
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ML4MILP: A BENCHMARK DATASET FOR MA-
CHINE LEARNING-BASED MIXED-INTEGER LINEAR
PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning (ML)-based approaches for solving mixed integer linear pro-
gramming (MILP) problems have shown significant potential and are growing
in sophistication. Despite this advancement, progress in this field is often hin-
dered by the mixed and unsorted nature of current benchmark datasets, which typ-
ically lack carefully categorized collections of homogeneous instances. To bridge
this gap, we propose ML4MILP, a new open-source benchmark dataset specifi-
cally designed for evaluating ML-based optimization algorithms in the MILP do-
main. Based on the proposed structure and embedding similarity metrics, we
used a novel classification algorithm to carefully categorize the collected and
generated instances, resulting in a benchmark dataset encompassing 100,000 in-
stances across more than 70 heterogeneous classes. We demonstrate the utility of
ML4MILP through extensive benchmarking against a comprehensive suite of al-
gorithms in the baseline library, consisting of traditional exact solvers and heuris-
tic algorithms, as well as ML-based approaches. Our ML4MILP is open-source
and accessible at: https://anonymous.4open.science/r/ML4MILP-6BE0.

1 INTRODUCTION

Mixed Integer Linear Programming (MILP) problems are pivotal in optimization, impacting sectors
such as routing (Kaufman et al., 1998; Heydar et al., 2016; Heisterman & Lengauer, 1991), schedul-
ing (Floudas & Lin, 2005; Zhao et al., 2020; Ku & Beck, 2016), network designing (Luathep et al.,
2011; Leitner & Leitner, 2010; Gounaris et al., 2016), and resource allocation (Gertphol et al., 2002;
Alfa et al., 2016; Ramlogan & Goulter, 1989).

These problems demand optimization of a linear objective function under constraints with integer
and continuous variables (Wolsey, 2007; 2020), furnishing robust solutions to complex combinato-
rial challenges. Given their significance, developing advanced algorithms for MILP is crucial for
efficiently solving real-world problems.

Traditional MILP solving strategies can broadly be categorized into two groups (Zhang et al., 2023):
exact solving algorithms based on branch and bound (Yokoyama et al., 2015; Adelgren & Gupte,
2022; He et al., 2014), and approximation algorithms based on heuristic (Fischetti & Lodi, 2010;
Triadó-Aymerich et al., 2016; Boujelben et al., 2016). Notable representatives of these categories
include pseudo-cost branching (Bénichou et al., 1971; Land & Powell, 1979), strong branching
(Achterberg et al., 2005; Dey et al., 2024) and hybrid branching (Achterberg & Berthold, 2009;
Turner et al., 2023) in branch and bound, and techniques like feasibility pump (Fischetti et al.,
2005; Bertacco et al., 2007), evolutionary computing (Rothberg, 2007; Luo et al., 2017) and large
neighborhood search (Nepomuceno et al., 2023; Hendel, 2022) in heuristic. However, in real-world
scenarios, there is often a need to solve homogeneous MILP with similar combinatorial structures.
In this context, traditional methods face the challenge of cold-starting (Zhang et al., 2023; Nair et al.,
2020b), as they cannot leverage accumulated solving knowledge to expedite the process.

In response, recent advancements have leveraged machine learning to address MILP problems. In-
spired by Gasse’s bipartite graph representation of MILP (Gasse et al., 2019), researchers are in-
creasingly adopting neural networks, particularly Graph Neural Networks (GNNs) (Scarselli et al.,
2008), to improve the efficacy of traditional algorithms. These ML-based methods enhance branch

1

https://anonymous.4open.science/r/ML4MILP-6BE0


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

!!	#! +⋯+ 	 !"	#"
&!!	#! +⋯+ &!" #" ≤ (!

⋮
&$!#! +⋯+ &$"#" ≤ ($

min% 	 &!!

&!"
&$"

#!

MILP Instance Bipartite Graph Representation 

&$!

…

⋮⋮⋮

#"
#!

#"

.!

.$ .$

.!

⋮⋮

GNN Encoder

⋮⋮

GNN Decoder
&!!

&!"
&$"

&$! ⋮⋮

#!

#"
.$

.!
&′!!

&′!"
&′$"

&′$! ⋮⋮

#′!

#′"
.′$

.′!

Reconstruction Loss

Original Representation Reconstructed Representation 

…… ……

Neural
Embedding

Masked
Embedding

Distance in One Class Distance between Two Classes 

Figure 1: Convert MILP into bipartite graph.

!!	#! +⋯+ 	 !"	#"
&!!	#! +⋯+ &!" #" ≤ (!

⋮
&$!#! +⋯+ &$"#" ≤ ($

min% 	 &!!

&!"
&$"

#!

MILP Instance Bipartite Graph Representation 

&$!

…

⋮⋮⋮

#"
#!

#"

.!

.$ .$

.!

⋮⋮

GNN Encoder

⋮⋮

GNN Decoder
&!!

&!"
&$"

&$! ⋮⋮

#!

#"
.$

.!
&′!!

&′!"
&′$"

&′$! ⋮⋮

#′!

#′"
.′$

.′!

Reconstruction Loss

Original Representation Reconstructed Representation 

…… ……

Neural
Embedding

Masked
Embedding

Distance in One Class Distance between Two Classes 

Figure 2: The Calculation of Similarity Score.

decision-making in branch-and-bound (Gupta et al., 2020; Chen et al., 2023a; Gupta et al., 2022),
neighborhood selection (Song et al., 2020; Sonnerat et al., 2021; Wu et al., 2021) and predicting
high-quality initial solutions in heuristic (Ding et al., 2020; Ye et al., 2023c;b), all aimed at speeding
up the solving process.

Despite the effectiveness of machine learning-based algorithms in many applications, our research
into recently proposed ML-based algorithms reveals that, although several approaches claim state-
of-the-art performance, they lack comprehensive benchmarking and comparison using a standard-
ized benchmark dataset. This deficit obscures the assessment of which techniques perform best
under varying conditions, thereby stalling progress in the field.

To address this gap, we present ML4MILP, a new open-source benchmark dataset for evaluating
machine learning algorithms in mixed integer linear programming. We hope that ML4MILP will
provide researchers with a convenient means to develop and evaluate their methods. Specifically,
we have undertaken the following three tasks: 1) Similarity Evaluation. We proposed a graph
statistics-based structural similarity metric and a self-supervised learning GNN-based embedding
similarity metric, further achieving fine classification of MILP instances based on GNN embedding.
2) Benchmark Datasets. We proposed a new standardized MILP problems dataset tailored for
evaluating ML-based algorithms, including 100,000 instances across more than 70 classes and their
nearly optimal solution gained by adaptive constraint-partitioned algorithm. 3) Baseline Library.
We comprehensively compared and ranked existing mainstream algorithms based on the MILP prob-
lem dataset, including objective function values and gaps. Experimental results indicate that some
algorithms may not be as robust as claimed under more extensive testing, demonstrating the value
of ML4MILP for advancing the field.

In summary, ML4MILP offers the following advantages:

1. Novelty: It provides the Learn4MILP community with a new specially designed bench-
marking dataset.

2. Comprehensive: It also comprehensively tests existing mainstream algorithms, determin-
ing which methods truly excel under specific conditions.

3. Scalability: ML4MILP also offers a variety of benchmark problems and numerous inte-
grated benchmark algorithms, with plans for regular maintenance and updates to ensure
continuous (scalable) expansion.

2 RELATED WORK

2.1 MIXED INTEGER LINEAR PROGRAMMING PROBLEM

Mixed Integer Linear Programming (MILP) problem is a significant class within combinatorial opti-
mization problems. Formally, a MILP problem can be represented as follows (Wolsey, 2007; 2020):

min
x

cTx, subject toAx ≤ b, l ≤ x ≤ u, xi ∈ Z, i ∈ I, (1)

where x represents the decision variables, with dimension denoted by n ∈ Z, and l, u, c ∈ Rn

correspond to the lower bounds, upper bounds, and coefficient values of the variables, respectively.
The matrix A ∈ Rm×n and the vector b ∈ Rm define the linear constraints of the problem. The set
I ⊆ {1, 2, . . . , n} denotes the indices of variables that are constrained to be integers.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

As shown in Figure 1, based on the formulation of MILP, Gasse’s proposed MILP bipartite graph
representation (Gasse et al., 2019) achieves a lossless translation of the MILP problem into a graph
format, serving as input for the neural embedding network (Nair et al., 2020b). More details about
MILP and MILP bipartite graph representation are shown in Appendix D.1.

2.2 MACHINE LEARNING-BASED SOLVING ALGORITHM

As a pioneering effort in leveraging ML-based optimization algorithms for solving MILP problems,
Gasse et al. (2019) introduced a novel lossless graph representation approach utilizing bipartite
graphs for MILP. Building upon this foundational work, Nair et al. (2020b) from DeepMind devel-
oped the concept of neural diving, where initial solution predictions derived from GNNs are em-
ployed to fix a majority of the decision variables. Additionally, numerous studies have focused on
enhancing the branch-and-bound method, targeting improvements in variable selection (Sun et al.,
2020; Balcan et al., 2024), node selection (Labassi et al., 2022; Scavuzzo et al., 2022), and cutting
plane strategies (Li et al., 2024; Balcan et al., 2022).

Building upon previous advancements,Sonnerat et al. (2021) from DeepMind further refined the con-
cept of neural diving by introducing NeuralLNS, which enhances the solutions obtained by training
a neural network to select search neighborhoods. Following this development, several scholars have
explored using reinforcement learning and imitation learning strategies to learn domain selection
policies (Wu et al., 2021; Nair et al., 2020a; Chen & Tian, 2019; Liu et al., 2022). In 2023, Ye et al.
(2023c) introduced the GNN&GBDT framework, the current state-of-the-art learning-based solving
framework, enhancing prediction and iteration capabilities based on NeuralLNS.

Concurrently, several other studies (Ding et al., 2020; Han et al., 2023; Huang et al., 2023) also
have attempted to learn optimal solution predictions for MILP problems using GNNs and further
refine these predicted solutions. While these methods position themselves as state-of-the-art, their
effectiveness could be further validated through testing on a more unified and comprehensive dataset,
specifically tailored for ML approaches in the MILP domain.

2.3 RELATED BENCHMARK DATASET

MILP is a fundamental tool for modeling combinatorial optimization problems, and ML has in-
creasingly been explored as a means to accelerate MILP solving. However, progress in this area is
hindered by the limitations of existing benchmark datasets, which often lack standardization, care-
ful categorization, and diverse distributions of problem instances. For example, MIPLIB (Koch
et al., 2011) and Coral (Curtis) provide general MILP problem instances but do not offer struc-
tured distributions or standardized test sets tailored for ML-based methods. To address some of
these shortcomings, Distributional MIPLIB (Huang et al., 2024) introduced a multi-domain library
of MILP instances, focusing on curating problems from real-world and existing sources while clas-
sifying them into different hardness levels. Expanding this dataset to include larger-scale problem
instances and a more comprehensive suite of baseline algorithms would further enhance its utility
for evaluating ML frameworks and conducting systematic benchmarking.

Our work, ML4MILP, builds on and addresses these limitations by providing a broader and more di-
verse range of MILP instances, sourced from both real-world problems and generated cases. These
instances are carefully categorized into heterogeneous classes and varying hardness levels using a
novel classification algorithm. Unlike previous datasets, ML4MILP includes ultra-large-scale prob-
lem instances with up to millions of decision variables and constraints, enabling the evaluation of
ML-based methods on more complex and challenging scenarios. Additionally, ML4MILP offers an
extensive library of baseline algorithms, including exact solvers and ML-based approaches, along
with detailed benchmarking results. These features make ML4MILP a more structured, scalable,
and realistic benchmark for advancing ML-guided MILP research.

3 PROPOSED ML4MILP

We have introduced ML4MILP, a new benchmark dataset specifically designed to test ML-based
algorithms for solving MILP problems. ML4MILP consists of three main components: Similar-
ity Evaluation, Benchmark Datasets, and Baseline Library. Based on this structure, we conducted

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Classification Algorithms

Benchmark Datasets

Baseline Library

GapSolutionMIPLib Selected

GapSolutionACLib Selected

…

GapSolutionMIS Generated

GapSolutionSC Generated

…
Collected Real-world Instances Generated Standard Instances

Advanced Solver Classic Algorithm ML-based Algorithm

Gurobi

SCIP

LNS

ACP

GNN&GBDT

Predict-and-Search

Trainer

Tester

Solution Train Set Instance

Test Set Instance

Trained Model

Algorithm Trained Model

Result

Predict Solution

Loss

Evaluation

Comparison of Objective Function Values

Gap Estimation

Similarity Evaluation

Evaluation Index

Structural Similarity

Embedding Similarity

y

Logger

Optimal Solution
Estimation

Objective 
Function Value

Ranking

Figure 3: An overview of ML4MILP reveals a comprehensive framework. With the extensively
collected and carefully designed Benchmark Datasets, the evaluation index within the Similarity
Evaluation component measures the similarity of the collected data, using classification algorithms
to recategorize datasets with low similarity scores. This setup facilitates the execution of a ”Trainer-
Tester-Logger” process through the Baseline Library, enabling rigorous testing of algorithms and
comparisons with classical baselines. Subsequently, the performance of the testing algorithms is
evaluated based on objective function values and gap estimates under fixed wall-clock times. Addi-
tionally, we score and rank the performance of each baseline under MILP and integer programming
(IP) conditions, culminating in a leaderboard of algorithms.

uniform training and testing of baseline algorithms, followed by a comprehensive evaluation and
ranking of the results. The framework of ML4MILP is illustrated in Figure3.

