model Missobj s I 48.1p Missobj s 2.24.3.1p Barton B.seasy instance 5.1p B.smedium_instance 0.1p IS_easy_instance 7.1p B.smedium_instance 0.1p IS_easy_instance 9.1p B.smedium_instance 0.1p IS_easy_instance 2.1p B.smedium_instance 2.1p IS_hard B.smatin_instance 0.1p IS_hard_instance 2.1p B.smedium_instance 2.1p IS_hard_instance 7.1p F.data IS_hard_instance 7.1p Clastrop 7.2p MVC_easy_instance 7.1p MVC_medium_instance 7.1p	(Minimize)	rhs_obj_s1_i27.lp	(Minimize)	rhs_obj_s2_i18.lp
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · ·	rhs_obj_s1_146.lp		rhs_obj_s2_i26.lp
IS_casy_instance-3.1p IS_casy_instance-3.1p IS_asy_instance-1.1p IS_asy_instance-1.1p IS_asy_instance-2.1p IS_asy_instance-2.1p IS_hard_instance-3.1p IS_hard_instance-3.1p IS_hard_instance-3.1p IS_hard_instance-3.1p IS_hard_instance-3.1p IS_hard_instance-3.1p IS_hard_instance-3.1p IS_hard_instance-3.1p IS_hard_instance-3.1p IS_hard_instance-7.1p IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_I		rhs_obj_s1_148.lp		rns_obj_s2_143.1p
IS.casy (Maximize) IS.casy.instance-3.lp (Scasy.instance-14.lp IS.medium IS.medium.instance.3.lp (Maximize) IS.easy.instance-21.lp IS.medium.instance.2.lp IS.medium.instance.2.lp IS.hard IS.hard.instance-3.lp fc.30.50.1lp fc.30.50.2.lp IS.hard.instance-1.5.lp fc.data fc.30.50.2.lp IS.hard.instance-1.6.lp fc.data fc.30.50.4.lp IS.hard.instance-1.6.lp fc.data fc.30.50.4.lp IS.hard.instance-1.6.lp fc.data fc.30.50.4.lp its.issoc-1.6.lp fc.data fc.30.50.4.lp its.108.proto.lp fc.str90.C2.F500.S3.lp fc.str90.C2.F500.S3.lp its.1105.proto.lp fc.str90.C2.F500.S4.lp fc.str90.C2.F500.S4.lp (Maximize) test.1987.proto.lp fc.str90.C2.F500.S4.lp its.116.proto.lp fc.str90.C3.F00.S2.lp fc.str90.C3.F00.S5.lp its.116.proto.lp fc.str90.C4.F100.S4.lp fc.str90.C3.F00.S2.lp MVC.easy.instance-1.lp MVC.medium.instance.4.lp MVC.medium.instance.4.lp MVC.easy.instance-1.lp MVC.medium.instance.4.lp MVC.medium.instance.4.lp MVC.hard.insta		IS_easy_instance_5.lp		IS_medium_instance_0.lp
(Maximize) IS_easy_instance_3.lp IS_easy_instance_2.lp (Maximize) IS_medium_instance_2.lp IS_medium_instance_2.lp IS_hard_instance_3.lp (Maximize) IS_hard_instance_3.lp IS_hard_instance_3.lp fc_data fc_30.50.1.lp IS_hard_instance_1.5.lp fc_data fc_30.50.1.lp IS_hard_instance_1.6.lp fc_30.50.1.lp IS_hard_instance_1.6.lp fc_30.50.1.lp test_1082.proto.lp cls.T90.C2.F500.S3.lp test_1087.proto.lp cls.T90.C3.F500.S3.lp test_1087.proto.lp cls.T90.C3.F500.S3.lp test_1087.proto.lp cls.T90.C3.F500.S3.lp test_1987.proto.lp cls.T90.C4.F100.S4.lp test_1987.proto.lp cls.T90.C3.F500.S3.lp test_1987.proto.lp cls.T90.C4.F100.S4.lp test_1987.proto.lp cls.T90.C4.F100.S4.lp test_1987.proto.lp cls.T90.C4.F100.S4.lp test_1987.proto.lp cls.T90.C4.F100.S4.lp WVC_easy_instance_19.lp MVC_medium_instance.2.lp MVC_easy_instance_19.lp MVC_medium_instance.3.lp MVC_easy_instance_19.lp MVC_medium_instance.2.lp MVC_hard_instance.5.lp SC_easy_instance.2.lp	IS_easy	IS_easy_instance_7.lp	IS_medium	IS_medium_instance_8.lp
IS_easy_instance_2.1p IS_hard_instance_2.1p IS_hard_instance_2.1p IS_hard_instance_3.1p IS_hard_instance_3.1p IS_hard_instance_3.1p IS_hard_instance_3.1p IS_hard_instance_3.1p IS_hard_instance_3.1p IS_hard_instance_3.1p IS_hard_instance_3.1p IS_hard_instance_1.61p IS_hard_instance_1.61p IS_hard_instance_3.1p IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_I	(Maximize)	IS_easy_instance_9.lp	(Maximize)	IS_medium_instance_11.lp
IS_hard_instance_2.1p IS_hard_instance_3.1p IS_hard_instance_7.1p IS_hard_instance_7.1p IS_hard_instance_1.51p IS_hard_instance_2.51p IS_hard_instance_2.51p IS_hard_instance_2.51p IS_hard_instance_2.51p IS_hard_instance_2.51p IS_hard_instance_3.51p IS_hard_instance_3.51p IS_hard_instance_3.51p IS_hard_instance_3.51p IS_hard_instance_4.52p IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_IS_I		IS_easy_instance_14.lp		IS_medium_instance_22.lp
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IS_easy_instance_21.lp		IS_medium_instance_29.lp
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IS_hard_instance_2.lp		tc.30.50.1.lp
	IS_hard	IS_hard_instance_3.lp	fc.data	tc.30.50.2.lp
IS.hard.instance.15.ip IS.hard.instance.16.ip IS.hard.instance.16.ip IS.hard.instance.16.ip fc.30.50.10.lp test.120.proto.lp cls.T90.C2.F500.S2.lp test.1087.proto.lp cls.T90.C3.F100.S5.lp test.11116.proto.lp cls.T90.C3.F100.S5.lp (Maximize) test.131.proto.lp test.131.proto.lp cls.T90.C4.F100.S4.lp test.131.proto.lp cls.T90.C4.F100.S4.lp test.1321.proto.lp cls.T90.C4.F100.S4.lp test.1321.proto.lp cls.T90.C4.F100.S4.lp test.1321.proto.lp cls.T90.C5.F20.S4.lp test.1282.proto.lp cls.T90.C5.F100.S2.lp test.190.C4.F100.S1.lp cls.T90.C5.F100.S2.lp MVC_easy.instance.1.lp MVC.medium.instance.0.lp MVC_easy.instance.1.lp MVC.medium.instance.9.lp MVC_easy.instance.2.lp MVC_medium.instance.9.lp MVC_hard.instance.2.lp MVC_medium.instance.9.lp MVC_hard.instance.5.lp SC_easy.instance.2.lp MVC_hard.instance.5.lp SC_easy.instance.2.lp MVC_hard.instance.5.lp SC_easy.instance.2.lp SC.medium.instance.6.lp SC_hard SC_har	(Maximize)	IS_hard_instance_7.lp	(Minimize)	fc.30.50.3.lp
IS.hard.instance.16.ip tc.30.50,10.ip test.120.proto.lp cls.T90.022.F500.S2.lp test.1082.proto.lp cls.T90.02.F500.S2.lp test.1112_proto.lp cls.T90.C3.F500.S2.lp (Maximize) test.1116_proto.lp Aclib test.1311.proto.lp (Minimize) cls.T90.C3.F500.S2.lp test.1311.proto.lp (Minimize) cls.T90.C3.F500.S2.lp test.1987_proto.lp cls.T90.C4.F500.S4.lp test.5470.proto.lp cls.T90.C4.F500.S4.lp test.5470.proto.lp cls.T90.C5.F100.S4.lp test.5470.proto.lp cls.T90.C5.F100.S2.lp MVC_easy_instance.14.lp MVC_medium_instance.0.lp MVC_easy_instance.16.lp MVC_medium_instance.9.lp MVC_bard_instance.2.lp MVC_medium_instance.3.lp MVC_hard_instance.2.lp SC_easy_instance.2.lp MVC_hard_instance.3.lp SC_easy_instance.2.lp MVC_hard_instance.3.lp SC_easy_instance.2.lp MVC_hard_instance.3.lp SC_easy_instance.2.lp MVC_hard_instance.3.lp SC_easy_instance.2.lp SC_medium_instance.4.lp SC_easy_instance.2.lp MVC_hard_instance.3.lp	()	IS_hard_instance_15.lp	(fc.30.50.4.lp
test.120.proto.lp cls.790.C2.F500.S2.lp nn_verification test.1082.proto.lp cls.790.C3.F500.S3.lp (Maximize) test.1112.proto.lp cls.790.C3.F500.S2.lp (Maximize) test.1116.proto.lp cls.790.C3.F500.S2.lp (Maximize) test.1231.proto.lp (Minimize) test.1987.proto.lp cls.790.C3.F500.S2.lp test.1987.proto.lp cls.790.C4.F100.S4.lp test.5470.proto.lp cls.790.C5.F100.S2.lp test.5470.proto.lp cls.790.C5.F100.S2.lp test.5470.proto.lp cls.790.C5.F100.S2.lp test.790.C5.F100.S2.lp cls.790.C5.F100.S2.lp MVC_easy_instance.1.lp MVC.medium_instance.0.lp MVC_easy_instance.1.lp MVC_medium_instance.9.lp MVC_hard instance.2.lp MVC_medium_instance.3.lp MVC_hard instance.2.lp SC_easy instance.1.lp MVC_hard instance.2.lp SC_easy instance.1.lp MVC_hard instance.3.lp SC_easy instance.1.lp MVC_hard instance.3.lp SC_easy instance.1.lp MVC_hard instance.3.lp SC_easy instance.1.lp MVC_hard instance.4.lp SC_easy instance.1.lp		IS_hard_instance_16.lp		fc.30.50.10.1p
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		test_120.proto.lp		cls.T90.C2.F500.S2.lp
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		test_1082.proto.lp		cls.T90.C2.F500.S3.lp
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		test_1087.proto.lp		cls.T90.C3.F100.S5.lp
nn_verification test_1116_proto.lp Aclib cls.T90.C3_F500.S5.lp (Maximize) test_1231.proto.lp (Minimize) cls.T90.C4_F100.S4.lp (cls.T90.C4_F500.S4.lp (S.T90.C5_F250.S4.lp cls.T90.C5_F250.S4.lp cls.T90.C5_F100.S2_lp (Minimize) mVC_easy_instance_1.lp MVC_easy_instance_1.lp MVC_easy_instance_1.lp MVC_easy_instance_1.lp MVC_easy_instance_1.lp MVC_easy_instance_2.lp MVC_easy_instance_2.lp MVC_medium_instance_2.lp MVC_hard_instance_2.lp MVC_hard_instance_3.lp SC_easy_instance_3.lp SC_easy_instance_3.lp SC_easy_instance_3.lp SC_easy_instance_3.lp SC_easy_instance_3.lp SC_easy_instance_2.lp MVC_hard_instance_5.lp SC_easy_instance_2.lp SC_easy_instance_3.lp SC_hard_instance_3.lp SC_		test_1112.proto.lp		cls.T90.C3.F500.S2.lp
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nn_verification	test_1116.proto.lp	Aclib	cls.T90.C3.F500.S5.lp
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(Maximize)	test_1231.proto.lp	(Minimize)	cls.T90.C4.F100.S4.lp
test.5470.proto.lpcls.1790.C5.F1000.S1.lptraining.47482.proto.lpcls.1790.C5.F1000.S2.lpMVC_easy_instance_1.lpMVC_medium_instance_0.lpMVC_easy_instance_14.lpMVC_medium_instance_0.lpMVC_easy_instance_19.lpMVC_medium_instance_0.lpMVC_easy_instance_21.lpMVC_medium_instance_0.lpMVC_hardMVC_hard.instance_2.lpMVC_hard_instance_2.lpMVC_medium_instance_3.lpMVC_hard_instance_2.lpSC_easy_instance_3.lpMVC_hard_instance_2.lpSC_easy_instance_3.lpMVC_hard_instance_2.lpSC_easy_instance_3.lpMVC_hard_instance_2.lpSC_easy_instance_3.lpMVC_hard_instance_3.lpSC_easy_instance_3.lpMVC_hard_instance_3.lpSC_easy_instance_3.lpSC_medium_instance_3.lpSC_easy_instance_3.lpSC_medium_instance_4.lpSC_hard_instance_3.lpSC_medium_instance_10.lpSC_hardSC_medium_instance_16.lpSC_hardSC_medium_instance_18.lpSC_hard_instance_3.lpHEM_knapsackinstance_46.lpinstance_372.lpinstance_372.lpinstance_373.lpinstance_372.lpHEM_setcoverinstance_371.lp(Minimize)instance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lpinstance_351.lp <td></td> <td>test_1987.proto.lp</td> <td></td> <td>cls.T90.C4.F500.S4.lp</td>		test_1987.proto.lp		cls.T90.C4.F500.S4.lp
training_47482.proto.lpcls.T90.C5.F20.S4.lpMVC_easy_instance_1.lp MVC_easy_instance_16.lp MVC_easy_instance_19.lp MVC_easy_instance_2.lpMVC_medium_instance_0.lpMVC_easy_instance_19.lp MVC_easy_instance_2.lpMVC_medium_instance_9.lpMVC_hard_instance_2.lpMVC_medium_instance_2.lpMVC_hard_instance_5.lp MVC_hard_instance_6.lp MVC_hard_instance_7.lpSC_easy_instance_3.lpMVC_hard_instance_6.lp MVC_hard_instance_7.lpSC_easy_instance_3.lpMVC_hard_instance_6.lp MVC_hard_instance_7.lpSC_easy_instance_3.lpSC_medium_instance_7.lp SC_medium_instance_10.lpSC_hard_instance_7.lpSC_medium_instance_10.lp SC_medium_instance_10.lpSC_hard_instance_7.lpSC_medium_instance_10.lp SC_medium_instance_10.lpSC_hard_instance_7.lpSC_medium_instance_10.lp SC_medium_instance_11.lpSC_hard_instance_27.lpHEM_knapsack (Maximize)instance_46.lp instance_844.lpinstance_70.lp instance_844.lpinstance_372.lpHEM_setcover (Minimize)instance_71.pinstance_75.lp instance_75.lpcor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000,prune2.lpinstance_751.lp instance_752.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.lpinstance_752.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.lpinstance_752.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.lpinstance_752.lpinstance_2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.lpinstance_752.lpinstance-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.lpinstance_762.lpi		test_5470.proto.lp		cls.T90.C4.F1000.S1.lp
cls.T90.C5.F1000.S2.lp MVC_easy_instance.14.lp (Minimize) MVC_easy_instance.14.lp MVC_easy_instance.16.lp MVC_easy_instance.19.lp MVC_easy_instance.21.p MVC_medium_instance.4.lp MVC_medium_instance.4.lp MVC_hard MVC_hard_instance.22.lp MVC_medium_instance.3.lp MVC_hard_instance.21.p MVC_medium_instance.3.lp MVC_hard_instance.21.p SC_easy_instance.3.lp MVC_hard_instance.21.p SC_easy_instance.3.lp MVC_hard_instance.2.lp SC_easy_instance.3.lp MVC_hard_instance.2.lp SC_easy_instance.3.lp MVC_hard_instance.2.lp SC_easy_instance.3.lp MVC_hard_instance.2.lp SC_easy_instance.2.lp MVC_hard_instance.2.lp SC_easy_instance.2.lp MVC_hard_instance.2.lp SC_easy_instance.2.lp SC_medium_instance.3.lp SC_hard_instance.2.lp SC_medium_instance.3.lp SC_hard SC_medium_instance.10.lp SC_hard_instance.2.lp SC_medium_instance.18.lp SC_hard_instance.2.lp SC_medium_instance.18.lp SC_hard_instance.2.lp instance.46.lp instance.3.lp instance.2.19 instance.84.lp instance.2.19 instance.8		training_47482.proto.lp		cls.T90.C5.F250.S4.lp
MVC_easy_instance_1.1.p MVC_easy_instance_1.4.lp MVC_easy_instance_1.6.lp MVC_easy_instance_1.6.lp MVC_easy_instance_1.0.lpMVC_medium_instance_0.1p MVC_medium_instance_4.1pMVC_easy_instance_1.0.p MVC_easy_instance_2.1.pMVC_medium_instance_1.1.p MVC_medium_instance_2.1.pMVC_hard (Minimize)MVC_hard_instance_2.1.pMVC_hard (Minimize)MVC_hard_instance_2.1.pMVC_hard_instance_5.1.p MVC_hard_instance_6.1.pSC_easy_instance_3.1.pMVC_hard_instance_6.1.p MVC_hard_instance_2.2.lpSC_easy_instance_3.1.pMVC_hard_instance_6.1.p MVC_hard_instance_2.2.lpSC_easy_instance_2.1.pMVC_hard_instance_6.1.p MVC_hard_instance_2.8.lpSC_easy_instance_2.1.pSC_medium_instance_7.1.p SC_medium_instance_1.0.pSC_hard (Minimize)SC_medium_instance_1.0.p SC_medium_instance_1.0.pSC_hard (Minimize)SC_medium_instance_1.0.p SC_medium_instance_1.0.pSC_hard (Minimize)MEM_knapsack (Maximize)instance_77.1p SC_hard_instance_77.1pInstance_70.1p instance_77.1pHEM_mis (Maximize)instance_875.1p instance_875.1pinstance_872.1p instance_848.1p instance_848.1p instance_848.1p instance_761.21.pHEM_setcover (Minimize)instance_70.1p instance_70.1p instance_72.1pHEM_setcover (Minimize)instance_72.1p instance_72.1pinstance_71.p instance_77.1p instance_77.1pcor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.1p cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.1p cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.1p cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prun				cls.T90.C5.F1000.S2.lp
MVC_easy (Minimize)MVC_easy_instance_16.lp MVC_easy_instance_19.lpMVC_medium (Minimize)MVC_medium_instance_4.lp MVC_medium_instance_9.lpMVC_easy_instance_19.lp MVC_easy_instance_21.lpMVC_medium_instance_9.lp MVC_medium_instance_21.lpMVC_medium_instance_9.lp MVC_medium_instance_21.lpMVC_hardMVC_hard_instance_2.lp MVC_hard_instance_5.lp MVC_hard_instance_27.lpSC_easy_instance_3.lp SC_easy_instance_21.lpMVC_hard_instance_7.lp MVC_hard_instance_28.lpSC_easy_instance_21.lpSC_medium_instance_4.lp SC_medium_instance_10.lp SC_medium_instance_16.lpSC_hard (Minimize)SC_medium_instance_5.lp SC_medium_instance_16.lpSC_hard (Minimize)SC_medium_instance_5.lp SC_medium_instance_16.lpSC_hard (Minimize)SC_medium_instance_16.lp SC_medium_instance_16.lpSC_hard (Minimize)MEM_knapsack (Maximize)instance_77.lp instance_77.lpMEM_knapsack (Maximize)instance_77.lp instance_848.lp instance_848.lpMEM_knapsack (Minimize)instance_77.lp instance_848.lp instance_77.lpMEM_setcover (Minimize)instance_77.lp instance_75.lpMEM_setcover (Minimize)instance_75.lp instance_75.lpMEM_setcover (Minimize)instance_72.lp instance_75.lpMEM_setcover (Minimize)instance_72.lp instance_757.lpMEM_setcover (Minimize)instance_72.lp instance_751.lp instance_751.lpMEM_setcover (Minimize)instance_70.lp instance_751.lp instance_751.lpMEM_setcover (Minimize)instance_72.lp instance_751.l		MVC_easy_instance_1.lp		MVC_medium_instance_0.1p