3.1 SIMILARITY EVALUATION

Since MILP problems can be losslessly encoded as bipartite graphs, Graph Neural Networks (GNNs)
have become a common choice for machine learning-based MILP optimization frameworks. Pre-
vious studies have demonstrated that machine learning techniques excel in extracting insights from
homogeneous MILP datasets (Nair et al., 2020b; Lin et al., 2022), which leads to the fact that the
lack of homogeneity poses significant challenges. This issue is not only related to the findings (Oono
& Suzuki, 2019), where it was analyzed that GNNs struggle to go deeper due to over-smoothing, re-
sulting in models with insufficient parameters, ultimately affecting generalization in heterogeneous
problems; but also to the theoretical analysis (Chen et al., 2023b), which discusses the inadequacy
of GNNs in representing general MILPs. We also acknowledge that in recent years, large models
with strong out-of-distribution generalization capabilities may have the potential to learn from het-
erogeneous datasets. However, during the pre-training stage, fine-grained category label distinctions
undoubtedly help large models learn the structural differences between different problem categories,
which could benefit the development of large model technologies in the optimization community.

Therefore, whether for current machine learning techniques or future new technologies based on
large models, fine-grained classified homogeneous datasets are necessary, demonstrating the im-
portance of MILP problem datasets with category labels. However, most collected MILP datasets
typically lack homogeneity, which poses significant challenges in identifying and managing dataset
uniformity. To overcome these challenges, we introduce innovative Similarity Evaluation Metrics
and developed a Classification Algorithm for re-screening and re-classifying heterogeneous datasets.

3.1.1 SIMILARITY EVALUATION METRICS

To improve the assessment of similarity among instances within a dataset, we initially introduced
two embedding methods for MILP instances. Specifically, for structure embedding, we detail an
embedding approach that represents MILP instances as a 10-dimensional embedding, capturing key

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

!!	#! +⋯+ 	 !"	#"
&!!	#! +⋯+ &!" #" ≤ (!

⋮
&$!#! +⋯+ &$"#" ≤ ($

min% 	 &!!

&!"
&$"

#!

MILP Instance Bipartite Graph Representation 

&$!

…

⋮⋮⋮

#"
#!

#"

.!

.$ .$

.!

⋮⋮

GNN Encoder

⋮⋮

GNN Decoder
&!!

&!"
&$"

&$! ⋮⋮

#!

#"
.$

.!
&′!!

&′!"
&′$"

&′$! ⋮⋮

#′!

#′"
.′$

.′!

Reconstruction Loss

Original Representation Reconstructed Representation 

…… ……

Neural
Embedding

Masked
Embedding

Distance in One Class Distance between Two Classes 

Figure 4: The overview of graph self-supervised learning. For the bipartite graph representation
of MILP, we use the encoder-decoder structure for reconstruction, and the loss is computed by
comparing the output with the features of the nodes in the original representation.

aspects of the mathematical formulation and bipartite graph characteristics outlined in Section 2.1.
This vector includes metrics such as the Fraction of non-zero entries in the coefficient matrix, Mean
and standard deviation of the degrees of constraint vertices. The details are shown in Appendix B.2.

However, structural embedding alone may not fully reflect the intricacies introduced by coefficients
and local connectivity within problems. To address this, we introduce a neural embedding method
using a graph self-supervised learning paradigm, inspired by Graph Autoencoders (Kipf & Welling,
2016). As shown in Figure 4, MILP instances from the MIPLIB Collection are represented as bi-
partite graphs, which are then encoded using a graph convolutional neural network. During training,
parts of this neural embedding are randomly masked, and the model is tasked with reconstructing
these missing segments, minimizing the discrepancy between the reconstructed and original graphs.

To quantify the similarity among a set of MILP instances I, we employ the following formula:

Embedding Distance =

∑
Ii,Ij∈I,i̸=j Distance(Ii, Ij)

|I|(|I| − 1)
, (2)

where Distance(Ii, Ij) denotes the Euclidean distance between the embeddings of instances Ii and
Ij . As shown in the left of Figure 2, we use the average distance between instance embeddings as
a measure to evaluate problem similarity. A lower Embedding Distance indicates a higher degree of
homogeneity among the instances, thus affirming their isomorphism within the dataset.

3.1.2 CLASSIFICATION ALGORITHM

For datasets that exhibit low similarity, we have developed a novel strategy for re-screening and
re-classifying these datasets, thereby retaining only those subsets that demonstrate homogeneity.

Specifically, we consider classifying datasets with low internal similarity into multiple sub-datasets.
After graph self-supervised learning shown in Figure 4, we use the GNN encoder to obtain the
neural embedding of each problem using the method mentioned in 3.1.1. Then, we employ a spectral
clustering algorithm to cluster the neural embeddings within the dataset and recalculate the similarity
between the newly formed sub-datasets.

3.2 BENCHMARK DATASETS

To accommodate the learning needs of machine learning-based algorithms for solving MILP prob-
lems, our dataset comprises two main components: MILP Instances and the corresponding reference
Solutions and Gap estimates.

3.2.1 MILP INSTANCES

Our MILP instances originate from two primary sources: a new includes real-world scenarios care-
fully curated and vetted from existing open-source datasets, while the second comprises problems
constructed according to standard mathematical formulations.

Firstly, we have carefully gathered a substantial number of MILP instances through various means.
These include mainstream open-source, comprehensive datasets such as MIPlib (Koch et al., 2011),

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

AClib (Hutter et al., 2014), Regions200 (Leyton-Brown et al., 2000), MIRPlib (Papageorgiou et al.,
2014), and COR@L (Curtis); domain-specific academic papers, for example, those focusing on the
robustness verification of neural networks (Nair et al., 2020b), cut selection (Wang et al., 2023), lot-
sizing polytope (Atamtürk & Munoz, 2004), maximizing diffusion in networks (Ahmadizadeh et al.,
2010), network designing (Atamtürk, 2002), fixed-charge flow polytope (Atamtürk, 2001), valid
inequalities (Atamtürk et al., 2001), conic cuts (Atamtürk & Narayanan, 2010; Şen et al., 2015),
and 0-1 knapsack (Atamtürk & Narayanan, 2009); and competitions related to MILP, such as the
ML4CO competition in NeurIPS 2021 (Gasse et al., 2022) and the competition on Reoptimization
2023 (Bolusani et al., 2023). The details of each open-source dataset are shown in Appendix A.1.

Secondly, given that the collected problem instances are often small in scale, lacking large-scale
examples with millions of decision variables and constraints, we generated a substantial number
of standard problem instances based on nine canonical MILP problems: Maximum Independent
Set (Tarjan & Trojanowski, 1977), Minimum Vertex Covering (Dinur & Safra, 2005), Set Covering
(Caprara et al., 2000), Mixed Integer Knapsack Set (Atamtürk, 2003), Balanced Item Placement
(Qu et al., 2022), Combinatorial Auctions (De Vries & Vohra, 2003), Capacitated Facility Location
(An et al., 2017). Inspired by Distributional MIPLIB (Huang et al., 2024), we also generated two
real-world problem instances: Middle-mile Consolidation Problem with Waiting Times (Greening
et al., 2023), and Steiner Network Problem with Coverage Constraints (Huang & Dilkina, 2020).
For each type of problem, we generated instances at three levels of difficulty—easy, medium, and
hard—corresponding to problem scenarios with tens of thousands, hundreds of thousands, and mil-
lions of decision variables, respectively. The details are shown in Appendix A.3.

Upon acquiring the MILP instances, we will utilize the Similarity Evaluation Metrics outlined in
Section 3.1.1 to assess the homogeneity of the collected data. For datasets that display significant
internal variability, we will apply the Classification Algorithm described in Section 3.1.2 to re-screen
and reclassify the problems. This procedure enhances the homogeneity of our benchmarking and
facilitates the development of MILP Instances that accurately represent real-world scenarios.

3.2.2 SOLUTION AND GAP

For the MILP problem instances, obtaining reference solutions (preferably optimal solutions) and
estimating the solution gaps is necessary. To this end, we initially utilize the state-of-the-art solver
Gurobi to solve problems for a fixed duration (e.g., 8 hours), during which most problems achieve
optimal solutions. These optimal solutions are then packaged into pickle files and the problem
instances and saved as part of the ML4MILP training dataset.

However, for some larger-scale problems, particularly the generated standard problems, it is often
challenging to obtain optimal solutions within a reasonable time frame. The solutions obtained
directly from Gurobi exhibit significant gaps that do not meet the quality requirements for training
data reference solutions. Therefore, we introduce the most advanced iterative improvement methods,
utilizing an Adaptive Constraints Partition (ACP)-based strategy (Ye et al., 2023a) to iteratively
improve the solutions obtained from Gurobi, detailed in Appendix B.1. Then, based on the solution
x obtained from Gurobi and the associated gap estimate g, we can compute the gap estimate g∗ for
the improved solution x∗ derived from ACP. Assuming a minimization problem, the gap estimate
can be calculated using the following formula g∗ = x∗−(1−g)x

x∗ .

Additionally, we have randomly partitioned the problem data into training and testing datasets. De-
tailed information about the partitioning scheme and results can be found in Appendix A.4.

3.3 BASELINE LIBRARY

To validate the effectiveness of the proposed dataset, we organized the existing mainstream methods
into a Baseline Library and conducted comparisons using Benchmark Datasets against these main-
stream baselines. The algorithms in the Baseline Library are divided into three parts. a new part
includes state-of-the-art large-scale solvers, such as SCIP (version 4.3.0) (Achterberg, 2009) and
Gurobi (version 11.0.1) (Gurobi Optimization, 2021), which represent the leading levels of open-
source academic and commercial solvers, respectively. We implemented calls to these solvers using
their interfaces to solve specific problems. The second part consists of classic solving algorithms, in-
cluding General Large Neighborhood Search (version ramdom-LNS) (Song et al., 2020) and Adap-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

tive Constraint Partition Based Optimization Framework (version ACP2) (Ye et al., 2023a), which
we reproduced based on their pseudocode. The third part comprises the latest machine learning-
based solving algorithms, including Learn2branch (Gasse et al., 2019), GNN&GBDT-guided frame-
work (Ye et al., 2023c), Neural Diving (Nair et al., 2020b), Predic&Search (Han et al., 2023), Hy-
brid Learn2branch (Gupta et al., 2020), and GNN-MILP (Chen et al., 2022). Both algorithms can
be trained and tested after adapting them to the problem data.

Furthermore, we also experimented with other solving algorithms such as Feasible Pump (Fischetti
et al., 2005) and Simulated Annealing (Abramson & Randall, 1999). However, since these methods
failed to obtain feasible solutions within a reasonable computational timeframe for most problems,
we ultimately did not include them.

Structure Distance Embedding Distance
MIS easy 0.011 1.50e-08

MVC easy 0.010 1.24e-08
SC easy 0.009 3.69e-08

Aclib 25.402 2.52e-06
Cut 7.122 1.47e-05

fc.data 5.867 9.68e-07
Hem knapsack 0.566 8.75e-07

Hem mis 0.356 4.29e-07
Hem setcover 0.286 5.33e-07

Hem corlat 5.956 3.34e-07
Hem mik 226.520 9.54e-06

item placement 0.037 7.03e-12
load balance 0.436 6.97e-07
anonymous 222.061 8.99e-06

nn verification 18.460 3.71e-06
vary bounds s1 0.001 7.08e-08
vary bounds s2 0.009 3.26e-08
vary bounds s3 0.009 1.90e-08
vary matrix s1 0.011 0.0

vary matrix rhs bounds s1 0.008 1.74e-08
vary obj s1 3.18e-06 8.39e-07
vary obj s2 1.22e-05 2.64e-07
vary rhs s1 0.007 9.83e-08
vary rhs s2 0.550 1.11e-05
vary rhs s4 0.601 1.47e-05

Transportation 148.368 1.10e-05
Coral 1056768.799 6.03e-03

ECOGCNN 468055.052 5.41e-02
MIPlib 7002615758.102 8.82e-02
Nexp 5511575859.716 2.48e-01

Table 1: The distance of graph structure and neural em-
bedding in each heterogeneous class. The blue background
color indicates classical MILP datasets.

Figure 5: Structure & embedding
distance matrix within classes.

4 EXPERIMENTS

To validate the effectiveness of ML4MILP, we first conducted a detailed comparison with classic
MILP datasets such as MIPLib (Section 4.1), demonstrating the advantage of ML4MILP. Then, we
show the distance matrix between categories(Section 4.2), demonstrating the effectiveness of the
classification algorithm. Further, based on a selected set of the problem categories from the instance
dataset, we conducted comparative tests with algorithms from the Benchmark Library (Section 4.3),
indicating that some of the purportedly advanced algorithms did not perform as well as claimed in
more comprehensive tests, highlighting ML4MILP’s positive role in advancing the field.

4.1 DATASET ANALYSIS

To validate the benefits of ML4MILP over traditional MILP datasets such as MIPLib, Coral, and
Nexp in evaluating ML-based optimization algorithms, we conducted a comparative analysis of
problem similarity within ML4MILP. The settings are shown in Appendix C.2.

The results, detailed in Table 1, reveal a stark contrast in problem similarity. For graph structural
embedding, the distances between instances in traditional MILP datasets like MIPLib were found to
be several orders of magnitude larger—by hundreds of millions of times—than those in ML4MILP.
Similarly, the neural embedding distances in traditional MILP datasets were often tens of thousands

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Epoch

35000

30000

25000

20000

15000

10000

5000

0

Ch
an

ge
 in

 Tr
ai

n 
Lo

ss

Befor Reclassification
After Reclassification

Figure 6: Training loss before and after
reclassification.

Epoch

200

0

200

400

600

Ch
an

ge
 in

 V
al

id
 L

os
s

Befor Reclassification
After Reclassification

Figure 7: Validation loss before and af-
ter reclassification.

of times greater than those in ML4MILP. These findings demonstrate that ML4MILP provides sig-
nificantly lower variability between instances, both in terms of problem structure and neural embed-
ding. This confirms ML4MILP’s substantial advantages in promoting homogeneity among dataset
instances, making it a superior choice for testing ML-based optimization algorithms.

4.2 DATASET RECLASSIFICATION

To address the complexities arising from mixed problem instances in datasets, particularly those
sourced from open repositories, we employed the spectral clustering algorithm for effective cat-
egorization. Taking MIPLib as an illustrative case, we implemented this algorithm, successfully
segregating the dataset into six distinct classes. As illustrated on the right side of Figure 2, we uti-
lized the average Euclidean distance to evaluate similarities between these classes. The distances
among instances within each class are depicted in Figure 5. Our analysis revealed that the structure
and neural embedding distances among a new five classes were notably small, indicating a high
degree of similarity. Conversely, the sixth class exhibited significantly larger intra-class and inter-
class distances, suggesting the presence of outlier instances. Based on these findings, we opted to
exclude this sixth class from the MIPLib dataset to ensure a more homogeneously classified dataset
for subsequent baseline testing.

To further substantiate the importance of a homogeneous dataset and the effectiveness of our classi-
fication approach, we conducted additional experiments using a semi-convolutional structured GNN
(Nair et al., 2020b), a widely recognized neural network. We set the learning rate to 1 × 10−3 and
divided the dataset into training and validation sets in a 6:4 ratio. Our tests on the MIPLib dataset
before and after reclassification, with results displayed in Figures 6 and 7, demonstrated significant
differences. The training loss for the original MIPLib, characterized by numerous heterogeneous
problems, exhibited slow decreases and considerable fluctuations in validation loss, occasionally
leading to NaN (not a number) values. This indicated instability in the GNN training process and
a lack of effective learning. In contrast, following reclassification, both training and validation
losses decreased steadily, underscoring the critical role of homogeneous datasets in enhancing the
performance of machine learning-based MILP optimization frameworks. These findings highlight
the necessity of our proposed dataset and reinforce the effectiveness of our classification strategy.
Detailed classification results for other datasets, are provided in Appendix C.3.

4.3 BENCHMARKING STUDY

To validate the effectiveness of ML4MILP and assess the performance of baseline algorithms across
various problem classes, we conducted comparative experiments focused on objective function val-
ues and gap estimation under the same wall-clock time limit. Results for six representative baseline
methods on benchmark problems are shown in Tables 2 and 3, with full experimental details found
in Appendix C.5.

Our findings reveal that, despite many ML-based methods claiming to surpass Gurobi, it consis-
tently outperforms other approaches in most instances, particularly in real-world scenarios like
load balancing and Transportation. This underscores the robustness of classical solvers like Gurobi,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Gurobi LNS ACP Learn2branch GNN&GBDT Predict&Search Time
MIS hard 2.17e+05 2.17e+05 2.27e+05 + 2.27e+05 + 4000s

MVC hard 2.83e+05 2.74e+05 2.76e+05 + 2.72e+05 + 4000s
SC hard 3.20e+05 1.73e+05 1.70e+05 + 2.29e+05 + 4000s
MIPlib 1.84e+04 1.98e+04 1.84e+04 1.89e+04 - 1.84e+04 150s
Coral 3805.7000 4.67e+08 1.40e+08 + - 14.5999 4000s
Cut 2.89e+04 3.35e+04 3.07e+04 3.71e+04 - 2.93e+04 4000s

ECOGCNN 7.56e+05 7.58e+05 7.57e+05 + - 7.56e+05 4000s
HEM knapsack 422.6000 422.6000 422.6000 422.6000 422.6000 422.6000 100s

HEM corlat 251.0000 248.8000 251.0000 ! - 251.0000 100s
HEM mik -6.28e+04 -6.25e+04 -6.18e+04 ! - -6.28e+04 100s

item placement 5.3000 12.8000 10.7000 16.5000 - 5.5310 4000s
load balancing 708.8000 723.2000 709.3000 + - 708.8000 1000s

anonymous 2.50e+05 2.04e+06 5.29e+05 + - 2.46e+05 4000s
Nexp 1.16e+08 1.18e+08 1.16e+08 1.18e+08 - 1.16e+08 4000s

Transportation 1.24e+06 1.40e+06 1.28e+06 1.31e+06 - 1.25e+06 4000s
vary bounds s1 1.24e+04 2.07e+04 1.24e+04 1.29e+04 - 1.24e+04 400s
vary matrix s1 61.6000 61.6000 61.6000 62.7000 - 61.5939 100s

vary obj s1 8625.4000 8642.0000 8625.4000 8633.6000 8625.4000 8625.4000 100s
vary rhs s1 -349.5000 -54.4000 -291.5000 + - -349.4640 100s

Aclib 8.24e+04 8.25e+04 8.28e+04 ! - 8.24e+04 100s
fc.data 378.6000 490.4000 378.6000 ! - 378.6000 100s

nn verification -8.3000 -9.7000 -9.7000 ! - -8.2514 100s

Table 2: Objective function value of baselines. + represents the problem of scale being too large to
accept the time to collect training samples. ! represents the problem of errors during band training.
- represents MILP problems that the IP framework, GNN&GBDT, cannot solve.

Gurobi LNS ACP Learn2branch GNN&GBDT Predict&Search Time
MIS hard 0.1714 0.1714 0.1184 + 0.1169 + 4000s

MVC hard 0.1310 0.1018 0.1077 + 0.0951 + 4000s
SC hard 0.9920 0.9852 0.9850 + 0.9887 + 4000s
MIPlib 0.0000 0.2157 0.0004 0.3363 - 1.23e-06 150s
Coral 2.85e+04 3.05e+04 3.05e+04 + - 2.33e+04 4000s
Cut 0.1490 0.2744 0.1651 0.5782 - 0.1568 4000s

ECOGCNN 0.2512 0.2730 0.2516 + - 0.2512 4000s
HEM knapsack 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100s

HEM corlat 0.0000 0.0129 0.0000 ! - 0.0000 100s
HEM mik 0.0000 0.0034 0.0146 ! - 3.00e-15 100s

item placement 0.6481 0.8431 0.8076 4.17e+07 - 0.6595 4000s
load balancing 0.0028 0.0227 0.0035 + - 0.0028 1000s

anonymous 0.3088 0.9256 0.5449 + - 0.2909 4000s
Nexp 0.0787 0.1095 0.0754 0.1629 - 0.0759 4000s

Transportation 0.1512 0.2490 0.1767 0.2725 - 0.1568 4000s
vary bounds s1 0.0000 0.3956 0.0000 0.1518 - 0.0003 400s
vary matrix s1 0.0000 0.0008 0.0008 0.4002 - 0.0000 100s

vary obj s1 0.0000 0.0019 0.0000 0.0054 0.0000 0.0000 100s
vary rhs s1 0.0003 5.5134 0.2037 + - 0.0000 100s

Aclib 0.0000 0.0006 0.0028 ! - 0.0000 100s
fc.data 0.0000 0.1729 0.0000 ! - 0.0000 100s

nn verification 0.0001 0.1493 0.1493 ! - 0.0000 100s

Table 3: Gap estimation of baselines.

especially when optimality and feasibility guarantees are critical. In contrast, exact ML-based algo-
rithms like learn2branch, despite their theoretical guarantees, struggle with the exponential increase
in search space for large-scale problems, as seen in benchmarks like Coral and Cut, where they
require significant computational time.

Heuristic-based algorithms, such as GNN&GBDT, excel in large-scale problems like MIS hard and
SC hard due to effective dimensionality reduction techniques, making them suitable for ultra-large
instances. However, GNN&GBDT struggles with certain MILP problems, reflecting the need for
more versatile approaches. Predict&Search, which combines machine learning with traditional
search techniques, also demonstrates competitive performance, achieving near-optimal results in
problems like vary matrix s1 and vary rhs s1. However, like other heuristic methods, it lacks the
guarantees of exact solvers and may fail to find feasible solutions for highly constrained problems.

Our experiments suggest that hybrid strategies—combining heuristics with traditional methods like
Predict&Search—can improve results for complex MILP problems by balancing solution quality
and efficiency. This highlights the importance of categorized datasets like ML4MILP, which support

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Gurobi SCIP LNS ACP Learn2branch GNN&GBDT Predict&Search
0

500

1000

1500

2000

2500

Sc
or

es

vary_rh_s3
HEM_setcover
SC_easy
HEM_mis
MVC_easy
MVC_hard
MVC_medium

MIS_easy
MIS_medium
MIS_hard
SC_medium
SC_hard
vary_obj_s1
HEM_knapsack

vary_rhs_obj_s2
vary_rh_s2
vary_rh_s4
vary_obj_s3
vary_matrix_rhs_bounds_obj
vary_bounds_s1
Nexp

Transportation
MIPlib
vary_matrix_s1
Cut
HEM_corlat
HEM_mik
vary_bounds_s2

vary_bounds_s3
vary_obj_s2
Aclib
fc.data
nn_verification
Coral
ECOGCNN

load_balancing
anonymous
vary_matrix_rhs_bounds_s1
vary_rh_s1
vary_rhs_obj_s1
item_placement

Figure 8: Scores for IP (blue) and MILP (red) problems in ML4MILP for different baselines.

detailed performance analysis and foster the development of more robust hybrid methods leveraging
the strengths of existing algorithms.

To enable a direct comparison of baseline algorithms across different problems, we quantified each
algorithm’s performance by scoring their gap estimates on identical problems. The scores were

transformed into a 0–100 scale using a normal distribution function, Score(x) ∼ 1√
2πσ

e−
(x−µ)2

2σ2 ,
where x represents the gap estimation. This approach aligns with the central limit theorem, ensuring
a more objective performance assessment. Despite the claims of state-of-the-art performance by
algorithms like LNS, ACP, Learn2branch, GNN&GBDT, and Predict&Search, the results, depicted
in Figure 8, shows that these methods often lack comprehensive evaluation across diverse and large-
scale scenarios. For instance, while GNN&GBDT performs exceptionally well in large-scale integer
programming problems, other methods like Predict&Search struggle due to higher computational
complexity. Conversely, in MILP problems, Predict&Search slightly surpasses Gurobi, yet most
other methods fall short of Gurobi’s robust performance.

These discrepancies highlight a critical issue: many of the existing machine learning-based algo-
rithms have been evaluated in selective or limited scenarios, failing to provide a clear, holistic view
of their true performance across a wide range of problem types and scales. Without a standardized
benchmarking and comprehensive comparison, it is difficult to accurately assess which techniques
excel under specific conditions. This is where the ML4MILP framework proves invaluable. By
offering a unified, rigorous benchmark across various problem domains and scales, ML4MILP en-
ables a much-needed, in-depth comparison of algorithm performance. This framework allows for a
clearer understanding of each method’s strengths and weaknesses, ultimately driving progress in the
field by providing a robust basis for future algorithm development and optimization.