MVC_easy_instance_16.lp (Minimize) MVC_easy_instance_16.lp MVC_easy_instance_19.lp MVC_easy_instance_21.lp MVC_medium_instance_9.lp MVC_medium_instance_11.lp MVC_hard_instance_2.lp (Minimize) MVC_medium_instance_11.lp MVC_medium_instance_21.p MVC_hard_instance_2.lp (Minimize) SC_easy_instance_3.lp SC_easy_instance_9.lp MVC_hard_instance_6.lp (Minimize) MVC_hard_instance_6.lp SC_easy_instance_9.lp MVC_hard_instance_2.lp SC_easy_instance_12.lp SC_easy_instance_9.lp MVC_hard_instance_2.lp SC_easy_instance_2.lp SC_easy_instance_2.lp MVC_hard_instance_2.lp SC_easy_instance_2.lp SC_easy_instance_2.lp SC_medium_instance_4.lp SC_hard_instance_7.lp SC_hard_instance_2.lp SC_medium_instance_10.lp SC_medium_instance_16.lp SC_hard SC_hard_instance_2.lp MEM_knapsack (Maximize) instance_18.lp SC_hard_instance_372.lp Imstance_84.lp instance_57.lp instance_57.lp Imstance_845.lp instance_372.lp Imstance_845.lp instance_57.lp Imstance_21.lp instance_57.lp Imstance_22.lp instance_57.lp Imstance_71.lp instance_57.lp Imstance_71.lp instance_57.lp Imstance_71.lp instance_57.lp Imstance_71.lp instance_71.lp Imstan	MVC easy	MVC_easy_instance_14.1p	MVC medium	MVC_medium_instance_4.1p
(Minimize) MVC_easy_instance_19.lp MVC_easy_instance_22.lp MVC_medium_instance_11.lp MVC_medium_instance_21.p MVC_hard_instance_2.lp (Minimize) MVC_hard_instance_2.lp MVC_hard_instance_5.lp MVC_hard_instance_7.lp MVC_hard_instance_27.lp MVC_hard_instance_28.lp SC_easy_instance_9.lp SC_easy_instance_9.lp SC_medium_instance_2.lp (Minimize) SC_easy_instance_2.lp SC_easy_instance_12.lp SC_medium_instance_4.lp (Minimize) SC_medium_instance_10.lp SC_hard_instance_7.lp SC_medium_instance_10.lp (Minimize) SC_hard_instance_13.lp SC_hard_instance_13.lp SC_medium_instance_10.lp (Sc_medium_instance_16.lp SC_medium_instance_18.lp SC_hard_instance_21.lp Instance_21.lp HEM_knapsack (Maximize) instance_46.lp instance_864.lp Instance_372.lp Instance_372.lp Imstance_864.lp instance_875.lp Instance_271.lp Instance_84.lp Instance_84.lp Instance_21.lp instance_466.lp Instance_21.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp Imstance_21.lp instance_864.lp Instance_21.lp Instance_21.lp Imstance_22.lp Instance_22.lp Instance_370.lp Imstance_22.lp Instance_22.lp Instance_370.00000.prune2.lp Imstance_22.lp Instance_22.lp Instance_21.lp Imstance_22.lp Instance_22.lp Instance_30.07.b78.000000.prune2.lp	(Minimize)	MVC_easy_instance_16.lp	(Minimize)	MVC_medium_instance_9.1p
MVC.easy_instance.22.lp MVC.medium_instance.22.lp MVC.hard_instance.2.lp SC_easy_instance.3.lp MVC.hard_instance.2.lp SC_easy_instance.3.lp MVC.hard_instance.5.lp SC_easy_instance.9.lp MVC_hard_instance.2.lp SC_easy_instance.1.lp MVC_hard_instance.2.lp SC_easy_instance.1.lp MVC_hard_instance.2.lp SC_easy_instance.1.lp MVC_hard_instance.2.lp SC_easy_instance.2.lp SC_medium_instance.2.lp SC_easy_instance.2.lp SC_medium_instance.4.lp SC_hard SC_medium_instance.10.lp SC_hard SC_medium_instance.1.lp SC_hard_instance.2.lp SC_medium_instance.1.lp SC_hard SC_medium_instance.1.lp SC_hard_instance.2.lp SC_medium_instance.1.lp SC_hard_instance.2.lp SC_medium_instance.1.lp SC_hard_instance.2.lp MEM_knapsack instance.46.lp instance.270.lp (Maximize) instance.371.lp instance.371.lp instance.21.lp instance.351.lp instance.21.lp instance.2.lp instance.22.lp instance.351.lp	(Willininize)	MVC_easy_instance_19.1p	(ivininize)	MVC_medium_instance_11.1p
MVC_hard_instance_2.lpSC_easy_instance_3.lpMVC_hard_instance_5.lpSC_easy_instance_3.lpMVC_hard_instance_6.lpSC_easy_instance_3.lpMVC_hard_instance_6.lpSC_easy_instance_12.lpMVC_hard_instance_7.lpSC_easy_instance_2.lpSC_medium_instance_2.lpSC_easy_instance_2.lpSC_medium_instance_10.lpSC_hard_instance_3.lpSC_medium_instance_10.lpSC_hard_instance_3.lpSC_medium_instance_10.lpSC_hard_instance_2.lpSC_medium_instance_10.lpSC_hard_instance_2.lpSC_medium_instance_10.lpSC_hard_instance_2.lpSC_medium_instance_1.lpSC_hard_instance_2.lpSC_medium_instance_1.lpSC_hard_instance_2.lpSC_medium_instance_1.lpSC_hard_instance_2.lpSC_medium_instance_1.lpSC_hard_instance_2.lpMinimize)instance_370.lpinstance_370.lpHEM_misinstance_370.lpinstance_57.lpinstance_845.lpinstance_57.lpinstance_875.lpinstance_51.lpHEM_setcoverinstance_21.lpinstance_321.lpHEM_corlat (Maximize)instance_321.lpcor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lpcor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lpcor-lat-2f+r-u-10-10-10-5-100-3.00		MVC_easy_instance_22.lp		MVC_medium_instance_22.1p
MVC_hard_instance_5.lp MVC_hard_instance_6.lp MVC_hard_instance_6.lp MVC_hard_instance_27.lp MVC_hard_instance_27.lp SC_medium_instance_28.lp SC_medium_instance_2.lp SC_medium_instance_10.lp SC_medium_instance_10.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_medium_instance_17.lp SC_hard_instance_27.lp instance_27.lp HEM_knapsack (Maximize) Instance_875.lp Instance_875.lp Instance_875.lp Instance_21.lp Instance_21.lp Instance_21.lp Instance_22.lp Cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.l] cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.l] cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.l] cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.l]		MVC_hard_instance_2.1p		SC_easy_instance_3.lp
MVC_hard_instance_6.lp MVC_hard_instance_6.lp SC_easy_instance_12.lp (Minimize) MVC_hard_instance_27.lp (Minimize) SC_easy_instance_22.lp MVC_hard_instance_28.lp SC_easy_instance_2.0.lp SC_easy_instance_2.0.lp SC_medium_instance_10.lp SC_medium_instance_10.lp SC_hard_instance_2.1.lp SC_medium_instance_10.lp SC_hard_instance_2.1.lp SC_hard_instance_2.1.lp SC_medium_instance_18.lp SC_hard_instance_2.1.lp SC_medium_instance_18.lp SC_hard_instance_2.1.lp Minimize) SC_medium_instance_18.lp SC_hard_instance_2.7.lp SC_medium_instance_18.lp SC_hard_instance_2.7.lp MEM_knapsack instance_46.lp instance_372.lp instance_864.lp (Maximize) instance_57.lp instance_864.lp instance_848.lp instance_848.lp instance_21.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp	MVC hard	MVC_hard_instance_5.1p	SC easy	SC_easy_instance_9.1p
(Minimize) MVC_hard_instance_27.lp MVC_hard_instance_28.lp SC_easy_instance_22.lp SC_easy_instance_26.lp SC_medium_instance_4.lp (Minimize) SC_medium_instance_10.lp SC_medium_instance_10.lp SC_medium_instance_18.lp SC_hard_instance_21.lp MEM_knapsack (Maximize) SC_medium_instance_16.lp instance_270.lp SC_hard_instance_37.lp Image: Maximize) instance_152.lp instance_557.lp Image: Memory of the matchese	(Minimize)	MVC_hard_instance_6.1p	(Minimize)	SC_easy_instance_12.1p
MVC_hard_instance_28.lp SC_easy_instance_26.lp SC_medium_instance_4.lp SC_medium_instance_7.lp SC_medium_instance_5.lp SC_hard_instance_7.lp SC_medium_instance_10.lp SC_medium_instance_16.lp SC_medium_instance_18.lp SC_hard_instance_27.lp SC_medium_instance_16.lp SC_hard_instance_27.lp SC_medium_instance_18.lp SC_hard_instance_27.lp HEM_knapsack instance_46.lp (Maximize) instance_270.lp instance_875.lp instance_848.lp instance_875.lp instance_855.lp HEM_setcover instance_21.lp (Minimize) HEM_corlat instance_70.lp HEM_corlat instance_875.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b85.000000.prune2.lp instance_71.lp HEM_corlat (Minimize) instance_72.lp instance_72.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b85.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp	(minimize)	MVC_hard_instance_27.1p		SC_easy_instance_22.1p
SC_medium_instance_4.lp SC_hard_instance_7.lp SC_medium_instance_5.lp SC_hard_instance_7.lp SC_medium_instance_10.lp SC_medium_instance_10.lp SC_medium_instance_10.lp SC_hard_instance_2.lp SC_medium_instance_16.lp SC_hard_instance_2.lp SC_medium_instance_18.lp SC_hard_instance_2.lp MEM_knapsack instance_70.lp (Maximize) instance_70.lp instance_875.lp instance_848.lp instance_875.lp instance_855.lp HEM_setcover instance_21.lp (Minimize) instance_71.p instance_71.p instance_71.p Item_rise instance_77.lp instance_152.lp HEM_mis instance_875.lp instance_875.lp instance_71.p instance_71.p HEM_setcover instance_72.lp instance_72.lp instance_71.p instance_75.lp instance_71.p instance_75.lp instance_71.p instance_72.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp instance_72.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.		MVC_hard_instance_28.lp		SC_easy_instance_26.1p
SC_medium (Minimize) SC_medium_instance_10.lp SC_medium_instance_10.lp SC_medium_instance_16.lp SC_medium_instance_16.lp SC_hard (Minimize) SC_hard_instance_13.lp SC_hard_instance_21.lp KE_medium_instance_16.lp SC_medium_instance_16.lp SC_hard_instance_25.lp SC_hard_instance_27.lp HEM_knapsack (Maximize) instance_162.lp HEM_mis (Maximize) instance_372.lp Instance_864.lp (Maximize) instance_57.lp Instance_875.lp instance_848.lp instance_22.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp HEM_setcover (Minimize) instance_521.lp Instance_762.lp HEM_corlat (Maximize) cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp		SC_medium_instance_4.lp		SC_hard_instance_7.1p
SC_medium_instance_10.lp SC_medium_instance_16.lp SC_medium_instance_18.lp SC_hard_instance_21.lp SC_hard_instance_25.lp instance_46.lp instance_72.lp instance_72.lp HEM_knapsack (Maximize) instance_72.lp instance_75.lp instance_72.lp instance_864.lp instance_875.lp instance_71erv-10-10-10-5-100-3.003.b78.000000.prune2.lp HEM_setcover (Minimize) instance_72.lp instance_72.lp instance_75.lp terv-10-10-10-5-100-3.003.b78.000000.prune2.lp instance_75.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp instance_72.lp terv-10-10-10-5-100-3.007.b78.000000.prune2.lp instance_72.lp terv-10-10-10-10-5-100-3.007.b78.000000.prune2.lp instance_72.lp terv-10-10-10-10-5-100-3.007.b78.000000.prune2.lp instance_72.lp terv-10-10-10-10-10-5-100-3.007.b78.000000.prune2.lp instance_72.lp terv-10-10-10-10-5-100-3.007.b78.000000.prune2.lp instance_72.lp terv-10-10-10-10-10-5-100-3.007.b78.000000.prune2.lp instance_72.lp terv-10-10-10-10-5-100-3.007.b78.000000.prune2.lp instance_72.lp terv-10-10-10-10-10-5-100-3.007.b78.000000.prune2.lp	SC medium	SC_medium_instance_5.lp	SC hard	SC_hard_instance_13.lp
SC_medium_instance_16.lp SC_medium_instance_18.lp SC_hard_instance_25.lp SC_hard_instance_27.lp instance_46.lp instance_70.lp (Maximize) instance_19.lp instance_70.lp instance_75.lp instance_19.lp instance_70.lp instance_75.lp HEM_setcover (Minimize) instance_21.lp instance_75.lp HEM_corlat (Maximize) instance_75.lp HEM_setcover (Minimize) instance_72.lp instance_75.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp	(Minimize)	SC_medium_instance_10.lp	(Minimize)	SC_hard_instance_21.lp
SC_medium_instance_18.lp SC_hard_instance_27.lp HEM_knapsack (Maximize) instance_152.lp instance_270.lp instance_270.lp instance_270.lp HEM_mis (Maximize) instance_119.lp instance_372.lp HEM_knapsack (Maximize) instance_157.lp instance_557.lp instance_848.lp instance_848.lp instance_22.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp HEM_setcover (Minimize) instance_521.lp instance_752.lp HEM_corlat (Maximize) cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp instance_752.lp	(SC_medium_instance_16.lp		SC_hard_instance_25.lp
HEM_knapsack (Maximize)instance.46.lp instance.152.lp instance.270.lp instance.270.lp (Maximize)HEM_mis (Maximize)instance.372.lp instance.372.lpHEM_knapsack (Maximize)(Maximize)instance.372.lp instance.270.lp instance.248.lp instance.2848.lp instance.251.lpHEM_mis (Maximize)instance.372.lp instance.248.lp instance.248.lp instance.255.lpHEM_setcover (Minimize)instance.22.lp instance.22.lp instance.22.lp instance.22.lpcor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp		SC_medium_instance_18.lp		SC_hard_instance_27.lp
HEM_knapsack (Maximize) instance.152.lp instance.270.lp instance.270.lp (Maximize) HEM_mis (Maximize) instance.372.lp instance.372.lp HEM_knip (Maximize) instance.372.lp instance.257.lp instance.848.lp instance.848.lp instance.855.lp instance.348.lp instance.855.lp HEM_setcover (Minimize) instance.22.lp instance.21.lp instance.21.lp instance.762.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b85.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b66.0000000.prune2.lp		instance_46.lp		instance_119.1p
Maximize) instance_270.lp instance_864.lp Maximize) instance_57.lp instance_848.lp HEM.setcover (Minimize) instance_22.lp instance_521.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b85.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp	HEM knapsack	instance_152.lp	HEM mis	instance_372.1p
instance_864.lp instance_875.lp instance_875.lp instance_875.lp instance_875.lp instance_855.lp instance_221.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lg HEM_setcover instance_446.lp text_ru-10-10-10-5-100-3.003.b78.000000.prune2.lg instance_721.lp HEM_corlat cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lg instance_762.lp (Maximize) cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lg	(Maximize)	instance_270.1p	(Maximize)	instance_557.1p
instance_875.lp instance_855.lp instance_22.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp HEM_setcover (Minimize) instance_446.lp HEM_corlat cor-lat-2f+r-u-10-10-10-5-100-3.003.b85.000000.prune2.lp (Minimize) instance_762.lp (Maximize) cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp	(uximize)	instance_864.1p		instance_848.1p
instance.22.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000,prune2.lp HEM_setcover instance.446.lp HEM_corlat cor-lat-2f+r-u-10-10-10-5-100-3.003.b85.000000,prune2.lp (Minimize) instance.762.lp HEM_corlat cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.lp (Maximize) or-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000,prune2.lp		instance_875.lp		instance_855.1p
HEM_setcover (Minimize) instance_446.lp instance_521.lp instance_762.lp HEM_corlat (Maximize) cor-lat_2f+r-u-10-10-5-100-3.003.b85.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b76.000000.prune2.lp		instance_22.1p		cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp
(Minimize) instance_521.lp (Maximize) cor-lat-2f+r-u-10-10-5-100-3.007.b78.000000.prune2.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b660.000000.prune2.lp	HFM setcover	instance_446.lp	HEM corlat	cor-lat-2f+r-u-10-10-10-5-100-3.003.b85.000000.prune2.lp
instance.762.lp corelat-2f+r-u-10-10-10-5-100-3.007.b660.000000.prune2.l	(Minimize)	instance_521.lp	(Maximize)	cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp
r I I I I I I I I I I I I I I I I I I I	(mininize)	instance_762.lp		cor-lat-2f+r-u-10-10-10-5-100-3.007.b660.000000.prune2.l
instance_997.lp cor-lat-2f+r-u-10-10-5-100-3.008.b92.000000.prune2.lp		instance_997.1p		cor-lat-2f+r-u-10-10-10-5-100-3.008.b92.000000.prune2.lp
mik.250-10-50.1.lp		mik.250-10-50.1.lp		
HEM mik mik.250-10-100.1.lp	HFM mik	mik.250-10-100.1.lp		
(Minimize) mik.250-10-100.3.1p	(Minimize)	mik.250-10-100.3.1p		
mik.250-10-100.5.lp	(minimize)	mik.250-10-100.5.1p		
mik.250-20-100.3.lp		mik.250-20-100.3.1p		