5 CONCLUSION AND FUTURE WORK

We propose ML4MILP, a new open-source benchmark dataset designed to evaluate machine learn-
ing algorithms in MILP. Through extensive testing, we uncovered significant challenges faced by
current ML-based optimization algorithms, highlighting the need for further research to drive ad-
vancements in this domain. While ML4MILP has made considerable strides, we recognize areas for
improvement. We plan to expand the problem set to include a wider variety of MILP tasks, ensuring
richer and more complex challenges. These efforts will ensure ML4MILP remains a crucial tool for
advancing ML-based optimization algorithms in MILP, fostering developments in the field.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Abramson and Marcus Randall. A simulated annealing code for general integer linear pro-
grams. Annals of Operations Research, 86(0):3–21, 1999.

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Compu-
tation, 1:1–41, 2009.

Tobias Achterberg and Timo Berthold. Hybrid branching. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: 6th International Confer-
ence, CPAIOR 2009 Pittsburgh, PA, USA, May 27-31, 2009 Proceedings 6, pp. 309–311. Springer,
2009.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005. ISSN 0167-6377.

Nathan Adelgren and Akshay Gupte. Branch-and-bound for biobjective mixed-integer linear pro-
gramming. INFORMS Journal on Computing, 34(2):909–933, 2022.

Kiyan Ahmadizadeh, Bistra Dilkina, Carla P Gomes, and Ashish Sabharwal. An empirical study
of optimization for maximizing diffusion in networks. In International Conference on Principles
and Practice of Constraint Programming, pp. 514–521. Springer, 2010.

Attahiru S Alfa, Bodhaswar T Maharaj, Shruti Lall, and Sougata Pal. Mixed-integer programming
based techniques for resource allocation in underlay cognitive radio networks: A survey. Journal
of Communications and Networks, 18(5):744–761, 2016.

Hyung-Chan An, Mohit Singh, and Ola Svensson. Lp-based algorithms for capacitated facility
location. SIAM Journal on Computing, 46(1):272–306, 2017.

A. Atamtürk and V. Narayanan. The submodular 0-1 knapsack polytope. 6:333–344, 2009.

A. Atamtürk and V. Narayanan. Conic mixed-integer rounding cuts. Mathematical Programming,
122:1–20, 2010.

A. Atamtürk, , G. L. Nemhauser, and M. W. P. Savelsbergh. Valid inequalities for problems with
additive variable upper bounds. Mathematical Programming, 91:145–162, 2001.

Alper Atamtürk. Flow pack facets of the single node fixed-charge flow polytope. Operations Re-
search Letters, 29(3):107–114, 2001.

Alper Atamtürk. On capacitated network design cut–set polyhedra. Mathematical Programming,
92:425–437, 2002.

Alper Atamtürk. On the facets of the mixed-integer knapsack polyhedron. Mathematical Program-
ming, 98(1-3):145–175, 2003.

Alper Atamtürk and Juan Carlos Munoz. A study of the lot-sizing polytope. Mathematical Pro-
gramming, 99(3):443–465, 2004.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch:
Generalization guarantees and limits of data-independent discretization. Journal of the ACM, 71
(2):1–73, 2024.

Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural anal-
ysis of branch-and-cut and the learnability of gomory mixed integer cuts. Advances in Neural
Information Processing Systems, 35:33890–33903, 2022.

Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and Olivier
Vincent. Experiments in mixed-integer linear programming. Mathematical programming, 1:76–
94, 1971.

Livio Bertacco, Matteo Fischetti, and Andrea Lodi. A feasibility pump heuristic for general mixed-
integer problems. Discrete Optimization, 4(1):63–76, 2007.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Suresh Bolusani, Mathieu Besançon, Ambros Gleixner, Timo Berthold, Claudia d’Ambrosio, Gon-
zalo Muñoz, Joseph Paat, and Dimitri Thomopulos. The mip workshop 2023 computational
competition on reoptimization. arXiv preprint arXiv:2311.14834, 2023.

Mouna Kchaou Boujelben, Celine Gicquel, and Michel Minoux. A milp model and heuristic ap-
proach for facility location under multiple operational constraints. Computers & Industrial Engi-
neering, 98:446–461, 2016.

Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for the set covering problem. Annals
of Operations Research, 98:353–371, 2000.

Li Chen, Hua Xu, Ziteng Wang, Chengming Wang, and Yu Jiang. Self-paced learning based graph
convolutional neural network for mixed integer programming (student abstract). In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 16188–16189, 2023a.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in neural information processing systems, 32, 2019.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. arXiv preprint arXiv:2209.12288, 2022.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing mixed-integer
linear programs by graph neural networks, 2023b. URL https://arxiv.org/abs/2210.
10759.

A. Şen, A. Atamtürk, and P. Kaminsky. A conic integer programming approach to constrained
assortment optimization under the mixed multinomial logit model. Research Report BCOL.15.06,
IEOR, University of California–Berkeley, October 2015.

Frank E. Curtis. Cor@l mip dataset. https://coral.ise.lehigh.edu/data-sets/
mixed-integer-instances/.

Sven De Vries and Rakesh V Vohra. Combinatorial auctions: A survey. INFORMS Journal on
computing, 15(3):284–309, 2003.

Santanu S Dey, Yatharth Dubey, Marco Molinaro, and Prachi Shah. A theoretical and computational
analysis of full strong-branching. Mathematical Programming, 205(1):303–336, 2024.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 1452–1459, 2020.

Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover. Annals of
mathematics, pp. 439–485, 2005.

Matteo Fischetti and Andrea Lodi. Heuristics in mixed integer programming. Wiley Encyclopedia
of Operations Research and Management Science, 2010.

Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathematical Programming,
104:91–104, 2005.

Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear programming in process scheduling:
Modeling, algorithms, and applications. Annals of Operations Research, 139:131–162, 2005.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
machine learning for combinatorial optimization competition (ml4co): Results and insights. In
NeurIPS 2021 competitions and demonstrations track, pp. 220–231. PMLR, 2022.

12

https://arxiv.org/abs/2210.10759
https://arxiv.org/abs/2210.10759
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sethavidh Gertphol, Yang Yu, Shriram B Gundala, Viktor K Prasanna, Shoukat Ali, Jong-Kook Kim,
Anthony A Maciejewski, and Howard Jay Siegel. A metric and mixed-integer-programming-
based approach for resource allocation in dynamic real-time systems. In Proceedings 16th Inter-
national Parallel and Distributed Processing Symposium, pp. 10–pp. IEEE, 2002.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke,
Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano.
MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. Math-
ematical Programming Computation, 2021. doi: 10.1007/s12532-020-00194-3. URL https:
//doi.org/10.1007/s12532-020-00194-3.

Jens Gottlieb and Lutz Paulmann. Genetic algorithms for the fixed charge transportation problem.
In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 330–335. IEEE, 1998.

Chrysanthos E Gounaris, Karthikeyan Rajendran, Ioannis G Kevrekidis, and Christodoulos A
Floudas. Designing networks: A mixed-integer linear optimization approach. Networks, 68(4):
283–301, 2016.

Lacy M Greening, Mathieu Dahan, and Alan L Erera. Lead-time-constrained middle-mile con-
solidation network design with fixed origins and destinations. Transportation Research Part B:
Methodological, 174:102782, 2023.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

Prateek Gupta, Elias B Khalil, Didier Chetélat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and
M Pawan Kumar. Lookback for learning to branch. arXiv preprint arXiv:2206.14987, 2022.

LLC Gurobi Optimization. Gurobi optimizer reference manual. 2021.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Jörg Heisterman and Thomas Lengauer. The efficient solution of integer programs for hierarchical
global routing. IEEE transactions on computer-aided design of integrated circuits and systems,
10(6):748–753, 1991.

Gregor Hendel. Adaptive large neighborhood search for mixed integer programming. Mathematical
Programming Computation, 14(2):185–221, 2022.

Mojtaba Heydar, Jie Yu, Yue Liu, and Matthew EH Petering. Strategic evacuation planning with
pedestrian guidance and bus routing: a mixed integer programming model and heuristic solution.
Journal of Advanced Transportation, 50(7):1314–1335, 2016.

Taoan Huang and Bistra Dilkina. Enhancing seismic resilience of water pipe networks. In Proceed-
ings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 44–52,
2020.

Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina. Con-
trastive predict-and-search for mixed integer linear programs. 2023.

Weimin Huang, Taoan Huang, Aaron M Ferber, and Bistra Dilkina. Distributional miplib: a multi-
domain library for advancing ml-guided milp methods. arXiv preprint arXiv:2406.06954, 2024.

Frank Hutter, Manuel López-Ibánez, Chris Fawcett, Marius Lindauer, Holger H Hoos, Kevin
Leyton-Brown, and Thomas Stützle. Aclib: A benchmark library for algorithm configuration.
In Learning and Intelligent Optimization: 8th International Conference, Lion 8, Gainesville, FL,
USA, February 16-21, 2014. Revised Selected Papers 8, pp. 36–40. Springer, 2014.

13

https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

David E Kaufman, Jason Nonis, and Robert L Smith. A mixed integer linear programming model
for dynamic route guidance. Transportation Research Part B: Methodological, 32(6):431–440,
1998.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold, Robert E Bixby,
Emilie Danna, Gerald Gamrath, Ambros M Gleixner, Stefan Heinz, et al. Miplib 2010: mixed
integer programming library version 5. Mathematical Programming Computation, 3:103–163,
2011.

Wen-Yang Ku and J Christopher Beck. Mixed integer programming models for job shop scheduling:
A computational analysis. Computers & Operations Research, 73:165–173, 2016.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
and bound with graph neural networks. Advances in neural information processing systems, 35:
32000–32010, 2022.

A Land and S Powell. Computer codes for problems of integer programming. In Annals of Discrete
Mathematics, volume 5, pp. 221–269. Elsevier, 1979.

Markus Leitner and Markus Leitner. Solving two network design problems by mixed integer pro-
gramming and hybrid optimization methods. na, 2010.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combi-
natorial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic commerce,
pp. 66–76, 2000.

Sirui Li, Wenbin Ouyang, Max Paulus, and Cathy Wu. Learning to configure separators in branch-
and-cut. Advances in Neural Information Processing Systems, 36, 2024.

Jiacheng Lin, Jialin Zhu, Huangang Wang, and Tao Zhang. Learning to branch with tree-aware
branching transformers. Knowledge-Based Systems, 252:109455, 2022.

Jeffrey T Linderoth and Ted K Ralphs. Noncommercial software for mixed-integer linear program-
ming. In Integer programming, pp. 269–320. CRC Press, 2005.

Defeng Liu, Matteo Fischetti, and Andrea Lodi. Learning to search in local branching. In Proceed-
ings of the aaai conference on artificial intelligence, volume 36, pp. 3796–3803, 2022.

Paramet Luathep, Agachai Sumalee, William HK Lam, Zhi-Chun Li, and Hong K Lo. Global
optimization method for mixed transportation network design problem: a mixed-integer linear
programming approach. Transportation Research Part B: Methodological, 45(5):808–827, 2011.

Jiaxiang Luo, Jiyin Liu, and Yueming Hu. An milp model and a hybrid evolutionary algorithm
for integrated operation optimisation of multi-head surface mounting machines in pcb assembly.
International Journal of Production Research, 55(1):145–160, 2017.

Vinod Nair, Mohammad Alizadeh, et al. Neural large neighborhood search. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020a.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020b.

Napoleão Nepomuceno, Ricardo Saboia, and André Coelho. A milp-based very large-scale neigh-
borhood search for the heterogeneous vehicle routing problem with simultaneous pickup and
delivery. In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 330–338,
2023.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dimitri J Papageorgiou, George L Nemhauser, Joel Sokol, Myun-Seok Cheon, and Ahmet B Keha.
Mirplib–a library of maritime inventory routing problem instances: Survey, core model, and
benchmark results. European Journal of Operational Research, 235(2):350–366, 2014.

Qingyu Qu, Xijun Li, Yunfan Zhou, Jia Zeng, Mingxuan Yuan, Jie Wang, Jinhu Lv, Kexin Liu, and
Kun Mao. An improved reinforcement learning algorithm for learning to branch. arXiv preprint
arXiv:2201.06213, 2022.

RN Ramlogan and IC Goulter. Mixed integer model for resource allocation in project management.
Engineering optimization, 15(2):97–111, 1989.

Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534–541, 2007.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Lara Scavuzzo, Feng Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, and
Karen Aardal. Learning to branch with tree mdps. Advances in Neural Information Processing
Systems, 35:18514–18526, 2022.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012–20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Haoran Sun, Wenbo Chen, Hui Li, and Le Song. Improving learning to branch via reinforcement
learning. 2020.

Robert Endre Tarjan and Anthony E Trojanowski. Finding a maximum independent set. SIAM
Journal on Computing, 6(3):537–546, 1977.