Table 8: The result of testing dataset partition, Part B.

1404 C.2 DATASET ANALYSIS 1405

1406 It involved measuring both graph structural embedding distances and neural embedding distances 1407 and comparing these metrics with those from established MILP datasets. We restricted our comparison to representative problems containing fewer than 50,000 decision variables to manage compu-1408 tational demands. 1409

1410

1412

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1444

1445

1446

1447 1448

1449

1450

1451

C.3 DATASET RECLASSIFICATION 1411

For some datasets, especially those collected from open-source datasets, the problem instances gen-1413 erated from various scenarios are often mixed, leading to a highly complex distribution. Therefore, 1414 we employed the spectral clustering algorithm to categorize the complete datasets. The result is 1415 shown as follows. 1/16

1		0	
1	41	7	MIPlib:

- Cluster 0: []
 - Cluster 1: ['swath2.pkl', 'neos9.pkl', 'swath1.pkl', 'swath3.pkl', 'neos818918.pkl', 'neos648910.pkl', 'mkc1.pkl']
- Cluster 2: ['bienst1.pkl', 'bienst2.pkl']
 - ['ns183.pkl', '30_70_45_05_100.pkl', 'seymour1.pkl', '30_70_45_095_100.pkl', • Cluster 3: 'dano3_4.pkl', '30_70_45_05_10.pkl', 'neos17.pkl', 'dano3_3.pkl', 'ns1830653.pkl', '30_70_45_095_98.pkl', 'dano3_5.pkl']
 - Cluster 4: ['neos3.pkl', 'neos12.pkl', 'neos23.pkl', 'neos808444.pkl', 'bc1.pkl', 'neos2.pkl', 'neos1.pkl', 'neos22.pkl', 'neos11.pkl', 'neos6.pkl', 'markshare_5_0.pkl', 'neos823206.pkl']
 - Cluster 5: ['neos8.pkl', 'neos10.pkl']
 - Cluster 6: []
- Cluster 7: ['neos5.pkl', 'ran14x18_1.pkl', 'ns1648184.pkl', 'neos20.pkl', 'neos21.pkl', 'ns1688347.pkl', 'nug08.pkl', 'ns1692855.pkl', 'neos897005.pkl', 'neos7.pkl', 'neos13.pkl', 'markshare_4_0.pkl', 'neos14.pkl', 'qap10.pkl', 'neos4.pkl', 'ns1671066.pkl']

1433 Coral:

1434	
1435	• Cluster 0: ['neos-841664.pkl', 'neos-796608.pkl', 'leo1.pkl', 'neos-1112782.pkl', 'neos-
1436	1053234.pkl', 'neos-631517.pkl', 'neos-1171448.pkl', 'neos-584146.pkl', 'neos-885524.pkl', 'neos-
4407	1171692.pkl', 'neos-801834.pkl', 'neos-848198.pkl', 'neos-1211578.pkl', 'neos-1324574.pkl',
1437	'neos-1228986.pkl', 'neos-504674.pkl', 'neos-619167.pkl', 'neos-933550.pkl', 'neos-1096528.pkl',
1438	'neos-807639.pkl', 'neos-810286.pkl', 'neos-693347.pkl', 'neos-934531.pkl', 'neos-960392.pkl',
1439	'neos-906865.pkl', 'd20200.pkl', 'neos-1367061.pkl', 'binkar10_1.pkl', 'neos-1224597.pkl', 'neos-
1440	582605.pkl', 'neos-955800.pkl', 'neos-1056905.pkl', 'neos-595925.pkl', 'neos-548251.pkl', 'neos-
1441	1061020.pkl', 'neos-885086.pkl', 'neos-1425699.pkl']
1449	• Cluster 1: ['neos-785899.pkl', 'neos-570431.pkl', 'neos-933364.pkl', 'neos-933815.pkl']
1442	
1443	• Cluster 2: ['neos-785914.pkl', 'neos-1413153.pkl', 'neos-555001.pkl', 'neos-551991.pkl', 'neos-

- 555884.pkl', 'neos-1415183.pkl', 'neos-631784.pkl', 'neos-738098.pkl', 'neos-578379.pkl']
- Cluster 3: ['neos-941717.pkl', 'neos-1440225.pkl', 'neos-1208069.pkl', 'neos-1151496.pkl', 'neos-848845.pkl', 'neos-912023.pkl', 'neos-847302.pkl', 'neos-808214.pkl']
- Cluster 4: ['neos-948268.pkl', 'neos-829552.pkl', 'neos-501453.pkl', 'neos-1427181.pkl', 'bi-enst1.pkl', 'neos-611838.pkl', 'neos-1427261.pkl', 'mcsched.pkl', 'neos-1436713.pkl', 'neos-612162.pkl', 'bienst2.pkl', 'neos-1429185.pkl']
 - Cluster 5: []
 - Cluster 6: []
- ['aligninq.pkl', 'neos-595905.pkl', 'neos-791021.pkl', 'neos-691073.pkl', 'neos-• Cluster 7: 1452 957323.pkl', 'neos-916173.pkl', 'neos-1330635.pkl', 'neos-494568.pkl', 'neos-555771.pkl', 'neos-1453 935348.pkl', 'neos-936660.pkl', 'neos-954925.pkl', 'neos-824695.pkl', 'neos-1420546.pkl', 'neos-1454 937815.pkl', 'neos-1120495.pkl', 'neos-1311124.pkl', 'dano3_3.pkl', 'neos-826812.pkl', 'neos-1455 935769.pkl', 'neos-1429461.pkl', 'neos-585192.pkl', 'neos-530627.pkl', 'neos-662469.pkl', 'neos-476283.pkl', 'neos-498623.pkl', 'neos-1058477.pkl', 'neos-480878.pkl', 'neos-633273.pkl', 'neos-799711.pkl', 'neos-1426662.pkl', 'neos-803219.pkl', 'neos-1440447.pkl', 'neos-941262.pkl', 'neos-1456 1457 565815.pkl', 'neos-826841.pkl', 'neos-522351.pkl', 'neos-937511.pkl']

1458	Nexp:
1459	• Chater (). ['mass 1602512 mld', 'fibell ald', 'bisast1 mld', 'maydens mld', 'mass16 mld', 'mass
1/61	1603518.pkl', 'neos14.pkl', 'neos15.pkl', 'bienst2.pkl', 'mkc1.pkl']
1462	• Cluster 1: ['neos-1622252 pk]' 'neos-1599274 pk]' 'ran14x18disi-8 pk]' 'neos-20 pk]' 'neos-
1463	1603965.pkl', 'rlp1.pkl', 'p6b.pkl', 'neos-1616732.pkl', 'seymourdisj-10.pkl', 'p5_34.pkl',
1464	'd20200.pkl', 'neos4.pkl', 'neos-1620770.pkl', 'mcf2.pkl', 'prod2.pkl']
1465	• Cluster 2: ['leo1.pkl', 'neos12.pkl', 'nug08.pkl', 'neos1.pkl', 'neos-1620807.pkl', 'neos11.pkl',
1466	'neos7.pkl', 'neos-1593097.pkl', 'roy.pkl', 'neos-1595230.pkl', 'qap10.pkl', 'neos18.pkl', 'neos-
1467	1582420.pkl ²]
1468	 Cluster 3: ['neos5.pkl', 'neos-1605061.pkl', 'ramos3.pkl', 'aligninq.pkl', 'sp97ic.pkl', 'neos-1605075.pkl', 'leo2.pkl', 'neos-1601936.pkl', 'mcsched.pkl', 'sp98ir.pkl', 'sp98ar.pkl']
1469	• Cluster 4: ['prod1.pkl', 'haprp.pkl', 'neos17.pkl', 'lrn.pkl', 'nsa.pkl', 'neos-1516309.pkl', 'pg.pkl']
1470 1471	• Cluster 5: ['22433.pkl', 'd1020.pkl', 'dano3_4.pkl', '23588.pkl', 'dano3_3.pkl', 'dano3_5.pkl', 'd10200 pkl']
1472	• Cluster 6: $[2naoc2 nkl]'$ $[2nn14x18 + nkl]' [2naoc2 nkl]']$
1473	• Cluster 6: [$1eos5.pki$, $1an14x16_1.pki$, $1eos2.pki$]
1474	• Cluster /: []
1475	ECOGCNN:
1476	
1477	• Cluster 0: ['ns2382816.pkl', 'ns3633010.pkl', 'ns2081729.pkl', 'ns2394796.pkl', 'neos-
1470	649702.pki, iis5154612.pki]
1/180	• Cluster 1: [ns43503.pki , ns2164569.pki]
1481	 Cluster 2: ['ns2082847.pkl', 'u50t24wc.pkl', 'ns2369235.pkl', 'ns2996139.pkl', 'ns2070961.pkl', 'ns4636843.pkl']
1482	• Cluster 3: ['ns2326618.pkl', 'ns2494475.pkl', 'ns3337549.pkl', 'ns1943024.pkl', 'ns2071214.pkl',
1483	'u30t24ramp.pkl']
1484	• Cluster 4: ['ns2267839.pkl', 'ns2350781.pkl']
1485	 Cluster 5: ['chrom_512.pkl', 'chrom_256.pkl', 'u40t24ramp.pkl', 'u40t24wc.pkl']
1480	• Cluster 6: []
1/188	• Cluster 7: []
1489	
1490	C.4 SETTINGS OF BENCHMARKING STUDY
1491	In our benchmarking study, hyperparameter selection played a crucial role in optimizing the per-
1492	formance of the baseline algorithms. We employed different strategies for hyperparameter tuning
1493	across the various methods tested in this study. While some algorithms performed well with default
1494	settings, others required manual tuning of specific hyperparameters to improve their performance on
1495	complex problem instances.
1496	We evaluated six baseline algorithms in the main text: Gurobi, SCIP, LNS, ACP, Learn2Branch,
1497	and GNN&GBDT. For Gurobi and SCIP, we used the default solver settings, as these configurations
1490	are generally well-optimized for a wide range of problems and provide strong performance without
1499	requiring further adjustments.
1501	For the other algorithms—LNS, ACP, Learn2Branch, and GNN&GBDT—manual hyperparameter
1502	tuning was necessary. This tuning process involved adjusting key hyperparameters, such as learning
1503	rates, batch sizes, and neural network architectures, depending on the algorithm and the specific
1504	problem type. Our goal was to achieve better performance, particularly on more complex and chal-
1505	ionging protioni instances.
1506	In addition to the six baseline algorithms, we also included four additional machine learning-based
1507	algorithms: Neural Diving, Predict&Search, Hybrid Learn2Branch, and GNN-MILP. Similar to the
1508	ensure ontimal performance. The default settings of Gurobi and SCID were retained, while the other
1509	ensure optimal performance. The default settings of Outob and Setti were retained, while the other

- eight algorithms underwent a systematic tuning process to improve their results.
- 1511 The detailed hyperparameter settings for each algorithm are provided in Tables 9 through 17, which summarize the configurations used for each method. These tables offer a comprehensive overview of

the hyperparameters and their respective values, along with the rationale behind any modifications.
 This information is essential for understanding the choices made during the tuning process and for facilitating the reproducibility of our results across different problem instances.

1516	Problem	blocking num	Problem	initial blocking num
	MIS_easy	2	MIS_easy	2
1517	MIS_medium	4	MIS_mediu	m 2
1510	MIS_hard	6	MIS_hard	2
1310	MCV_easy	3	MCV_eas	2
1519	MVC_medium	4	MVC_media	ım 2
1010	MVC_hard	5	MVC_hard	1 2
1520	SC_easy	2	SC_easy	2
1501	SC_medium	4	SC_medium	n 2
1921	SC_hard	6	SC_hard	2
1522	MIPlib	2	MIPlib	2
1011	Coral	2	Coral	2
1523	Cut	2	Cut	2
1504	ECOGCNN	2	ECOGCNI	N 2
1524	HEM_knapsack	2	HEM_knaps	ack 2
1525	HEM_mis	2	HEM_mis	2
1020	HEM_setcover	2	HEM_setcov	/er 2
1526	HEM_corlat	2	HEM_corla	at 2
	HEM_mik	2	HEM_mik	2
1527	item_placement	3	item_placem	ent 2
1509	load_balancing	3	load_balanci	ng 2
1520	anonymous	3	anonymou	s 2
1529	Nexp	2	Nexp	2
	Transportation	2	Transportati	on 2
1530	vary_bounds_s1	2	vary_bounds	_s1 2
1501	vary_bounds_s2	2	vary_bounds	22
1551	vary_bounds_s3	2	vary_bounds	2
1532	vary_matrix_s1	2	vary_matrix.	s1 2
	vary_matrix_rhs_bounds_s1	2	vary_matrix_rhs_b	bunds_s1 2
1533	vary_matrix_rhs_bounds_obj_s1	2	vary_matrix_rhs_bou	nds_obj_s1 2
1504	vary_obj_s1	2	vary_obj_s	1 2
1004	vary_obj_s2	2	vary_obj_s	2 2
1535	vary_obj_s3	2	vary_obj_s	3 2
1000	vary_rhs_s1	2	vary_rhs_s	
1536	vary_rns_s2	2	vary_ms_s	2 2
4507	vary_rns_ss	2	vary_ms_s	2
1537	vary_rns_s4	2	vary_ms_s	+ 2
1538	vary_ms_obj_st		vary_rns_obj	-51 2
1000	vary_ms_ooj_s2	2	vary_rhs_obj	-82 2
1539	ACIID fa data		ACIID	2
1=10	ic.data		IC.data	2
1540	nn_verification	2	nn_verificati	on 2

Table 9: Hyperparameter selection for LNS(left) and ACP (right).

Problem	sample-rate	learning-rate	max-epoch
MIPlib	10	0.001	1000
Coral	10	0.001	1000
Cut	10	0.001	1000
ECOGCNN	10	0.001	1000
HEM_knapsack	10	0.001	1000
HEM_mis	10	0.001	1000
HEM_setcover	10	0.001	1000
HEM_corlat	10	0.001	1000
HEM_mik	10	0.001	1000
item_placement	10	0.001	1000
load_balancing	10	0.001	1000
anonymous	10	0.001	1000
Nexp	10	0.001	1000
Transportation	10	0.001	1000
vary_bounds_s1	10	0.001	1000
vary_bounds_s2	1	0.001	1000
vary_bounds_s3	1	0.001	1000
vary_matrix_s1	10	0.001	1000
vary_matrix_rhs_bounds_s1	10	0.001	1000
vary_matrix_rhs_bounds_obj_s1	10	0.001	1000
vary_obj_s1	10	0.001	1000
vary_obj_s2	10	0.001	1000
vary_obj_s3	10	0.001	1000
vary_rhs_s1	10	0.001	1000
vary_rhs_s2	10	0.001	1000
vary_rhs_s3	10	0.001	1000
vary_rhs_s4	10	0.001	1000
vary_rhs_obj_s1	10	0.001	1000
vary_rhs_obj_s2	10	0.001	1000
Aclib	10	0.001	1000
fc.data	10	0.001	1000
nn_verification	10	0.001	1000

MIPlib Coral Cut ECOGCNN HEM_knapsack		20 20 20 20	64 64 64 64	64 64 64 64	64 64 64		
Coral Cut ECOGCNN HEM_knapsack		20 20 20	64 64 64	64 64 64	64 64		
ECOGCNN HEM_knapsack		20	64	04 64	04 64		
HEM_knapsack				01	04		
TITLE '		20	64	64	64		
HEM_mis		20	64	64	64		
HEM_setcover HEM_corlat		20	64	64	64 64		
HEM_mik		20	64	64	64		
item_placement		20	64 64	64 64	64 64		
anonymous		20	64	64	64		
Nexp		20	64	64	64		
Transportation		20 20	64 64	64 64	64 64		
vary_bounds_s1		20	64	64	64		
vary_bounds_s3		20	64	64	64		
vary_matrix_s1	de e1	20	64 64	64 64	64 64		
vary_matrix_rhs_bounds	s_obj_s1	20	64	64	64		
vary_obj_s1		20	64	64	64		
vary_obj_s2 vary_obj_s3		20	64 64	64 64	64 64		
vary_rhs_s1		20	64	64	64		
vary_rhs_s2		20	64	64	64		
vary_rhs_s3 varv_rhs_s4		20	04 64	04 64	64 64		
vary_rhs_obj_s1		20	64	64	64		
vary_rhs_obj_s2		20	64 64	64 64	64		
fc.data		20	64	64	04 64		
nn_verification		20	64	64	64		
Table 11: H	Hyperpa	rameter sel	ection for	Learn2Branch	n (Part 2).		
	-						
Duchl	la	max-pati	ent		more de la		c
rroblem	learning-	-epoch	batch-si	ze n_estimators	max_depth	rate	fix
MIS_easy MIS_medium	0.0001	10	1	30 30	5	0.4	0.6
MIS_hard	0.0001	10	1	30	5	0.4	0.6
MCV_easy	0.0001	10	1	30	5	0.4	0.6
MVC_hard	0.0001	10	1	30 30	5 5	0.4	0.6
SC_easy	0.0001	10	1	30	5	0.4	0.6
SC_medium	0.0001	10	1	30	5	0.4	0.6
MIPlib	0.0001	10	1	30	5	0.4	0.6
Coral	0.0001	10	1	30	5	0.4	0.6
Cut	0.0001	10	1	30	5	0.4	0.6
HEM_knapsack	0.0001	10	1	30 30	5	0.4	0.6
HEM_mis	0.0001	10	1	30	5	0.4	0.6
HEM_setcover HEM_corlat	0.0001	10	1	30 30	5	0.4	0.6
HEM_mik	0.0001	10	1	30	5	0.4	0.6
item_placement	0.0001	10	1	30	5	0.4	0.6
load_balancing	0.0001	10	1	30	5	0.4	0.6
Nexp	0.0001	10	1	30 30	5	0.4	0.6
Transportation	0.0001	10	1	30	5	0.4	0.6
vary_bounds_s1	0.0001	10	1	30 30	5	0.4	0.6
vary_bounds_s3	0.0001	10	1	30	5	0.4	0.6
vary_matrix_s1	0.0001	10	1	30	5	0.4	0.6
matrix_rhs_bounds_s1	0.0001	10	1	30 30	5	0.4	0.6
vary_obj_s1	0.0001	10	1	30	5	0.4	0.6
vary_obj_s2	0.0001	10	1	30	5	0.4	0.6
vary_obj_s3	0.0001	10	1	30	5	0.4	0.6
vary_rhs_s1 vary_rhs_s2	0.0001	10	1	30 30	5	0.4	0.6
vary_rhs_s3	0.0001	10	1	30	5	0.4	0.6
vary_rhs_s4	0.0001	10	1	30	5	0.4	0.6
vary_rhs_obj_s1 vary_rhs_obj_s2	0.0001	10	1	30 30	5	0.4	0.6
Aclib	0.0001	10	1	30	5	0.4	0.6
fc.data	0.0001	10	1	30	5	0.4	0.6
nn_verincation	0.0001	10	1	30	3	0.4	0.6
Tabla	12. Hyn	ernaramete	r selection	for GNN&G	RDT		
			1 SCICCHOI	I IUI UININAUI	יועט.		
Table	12. 11yp	erparamete					
Table	12. 11yp	paramete					
	HEM.corlat HEM.mik item.placement load_balancing anonymous Nexp Transportation vary.bounds.s1 vary.matrix.rhs.bound vary.obj.s1 vary.matrix.rhs.bound vary.obj.s2 vary.obj.s3 vary.rhs.s4 vary.rhs.obj.s2 Aclib fc.data nn.verification MIS_medium MIS_casy MIS_medium MIS_medium MIS_medium MIS_hard MIPlib Coral Cut ECOGCNN HEM_knapsack HEM_setcover HEM_corlat HEM_corlat HEM_corlat HEM_corlat HEM_saft vary.bounds_s1 vary.bounds_s3 vary.matrix_s1 matrix.rhs.bounds_s3 vary.matrix_s1 vary.obj_s3 vary.rhs.s4 vary.rhs.obj_s1 vary.rhs.obj_s1 vary.rhs.obj_s1 vary.rhs.obj_s1 vary.rhs.obj_s1 vary.rhs.obj_s1 vary.rhs.s5 vary.rhs.s3 vary.rhs.s4 vary.rhs.s4 vary.rhs.s5 vary.rhs.s5 vary.rhs.s5 vary.rhs.s4 vary.rhs.s5 vary.rh	HEM.corlat HEM.mik item.placement load.balancing anonymous Nexp Transportation vary.bounds.s1 vary.bounds.s2 vary.obj.s1 vary.obj.s2 vary.obj.s2 vary.obj.s3 vary.rhs.s4 vary.rhs.s4 vary.rhs.s5 vary.rhs.s4 vary.rhs.s5 vary.rhs.s4 vary.r	HEM_corlat 20 HEM_mik 20 item_placement 20 load_balancing 20 anonymous 20 Transportation 20 vary_bounds_s1 20 vary_bounds_s2 20 vary_bounds_s3 20 vary_obj_s1 20 vary_obj_s2 20 vary_obj_s3 20 vary_obj_s3 20 vary_obj_s4 20 vary_obj_s5 20 vary_rhs_s4 20 vary_rhs_s5 20 vary_rhs.s4 20 vary_rhs.s5 20 vary_rhs.s4 20 vary_rhs.s5 20 vary_rhs.s4 20 vary_rhs.s52 20	HEM_contat 20 64 item_placement 20 64 load_balancing 20 64 anonymous 20 64 Nexp 20 64 vary_bounds_s1 20 64 vary_bounds_s2 20 64 vary_bounds_s3 20 64 vary_obj_s1 20 64 vary_obj_s1 20 64 vary_obj_s2 20 64 vary_obj_s3 20 64 vary_obj_s3 20 64 vary_obj_s4 20 64 vary_obj_s2 20 64 vary_ths.s3 20 64 vary_ths.s4 20 64 vary_ths.s52 20 64 vary_ths.s4 20 64 MiS_medium 0.0001 1 MIS_medium 0.0001 1 MIS_medium 0.0001 1 MIS_medium 0.0001 1 <t< td=""><td>HEM_cnik 20 64 64 lied_blancing 20 64 64 load_blancing 20 64 64 nonymous 20 64 64 Nesp 20 64 64 vary.bounds.s1 20 64 64 vary.bounds.s2 20 64 64 vary.bounds.s2 20 64 64 vary.matrix.s1 20 64 64 vary.matrix.s1 20 64 64 vary.obj.s2 20 64 64 vary.nts.s1 20 64 64 vary.nts.s3 20 64 64 vary.nts.s3 20 64 64 vary.nts.s4 20 64 64 vary.nts.s4 20 64 64 vary.nts.s4 20 64 64 n.vary.nts.s4 20 64 64 n.vary.nts.s4 20 64 <td< td=""><td>HEM.corfat 20 64 64 64 64 item.placement 20 64 64 64 64 ised.balancing 20 64 64 64 64 anonymous 20 64 64 64 64 vary.bounds.2 20 64 64 64 64 vary.bounds.2 20 64 64 64 64 vary.bounds.3 20 64 64 64 64 vary.bounds.31 20 64 64 64 64 vary.matrix.th.sbounds.a1 20 64<</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td></td<></td></t<>	HEM_cnik 20 64 64 lied_blancing 20 64 64 load_blancing 20 64 64 nonymous 20 64 64 Nesp 20 64 64 vary.bounds.s1 20 64 64 vary.bounds.s2 20 64 64 vary.bounds.s2 20 64 64 vary.matrix.s1 20 64 64 vary.matrix.s1 20 64 64 vary.obj.s2 20 64 64 vary.nts.s1 20 64 64 vary.nts.s3 20 64 64 vary.nts.s3 20 64 64 vary.nts.s4 20 64 64 vary.nts.s4 20 64 64 vary.nts.s4 20 64 64 n.vary.nts.s4 20 64 64 n.vary.nts.s4 20 64 <td< td=""><td>HEM.corfat 20 64 64 64 64 item.placement 20 64 64 64 64 ised.balancing 20 64 64 64 64 anonymous 20 64 64 64 64 vary.bounds.2 20 64 64 64 64 vary.bounds.2 20 64 64 64 64 vary.bounds.3 20 64 64 64 64 vary.bounds.31 20 64 64 64 64 vary.matrix.th.sbounds.a1 20 64<</td><td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td></td<>	HEM.corfat 20 64 64 64 64 item.placement 20 64 64 64 64 ised.balancing 20 64 64 64 64 anonymous 20 64 64 64 64 vary.bounds.2 20 64 64 64 64 vary.bounds.2 20 64 64 64 64 vary.bounds.3 20 64 64 64 64 vary.bounds.31 20 64 64 64 64 vary.matrix.th.sbounds.a1 20 64<	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

To validate the effectiveness of ML4MILP and assess the performance of various baseline algorithms across different scenarios, we conducted a comprehensive benchmarking study. The evalu-

1620	Problem	learning-rate	NB-epochs	batch-size	weight-norm
1621	MIS_easy	0.001	9999	4	100
1021	MIS_medium	0.001	9999	4	100
1622	MIS_hard	0.001	9999	4	100
	MCV_easy	0.001	9999	4	100
1623	MVC_medium	0.001	9999	4	100
169/	MVC_hard	0.001	9999	4	100
1024	SC_easy	0.001	9999	4	100
1625	SC_medium	0.001	9999	4	100
	SC_hard	0.001	9999	4	100
1626	MIPlib	0.001	9999	4	100
1607	Coral	0.001	9999	4	100
1027	Cut	0.001	9999	4	100
1628	ECOGCNN	0.001	9999	4	100
.010	HEM_knapsack	0.001	9999	4	100
1629	HEM_mis	0.001	9999	4	100
1600	HEM_setcover	0.001	9999	4	100
1630	HEM_corlat	0.001	9999	4	100
1631	HEMLMIK	0.001	9999	4	100
	item_placement	0.001	9999	4	100
1632	load_balancing	0.001	9999	4	100
1000	Nour	0.001	9999	4	100
1633	Transportation	0.001	9999	4	100
1634	vary bounds s1	0.001	0000	4	100
	vary bounds s?	0.001	9999	4	100
1635	vary_bounds_s2	0.001	9999	4	100
1626	vary_matrix_s1	0.001	9999	4	100
1030	vary_matrix_rhs_bounds_s1	0.001	9999	4	100
1637	vary_matrix_rhs_bounds_obj_s1	0.001	9999	4	100
1000	vary_obj_s1	0.001	9999	4	100
1638	vary_obj_s2	0.001	9999	4	100
1639	vary_obj_s3	0.001	9999	4	100
1055	vary_rhs_s1	0.001	9999	4	100
1640	vary_rhs_s2	0.001	9999	4	100
1011	vary_rhs_s3	0.001	9999	4	100
1641	vary_rhs_s4	0.001	9999	4	100
1642	vary_rhs_obj_s1	0.001	9999	4	100
1072	vary_rhs_obj_s2	0.001	9999	4	100
1643	Aclib	0.001	9999	4	100
1011	fc.data	0.001	9999	4	100
1644	nn_verification	0.001	9999	4	100

Table 13: Hyperparameter selection for Predict&Search.

Problem	sample-rate	learning-rate	max-epoch	patience
HEM_knapsack	10	0.001	1000	10
HEM_mis	10	0.001	1000	10
HEM_setcover	10	0.001	1000	10
vary_bounds_s1	10	0.001	1000	10
vary_matrix_s1	10	0.001	1000	10
vary_matrix_rhs_bounds_obj_s1	10	0.001	1000	10
vary_obj_s1	10	0.001	1000	10
vary_obj_s3	10	0.001	1000	10
vary_rhs_s2	10	0.001	1000	10
vary_rhs_s4	10	0.001	1000	10
vary_rhs_obj_s2	10	0.001	1000	10

Table 14: Hyperparameter selection for Hybrid_Learn2Branch (Part 1).

ation metrics include objective function values and gap estimations under identical wall-clock time constraints. The complete results can be found in Tables 18, 19, 20, and 21.

In the benchmarking study, the Learn2Branch configuration was set with a maximum of 1000 epochs, and batch sizes for training, validation, and pre-training were all set to 64. The learning rate was fixed at 1e-3, and the initial sampling rate was set at 10. If effective sampling could not be achieved, the rate was progressively reduced to a minimum of 1. For the GNN&GBDT framework, we limited the solver to handle only 40% of the original problem size, aiming to highlight its effectiveness in working with smaller-scale solvers while maintaining overall solution quality.

The experimental results align with previous findings in the literature. Despite claims that ma-chine learning (ML)-based methods can outperform traditional solvers, Gurobi remains the dom-inant solver across most problem instances, particularly those derived from real-world scenarios. SCIP demonstrated robustness but generally underperformed relative to Gurobi. While Large Neighborhood Search (LNS) had been reported to outperform Gurobi in certain medium- to large-scale generated problems, our experiments showed that Gurobi still outperformed LNS in many cases across a broader range of tests.