Joan Triadó-Aymerich, Laia Ferrer-Martı́, Alberto Garcı́a-Villoria, and Rafael Pastor. Milp-based
heuristics for the design of rural community electrification projects. Computers & Operations
Research, 71:90–99, 2016.

Mark Turner, Timo Berthold, Mathieu Besançon, and Thorsten Koch. Branching via cutting plane
selection: Improving hybrid branching. arXiv preprint arXiv:2306.06050, 2023.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. arXiv preprint arXiv:2302.00244, 2023.

Laurence A Wolsey. Mixed integer programming. Wiley Encyclopedia of Computer Science and
Engineering, pp. 1–10, 2007.

Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075–30087,
2021.

Tianxing Yang, Huigen Ye, Hua Xu, and Hongyan Wang. Mipgen: Learning to generate scalable
mip instances. 2023.

Huigen Ye, Hongyan Wang, Hua Xu, Chengming Wang, and Yu Jiang. Adaptive constraint partition
based optimization framework for large-scale integer linear programming (student abstract). In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 16376–16377,
2023a.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Huigen Ye, Hua Xu, and Hongyan Wang. Light-milpopt: Solving large-scale mixed integer linear
programs with small-scale optimizer and small training dataset. In The Twelfth International
Conference on Learning Representations, 2023b.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast opti-
mizing framework for large-scale integer programming. In International Conference on Machine
Learning, pp. 39864–39878. PMLR, 2023c.

Ryohei Yokoyama, Yuji Shinano, Syusuke Taniguchi, Masashi Ohkura, and Tetsuya Wakui. Op-
timization of energy supply systems by milp branch and bound method in consideration of hi-
erarchical relationship between design and operation. Energy conversion and management, 92:
92–104, 2015.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

Ziyan Zhao, Shixin Liu, MengChu Zhou, and Abdullah Abusorrah. Dual-objective mixed integer
linear program and memetic algorithm for an industrial group scheduling problem. IEEE/CAA
Journal of Automatica Sinica, 8(6):1199–1209, 2020.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX

This Appendix is divided into four sections. Appendix A provides details of the benchmark dataset.
Appendix B outlines the specifics of the algorithms. Appendix C presents additional experimental
results to further demonstrate the effectiveness and efficiency of ML4MILP. Finally, Appendix D
includes supplementary information on mixed-integer linear programs.

A DETAILS OF BENCHMARK DATASET

A.1 OPEN-SOURCE DATASETS

We have meticulously assembled a substantial collection of mixed integer linear programming
(MILP) instances from a variety of sources, including open-source, comprehensive datasets such
as MIPlib (Koch et al., 2011), AClib (Hutter et al., 2014), Regions200 (Leyton-Brown et al., 2000),
COR@L (Curtis), and MIRPLIB (Papageorgiou et al., 2014); domain-specific academic papers, for
example, those focusing on the robustness verification of neural networks (Nair et al., 2020b), cut
selection (Wang et al., 2023), lot-sizing polytope (Atamtürk & Munoz, 2004), maximizing diffu-
sion in networks (Ahmadizadeh et al., 2010), network designing (Atamtürk, 2002), fixed-charge
flow polytope (Atamtürk, 2001), valid inequalities (Atamtürk et al., 2001), conic cuts (Atamtürk &
Narayanan, 2010; Şen et al., 2015), and 0-1 knapsack (Atamtürk & Narayanan, 2009); and competi-
tions related to MILP, such as the ML4CO competition in NeurIPS 2021 (Gasse et al., 2022) and the
competition on Reoptimization 2023 (Bolusani et al., 2023). Details such as the number of instances
per problem (size of training and testing datasets), the average number of decision variables, and the
average number of constraints are all listed in Table 4. Due to double-blind review requirements,
the source URLs for the datasets have been excluded and will be made available after the review
process is complete.

Our analysis reveals that the ML4MILP dataset is well-populated and robust in terms of instance
count and scale. It encompasses a wide range of problem characteristics, including various numbers
of decision variables, constraint counts, and densities of coefficient matrices. This diversity makes
ML4MILP a broadly comprehensive and extensive dataset suitable for evaluating different aspects
of MILP problem-solving through machine learning techniques.

A.2 USED ASSETS

ML4MILP is an open-sourced tool, and it can be accessed at: Link. Table 5 lists the resources or
assets utilized in ML4MILP, along with their respective licenses. It is important to note that we
adhere strictly to these licenses during the development of ML4MILP.

”Need to cite” means there is no explicit license, but the repository states that the corresponding
article needs to be cited to use the dataset. For datasets prefixed with ”vary” in the ML4MILP
collection, these originate from the MIP Workshop 2023 Computational Competition (MIPcc23)
(Bolusani et al., 2023). It is essential to cite the corresponding literature when using these datasets.
Similarly, datasets such as Coral (Linderoth & Ralphs, 2005), MIPlib (Gleixner et al., 2021), and
Transportation (Gottlieb & Paulmann, 1998) also require proper citations when utilized. This en-
sures that all sources are appropriately acknowledged and that the scholarly contributions of these
resources are recognized in any analysis or publication that employs them. This practice not only
upholds academic integrity but also supports the continuity and openness of research in the field of
mixed integer linear programming.

”Readme” means there is no explicit license, but the repository’s Readme file explains that it can
be used without restriction. For the datasets labeled as Aclib, Cut, fc.data, and Nexp, detailed
information and guidelines can be found in the Readme files hosted at the Link. For the ECOGCNN
dataset, the Readme file is available at Link.

A.3 STANDARD PROBLEM INSTANCE

We generated a substantial number of standard problem instances based on nine canonical MILP
problems: Maximum Independent Set (MIS) (Tarjan & Trojanowski, 1977), Minimum Vertex Cov-
ering (MVC) (Dinur & Safra, 2005), Set Covering (SC) (Caprara et al., 2000), Mixed Integer Knap-

17

https://anonymous.4open.science/r/ML4MILP-6BE0
https://atamturk.ieor.berkeley.edu/data/readme.txt
https://plato.asu.edu/guide.html


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Name(Path) Number(Train) Number(Test) Avg.Vars Avg.Constrains
nn verification 3613 9 7144.02 6533.58
item placement 9990 10 1083 195
load balancing 9990 10 61000 64307.19

anonymous 134 4 34674.03 44498.19
HEM knapsack 9995 5 720 72

HEM mis 9979 5 500 1953.48
HEM setcover 9995 5 1000 500

HEM corlat 1979 5 466 486.17
HEM mik 85 5 386.67 311.67

vary bounds s1 45 5 3117 1293
vary bounds s2 45 5 1758 351
vary bounds s3 45 5 1758 351
vary matrix s1 45 5 802 531

vary matrix rhs bounds s1 45 5 27710 16288
vary matrix rhs bounds obj 45 5 7973 3558

vary obj s1 45 5 360 55
vary obj s2 45 5 745 26159
vary obj s3 45 5 9599 27940
vary rhs s1 45 5 12760 1501
vary rhs s2 45 5 1000 1250
vary rhs s3 45 5 63009 507
vary rhs s4 45 5 1000 1250

vary rhs obj s1 45 5 90983 33438
vary rhs obj s2 45 5 4626 8274

Aclib 89 10 181 180
Coral 272 7 18420.92 11831.01
Cut 11 3 4113 1608.57

ECOGCNN 41 3 36808.25 58768.84
fc.data 15 5 571 330.5
MIPlib 46 4 7719.98 6866.04
Nexp 72 5 9207.09 7977.14

Transportation 27 5 4871.5 2521.467
MIPLIB collection easy 639 10 119747.4 123628.3
MIPLIB collection hard 102 5 96181.4 101135.8
MIPLIB collection open 199 5 438355.9 258599.5

MIRPLIB Original 67 5 36312.2 11485.8
MIRPLIB Maritime Group1 35 5 13919.5 19329.25
MIRPLIB Maritime Group2 35 5 24639.8 34053.25
MIRPLIB Maritime Group3 35 5 24639.8 34057.75
MIRPLIB Maritime Group4 15 5 4343.0 6336.0
MIRPLIB Maritime Group5 15 5 48330.0 66812.0
MIRPLIB Maritime Group6 15 5 48330.0 66815.0

Table 4: Detailed parameter information for each open source dataset.

sack Set (MIKS) (Atamtürk, 2003), Balanced Item Placement (BIP) (Qu et al., 2022), Combinatorial
Auctions (CA) (De Vries & Vohra, 2003), Capacitated Facility Location (CFL) (An et al., 2017),
Middle-mile Consolidation Problem with Waiting Times (MMCW) (Greening et al., 2023), and
Steiner Network Problem with Coverage Constraints (SNPCC) (Huang & Dilkina, 2020).

For each type of problem, we generated instances at three levels of difficulty—easy, medium, and
hard—corresponding to problem scenarios with tens of thousands, hundreds of thousands, and mil-
lions of decision variables, respectively. The details of each problem type and the specific parameters
used for generating instances at different difficulty levels are provided below.

Maximum Independent Set problem: Consider an undirected graph G = (V, E), a subset of nodes
S ∈ V is called an independent set iff there is no edge e ∈ E between any pair of nodes in S. The
maximal independent set problem is to find an independent set in G of maximum cardinality. If we
set binary variable vector x as the decision variables. xv = 1 determines node v ∈ V is is chosen in
the independent set, and 0 otherwise, MIS problem can be represented as follows.

max
∑
v∈V

xv

s.t. xu + xv ≤ 1,∀(u, v) ∈ E ,
xv ∈ {0, 1},∀v ∈ V.

(3)

Minimum Vertex Covering problem: Consider an undirected graph G = (V, E), a subset of nodes
S ∈ V is called a covering set iff for any edge e ∈ E at least one of its endpoints is included in the
set S . The minimum vertex covering problem is to find a covering set in G of minimum cardinality.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Name(Path) License Source
nn verification CC BY 4.0 Link
item placement BSD 3-Clause License Link
load balancing BSD 3-Clause License Link

anonymous BSD 3-Clause License Link
HEM knapsack MIT Link

HEM mis MIT Link
HEM setcover MIT Link

HEM corlat MIT Link
HEM mik MIT Link

vary bounds s1 Need to cite Link
vary bounds s2 Need to cite Link
vary bounds s3 Need to cite Link
vary matrix s1 Need to cite Link

vary matrix rhs bounds s1 Need to cite Link
vary matrix rhs bounds obj Need to cite Link

vary obj s1 Need to cite Link
vary obj s2 Need to cite Link
vary obj s3 Need to cite Link
vary rhs s1 Need to cite Link
vary rhs s2 Need to cite Link
vary rhs s3 Need to cite Link
vary rhs s4 Need to cite Link

vary rhs obj s1 Need to cite Link
vary rhs obj s2 Need to cite Link

Aclib Readme Link
Coral Need to cite Link
Cut Readme Link

ECOGCNN Readme Link
fc.data Readme Link

MIPlib collection easy Need to cite Link
MIPlib collection hard Need to cite Link
MIPlib collection open Need to cite Link

MIRPLIB Original BSD 3-Clause License Link
MIRPLIB Maritime Group1 BSD 3-Clause License Link
MIRPLIB Maritime Group2 BSD 3-Clause License Link
MIRPLIB Maritime Group3 BSD 3-Clause License Link
MIRPLIB Maritime Group4 BSD 3-Clause License Link
MIRPLIB Maritime Group5 BSD 3-Clause License Link
MIRPLIB Maritime Group6 BSD 3-Clause License Link

Nexp Readme Link
Transportation Need to cite Link

Table 5: License of each open source dataset. ”Need to cite” means there is no explicit license, but
the repository states that the corresponding article needs to be cited to use the dataset and it can be
used without restriction. ”Readme” means there is no explicit license, but the repository’s Readme
file explains that it can be used without restriction.

19

s://storage.cloud.google.com/neural-mip-solving/nn_verification.tar.gz
https://drive.google.com/file/d/1MytdY3IwX_aFRWdoc0mMfDN9Xg1EKUuq/view?usp=sharing
https://drive.google.com/file/d/1MytdY3IwX_aFRWdoc0mMfDN9Xg1EKUuq/view?usp=sharing
https://drive.google.com/file/d/1MytdY3IwX_aFRWdoc0mMfDN9Xg1EKUuq/view?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_bounds/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_bounds/series_2
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_bounds/series_3
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_matrix/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_matrix_rhs_bounds/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_matrix_rhs_bounds_obj/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_obj/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_obj/series_2
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_obj/series_3
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs/series_2
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs/series_3
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs/series_4
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs_obj/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs_obj/series_2
http://ieor.berkeley.edu/~atamturk/data/capacitated.lotsizing/cls.data.tar.gz
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
https://atamturk.ieor.berkeley.edu/data/cut.set/
https://plato.asu.edu/ftp/path/
https://atamturk.ieor.berkeley.edu/data/fixed.charge.network.flow/
https://plato.asu.edu/ftp/milp/
https://plato.asu.edu/ftp/milp/
https://plato.asu.edu/ftp/milp/
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://atamturk.ieor.berkeley.edu/data/additive.variable.upper.bounds/
https://plato.asu.edu/ftp/lptestset/fctp/


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

If we set binary variable vector x as the decision variables. xv = 1 determines node v ∈ V is chosen
in the covering set, and 0 otherwise, MVC problem can be represented as follows.

min
∑
v∈V

xv

s.t. xu + xv ≥ 1,∀(u, v) ∈ E ,
xv ∈ {0, 1},∀v ∈ V.