1687 1688 1689

1693

1674	Problem	early-stopping	epoch-size	batch-size	pretrain-batch-size	valid-batch-size
1675	HEM_knapsack	20	312	32	128	128
107 D	HEM_mis	20	312	32	128	128
1676	HEM_setcover	20	312	32	128	128
1010	vary_bounds_s1	20	312	32	128	128
1677	vary_matrix_s1	20	312	32	128	128
1070	vary_matrix_rhs_bounds_obj_s1	20	312	32	128	128
1678	vary_obj_s1	20	312	32	128	128
1670	vary_obj_s3	20	312	32	128	128
1075	vary_rhs_s2	20	312	32	128	128
1680	vary_rhs_s4	20	312	32	128	128
	vary_rhs_obj_s2	20	312	32	128	128
1681						

Table 15: Hyperparameter selection for Hybrid_Learn2Branch (Part 2).

Problem	learning-rate	max-epoch
HEM_knapsack	0.003	200
HEM_mis	0.003	200
HEM_setcover	0.003	200
vary_bounds_s1	0.003	200
vary_matrix_s1	0.003	200
vary_matrix_rhs_bounds_obj_s1	0.003	200
vary_obj_s1	0.003	200
vary_obj_s3	0.003	200
vary_rhs_s2	0.003	200
vary_rhs_s4	0.003	200
vary rhs obi s2	0.003	200

Table 16: Hyperparameter selection for GNN-MILP.

The Adaptive Constraint Partition Based Optimization Framework (ACP), an improvement over
LNS, exhibited superior performance compared to LNS in almost all scenarios. In several cases,
ACP matched or even surpassed Gurobi's performance. Among machine learning-based algorithms,
the GNN&GBDT framework, which integrates small-scale solvers as sub-solvers in a large-scale
integer programming framework, demonstrated excellent problem reduction capabilities and performed notably well in large-scale problems. However, due to structural limitations, GNN&GBDT
is only applicable to pure integer programming problems, restricting its use in MILP scenarios.

The Learn2Branch approach, which relies on computationally expensive strong branching to collect
training samples, encountered difficulties in gathering sufficient training data within reasonable time
frames for many mid- to large-scale problems. In some cases, ineffective sampling resulted in errors,
highlighting the need for further improvement in the sampling strategy to improve the approach's
robustness across a broader set of problem instances.

In addition to the initially tested machine learning-based algorithms—Learn2Branch and
GNN&GBDT—as well as traditional solvers like Gurobi, SCIP, LNS, and ACP, we evaluated four
additional ML-based algorithms: Neural Diving (Nair et al., 2020b), Predict&Search (Han et al.,
2023), Hybrid_Learn2Branch (Gupta et al., 2020), and GNN-MILP (Chen et al., 2022). These methods were tested on selected datasets, with results presented in Tables 20 and 21.

1712 Neural Diving and Predict&Search showed competitive performance across certain datasets. Predict&Search demonstrated particularly strong results on small- to medium-scale problem instances, 1713 while Hybrid Learn2Branch provided some of the best objective function values for specific prob-1714 lems such as vary_obj_s1. However, similar to Learn2Branch, this method encountered difficulties 1715 in certain scenarios due to challenges in collecting sufficient training data. GNN-MILP, while show-1716 ing promise in synthetic problem settings, faced difficulties when applied to real-world scenarios, 1717 often producing infeasible solutions, as indicated by the ! markers in Table 20. This suggests that 1718 GNN-MILP requires further refinement to improve its generalization beyond synthetic problems. 1719

As shown in Tables 18, 19, 20, and 21, Gurobi consistently delivered the best results across most problem instances. It performed particularly well on real-world datasets such as Coral and HEM_knapsack. SCIP and ACP performed well in certain cases but were generally outperformed by Gurobi, especially in large-scale problems where Gurobi's commercial optimization techniques excel.

Among the ML-based solvers, GNN&GBDT was competitive but had difficulty handling MIP problems, limiting its broader applicability. Learn2Branch and Hybrid_Learn2Branch showed potential, but both encountered difficulties in collecting sufficient training data for large-scale problem settings, as indicated by the + markers in Tables 18 and 19. Neural Diving and Predict&Search