(4)

Minimum Vertex Covering problem: Given a finite set U = {1, 2, . . . , n} and a collection of
m subsets S1, . . . , Sn of U , where each subset Si is associated with a cost ci. The SC problem
involves selecting a combination of these subsets such that every element in the universal set U is
included in at least one of the chosen subsets, while minimizing the total cost of the selected subsets.
In mathematical terms, we define a binary selection variable xi for each subset Si, where xi = 1
indicates that the subset Si is selected and xi = 0 otherwise. SC problem can be represented as
follows.

min

m∑
i=1

xi ∗ ci

s.t.

m∑
i=1

xi ∗ (Uj ∈ Si) ≥ 1,∀j ∈ [1, n],

xi ∈ {0, 1},∀i.

(5)

Mixed Integer Knapsack Set Problem: The Mixed Integer Knapsack Set (MIKS) problem is a
variant of resource allocation problems, where a collection of sets is used to cover a set of items, but
with the flexibility that some sets can be partially selected while others must be fully included. This
problem is commonly encountered in logistics, data center management, and resource allocation,
where both discrete and continuous decisions are required. Given N sets and M items, each item
must be covered by at least one of the sets. The goal is to minimize the total cost of selecting the
sets, where some decision variables are binary (indicating full inclusion or exclusion of a set) and
others are continuous (allowing partial inclusion). Let xi represent the decision variable for set i,
where xi = 1 if set i is fully selected, and 0 ≤ xi ≤ 1 if set i is partially selected. Each item j must
be covered by at least one set that contains it. The problem can be formulated as follows:

min

N∑
i=1

cixi

s.t.
∑

i:j∈Si

xi ≥ 1, ∀j ∈ {1, 2, . . . ,M},

0 ≤ xi ≤ 1, ∀i ∈ {1, 2, . . . , N},
xi ∈ {0, 1} or [0, 1], ∀i ∈ {1, 2, . . . , N}.

(6)

Where xi is the decision variable associated with set i, ci is the cost associated with selecting set i,
and Si is the subset of items covered by set i. a new constraint ensures that each item j is covered
by at least one selected set, while the second constraint bounds the decision variables between 0 and
1. Some decision variables are binary, meaning sets must be fully selected or excluded, while others
can take continuous values, allowing partial selection. The objective is to minimize the total cost of
the selected sets while ensuring that every item is covered by at least one set. This mixed-integer
formulation is particularly useful in scenarios where full or partial inclusion of resources is possible,
providing a more flexible and realistic solution to resource allocation problems.

Balanced Item Placement problem: The Balanced Item Placement (BIP) problem arises in sce-
narios where items must be distributed across a set of buckets in such a way that the total load
is balanced across the buckets. Each bucket has multiple resource constraints, and the goal is to
minimize the imbalance in the bucket loads across these resource dimensions. This problem is com-
monly encountered in logistics, load balancing in distributed systems, and resource allocation in

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

cloud computing, where items (or tasks) need to be placed into buckets (or servers) under capac-
ity constraints. Given N items and B buckets, each bucket has R resource dimensions (such as
weight, volume, or processing time). The objective is to distribute the items such that the maximum
imbalance (deficit) across resource dimensions is minimized. The deficit in a particular dimension
refers to the difference between the total resource used in that dimension and the target balanced
load for that dimension across all buckets. Let xi,j be a binary decision variable where xi,j = 1 if
item i is placed in bucket j, and xi,j = 0 otherwise. Let deficitj,r represent the deficit for bucket j
in resource dimension r, and let max deficitr represent the maximum deficit across all buckets for
resource dimension r. The BIP problem is formulated as follows:

min

R∑
r=1

max deficitr

s.t.
B∑

j=1

xi,j = 1, ∀i ∈ {1, 2, . . . , N},

N∑
i=1

wi,j,rxi,j ≤ Cj,r, ∀j ∈ {1, 2, . . . , B},∀r ∈ {1, 2, . . . , R},

deficitj,r =

∑N
i=1 wi,j,rxi,j

Wr
, ∀j ∈ {1, 2, . . . , B},∀r ∈ {1, 2, . . . , R},

max deficitr ≥ deficitj,r, ∀j ∈ {1, 2, . . . , B},∀r ∈ {1, 2, . . . , R},
xi,j ∈ {0, 1}, ∀i ∈ {1, 2, . . . , N},∀j ∈ {1, 2, . . . , B},
deficitj,r,max deficitr ≥ 0, ∀j ∈ {1, 2, . . . , B},∀r ∈ {1, 2, . . . , R}.

(7)

Where xi,j is a binary decision variable indicating whether item i is placed in bucket j; wi,j,r is the
weight (or resource consumption) of item i in bucket j for resource dimension r; Cj,r is the capacity
of bucket j in resource dimension r; Wr is the total weight across all buckets for dimension r (used
for normalization); deficitj,r measures the imbalance in resource usage for bucket j in dimension
r; and max deficitr is the maximum deficit across all buckets for dimension r. The objective is to
minimize the sum of the maximum deficits across all resource dimensions, ensuring that the load is
as balanced as possible across buckets for each resource dimension.

Combinatorial Auction Problem: The Combinatorial Auction (CA) problem arises in auctions
where bidders can place bids on combinations of items, rather than on individual items. The auc-
tioneer’s goal is to select a combination of bids that maximizes the total revenue while ensuring that
each item is allocated to at most one bidder. This problem is commonly encountered in spectrum
auctions, logistics, and online marketplaces, where items are complementary, and bidders value
combinations of items more than individual ones. Given N bids and M items, each bid corresponds
to a subset of items and has an associated value. The objective is to select a set of bids that maxi-
mizes the total value, subject to the constraint that each item can be allocated to at most one bid. Let
xi represent a binary decision variable where xi = 1 if bid i is selected and xi = 0 otherwise. The
problem can be formulated as follows:

max

N∑
i=1

cixi

s.t.
∑

i:j∈Si

xi ≤ 1, ∀j ∈ {1, 2, . . . ,M},

xi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , N}.

(8)

Where xi is a binary decision variable indicating whether bid i is selected, ci is the value (or cost)
associated with bid i, and Si is the subset of items associated with bid i. a new constraint ensures
that each item j is allocated to at most one bid by restricting the sum of the selected bids that include
item j to be less than or equal to 1. The objective is to maximize the total value of the selected bids
while ensuring that no item is allocated to more than one bidder. In this problem, each bid can be

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

interpreted as a subset of items, and the goal is to find the optimal set of non-overlapping bids that
yields the maximum revenue.

Capacitated Facility Location Problem: The Capacitated Facility Location (CFL) problem is a
classical optimization problem in logistics and operations research. The objective is to determine
the optimal locations for facilities (such as factories or warehouses) and the allocation of customers
to these facilities, while respecting the capacity constraints of each facility and minimizing the total
cost. In this problem, there are N customers, M facilities, and K possible connections between
customers and facilities. Each facility has a limited capacity, and each customer has a demand that
must be met by one or more facilities. The aim is to minimize the overall cost, which includes the
cost of opening facilities and the cost of assigning customers to open facilities. Let xi,j be a binary
decision variable where xi,j = 1 if customer i is assigned to facility j, and yj = 1 if facility j is
opened. The problem can be formulated as follows:

min

N∑
i=1

M∑
j=1

ci,jxi,j +

M∑
j=1

fjyj

s.t.
M∑
j=1

xi,j = 1, ∀i ∈ {1, 2, . . . , N},

N∑
i=1

dixi,j ≤ Cjyj , ∀j ∈ {1, 2, . . . ,M},

xi,j ∈ {0, 1}, ∀i ∈ {1, 2, . . . , N},∀j ∈ {1, 2, . . . ,M},
yj ∈ {0, 1}, ∀j ∈ {1, 2, . . . ,M}.

(9)

Where xi,j is a binary decision variable denoting whether customer i is assigned to facility j, and
yj is a binary decision variable indicating whether facility j is opened. The objective function
minimizes the total cost, which includes the assignment costs ci,j of connecting customer i to facility
j, and the fixed costs fj of opening facility j. a new set of constraints ensures that each customer
i is assigned to exactly one facility. The second set of constraints ensures that the total demand
of customers assigned to facility j does not exceed its capacity Cj if the facility is opened (i.e.,
if yj = 1). The third and fourth constraints enforce the binary nature of the decision variables,
meaning that customer assignments and facility openings are either fully made or not made.

Middle-Mile Consolidation with Waiting Times: The Middle-Mile Consolidation problem shows
as follows.

min
∑
r∈R

Crxr +
∑
l∈L

∑
m∈Ml

(Almflm +Blmvlm)

s.t.
∑

r∈Rk

xr = 1, ∀k ∈ K,

∑
m∈Ml

vlm =
∑
k∈K

Vkxr, ∀l ∈ L,

vlm ≤ Qmax
lm flm, ∀l ∈ L, ∀m ∈ Ml,

vlm ≥ Qmin
lmflm, ∀l ∈ L, ∀m ∈ Ml,∑

m∈Ml

ylm ≤ 1, ∀l ∈ L,

flm ≤ Flmylm, ∀l ∈ L, ∀m ∈ Ml,

xr ∈ {0, 1}, ∀r ∈ R,

ylm ∈ {0, 1}, ∀l ∈ L, ∀m ∈ Ml,

flm ∈ Z≥0, ∀l ∈ L, ∀m ∈ Ml,

vlm ≥ 0, ∀l ∈ L,∀m ∈ Ml.

(10)

It focuses on selecting appropriate freight routes and determining load dispatch frequencies to min-
imize total transportation costs while ensuring that all commodity volumes are transported feasibly.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Shipment lead times are determined by the legs and transfer terminals along each route. The goal is
to select a joint set of freight routes and load dispatch frequencies such that all commodity volumes
are transported while minimizing the overall transportation cost. In this formulation, the cost to be
minimized includes the handling cost for selecting routes and the cost of load dispatches and vol-
umes transported on each lane. The constraints ensure that each commodity is assigned exactly one
route, volumes on each lane are correctly allocated, and dispatches fall within the required capacity
limits.

Steiner Network Problem with Coverage Constraints: The Steiner Network Problem with Cov-
erage Constraints is a variation of the classical Steiner Tree Problem, where we seek to connect a set
of terminal nodes in a graph such that certain coverage and flow constraints are met. The problem
can be formulated as the following flow-based Mixed-Integer Linear Program (MILP). The goal is
to minimize the total cost of selected edges while ensuring that coverage constraints are satisfied.

min
∑

(i,j)∈E

c(i, j)(xi,j + xj,i)

s.t.
∑

e∈δ−(v)

ye = 1[v ∈ C] +
∑

e∈δ+(v)

(ye + xe) , ∀v ∈ V,

xi,j + xj,i ≤ 1, ∀(i, j) ∈ E,∑
(i,j)∈S(r)

(xi,j + xj,i) ≥ 1, ∀r ∈ R,

0 ≤ ye ≤ (|Ê|+ |V |)xe, ∀e ∈ Ê,

z +
∑
t∈T

y0,t = |Ê|+ |V |,

∑
t∈T

y0,t = |C|+
∑
e∈Ê

xe,

xe ∈ {0, 1}, ∀e ∈ Ê.

(11)

In this formulation, the objective function minimizes the total cost of selected edges. a new con-
straint ensures that flow conservation is maintained at each node, with nodes absorbing flow if they
are in the coverage set C. The second constraint ensures that each edge between nodes i and j is
selected at most once. The third constraint guarantees that at least one edge from each set S(r) is
selected. The fourth constraint relates the flow on edge e to its selection. The fifth and sixth con-
straints ensure that the total flow injected into the system corresponds to the required flow to cover
the nodes in C and selected edges. Finally, the decision variables xe are binary, indicating whether
an edge is selected or not.

As shown in Table 6, for each of the nine problem types, we generated instances of three different
scales (easy, medium, and hard) to ensure that our benchmarks cover a wide range of complexities
and sizes. Each scale is designed to accommodate different computational capacities and research
needs, including large-scale problems. The table below summarizes the number of instances, aver-
age number of variables, and average number of constraints for each problem type and scale.

A.4 TRAINING AND TESTING DATASET PARTITION

For training and testing, we have randomly partitioned the problem data into training and testing
datasets, the result of testing dataset is shown in Table 7 and Table 8.