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1728		Prol	olem	batch-size	learning-rate	num-epochs		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1729		HEM_k	napsack	1	0.0001	30		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4700		HEM	l_mis etcover	1	0.0001	30		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1730		varv_bo	unds_s1	1	0.0001	30		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1731		vary_m	atrix_s1	1	0.0001	30		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1732		vary_matrix_rhs	_bounds_obj_s1	1	0.0001	30		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1752		vary_	obj_sl obj_s2	1	0.0001	30		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1733		vary_v	rhs_s2	1	0.0001	30		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1734		vary	rhs_s4	1	0.0001	30		
Table 17: Hyperparameter selection for Neural Diving. Table 17: Hyperparameter selection for Neur	1735		vary_rh:	s_obj_s2	1	0.0001	30		
Indice 17.11 per parameter screetion for rectar Dring. Indice 17.11 per parameter screetion for rectar Dring. Indice 17.11 per parameter screetion for rectar Dring. Indice 17.11 per parameter screeting. Indice 17.11 per parameter screeting. <	1736	,	Table 17: H	lvnernaran	neter selec	tion for Ne	ural Diving		
1738 Curobi SCIP LNS ACP Learn2branch GNN&GBDT Time 1741 MIS.easy 4598.1000 3723.4000 4587.1000 4610.7000 + 4507.5000 600 1741 MIS.medium 2.18e404 1.86e404 2.23e404 2.32e404 + 2.27e405 4000 8000 1743 MVC.medium 2.82e404 3.13e404 2.71e405 2.27e405 + 2.27e405 4000s 1744 MVC.hard 2.83e404 3.13e404 2.71e405 2.76e405 + 2.27e405 4000s 1745 SC.medium 1.80e404 2.52e404 1.63e404 1.59e404 + 2.27e405 4000s 1746 SC.hard 3.20e405 9.19e405 1.77e405 1.70e405 + 2.27e405 4000s 1747 Coral 38057000 8.48e407 4.67e408 1.46e408 + - 4000s 1748 Cu 2.88000 22.80000 228.8000 22.800	1737		10010 17.11	ryperpurun	leter seree		ului Diving.		
Intrody Gurobi SCIP LNS ACP Learn2branch GNN&GBDT Time MIS MiS.medium 2.18e+04 1.86e+04 2.28e+04 2.32e+04 + 2.27e+05 4000s MIS Mard 2.17e+05 9078.9000 2.17e+05 2.27e+04 + 2.27e+05 4000s MVC.medium 2.82e+04 3.12e+04 2.77e+05 + 2.27e+05 4000s MVC.medium 2.82e+04 3.12e+04 2.77e+05 2.77e+05 + 2.77e+05 4000s SC.medium 1.80e+04 2.71e+04 2.66e+04 + 2.73e+04 2000s SC.medium 1.80e+04 2.71e+05 1.70e+05 + 2.72e+05 4000s SC.medium 3.20e+05 9.19e+05 1.73e+05 1.70e+04 + 1.65e+04 2000s 1746 SC.hard 3.20e+05 9.79e+04 3.71e+04 - 4000s 1747 Coral 3805.7000 848e+07 4.67e+08 1.40e+06	1738								
	1739								
	1740		Gurobi	SCIP	LNS	ACP	Learn2branch	GNN&GBDT	Time
Mills.medium 2.18e+04 1.86e+04 2.28e+04 2.32e+04 + 2.27e+05 + 2.27e+04 2000s MISL.hard 2.17e+05 9078.9000 5395.7000 5368.4000 + 5473.3001 600s MVC.easy 5383.0000 6291.10000 5395.7000 5368.4000 + 2.77e+04 2000s MVC.medium 2.82e+03 3.13e+04 2.71e+04 2.68e+04 + 2.73e+04 4000s SC.medium 1.80e+04 2.52e+04 1.63e+04 1.89e+04 + 1.65e+04 2000s SC.medium 1.80e+04 2.52e+04 1.73e+05 + 2.29e+05 4000s 1746 SC.hard 3.20e+05 9.19e+05 1.73e+05 + - 4000s 1748 Cut 2.89e+04 3.70e+04 3.71e+04 - 4000s 1749 ECOGCNN 7.56e+05 7.56e+05 7.57e+05 + - 4000s 1751 HEM.knapsack 422.6000 422.6000	1741	MIS_easy	4598.1000	3723.4000	4587.1000	4610.7000	+	4507.5000	600s
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1741	MIS_medium	2.18e+04	1.86e+04	2.28e+04	2.32e+04	+	2.27e+04	2000s
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1742	MIS_hard	2.17e+05	9078.9000	2.17e+05	2.27e+05	+	2.27e+05	4000s
MVC.medium2.82e+043.13e+042.71e+042.68e+04+2.73e+04200s1744MVC.hard2.83e+054.91e+052.76e+05+2.73e+044000s1745SC.medium1.80e+042.52e+041.63e+041.59e+04+1.65e+04200s1746SC.hard3.20e+059.19e+051.73e+051.70e+05+2.29e+054000s1747MIPlib1.84e+041.84e+041.88e+041.89e+04-4000s1748Coral3805.70008.48e+074.67e+081.40e+08+-4000s1749ECOGCNN7.56e+057.57e+057.57e+043.71e+04-4000s1750HEM.mis228.8000223.6000422.6000422.6000422.6000100s1751HEM.scrover231.6000231.6000231.6000231.6000231.6000231.6000231.6000231.60001752HEM.mik6.28e+04-6.28e+04-6.18e+041.31e+06-4000s1753load.balancing708.80071.2000723.2000703.000+-100s1754naonymous2.50e+051.07e+062.04e+041.32e+04-4000s1755Nexp1.16e+081.17e+062.04e+041.28e+04-1.00e1756vary.bounds.s11.24e+041.25e+042.07e+041.24e+041.29e+04-400s1757vary.bounds.s11.24e+041.25e+04 <t< td=""><td>1743</td><td>MVC_easy</td><td>5383.0000</td><td>6291.0000</td><td>5395.7000</td><td>5368.4000</td><td>+</td><td>5473.3000</td><td>600s</td></t<>	1743	MVC_easy	5383.0000	6291.0000	5395.7000	5368.4000	+	5473.3000	600s
	4744	MVC_medium	2.82e+04	3.13e+04	2.71e+04	2.68e+04	+	2.73e+04	2000s
1745SC_Bay2501,30003547,3000 $5225,3000$ 1005000 $+$ $528,30000$ 60001776SC_hard $3.20e+05$ $9.19e+05$ $1.73e+04$ $1.59e+04$ $+$ $2.29e+05$ $4000s$ 1747Coral 3805,7000 $8.48e+07$ $4.67e+08$ $1.40e+08$ $+$ $ 4000s$ 1748Cut 2.389e+04 $3.370e+04$ $3.37e+04$ $3.71e+04$ $ 4000s$ 1749ECOGCNN 7.56e+05 $7.55e+05$ $ 4000s$ 1750HEM_mis 228,8000223,6000223,6000223,6000223,6000228,8000 1750HEM_secover 231,6000231,6000231,6000231,6000231,6000231,6000 1751HEM_secover 231,6000231,6000231,6000231,6000231,6000231,6000231,8000 1752HEM_mik 6.28e+046.28e+046.28e+046.28e+046.28e+046.28e+046.38e+041.38e+05 1753idem_placement 5.3000 11.07e+061.28e+061.31e+06-4000s1755Nexp1.16e+081.16e+081.18e+08-4000s1756vary.bounds.s1 1.24e+04 1.35e+046.13e+061.31e+06-4000s1757vary.bounds.s1 1.24e+04 1.36e+045.39e+09+-1000s1758vary.matrix.rhs.bounds.s1 5.16e+044.50e+045.18e+00 1.40e+0	1744	MVC_hard	2.83e+05	4.91e+05	2.74e+05	2.76e+05	+	2.72e+05	4000s
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1745	SC_easy	1.8001.000	2 520+04	1.620104	3190.5000	+	3285.0000	2000s
11-10Schult3-100-051-100-05 <td>1746</td> <td>SC_Internation</td> <td>1.000 ± 04</td> <td>2.320+04</td> <td>1.030 ± 04 1.730 ± 05</td> <td>1.390+04</td> <td>+</td> <td>2.20 ± 05</td> <td>2000s 4000s</td>	1746	SC_Internation	1.000 ± 04	2.320+04	1.030 ± 04 1.730 ± 05	1.390+04	+	2.20 ± 05	2000s 4000s
1747Coral3805.7000 $8.48e+07$ $4.67e+08$ $1.40e+08$ $+$ $-$ 4000s1748Cut2.89e+04 $3.70e+04$ $3.37e+04$ $3.07e+04$ $3.71e+04$ $-$ 4000s1749ECOGCNN7.56e+057.55e+05 $7.55e+05$ $+$ $-$ 4000s1750HEM_mis228.8000422.6000422.6000422.6000422.6000422.6000100s1750HEM_setcover231.6000231.6000231.6000231.6000231.6000100s1751HEM_setcover231.6000231.6000231.6000231.6000231.8000100s1752HEM_mik-6.28e+04-6.28e+04-6.18e+041-100s1753load_balancing708.8000712.0000723.2000709.3000+-100s1754Nexp1.16e+081.17e+081.18e+081.16e+081.18e+08-4000s1755Transportation1.24e+061.30e+061.29e+04-400s1756vary_bounds.s2351.0000351.0000413.6000351.00001-100s1758vary_matrix_s161.600062.600461.600062.7000-100s1759vary_matrix_s161.600062.600461.600062.7000-100s1764vary_obi_s21169.50001171.000363.8000-218.0100-100s1765vary_obi_s1-349.600338.9000683.8000		MIPlib	1.84e+04	1.84e+04	1.98e+04	1.84e+04	1 89e+04	-	150s
1748Cut $2.89e+04$ $3.70e+04$ $3.35e+04$ $3.07e+04$ $3.71e+04$.4000s1749ECOGCNN $7.56e+05$ $7.56e+05$ $7.57e+05$ +-4000s1750HEM_knapsack 422.6000 42.6000 422.6000 42.6000 42.6001 $4000s$ 1755 HEM_mik $-5.28e+04$ $1.16e+08$ $1.16e+08$ $1.16e+08$ $1.16e+08$ $1.16e$	1747	Coral	3805,7000	8.48e+07	4.67e+08	1.40e+08	+	-	4000s
1749ECOGCNN7.56e+057.56e+057.57e+05+-4000s1750HEM.knapsack422.6000422.6000422.6000422.6000422.6000100s1751HEM.setcover231.6000231.6000233.000231.6000231.6000231.8000100s1752HEM.corlat251.0000251.0000248.8000225.00001100s1753item.placement5.300010.800012.800010.700016.5000-4000s1754anonymous2.50e+051.07e+062.04e+065.29e+05+-4000s1754anonymous2.50e+051.07e+062.04e+065.29e+05+-4000s1755Nexp1.16e+081.17e+081.18e+081.16e+081.31e+06-4000s1756vary.bounds.s11.24e+041.25e+042.07e+041.24e+041.29e+04-400s1757vary.bounds.s3351.0000351.0000351.0000117.2000351.00001100s1758vary.matrix.rhs.bounds.s3351.0000351.000061.600062.7000-100s1760vary.obj.s18625.4000863.00008625.4000100s100s1761vary.obj.s12.18e+0472e+04-100s1762vary.matrix.rhs.bounds.s12.00e+092.88e+095.89e+09+-100s1764vary.obj.s21169.5000117.00008625.4000863	1748	Cut	2.89e+04	3.70e+04	3.35e+04	3.07e+04	3.71e+04	-	4000s
HF49 HEM_knapsack 422,6000 422,6000 422,6000 422,6000 422,6000 422,6000 100s 1750 HEM_mis 228,8000 228,8000 228,8000 228,8000 228,8000 231,6000 231,6000 231,6000 231,8000 100s 1751 HEM_setcover 231,6000 251,0000 248,8000 251,0000 ! - 100s 1752 HEM_mik -6,28e+04 -6,28e+04 -6,25e+04 -6,18e+04 ! - 100s 1753 liem_placement 5,3000 10,8000 712,0000 723,2000 709,3000 + - 1000s 1754 anonymous 2,50e+05 1,07e+06 1,40e+06 1,28e+06 1,31e+06 - 4000s 1755 Transportation 1,24e+04 1,25e+04 2,07e+04 1,24e+04 1,29e+04 - 400s 1757 vary_bounds_s1 1,24e+04 1,25e+04 2,07e+04 1,24e+04 1,29e+04 - 1000s	1740	ECOGCNN	7.56e+05	7.56e+05	7.58e+05	7.57e+05	+	-	4000s
HEM_mis 228,8000 227,6000 228,8000 228,8000 216,6000 100s HEM_setcover 231,6000 100s 1752 HEM_mik -6.28e+04 -6.25e+04 -6.18e+04 1.5000 + - 100s 1754 anonymous 2.50e+05 1.07e+06 2.04e+06 5.29e+05 + - 400s 1755 Transportation 1.24e+06 1.30e+06 1.40e+06 1.28e+06 1.31e+06 - 400s 1756 vary_bounds_s1 1.24e+04 1.22e+04 1.28e+06 1.31e+06 - 100s <td< td=""><td>1749</td><td>HEM_knapsack</td><td>422.6000</td><td>422.6000</td><td>422.6000</td><td>422.6000</td><td>422.6000</td><td>422.6000</td><td>100s</td></td<>	1749	HEM_knapsack	422.6000	422.6000	422.6000	422.6000	422.6000	422.6000	100s
HEM.setcover231.6000231.6000233.0000231.6000231.6000231.6000231.8000100sHEM_orlat251.0000251.0000248.8000251.0000!-100s1752HEM_mik-6.28e+04-6.25e+04-6.18e+04!-100s1753load_balancing708.8000712.0000723.2000709.3000+-100s1754anonymous2.50e+051.07e+062.04e+065.29e+05+-4000s1755Transportation1.24e+061.30e+061.40e+061.28e+061.31e+06-400s1756vary_bounds.sl1.24e+041.25e+042.07e+041.24e+041.29e+04-400s1757vary_bounds.sl351.0000351.0000351.000011.20e+04-100s1758vary_matrix_sl61.600062.600061.600062.7000-100s1759vary_matrix_sl2.00e+092.00e+092.88e+095.89e+09+-100s1760vary_obj_sl2.16e+04170008625.40008633.60008625.40008633.60008625.4000100s1761vary_obj_sl2.18e+04172e+04172e+04-100s100s1762vary_obj_sl2.172e+04-1.67e+04172e+04-100s1763vary_rhs_sl349.5000172e+04-1.72e+04-1.72e+04-100s1764vary_rhs_sl349.	1750	HEM_mis	228.8000	228.8000	227.6000	228.8000	228.8000	216.6000	100s
HEM_corlat251,0000251,0000251,0000251,00001-100s1752HEM_mik-6.28e+04-6.28e+04-6.28e+04-6.18e+041-100s1753item_placement5.300010.800012.800010.700016.5000-4000s1754anonymous2.50e+051.07e+062.04e+065.29e+05+-4000s1755Transportation1.24e+061.17e+081.18e+081.16e+081.18e+08-4000s1756vary-bounds_s11.24e+041.25e+042.07e+041.24e+061.31e+06-400s1757vary-bounds_s3351.0000351.0000413.6000351.0000!-100s1758vary-matrix_s161.600062.600061.600061.600062.7000-100s1759vary-matrix_rhs.bounds_s12.00e+092.08e+095.89e+09+-100s1760vary-obj_s21169.50001171.0004045.9000169.5000!-100s1761vary-obj_s21169.50001171.0004045.9000169.5000!-100s1764vary-rhs.s1-349.5000-338.9000-54.4000-21.5000+-100s1764vary-rhs.s35.73e+045.73e+04-1.72e+04-1.72e+04-1.72e+04-1.00s1765vary-rhs.s4-1.72e+04-1.72e+04-1.67e+04-1.72e+04-1.72e+04-100s <td>1751</td> <td>HEM_setcover</td> <td>231.6000</td> <td>231.6000</td> <td>233.0000</td> <td>231.6000</td> <td>231.6000</td> <td>231.8000</td> <td>100s</td>	1751	HEM_setcover	231.6000	231.6000	233.0000	231.6000	231.6000	231.8000	100s
1752HEM.mik $-6.28e+04$ $-6.28e+04$ $-6.25e+04$ $-6.18e+04$ $!$ $-$ 100s1753item_placement 5.3000 10.800012.800010.700016.5000 $-$ 4000s1754anonymous $2.50e+05$ $1.07e+06$ $2.04e+06$ $5.29e+05$ $+$ $-$ 4000s1755Nexp $1.16e+08$ $1.17e+08$ $1.18e+08$ $1.18e+08$ $-$ 4000s1756vary.bounds.sl $1.24e+06$ $1.30e+06$ $1.28e+06$ $1.31e+06$ $-$ 4000s1757vary.bounds.sl $1.24e+06$ $1.30e+04$ $1.24e+04$ $1.29e+04$ $-$ 400s1758vary.bounds.sl 351.0000 351.0000 351.0000 1 $-$ 1000s1758vary.matrix.rhs.bounds.sl $2.00e+09$ $2.00e+09$ $2.88e+09$ $5.89e+09$ $+$ $-$ 100s1759vary.matrix.rhs.bounds.sl $2.00e+09$ $2.00e+09$ $2.88e+09$ $5.89e+09$ $+$ $-$ 100s1760vary.obj.sl 8625.4000 8630.0000 8625.4000 8633.6000 8625.4000 100s1761vary.obj.sl 1169.5000 1171.0000 $448.92e+04$ $-4.76e+04$ $ 100s$ 1762vary.obj.sl 1169.5000 1171.0000 464.59000 1169.5000 $+$ $ 100s$ 1763vary.rhs.sl -349.5000 -338.9000 -54.4000 -291.5000 $+$ $ 100s$ 1764vary.rhs.sl		HEM_corlat	251.0000	251.0000	248.8000	251.0000	!	-	100s
1753item.placement5.300010.800012.800010.700016.5000-4000s10ad.balancing708.8000712.0000723.2000709.3000+-1000s1754anonymous2.50e+051.07e+062.04e+065.29e+05+-4000s1755Nexp1.16e+081.17e+081.18e+081.16e+081.18e+08-4000s1756vary.bounds.s11.24e+041.32e+042.07e+041.24e+041.29e+04-400s1757vary.bounds.s2351.0000351.0000417.2000351.0000!-1000s1758vary.matrix.rhs.bounds.s3351.0000351.0000417.2000351.0000!-1000s1759vary.matrix.rhs.bounds.s12.00e+092.00e+092.88e+095.89e+09+-100s1760vary.obj.s18625.40008630.00008622.40008625.40008633.60008625.4000100s1761vary.obj.s3-2180.100030.30001127.3000638.8000-2180.1000-100s1762vary.nbs.s3-2180.100030.30001127.3000638.8000-2180.1000-100s1763vary.rhs.s1-349.5000-338.9000-54.4000-291.5000+-100s1764vary.rhs.s35.73e+04-1.72e+04-1.72e+04-1.72e+04-100s1765vary.rhs.s4-1.72e+04-1.72e+04-1.72e+04-	1752	HEM_mik	-6.28e+04	-6.28e+04	-6.25e+04	-6.18e+04	!	-	100s
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1753	item_placement	5.3000	10.8000	12.8000	10.7000	16.5000	-	4000s
1734alloly infous2.304+051.074+06 $2.042+03$ $3.292+03$ $+$ $ 4000s$ 1755Nexp1.16e+081.172+081.18e+081.16e+081.18e+08 $ 4000s$ 1756vary bounds.sl1.24e+041.25e+042.07e+041.24e+041.29e+04 $ 400s$ 1757vary bounds.s2351.0000351.0000351.0000 $!$ $ 1000s$ 1758vary matrix.sl61.600062.600061.600061.600062.7000 $ 100s$ 1759vary matrix.rhs.bounds.sl2.00e+092.08e+095.89e+09 $+$ $ 100s$ 1760vary obj_sl2.00e+092.00e+092.88e+095.89e+09 $+$ $ 100s$ 1761vary obj_sl1169.5000117.10004045.90001169.5000 $!$ $ 150s$ 1762vary obj_sl2.180.100030.30001127.3000638.8000 -2180.1000 $ 100s$ 1762vary rhs.sl-349.5000-338.9000 -54.4000 -2180.1000 $ 100s$ 1763vary rhs.sl-349.5000-1.72e+04 $-1.72e+04$ $-1.72e+04$ $-1.72e+04$ $-$ 1764vary rhs.sl-1.72e+04-1.66e+04 $-1.72e+04$ $-1.72e+04$ $ 100s$ 1765vary rhs.sl-349.5000-338.9000 -54.4000 -218.000 $+$ $ 100s$ 1764vary rhs.sl-349.5000-1.72e+04 $-1.67e+0$	175/	load_balancing	708.8000	/12.0000	723.2000	709.3000	+	-	1000s
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.54	Nexp	2.50e+05	1.07e+00 1.17e+08	2.04e+00 1 18e+08	3.290+03	+ 1 180+08	-	4000s 4000s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1755	Transportation	1.10c+08	1.170 ± 000 1.30e+06	1.100 ± 00	1.10c+00	1.130 ± 0.00	_	4000s
InterpretationInterpretationInterpretationInterpretationInterpretation1757vary_bounds_s2 351.0000 351.0000413.6000 351.0000 !1000s1758vary_matrix_s1 61.6000 62.6000 61.6000 62.7000-100s1759vary_matrix_rhs_bounds_s1 2.00e+092.08e+09 5.89e+09+-100s1760vary_matrix_rhs_bounds_obj 5.16e+04 -4.56e+04-2.13e+04-4.82e+04-4.76e+04-100s1760vary_obj_s1 8625.4000 8630.00008642.00008625.40008633.6000 8625.4000 100s1761vary_obj_s21169.50001171.00004045.90001169.5000!-100s1762vary_rhs_s1-349.5000-338.9000-54.4000-291.5000+-100s1763vary_rhs_s2-1.72e+04-1.72e+04-1.72e+04-1.72e+04-100s1764vary_rhs_s35.73e+045.73e+04 5.73e+04 5.73e+04+5.73e+04100s1765vary_rhs_obj_s11.79e+05-1.78e+05-1.79e+05+-600s1766Aclib8.24e+048.25e+048.28e+04+-100s1766Aclib8.24e+048.25e+048.28e+04+-100s1766Aclib8.24e+048.25e+048.28e+05-100s1766Aclib8.24e+048.25e+048.28e+05- <td>1756</td> <td>vary bounds s1</td> <td>1.24e+04</td> <td>1.25e+04</td> <td>2.07e+04</td> <td>1.24e+04</td> <td>1.29e+04</td> <td>_</td> <td>400s</td>	1756	vary bounds s1	1.24e+04	1.25e+04	2.07e+04	1.24e+04	1.29e+04	_	400s
	4757	vary_bounds_s2	351.0000	351.0000	413.6000	351.0000	!	-	1000s
	1/5/	vary_bounds_s3	351.0000	351.0000	417.2000	351.0000	!	-	1000s
	1758	vary_matrix_s1	61.6000	62.6000	61.6000	61.6000	62.7000	-	100s
vary_matrix_rhs_bounds_obj-5.16e+04-4.56e+04-2.13e+04-4.82e+04-4.76e+04-100svary_obj_s18625.40008630.00008642.00008625.40008633.60008625.4000100s1761vary_obj_s21169.50001171.00004045.90001169.5000!-150s1762vary_obj_s3-2180.100030.30001127.3000638.8000-2180.1000-100s1762vary_rhs_s1-349.5000-338.9000-54.4000-291.5000+-100s1763vary_rhs_s2-1.72e+04-1.67e+04-1.72e+04-1.72e+04-100s1764vary_rhs_s35.73e+045.73e+045.73e+045.73e+04+5.73e+041764vary_rhs_obj_s1-1.72e+04-1.68e+04-1.71e+04-1.72e+04-100s1765vary_rhs_obj_s2-8.08e+05-1.76e+05-1.79e+05+-600s1766Aclib8.24e+048.25e+048.28e+04!-100s1767fc.data378.6000378.6000490.4000378.6000!-100s1767nn_verification-8.3000-8.4000-9.7000-9.7000!-100s	1759	vary_matrix_rhs_bounds_s1	2.00e+09	2.00e+09	2.88e+09	5.89e+09	+	-	100s
Vary_obj_s1 8625.4000 8630.0000 86425.4000 8625.4000 8625.4000 8625.4000 100s 1761 vary_obj_s2 1169.5000 1171.0000 4045.9000 1169.5000 ! - 150s 1762 vary_obj_s3 -2180.1000 30.3000 1127.3000 638.8000 -2180.1000 - 100s 1762 vary_rhs_s1 -349.5000 -338.9000 -54.4000 -291.5000 + - 100s 1763 vary_rhs_s2 -1.72e+04 -1.72e+04 -1.67e+04 -1.72e+04 -1.72e+04 - 100s 1764 vary_rhs_s4 -1.72e+04 -1.67e+04 -1.72e+04 - 100s 1765 vary_rhs_s4 -1.72e+04 -1.68e+04 -1.71e+04 -1.72e+04 - 100s 1765 vary_rhs_obj_s1 -1.79e+05 -1.78e+05 -1.79e+05 + - 600s 1766 Aclib 8.24e+04 8.25e+04 8.28e+05 - 100s 1766	1700	vary_matrix_rhs_bounds_obj	-5.16e+04	-4.56e+04	-2.13e+04	-4.82e+04	-4.76e+04	-	100s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1700	vary_obj_s1	3025.4000 1160 5000	8630.0000	8642.0000	3025.4000 1160 5000	8633.6000	8625.4000	100s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1761	vary_obj_s2	2180 1000	20 2000	4043.9000	628 8000	2180 1000	-	1000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1762	vary_00j_s5	-2100.1000	-338 9000	-54 4000	-291 5000	-2160.1000	-	1005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		vary rhs s2	-1.72e+04	-1.72e+04	-1.67e+04	-1.72e+04	-1.72e+04	-	1003
1764 vary_rhs_s4 -1.72e+04 -1.72e+04 -1.71e+04 -1.72e+04 - 100s 1765 vary_rhs_obj_s1 -1.79e+05 -1.78e+05 -1.76e+05 -1.79e+05 + - 600s 1765 vary_rhs_obj_s2 -8.08e+05 -8.08e+05 -7.07e+05 -7.64e+05 -8.08e+05 - 100s 1766 Aclib 8.24e+04 8.25e+04 8.28e+04 ! - 100s 1767 fc.data 378.6000 378.6000 490.4000 378.6000 ! - 100s nn_verification -8.3000 -8.4000 -9.7000 ! - 100s	1763	vary_rhs_s3	5.73e+04	5.73e+04	5.73e+04	5.73e+04	+	5.73e+04	100s
vary_rhs_obj_s1 -1.79e+05 -1.76e+05 -1.79e+05 + - 600s vary_rhs_obj_s2 -8.08e+05 -8.08e+05 -7.07e+05 -7.64e+05 -8.08e+05 - 100s 1766 Aclib 8.24e+04 8.25e+04 8.28e+04 ! - 100s 1767 fc.data 378.6000 378.6000 490.4000 378.6000 ! - 100s nn_verification -8.3000 -8.4000 -9.7000 -9.7000 ! - 100s	1764	vary_rhs_s4	-1.72e+04	-1.72e+04	-1.68e+04	-1.71e+04	-1.72e+04	-	100s
vary_rhs_obj_s2 -8.08e+05 -8.08e+05 -7.07e+05 -7.64e+05 -8.08e+05 - 100s 1766 Aclib 8.24e+04 8.25e+04 8.28e+04 ! - 100s 1767 fc.data 378.6000 378.6000 490.4000 378.6000 ! - 100s nn_verification -8.3000 -8.4000 -9.7000 -9.7000 ! - 100s	1765	vary_rhs_obj_s1	-1.79e+05	-1.78e+05	-1.76e+05	-1.79e+05	+	-	600s
Aclib 8.24e+04 8.25e+04 8.28e+04 ! - 100s 1767 fc.data 378.6000 378.6000 490.4000 378.6000 ! - 100s nn_verification -8.3000 -8.4000 -9.7000 -9.7000 ! - 100s	C011	vary_rhs_obj_s2	-8.08e+05	-8.08e+05	-7.07e+05	-7.64e+05	-8.08e+05	-	100s
fc.data 378.6000 378.6000 490.4000 378.6000 ! - 100s nn_verification -8.3000 -8.4000 -9.7000 -9.7000 ! - 100s	1766	Aclib	8.24e+04	8.24e+04	8.25e+04	8.28e+04	!	-	100s
nn_verification -8.3000 -8.4000 -9.7000 -9.7000 ! - 100s	1767	fc.data	378.6000	378.6000	490.4000	378.6000	!	-	100s
	1700	nn_verification	-8.3000	-8.4000	-9.7000	-9.7000	!	-	100s

Table 18: Objective function value of baselines. + represents the problem of scale being too large to accept the time to collect training samples. ! represents the problem of errors during band training.
-represents MILP problems that cannot be solved by the IP framework, GNN&GBDT.