B DETAILS OF ALGORITHM

B.1 ADAPTIVE CONSTRAINT PARTITION BASED OPTIMIZATION FRAMEWORK

Starting with the initial feasible solution gained from Gurobi, the Adaptive Constraint Partition
Based Optimization Framework (ACP) attempts to iteratively enhance the current solution. Initially,
constraints are randomly partitioned into disjoint blocks. In each iteration, only one block is consid-
ered, and the variables within this block are optimized while the values of other variables are fixed at

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Name (Path) Number of Instances Avg. Vars Avg. Constraints
MIS easy 50 20000 60000

MIS medium 50 100000 300000
MIS hard 50 1000000 3000000

MVC easy 50 20000 60000
MVC medium 50 100000 300000

MVC hard 50 1000000 3000000
SC easy 50 40000 40000

SC medium 50 200000 200000
SC hard 50 2000000 2000000
BIP easy 50 4081 290

BIP medium 50 14182 690
BIP hard 50 54584 2090
CAT easy 50 2000 2000

CAT medium 50 22000 22000
CAT hard 50 2000000 2000000
CFL easy 50 16040 80

CFL medium 50 144200 320
CFL hard 50 656520 800

MIKS easy 50 5000 5000
MIKS medium 50 55000 55000

MIKS hard 50 1000000 1000000
MMCW easy 50 5760 2880

MMCW medium 50 55260 27630
MMCW hard 50 253980 126990
SNPCC easy 50 3000 30

SNPCC medium 50 15000 151
SNPCC hard 50 240000 2405

Table 6: Summary of Generated Instances for Nine Problem Types

the levels of the current optimal feasible solution. The number of blocks is adaptively updated based
on the objective value improvement observed over the last two iterations, using a preset threshold.
After the designated time (e.g., 8 hours), ACP terminates, and the improved solution x∗ is used
to update the Gurobi-derived solution x and is packaged into a pickle file along with the problem
instance.

B.2 SIMILARITY EVALUATION METRICS

Specifically, we detail an embedding approach representing MILP instances as a 10-dimensional em-
bedding, capturing fundamental aspects of the mathematical formulation and bipartite graph charac-
teristics. This vector includes metrics such as Fraction of non-zero entries in the coefficient matrix,
Mean and standard deviation of the degrees of constraint vertices, Mean and standard deviation of
the degrees of variable vertices, Mean and standard deviation of non-zero entries in the coefficient
matrix, Mean and standard deviation of RHS values, and Modularity of the bipartite graph represen-
tation.

It is noted that, using embeddings alone is not sufficient to determine the isomorphism of datasets. To
ensure the robustness of our classification, we employed two levels of similarity evaluation metrics.
a new metric assesses the structural similarity of problem instances within the dataset, while the
second metric evaluates the similarity at the embedding level. These two metrics complement each
other, providing a more comprehensive assessment of the dataset’s classification quality. Figure 5
in the main text illustrates the similarity of subproblems after classification, showing that structural
and embedding similarities corroborate each other, indicating a degree of robustness. Additionally,
the experimental results discussed in Figure 6 and 7, comparing before and after reclassification,
further validate the effectiveness of our graph classification approach.

C DETAILS OF EXPERIMENTS

C.1 EXPERIMENTS ENVIRONMENTS

All experiments are run on a machine with Intel Xeon Platinum 8375C @ 2.90GHz CPU and four
NVIDIA TESLA V100(32G) GPUs. Each scale of any Benchmark MILP is tested on several in-
stances, and the results shown are the average of the five results.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

MIPLIB
(Minimize)

30 70 4.5 0.5 10.lp
anonymous
(Minimize)

anonymous 5.lp
30 70 4.5 0.5 100.lp anonymous 29.lp

mkc1.lp anonymous 39.lp
neos14.lp anonymous 76.lp

Coral
(Minimize)

neos-548251.lp

Transportation
(Minimize)

n3701.lp
neos-582605.lp n3704.lp
neos-584146.lp n3705.lp
neos-847302.lp n3707.lp
neos-935496.lp n3709.lp
neos-935674.lp

neos-1430811.lp

Cut
(Minimize)

n3-3.lp ECOGCNN
(Minimize)

ns3337549.lp
n9-3.lp ns4165869.lp
n15-3.lp u40t24ramp.lp

item placement
(Minimize)

item placement 0.lp

load balancing
(Minimize)

load balancing 15.lp
item placement 3.lp load balancing 16.lp
item placement 18.lp load balancing 18.lp
item placement 24.lp load balancing 30.lp
item placement 27.lp load balancing 34.lp
item placement 34.lp load balancing 61.lp
item placement 35.lp load balancing 67.lp
item placement 45.lp load balancing 73.lp
item placement 46.lp load balancing 80.lp
item placement 49.lp load balancing 87.lp

Nexp
(Minimize)

germanrr.lp

vary bounds s1
(Minimize)

bnd s1 i01.lp
p6b.lp bnd s1 i02.lp

ramos3.lp bnd s1 i03.lp
seymour.disj-10.lp bnd s1 i04.lp

sp98ar.lp bnd s1 i05.lp

vary bounds s2
(Minimize)

bnd s2 i01.lp

vary bounds s3
(Minimize)

bnd s3 i01.lp
bnd s2 i02.lp bnd s3 i02.lp
bnd s2 i03.lp bnd s3 i03.lp
bnd s2 i04.lp bnd s3 i04.lp
bnd s2 i05.lp bnd s3 i05.lp

vary matrix s1
(Minimize)

mat s1 i01.lp

vary matrix rhs bounds s1
(Minimize)

mat rhs bnd s1 i09.lp
mat s1 i02.lp mat rhs bnd s1 i17.lp
mat s1 i03.lp mat rhs bnd s1 i33.lp
mat s1 i04.lp mat rhs bnd s1 i43.lp
mat s1 i05.lp mat rhs bnd s1 i47.lp

vary matrix rhs bounds obj
(Minimize)

mat rhs bnd obj s1 i01.lp

vary obj s1
(Minimize)

obj s1 i01.lp
mat rhs bnd obj s1 i02.lp obj s1 i02.lp
mat rhs bnd obj s1 i04.lp obj s1 i03.lp
mat rhs bnd obj s1 i15.lp obj s1 i04.lp
mat rhs bnd obj s1 i38.lp obj s1 i05.lp

vary obj s2
(Minimize)

obj s2 i11.lp

vary obj s3
(Minimize)

obj s3 i01.lp
obj s2 i21.lp obj s3 i02.lp
obj s2 i22.lp obj s3 i03.lp
obj s2 i44.lp obj s3 i04.lp
obj s2 i49.lp obj s3 i05.lp

vary rhs s1
(Minimize)

rhs s1 i01.lp

vary rhs s2
(Minimize)

rhs s2 i01.lp
rhs s1 i02.lp rhs s2 i02.lp
rhs s1 i03.lp rhs s2 i03.lp
rhs s1 i04.lp rhs s2 i04.lp
rhs s1 i36.lp rhs s2 i05.lp

vary rhs s3
(Minimize)

rhs s3 i01.lp

vary rhs s4
(Minimize)

rhs s4 i01.lp
rhs s3 i02.lp rhs s4 i02.lp
rhs s3 i33.lp rhs s4 i03.lp
rhs s3 i35.lp rhs s4 i04.lp
rhs s3 i39.lp rhs s4 i05.lp

Table 7: The result of testing dataset partition, Part A.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

vary rhs obj s1
(Minimize)

rhs obj s1 i19.lp

vary rhs obj s2
(Minimize)

rhs obj s2 i01.lp
rhs obj s1 i21.lp rhs obj s2 i13.lp
rhs obj s1 i27.lp rhs obj s2 i18.lp
rhs obj s1 i46.lp rhs obj s2 i26.lp
rhs obj s1 i48.lp rhs obj s2 i43.lp

IS easy
(Maximize)

IS easy instance 5.lp

IS medium
(Maximize)

IS medium instance 0.lp
IS easy instance 7.lp IS medium instance 8.lp
IS easy instance 9.lp IS medium instance 11.lp
IS easy instance 14.lp IS medium instance 22.lp
IS easy instance 21.lp IS medium instance 29.lp

IS hard
(Maximize)

IS hard instance 2.lp

fc.data
(Minimize)

fc.30.50.1.lp
IS hard instance 3.lp fc.30.50.2.lp
IS hard instance 7.lp fc.30.50.3.lp
IS hard instance 15.lp fc.30.50.4.lp
IS hard instance 16.lp fc.30.50.10.lp

nn verification
(Maximize)

test 120.proto.lp

Aclib
(Minimize)

cls.T90.C2.F500.S2.lp
test 1082.proto.lp cls.T90.C2.F500.S3.lp
test 1087.proto.lp cls.T90.C3.F100.S5.lp
test 1112.proto.lp cls.T90.C3.F500.S2.lp
test 1116.proto.lp cls.T90.C3.F500.S5.lp
test 1231.proto.lp cls.T90.C4.F100.S4.lp
test 1987.proto.lp cls.T90.C4.F500.S4.lp
test 5470.proto.lp cls.T90.C4.F1000.S1.lp

training 47482.proto.lp cls.T90.C5.F250.S4.lp
cls.T90.C5.F1000.S2.lp

MVC easy
(Minimize)

MVC easy instance 1.lp

MVC medium
(Minimize)

MVC medium instance 0.lp
MVC easy instance 14.lp MVC medium instance 4.lp
MVC easy instance 16.lp MVC medium instance 9.lp
MVC easy instance 19.lp MVC medium instance 11.lp
MVC easy instance 22.lp MVC medium instance 22.lp

MVC hard
(Minimize)

MVC hard instance 2.lp

SC easy
(Minimize)

SC easy instance 3.lp
MVC hard instance 5.lp SC easy instance 9.lp
MVC hard instance 6.lp SC easy instance 12.lp

MVC hard instance 27.lp SC easy instance 22.lp
MVC hard instance 28.lp SC easy instance 26.lp

SC medium
(Minimize)

SC medium instance 4.lp

SC hard
(Minimize)

SC hard instance 7.lp
SC medium instance 5.lp SC hard instance 13.lp

SC medium instance 10.lp SC hard instance 21.lp
SC medium instance 16.lp SC hard instance 25.lp
SC medium instance 18.lp SC hard instance 27.lp

HEM knapsack
(Maximize)

instance 46.lp

HEM mis
(Maximize)

instance 119.lp
instance 152.lp instance 372.lp
instance 270.lp instance 557.lp
instance 864.lp instance 848.lp
instance 875.lp instance 855.lp

HEM setcover
(Minimize)

instance 22.lp

HEM corlat
(Maximize)

cor-lat-2f+r-u-10-10-10-5-100-3.003.b78.000000.prune2.lp
instance 446.lp cor-lat-2f+r-u-10-10-10-5-100-3.003.b85.000000.prune2.lp
instance 521.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b78.000000.prune2.lp
instance 762.lp cor-lat-2f+r-u-10-10-10-5-100-3.007.b660.000000.prune2.lp
instance 997.lp cor-lat-2f+r-u-10-10-10-5-100-3.008.b92.000000.prune2.lp

HEM mik
(Minimize)

mik.250-10-50.1.lp
mik.250-10-100.1.lp
mik.250-10-100.3.lp
mik.250-10-100.5.lp
mik.250-20-100.3.lp

Table 8: The result of testing dataset partition, Part B.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C.2 DATASET ANALYSIS

It involved measuring both graph structural embedding distances and neural embedding distances
and comparing these metrics with those from established MILP datasets. We restricted our compar-
ison to representative problems containing fewer than 50,000 decision variables to manage compu-
tational demands.

C.3 DATASET RECLASSIFICATION

For some datasets, especially those collected from open-source datasets, the problem instances gen-
erated from various scenarios are often mixed, leading to a highly complex distribution. Therefore,
we employed the spectral clustering algorithm to categorize the complete datasets. The result is
shown as follows.