1772

1773

1774 1775

also showed promise, with Predict&Search achieving superior gap estimations on problems such as vary_matrix_s1 and vary_rhs_obj_s2.

In conclusion, while traditional solvers like Gurobi remain top performers in most cases, the inclusion of these new ML-based methods—particularly Neural Diving and Predict&Search—suggests that machine learning techniques can offer competitive performance, especially in small- to medium-scale or synthetic problem settings. However, challenges remain in scaling these methods to larger, real-world problems, and further research is necessary to overcome these limitations.

1783								
1784								
1785		Gurobi	SCIP	LNS	ACP	Learn2branch	GNN&GBDT	Time
1700	MIS_easy	0.0908	0.3555	0.0934	0.0878	+	0.1127	600s
1786	MIS_medium	0.1634	0.3607	0.1077	0.0916	+	0.1148	2000s
1787	MIS_hard	0.1714	53.4844	0.1714	0.1184	+	0.1169	4000s
1700	MVC_easy	0.0751	0.2707	0.0773	0.0726	+	0.0903	600s
1788	MVC_medium	0.1255	0.2697	0.0895	0.0787	+	0.0976	2000s
1789	MVC_hard	0.1310	93.5867	0.1018	0.1077	+	0.0951	4000s
1700	SC_easy	0.0415	1.00e+20	0.0292	0.0104	+	0.0390	600s
1790	SC_medium	0.9861	2.00e+19	0.9846	0.9843	+	0.9848	2000s
1791	SC_hard	0.9920	4.25e+05	0.9852	0.9850	+	0.9887	4000s
1702	MIPlib	0.0000	0.0587	0.2157	0.0004	0.3363	-	150s
1192	Coral	2.85e+04	2.86e+19	3.05e+04	3.05e+04	+	-	4000s
1793	Cut	0.1490	0.5387	0.2744	0.1651	0.5782	-	4000s
1794	ECOGCNN	0.2512	4.6056	0.2730	0.2516	+	-	4000s
1754	HEM_knapsack	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100s
1795	HEM_mis	0.0000	0.0000	0.0053	0.0000	0.0000	0.0568	100s
1796	HEM_setcover	0.0000	0.0000	0.0067	0.0000	0.0000	0.0007	100s
	HEM_corlat	0.0000	0.0000	0.0129	0.0000	!	-	100s
1797	HEM_mik	0.0000	0.0000	0.0034	0.0146	!	-	1005
1798	item_placement	0.6481	2.33e+07	0.8431	0.8076	4.1/e+0/	-	4000s
1700	load_balancing	0.0028	0.0273	0.0227	0.0035	+	-	1000s
1799	anonymous	0.0787	4.2244	0.9250	0.5449	+	-	4000s
1800	Transportation	0.0787	0.1314	0.1095	0.0754	0.1029	-	4000s
1001	very bounds s1	0.1312	0.2373	0.2490	0.1707	0.2723	-	40005
1801	vary bounds s?	0.0000	0.0467	0.3930	0.0000	0.1518	-	1000s
1802	vary bounds s3	0.0000	0.0804	0.1587	0.0000		_	1000s
1002	vary matrix s1	0.0000	0.3796	0.0008	0.0008	0.4002	_	10003
1003	vary matrix rhs bounds s1	0.0000	0.0000	0.2865	0.5566	+	_	1003
1804	vary matrix rhs bounds obj	0.0000	0.1128	1 9199	0.0666	0.0953	-	1005
1805	vary_obi_s1	0.0000	0.0031	0.0019	0.0000	0.0054	0.0000	100s
1005	vary_obi_s2	0.0000	6.8251	0.7232	0.0000	!	-	150s
1806	vary_obj_s3	0.0000	6.00e+19	2.1882	10.0836	0.0672	-	100s
1807	vary_rhs_s1	0.0003	0.0364	5.5134	0.2037	+	-	100s
1007	vary_rhs_s2	0.0000	0.0013	0.0274	0.0009	0.0018	-	100s
1808	vary_rhs_s3	0.0001	0.0001	0.0000	0.0000	+	0.0007	100s
1809	vary_rhs_s4	0.0000	0.0000	0.0224	0.0016	0.0033	-	100s
1010	vary_rhs_obj_s1	0.0001	0.0087	0.0191	0.0039	+	-	600s
1810	vary_rhs_obj_s2	0.0001	0.0000	0.1032	0.0367	0.0011	-	100s
1811	Aclib	0.0000	0.0000	0.0006	0.0028	!	-	100s
1010	fc.data	0.0000	0.0000	0.1729	0.0000	!	-	100s
1012	nn_verification	0.0001	0.0756	0.1493	0.1493	!	-	100s

Table 19: Gap estimation of baselines. + represents the problem of scale being too large to accept the time to collect training samples. ! represents the problem of errors during band training. -represents
MILP problems that cannot be solved by the IP framework, GNN&GBDT.

	Predict&Search	Hybrid_Learn2branch	GNN-MILP	Neural Diving	Time
HEM_knapsack	422.6000	420.6000	0.0000	0.0000	100s
HEM_mis	228.8000	228.8000	192.4000	0.0000	100s
HEM_setcover	231.6000	!	256.0000	231.6000	100s
vary_bounds_s1	12384.8000	13054.4000	12381.8000	12381.8000	400s
vary_matrix_s1	61.5939	62.9221	!	61.5939	100s
vary_matrix_rhs_bounds_obj_s1	-51638.3000	-27727.0100	-51637.9000	-51638.2900	100s
vary_obj_s1	8625.4000	8629.0000	8625.4000	8625.4000	100s
vary_obj_s3	-2180.0980	!	!	-2180.0980	100s
vary_rhs_s2	-17168.3500	-17168.2400	*	-17168.3500	100s
vary_rhs_s4	-17166.2500	-17166.4600	!	-17166.4600	100s
vary_rhs_obj_s2	-807964.3000	-807871.0000	!	-807962.3000	100s

1837						
1838						
1839		Predict&Search	Hybrid_Learn2branch	GNN-MILP	Neural Diving	Time
1840	HEM_knapsack	0.0000	0.0047	$+\infty$	$+\infty$	100s
10-10	HEM_mis	0.0000	0.0000	0.1908	$+\infty$	100s
1841	HEM_setcover	0.0000	!	0.0404	0.0976	100s
1842	vary_bounds_s1	0.0179	0.1430	0.0363	0.0363	400s
1042	vary_matrix_s1	0.0000	0.5513	!	0.0000	100s
1843	vary_matrix_rhs_bounds_obj_s1	3.81e-05	2.0e19	0.0048	3.91e-05	100s
18/1/	vary_obj_s1	0.0000	0.0035	0.0025	0.0009	100s
1044	vary_obj_s3	0.0000	!	!	0.1275	100s
1845	vary_rhs_s2	1.3e-5	0.0001	*	1.6e-5	100s
18/16	vary_rhs_s4	3.7e-5	0.0000	!	5.4e-5	100s
10-10	vary_rhs_obj_s2	6.9e-5	0.0011	!	1.6e-5	100s
1847						

Table 21: Gap estimation of new added baseline on selected datasets. ! represents the problem oferrors during training. * represents that can not find a feasible solution.

1856							
1957		avg_obj	obj_std_error	obj_error_bar	avg_gap	gap_std_error	gap_error_bar
1007	MIS_easy	4.36e+03	18.4347	30.6534	0.1506	0.0020	0.0026
1858	MIS_medium	2.32e+04	32.1560	50.5459	0.0923	0.0020	0.0033
1850	MIS_hard	+	+	+	+	+	+
1055	MVC_easy	5.61e+03	28.9665	54.5941	0.1130	0.0043	0.0068
1860	MVC_medium	+	+	+	+	+	+
1861	MVC_hard	+	+	+	+	+	+
1001	SC_easy	3.23e+03	18.6588	33.5314	0.0224	0.0047	0.0091
1862	SC_medium	+	+	+	+	+	+
1863	MIDIjb	+ 1 840+04	3 230+04	+ 5 50e+04	0,0000	0,0000	0,0000
1064	Coral	1/ 5000	22 8600	15 3007	2330 ± 04	4 669±04	0.0000
1004	Cut	2 93e±04	1 98e±04	2 80e±04	0.1568	0 1775	0 2491
1865	ECOGCNN	7 56e+05	1.07e+06	1.51e+06	0.2512	0.3527	0.4988
1866	HEM knapsack	422.6000	12.7844	22.6000	0.0000	0.0000	0.0000
1000	HEM_mis	228,8000	3.6551	6.8000	0.0000	0.0000	0.0000
1867	HEM_setcover	231.6000	28.5909	47.4000	0.0000	0.0000	0.0000
1868	HEM_corlat	251.0000	135.0704	269.0000	0.0000	0.0000	0.0000
1000	HEM_mik	-6.28e+04	1.46e+04	2.91e+04	0.0000	0.0000	0.0000
1869	item_placement	5.5310	1.0528	2.7063	0.6595	0.1639	0.3395
1870	load_balancing	708.8000	21.7246	41.2000	0.0028	0.0001	0.0002
1071	anonymous	2.46e+05	1.67e+05	2.77e+05	0.2909	0.1246	0.1874
10/1	Nexp	1.16e+08	2.10e+08	4.18e+08	0.0759	0.1345	0.2679
1872	Transportation	1.25e+06	1.32e+04	2.51e+04	0.1568	0.0050	0.0084
1873	vary_bounds_s1	1.24e+04	863.5863	1.13e+03	0.0003	0.0005	0.0010
1075	vary_bounds_s2	355.0000	0.0000	0.0000	0.0113	0.0000	0.0000
1874	vary_bounds_s3	355.0000	0.0000	0.0000	0.0113	0.0000	0.0000
1875	vary_matrix_s1	61.5939	0.9036	1.5450	0.0000	0.0000	0.0000
1070	vary_matrix_rns_bounds_s1	2.000+09	2.162+08	2.110+08	0.0000	0.0000	0.0001
1876	vary_maurx_ms_bounds_obj_sr	-5.10e+04	2.100+04	184 6000	0.0000	0.0000	0.0001
1877	vary obj s2	1.17e+03	1.12e+03	2 12e+03	0.0000	0.0000	0.0000
1878	vary_obj_s3	-2.18e+03	352.3199	598.5451	0.0000	0.0000	0.0000
1070	varh_rhs_s1	-349.4640	5.8607	10.2160	0.0003	0.0005	0.0011
1879	vary_rhs_s2	-1.72e+04	1.6904	3.3795	0.0000	0.0000	0.0000
1880	vary_rhs_s3	5.73e+04	6.14e+04	1.11e+04	0.0001	0.0000	0.0000
1001	vary_rhs_s4	-1.72e+04	3.0168	3.7753	0.0000	0.0000	0.0000
1001	vary_rhs_obj_s1	-1.79e+05	4.09e+04	6.33e+04	0.0001	0.0000	0.0000
1882	vary_rhs_obj_s2	-8.08e+05	3.53e+05	6.94e+05	0.0001	0.0000	0.0000
1883	Aclib	8.24e+04	9.40e+04	2.31e+05	0.0000	0.0000	0.0000
1005	fc.data	378.6000	196.6750	384.4000	0.0000	0.0000	0.0000
1884	nn_verification	-8.2514	9.6160	24.5807	0.0001	0.0000	0.0001

1885
1886
scale being too large to accept the time to collect training samples.Table 22: Experimental results of Predict&Search on selected datasets. + represents the problem of
scale being too large to accept the time to collect training samples.

1890		Gurobi	SCIP	LNS	ACP	Learn2branch	GNN&GBDT
1891	MIS_easy	36.7445	49.5063	34.6024	34.1673	+	21.4168
	MIS_medium	30.6104	82.5639	59.6125	54.2726	+	57.9730
1892	MIS_hard	197.1507	159.7765	222.3543	1648.7565	+	273.1787
1893	MCV_easy	21.3176	26.2868	18.2733	27.6136	+	27.3013
1000	MVC_medium	101.2970	170.3988	113.3693	112.3249	+	116.6010
1894	MVC_hard	303.5272	263.6697	262.7302	1719.3960	+	647.3696
1895	SC_easy	326.5255	31.3076	29.4139	23.8124	+	30.7511
1000	SC_medium	99.3993	174.7215	82.8357	79.5404	+	66.2896
1896	SC_hard	493.9357	1122.9085	1415.5947	6466.7330	+	3.90e+04
1897	MIPlib	5.59e+04	5.59e+04	5.99e+04	5.59e+04	5.73e+04	-
1000	Coral	2.28e+04	5.09e+08	2.80e+09	8.40e+08	+	-
1090	Cut	2.75e+04	4.29e+04	3.09e+04	3.10e+04	4.31e+04	-
1899	ECOGCNN	1.51e+06	1.51e+06	1.52e+06	1.51e+06	+	-
1900	HEM_knapsack	22.6000	22.6000	22.6000	22.6000	22.6000	22.6000
1500	HEM_mis	0.8000	0.8000	/.0000	6.8000	6.8000	10.0000
1901	HEM_setCover	260,0000	260,0000	271 2000	260,0000	47.4000	46.2000
1902	HEM contat	209.0000	209.0000	2 800+04	209.0000		-
1000	item placement	2.910+04	3 9976	5 9915	6 4424	5 2309	-
1903	load balancing	41 2000	42 0000	40 2000	41 7000	+	_
1904	anonymous	2.59e+05	1.95e+06	1.11e+06	6 77e+05	+	-
1005	Nexp	4.18e+08	4.19e+08	4.22e+08	4.18e+08	4.22e+08	-
1905	Transportation	2.23e+04	2.61e+04	4.90e+04	2.94e+04	2.15e+04	-
1906	vary_bounds_s1	1130.2000	1256.8000	2502.6000	1130.2000	1333.6000	-
1907	vary_bound_s2	0.0000	0.0000	14.6000	0.0000	!	-
1301	vary_bounds_s3	0.0000	0.0000	0.8000	0.0000	!	-
1908	vary_matrix_s1	1.5450	0.7618	1.4971	1.5403	1.6728	-
1909	vary_matrix_rhs_bounds_s1	2.11e+08	2.11e+08	1.18e+09	7.99e+09	+	-
1010	vary_matrix_rhs_bounds_obj	3.46e+04	2.85e+04	2.04e+04	3.26e+04	3.08e+04	-
1910	vary_obj_s1	184.6000	181.0000	190.0000	184.6000	186.4000	184.6000
1911	vary_obj_s2	2120.3583	2118.8228	3292.1402	2120.3530	!	-
1010	vary_obj_s3	598.5451	650.1423	6178.0536	6588.9847	598.5451	-
1912	vary_rhs_s1	10.2160	28.3040	12.8240	34.0080	+	-
1913	vary_rhs_s2	3.3795	1.1493	74.5091	13.0051	2.2173	-
101/	vary_rhs_s3	2.19e+04	2.19e+04	2.19e+04	2.19e+04	+	2.18e+04
1314	vary_rns_s4	3.9644	3.9789	2/8./842	26.11//	5.1057	-
1915	vary_rns_obj_s1	6.33e+04	6.39e+04	6.05e+04	6.35e+04	+	-
1916	vary_ms_obj_sz	1 780+05	1 780+05	5.55e+05	3.370+05	0.940+05	-
1010	fc data	384 4000	384 4000	307 6000	384 4000		-
1917	nn verification	24 5807	24 7198	24 5584	24 5584		-
1918	Int_vermeauon	24.3007	24./170	24.5504	24.5504	•	-

Table 23: The error bar of objective function value. + represents the problem of scale being too
large to accept the time to collect training samples. ! represents the problem of errors during band
training. -represents MILP problems that cannot be solved by the IP framework, GNN&GBDT.

1922 1923

1924 C.6 ERROR BARS OF BENCHMARKING STUDY

To enhance the reliability and reproducibility of our benchmarking study, we analyzed the error bars from multiple experiments. The results are displayed in Tables 23 and Table 24, respectively showing the error bars for objective function values and gap estimates. Under various data conditions, the solvers Gurobi and SCIP and the machine learning-based optimization algorithms Learn2branch and GNN&GBDT exhibited consistent stability across different problems.

However, the classical optimization algorithms LNS and ACP demonstrated significant instability in some instances, such as with the datasets "vary_obj_s3" and "Coral." This instability can likely be attributed to these algorithms' heavy reliance on selecting initial feasible solutions. In complex problem spaces, the distribution of initial feasible solutions may exhibit randomness, leading to instability in the final solutions. This aspect underlines the importance of considering initial solution strategies and their impact on the performance of optimization algorithms, particularly in diverse and challenging problem settings.

1937

1938 C.7 STANDARD DEVIATIONS OF BENCHMARKING STUDY

In benchmark studies, the stability of baseline methods is often assessed using metrics such as
error bars and standard deviations. In this work, we provide additional insights into the stability of
the methods by reporting standard deviations alongside the objective values and gap estimations.
Specifically, Tables 23 and 24 in the appendix present the error bars for both the objective and gap
values across various problem instances.

Under review	as a conference paper at ICLR 2025	

1954				
1954	-1.1	\sim	-	л
	1.1	чı	7	<u> </u>
		~	<i>•</i>	

1955		Gurobi	SCIP	LNS	ACP	Learn2branch	GNN&GBDT
1956	MIS_easy	0.0081	0.0131	0.0076	0.0075	+	0.0047
1057	MIS_medium	0.0014	0.0044	0.0026	0.0023	+	0.0026
1957	MIS_hard	0.0009	0.0179	0.0010	0.0072	+	0.0012
1958	MCV_easy	0.0039	0.0042	0.0034	0.0051	+	0.0050
1959	MVC_medium	0.0036	0.0055	0.0042	0.0042	+	0.0042
1555	MVC_hard	0.0011	0.0005	0.0010	0.0063	+	0.0024
1960	SC_easy	0.0900	0.0062	0.0091	0.0075	+	0.0094
1961	SC_medium	0.0055	0.0070	0.0051	0.0050	+	0.0040
1000	SC_hard	0.0015	0.0012	0.0083	0.0395	+	0.1456
1962	MIPlib	2047.4498	1842.6534	1410.9864	2047.4730	1350.1054	-
1963	Coral	1.90e+08	2.01e+22	2.49e+13	7.47e+12	+	-
1004	Cut	1.0088	1.5437	1.0304	1.1291	1.5354	-
1964	ECOGCNN	2.70e+04	2.10e+04	2.11e+04	2.70e+04	+	-
1965	HEM_knapsack	0.0565	0.0565	0.0565	0.0565	0.0565	0.0565
1066	HEM_mis	0.0306	0.0306	0.0345	0.0306	0.0306	0.0515
1900	HEM_setCover	0.2254	0.2254	0.2073	0.2254	0.2254	0.2265
1967	HEM_corlat	0.5305	0.5305	0.5215	0.5505	1	-
1068	item placement	0.8034	0.8034	0.8384	0.8557	0.4627	-
1500	load balancing	0.0611	0.5874	0.4809	0.5202	0.4037	-
1969	anonymous	2 1649	8 1505	0.8448	6.0986	- -	_
1970	Nexp	1.85e+06	1.85e+06	2 00e+06	1.85e+06	1 90e+06	_
1071	Transportation	0.0183	0.0205	0.0362	0.0235	0.0167	-
1971	vary bounds s1	0.0836	0.0911	0.1080	0.0836	0.0971	-
1972	vary_bound_s2	0.0000	0.0000	0.0366	0.0000	1	-
1070	vary_bounds_s3	0.0000	0.0000	0.0019	0.0000	!	-
1973	vary_matrix_s1	0.0245	0.0123	0.0237	0.0244	0.0260	-
1974	vary_matrix_rhs_bounds_s1	0.1181	0.1181	0.2905	0.6868	+	-
1075	vary_matrix_rhs_bounds_obj	2.0235	1.6706	2.8904	2.0977	1.8306	-
1975	vary_obj_s1	0.0210	0.0205	0.0215	0.0210	0.0211	0.0210
1976	vary_obj_s2	4.0368	4.0243	4.3674	4.0368	!	-
1977	vary_obj_s3	0.3042	1.0641	5.4783	10.9865	0.3042	-
	vary_rhs_s1	0.0284	0.0911	0.1954	0.1321	+	-
1978	vary_rhs_s2	0.0002	0.0001	0.0044	0.0008	0.0001	-
1979	vary_rhs_s3	0.6191	0.6189	0.6190	0.6191	+	0.6162
1000	vary_rhs_s4	0.0002	0.0002	0.0169	0.0015	0.0003	-
1980	vary_rhs_obj_s1	0.3073	0.3076	0.2931	0.3020	+	-
1981	vary_rhs_obj_s2	0.4622	0.4622	0.3328	0.4127	0.4622	-
1000	Aclib	5.9017	5.9017	5.9037	5.9271	!	-
1982	fc.data	0.8559	0.8559	1.3806	0.8559	!	-
1983	nn_verification	3.0632	3.1317	1.6548	1.6548	!	-

Table 24: The error bar of gap estimation. + represents the problem of scale being too large to accept the time to collect training samples. ! represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP framework, GNN&GBDT.

1998		Gurobi	SCIP	LNS	ACP	Learn2branch	GNNGBDT
1000	MIS_easy	21.5005	29.0341	20.4964	20.2003	+	16.0027
1999	MIS_medium	19.3987	58.5580	37.6426	33.0777	+	39.6546
2000	MIS_hard	120.8925	97.5889	124.2721	909.1139	+	167.5108
	MVC_easy	13.8075	18.7708	13.6796	16.1958	+	17.6541
2001	MVC_medium	62.4095	130.4566	69.8594	68.5705	+	73.5231
2002	MVC_hard	205.6697	171.6232	167.2595	1045.0330	+	347.4271
2002	SC_easy	164.1662	19.9643	20.3551	14.40201	+	16.6546
2003	SC_medium	61.0949	106.7979	58.4282	49.2778	+	46.6850
1000	SC_hard	293.1404	609.7831	971.0688	3344.7140	+	26217.9500
2004	MIPlib	32273.2986	32273.0200	34572.4900	32273.1800	33097.8200	-
0005	Coral	9288.9841	2.08e+08	1.14e+09	3.43e+08	+	-
2005	Cut	19438.9173	30348.1100	21880.4300	21924.4400	30492.4700	-
2006	ECOGCNN	1068850.9350	1068849.0	1072247.0	1070354.0	+	-
2000	HEM_knapsack	12.7844	12.7844	12.7844	12.7844	12.7844	12.7844
2007	HEM_mis	3.6551	3.6551	3.9294	3.6551	3.6551	6.2801
0000	HEM_setcover	28.5909	28.5909	27.3934	28.5909	28.5909	28.9234
2008	HEM_corlat	135.0704	135.0704	136.2606	135.0704	!	-
2000	HEM_mik	14597.0829	14597.0800	14488.5800	14094.3000	!	-
2005	item_placement	1.1097	2.4419	3.0860	2.7816	2.7569	-
2010	load_balancing	21.7246	21.4103	20.6630	21.6936	+	-
	anonymous	159911.2884	1142112	727/16.3	419905.2	+	-
2011	Nexp	2.1e+08	2.1e+08	2.12e+08	2.1e+08	2.12e+08	-
2012	Transportation	11884.7873	15847.25	36827.44	20618.52	13269.68	-
2012	vary_bounds_s1	865.9897	865.157	1436.246	865.9897	1068.365	-
2013	vary_bounds_s2	0.0000	0.0000	7.3103	0.0000	!	-
	vary_bounds_s3	0.0000	0.0000	0.4000	5.22e-07	!	-
2014	vary_matrix_s1	0.9036	0.5915	0.8855	0.8996	1.2523	-
2015	vary_matrix_rns_bounds_s1	1.510+08	1.510+08	5.94e+08	40+09	+	-
2015	vary_matrix_rns_bounds_obj_s1	21007.4410	14500.27	13201.13	18427.09	19095	101 7242
2016	vary_obj_s1	1120.8703	1120.516	2426.985	1120.868	102.2518	-
0017	vary_obi_s3	352,3199	445,152	3413	3398.318	352,3199	-
2017	vary_rhs_s1	5.8607	14.4301	7.0876	19.3488	+	-
2018	vary_rhs_s2	1.6904	0.5765	56.2404	7.6243	1.1923	-
1010	vary_rhs_s3	11134.2517	11131.88	11132.79	11133.84	+	11107.51
2019	vary_rhs_s4	3.0156	3.0021	148.6948	17.5912	3.5953	-
0000	vary_rhs_obj_s1	40944.9046	40723.93	38629.9	40612.03	+	-
2020	vary_rhs_obj_s2	353075.129	353120.6	187573.9	276288.8	353085.4	-
2021	Aclib	7822.2633	7822.263	7872.819	7885.637	!	-
LVL 1	fc.data	196.6750	196.675	242.2813	196.675	!	-
2022	nn_verification	9.6159	9.6724	9.4476	9.4476	!	-

Table 25: The standard deviations of objective function value.

To further enhance the robustness of our analysis, we have now included the standard deviations of the objective values and gap values for different baseline methods across various problems. These can be found in Tables 25 and 26 of the supplementary material. The inclusion of these standard deviation values allows for a clearer understanding of the variability in performance across different methods and problem classes, offering a more detailed perspective on the stability of the baseline methods.

D RELATED WORK

2023

2024 2025

2032 2033

2034 2035

2036

D.1 MIXED INTEGER LINEAR PROGRAMMING

2037 Mixed Integer Linear Programming (MILP) problem is a significant class within combinatorial op 2038 timization problems. With advancements in theoretical techniques and commercial solvers, MILP
 2039 has become a fundamental problem type for modeling and solving practical issues across various
 2040 fields. Formally, a MILP problem can be represented as follows:

$$\min_{x} c^{T} x,$$
subject to $Ax \leq b$,
 $l \leq x \leq u$,
 $x_{i} \in \mathbb{Z},$
 $i \in \mathbb{I},$
 (12)

where x represents the decision variables, with dimension denoted by $n \in \mathbb{Z}$, and $l, u, c \in \mathbb{R}^n$ correspond to the lower bounds, upper bounds, and coefficient values of the decision variables, respectively. The matrix $A \in \mathbb{R}^{m \times n}$ and the vector $b \in \mathbb{R}^m$ define the linear constraints of the problem. The set $\mathbb{I} \subseteq \{1, 2, ..., n\}$ denotes the indices of variables constrained to be integer values. A solution to the MILP is considered feasible if the decision variable vector $x \in \mathbb{R}^n$ satisfies all

2052		Gurobi	SCIP	LNS	ACP	Learn2branch	GNNGBDT
2052	MIS_easy	0.0013	0.0073	0.0020	0.0016	+	0.0030
2000	MIS_medium	0.0008	0.0051	0.0016	0.0020	+	0.0025
2054	MIS_hard	0.0007	0.6056	0.0006	0.0052	+	0.0012
	MVC_easy	0.0012	0.0023	0.0008	0.0015	+	0.0016
2055	MVC_medium	0.0006	0.0043	0.0010	0.0010	+	0.0011
0050	MVC_hard	0.0005	0.9541	0.0003	0.0032	+	0.0009
2056	SC_easy	0.0428	0.0000	0.0025	0.0008	+	0.0017
2057	SC_medium	0.0003	4e+19	0.0003	0.0003	+	0.0003
2001	SC_hard	5.26e-05	110596.4	8.79e-05	0.0003	+	0.0013
2058	MIPlib	4.28e-05	0.0526	0.1853	0.0006	0.2812	-
0050	Coral	69736.34	4.52e+19	74629.05	74629.13	+	-
2059	Cut	0.1765	0.5917	0.1451	0.2011	0.6116	-
2060	ECOGCNN	0.3527	6.4973	0.3766	0.3523	+	-
2000	HEM_knapsack	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2061	HEM_mis	0.0000	0.0000	0.0043	0.0000	0.0000	0.0184
	HEM_setcover	0.0000	0.0000	0.0086	0.0000	0.0000	0.0014
2062	HEM_corlat	0.0000	0.0000	0.0257	0.0000	!	-
0060	HEM_mik	6.16e-15	0.0000	0.0068	0.0127	!	-
2003	item_placement	0.1617	63245483	0.0818	0.0879	92385906	-
2064	load_balancing	8.65e-05	0.0089	0.0041	0.0007	+	-
2004	anonymous	0.0920	3.5603	0.0180	0.2357	+	-
2065	Nexp	0.1402	0.2481	0.1337	0.1318	0.2463	-
0000	Transportation	0.0006	0.0039	0.0174	0.0121	0.0078	-
2066	vary_bounds_s1	3.46e-05	0.0122	0.0793	3.46e-05	0.0359	-
2067	vary_bounds_s2	0.0000	0.0024	0.0154	0.0000	!	-
2007	vary_bounds_s3	0.0000	0.0000	0.0008	1.49e-09	!	-
2068	vary_matrix_s1	0.0000	0.0698	0.0016	0.0008	0.0297	-
	vary_matrix_rhs_bounds_s1	3.15r-05	5.41e-06	0.0881	0.1555	+	-
2069	vary_matrix_rhs_bounds_obj_s1	4.48e-05	0.2003	0.9437	0.0673	0.1093	-
0070	vary_obj_s1	0.0000	0.0008	0.0005	0.0000	0.0009	0.0000
2070	vary_obj_s2	3.93e-07	8.1891	0.1437	7.59e-07	!	-
2071	vary_obj_s3	0.0000	4.9e+19	2.7284	15.9961	0.1344	-
	vary_rhs_s1	0.0005	0.0664	0.6963	0.0710	+	-
2072	vary_rhs_s2	1.73e-05	0.0004	0.0035	0.0005	0.0002	-
0070	vary_rhs_s3	1.77e-05	5.62e-05	2.36e-05	8.8e-06	+	0.0008
2073	vary_rhs_s4	3.13e-05	0.0000	0.0092	0.0010	9.11e-05	-
207/	vary_rhs_obj_s1	1.33e-05	0.0056	0.0098	0.0043	+	-
2017	vary_rhs_obj_s2	1.95e-05	0.0000	0.1574	0.0595	0.0005	-
2075	Aclib	8.97e-06	0.0000	0.0024	0.0031	!	-
	fc.data	0.0000	0.0000	0.2091	1.3e-08	!	-
2076	nn_verification	3.08e-05	0.2137	0.1577	0.1577	!	-

Table 26: The standard deviations of gap estimation.

the constraints specified in Equation (12). Among feasible solutions, the one that minimizes the objective function value is deemed optimal (Schrijver, 1998).

Based on the formulation of MILP, Gasse's proposed MILP bipartite graph representation (Gasse et al., 2019) achieves a lossless translation of the MILP problem into a graph format, serving as input for the neural embedding network (Nair et al., 2020b). As shown in Figure 1, the *n* decision variables in MILP are represented as the set of variable nodes on the right side of the bipartite graph, while the *m* linear constraints are represented as the set of constraint nodes on the left side. An edge connecting a variable node and a constraint node signifies the presence of the corresponding variable in that constraint.

Furthermore, people often need to solve a series of homogeneous MILP problems in real-world scenarios. By "homogeneous" (Yang et al., 2023), we mean that the generated MILP problems correspond to the same mathematical model. For example, the minimum vertex cover problem on a graph with 200 vertices and the same problem on a graph with 500 vertices are homogeneous. In contrast, the minimum vertex cover problem and the maximum cut problem are heterogeneous. Homogeneous problems share similar structures, providing an opportunity to use machine learning methods to learn the mapping from problem structures to key information for solving these problems.

2097 2098

2077

2078 2079

2099 D.2 SCORE METRIC

To summarize the results in Tables 2 and 3, we provided a score metric based on gap estimation, which we apologize for not clearly defining in the main text. We appreciate the reviewer's attention to this detail. Specifically, to convert the calculated gap values into a 0–100 score, we experimented with various mapping functions, including the Sigmoid function, and ultimately chose the normal distribution function for scoring. Specifically, we set $Score(x) \sim \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{\sigma^2}}$, where x represents the gap estimation of the baseline method on the corresponding problem. The rationale behind selecting the normal distribution function lies in its alignment with the law of large numbers, which suggests that as the sample size increases, the sample mean will converge to the expected value. Therefore, using a normal distribution for scoring may better reflect the natural distribution of the data, providing a more accurate representation of the performance of different baselines. Additionally, the central limit theorem indicates that the sum of multiple independent random variables, regardless of their initial distribution, will tend to follow a normal distribution as the sample size approaches infinity. This implies that even if the initial distribution of the gap data is not normal, the distribution of gaps across multiple instances may tend towards normality. Consequently, scoring based on a normal distribution can capture this underlying statistical property, thereby providing a more objective assessment of baseline performance.

Moreover, the probability density function (PDF) of the normal distribution has a natural scaling property, with sharper changes near the center and more gradual changes in the tails. By scaling the PDF values to a 0–100 range, this property allows for a more nuanced evaluation of gap sizes, enhancing the sensitivity and distinctiveness of the scores. Considering that solutions with a gap greater than 200% are typically unusable, we ultimately chose a normal distribution centered at zero with a standard deviation of 0.5 as our scoring function.