MIPlib:

• Cluster 0: []

• Cluster 1: [’swath2.pkl’, ’neos9.pkl’, ’swath1.pkl’, ’swath3.pkl’, ’neos818918.pkl’,
’neos648910.pkl’, ’mkc1.pkl’]

• Cluster 2: [’bienst1.pkl’, ’bienst2.pkl’]

• Cluster 3: [’ns183.pkl’, ’30 70 45 05 100.pkl’, ’seymour1.pkl’, ’30 70 45 095 100.pkl’,
’dano3 4.pkl’, ’30 70 45 05 10.pkl’, ’neos17.pkl’, ’dano3 3.pkl’, ’ns1830653.pkl’,
’30 70 45 095 98.pkl’, ’dano3 5.pkl’]

• Cluster 4: [’neos3.pkl’, ’neos12.pkl’, ’neos23.pkl’, ’neos808444.pkl’, ’bc1.pkl’, ’neos2.pkl’,
’neos1.pkl’, ’neos22.pkl’, ’neos11.pkl’, ’neos6.pkl’, ’markshare 5 0.pkl’, ’neos823206.pkl’]

• Cluster 5: [’neos8.pkl’, ’neos10.pkl’]

• Cluster 6: []

• Cluster 7: [’neos5.pkl’, ’ran14x18 1.pkl’, ’ns1648184.pkl’, ’neos20.pkl’, ’neos21.pkl’,
’ns1688347.pkl’, ’nug08.pkl’, ’ns1692855.pkl’, ’neos897005.pkl’, ’neos7.pkl’, ’neos13.pkl’,
’markshare 4 0.pkl’, ’neos14.pkl’, ’qap10.pkl’, ’neos4.pkl’, ’ns1671066.pkl’]

Coral:

• Cluster 0: [’neos-841664.pkl’, ’neos-796608.pkl’, ’leo1.pkl’, ’neos-1112782.pkl’, ’neos-
1053234.pkl’, ’neos-631517.pkl’, ’neos-1171448.pkl’, ’neos-584146.pkl’, ’neos-885524.pkl’, ’neos-
1171692.pkl’, ’neos-801834.pkl’, ’neos-848198.pkl’, ’neos-1211578.pkl’, ’neos-1324574.pkl’,
’neos-1228986.pkl’, ’neos-504674.pkl’, ’neos-619167.pkl’, ’neos-933550.pkl’, ’neos-1096528.pkl’,
’neos-807639.pkl’, ’neos-810286.pkl’, ’neos-693347.pkl’, ’neos-934531.pkl’, ’neos-960392.pkl’,
’neos-906865.pkl’, ’d20200.pkl’, ’neos-1367061.pkl’, ’binkar10 1.pkl’, ’neos-1224597.pkl’, ’neos-
582605.pkl’, ’neos-955800.pkl’, ’neos-1056905.pkl’, ’neos-595925.pkl’, ’neos-548251.pkl’, ’neos-
1061020.pkl’, ’neos-885086.pkl’, ’neos-1425699.pkl’]

• Cluster 1: [’neos-785899.pkl’, ’neos-570431.pkl’, ’neos-933364.pkl’, ’neos-933815.pkl’]

• Cluster 2: [’neos-785914.pkl’, ’neos-1413153.pkl’, ’neos-555001.pkl’, ’neos-551991.pkl’, ’neos-
555884.pkl’, ’neos-1415183.pkl’, ’neos-631784.pkl’, ’neos-738098.pkl’, ’neos-578379.pkl’]

• Cluster 3: [’neos-941717.pkl’, ’neos-1440225.pkl’, ’neos-1208069.pkl’, ’neos-1151496.pkl’, ’neos-
848845.pkl’, ’neos-912023.pkl’, ’neos-847302.pkl’, ’neos-808214.pkl’]

• Cluster 4: [’neos-948268.pkl’, ’neos-829552.pkl’, ’neos-501453.pkl’, ’neos-1427181.pkl’, ’bi-
enst1.pkl’, ’neos-611838.pkl’, ’neos-1427261.pkl’, ’mcsched.pkl’, ’neos-1436713.pkl’, ’neos-
612162.pkl’, ’bienst2.pkl’, ’neos-1429185.pkl’]

• Cluster 5: []

• Cluster 6: []

• Cluster 7: [’aligninq.pkl’, ’neos-595905.pkl’, ’neos-791021.pkl’, ’neos-691073.pkl’, ’neos-
957323.pkl’, ’neos-916173.pkl’, ’neos-1330635.pkl’, ’neos-494568.pkl’, ’neos-555771.pkl’, ’neos-
935348.pkl’, ’neos-936660.pkl’, ’neos-954925.pkl’, ’neos-824695.pkl’, ’neos-1420546.pkl’, ’neos-
937815.pkl’, ’neos-1120495.pkl’, ’neos-1311124.pkl’, ’dano3 3.pkl’, ’neos-826812.pkl’, ’neos-
935769.pkl’, ’neos-1429461.pkl’, ’neos-585192.pkl’, ’neos-530627.pkl’, ’neos-662469.pkl’, ’neos-
476283.pkl’, ’neos-498623.pkl’, ’neos-1058477.pkl’, ’neos-480878.pkl’, ’neos-633273.pkl’, ’neos-
799711.pkl’, ’neos-1426662.pkl’, ’neos-803219.pkl’, ’neos-1440447.pkl’, ’neos-941262.pkl’, ’neos-
565815.pkl’, ’neos-826841.pkl’, ’neos-522351.pkl’, ’neos-937511.pkl’]

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Nexp:

• Cluster 0: [’neos-1603512.pkl’, ’fiball.pkl’, ’bienst1.pkl’, ’newdano.pkl’, ’neos16.pkl’, ’neos-
1603518.pkl’, ’neos14.pkl’, ’neos15.pkl’, ’bienst2.pkl’, ’mkc1.pkl’]

• Cluster 1: [’neos-1622252.pkl’, ’neos-1599274.pkl’, ’ran14x18disj-8.pkl’, ’neos20.pkl’, ’neos-
1603965.pkl’, ’rlp1.pkl’, ’p6b.pkl’, ’neos-1616732.pkl’, ’seymourdisj-10.pkl’, ’pg5 34.pkl’,
’d20200.pkl’, ’neos4.pkl’, ’neos-1620770.pkl’, ’mcf2.pkl’, ’prod2.pkl’]

• Cluster 2: [’leo1.pkl’, ’neos12.pkl’, ’nug08.pkl’, ’neos1.pkl’, ’neos-1620807.pkl’, ’neos11.pkl’,
’neos7.pkl’, ’neos-1593097.pkl’, ’roy.pkl’, ’neos-1595230.pkl’, ’qap10.pkl’, ’neos18.pkl’, ’neos-
1582420.pkl’]

• Cluster 3: [’neos5.pkl’, ’neos-1605061.pkl’, ’ramos3.pkl’, ’aligninq.pkl’, ’sp97ic.pkl’, ’neos-
1605075.pkl’, ’leo2.pkl’, ’neos-1601936.pkl’, ’mcsched.pkl’, ’sp98ir.pkl’, ’sp98ar.pkl’]

• Cluster 4: [’prod1.pkl’, ’haprp.pkl’, ’neos17.pkl’, ’lrn.pkl’, ’nsa.pkl’, ’neos-1516309.pkl’, ’pg.pkl’]

• Cluster 5: [’22433.pkl’, ’d1020.pkl’, ’dano3 4.pkl’, ’23588.pkl’, ’dano3 3.pkl’, ’dano3 5.pkl’,
’d10200.pkl’]

• Cluster 6: [’neos3.pkl’, ’ran14x18 1.pkl’, ’neos2.pkl’]

• Cluster 7: []

ECOGCNN:

• Cluster 0: [’ns2382816.pkl’, ’ns3633010.pkl’, ’ns2081729.pkl’, ’ns2394796.pkl’, ’neos-
849702.pkl’, ’ns3134812.pkl’]

• Cluster 1: [’ns43503.pkl’, ’ns2164569.pkl’]

• Cluster 2: [’ns2082847.pkl’, ’u50t24wc.pkl’, ’ns2369235.pkl’, ’ns2996139.pkl’, ’ns2070961.pkl’,
’ns4636843.pkl’]

• Cluster 3: [’ns2326618.pkl’, ’ns2494475.pkl’, ’ns3337549.pkl’, ’ns1943024.pkl’, ’ns2071214.pkl’,
’u30t24ramp.pkl’]

• Cluster 4: [’ns2267839.pkl’, ’ns2350781.pkl’]

• Cluster 5: [’chrom 512.pkl’, ’chrom 256.pkl’, ’u40t24ramp.pkl’, ’u40t24wc.pkl’]

• Cluster 6: []

• Cluster 7: []

C.4 SETTINGS OF BENCHMARKING STUDY

In our benchmarking study, hyperparameter selection played a crucial role in optimizing the per-
formance of the baseline algorithms. We employed different strategies for hyperparameter tuning
across the various methods tested in this study. While some algorithms performed well with default
settings, others required manual tuning of specific hyperparameters to improve their performance on
complex problem instances.

We evaluated six baseline algorithms in the main text: Gurobi, SCIP, LNS, ACP, Learn2Branch,
and GNN&GBDT. For Gurobi and SCIP, we used the default solver settings, as these configurations
are generally well-optimized for a wide range of problems and provide strong performance without
requiring further adjustments.

For the other algorithms—LNS, ACP, Learn2Branch, and GNN&GBDT—manual hyperparameter
tuning was necessary. This tuning process involved adjusting key hyperparameters, such as learning
rates, batch sizes, and neural network architectures, depending on the algorithm and the specific
problem type. Our goal was to achieve better performance, particularly on more complex and chal-
lenging problem instances.

In addition to the six baseline algorithms, we also included four additional machine learning-based
algorithms: Neural Diving, Predict&Search, Hybrid Learn2Branch, and GNN-MILP. Similar to the
previously mentioned methods, we applied careful hyperparameter tuning for these algorithms to
ensure optimal performance. The default settings of Gurobi and SCIP were retained, while the other
eight algorithms underwent a systematic tuning process to improve their results.

The detailed hyperparameter settings for each algorithm are provided in Tables 9 through 17, which
summarize the configurations used for each method. These tables offer a comprehensive overview of

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

the hyperparameters and their respective values, along with the rationale behind any modifications.
This information is essential for understanding the choices made during the tuning process and for
facilitating the reproducibility of our results across different problem instances.

Problem blocking num
MIS easy 2

MIS medium 4
MIS hard 6

MCV easy 3
MVC medium 4

MVC hard 5
SC easy 2

SC medium 4
SC hard 6
MIPlib 2
Coral 2
Cut 2

ECOGCNN 2
HEM knapsack 2

HEM mis 2
HEM setcover 2

HEM corlat 2
HEM mik 2

item placement 3
load balancing 3

anonymous 3
Nexp 2

Transportation 2
vary bounds s1 2
vary bounds s2 2
vary bounds s3 2
vary matrix s1 2

vary matrix rhs bounds s1 2
vary matrix rhs bounds obj s1 2

vary obj s1 2
vary obj s2 2
vary obj s3 2
vary rhs s1 2
vary rhs s2 2
vary rhs s3 2
vary rhs s4 2

vary rhs obj s1 2
vary rhs obj s2 2

Aclib 2
fc.data 2

nn verification 2

Problem initial blocking num
MIS easy 2

MIS medium 2
MIS hard 2
MCV easy 2

MVC medium 2
MVC hard 2

SC easy 2
SC medium 2

SC hard 2
MIPlib 2
Coral 2
Cut 2

ECOGCNN 2
HEM knapsack 2

HEM mis 2
HEM setcover 2

HEM corlat 2
HEM mik 2

item placement 2
load balancing 2

anonymous 2
Nexp 2

Transportation 2
vary bounds s1 2
vary bounds s2 2
vary bounds s3 2
vary matrix s1 2

vary matrix rhs bounds s1 2
vary matrix rhs bounds obj s1 2

vary obj s1 2
vary obj s2 2
vary obj s3 2
vary rhs s1 2
vary rhs s2 2
vary rhs s3 2
vary rhs s4 2

vary rhs obj s1 2
vary rhs obj s2 2

Aclib 2
fc.data 2

nn verification 2

Table 9: Hyperparameter selection for LNS(left) and ACP (right).

Problem sample-rate learning-rate max-epoch
MIPlib 10 0.001 1000
Coral 10 0.001 1000
Cut 10 0.001 1000

ECOGCNN 10 0.001 1000
HEM knapsack 10 0.001 1000

HEM mis 10 0.001 1000
HEM setcover 10 0.001 1000

HEM corlat 10 0.001 1000
HEM mik 10 0.001 1000

item placement 10 0.001 1000
load balancing 10 0.001 1000

anonymous 10 0.001 1000
Nexp 10 0.001 1000

Transportation 10 0.001 1000
vary bounds s1 10 0.001 1000
vary bounds s2 1 0.001 1000
vary bounds s3 1 0.001 1000
vary matrix s1 10 0.001 1000

vary matrix rhs bounds s1 10 0.001 1000
vary matrix rhs bounds obj s1 10 0.001 1000

vary obj s1 10 0.001 1000
vary obj s2 10 0.001 1000
vary obj s3 10 0.001 1000
vary rhs s1 10 0.001 1000
vary rhs s2 10 0.001 1000
vary rhs s3 10 0.001 1000
vary rhs s4 10 0.001 1000

vary rhs obj s1 10 0.001 1000
vary rhs obj s2 10 0.001 1000

Aclib 10 0.001 1000
fc.data 10 0.001 1000

nn verification 10 0.001 1000

Table 10: Hyperparameter selection for Learn2Branch (Part 1).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Problem num-bad-epoch batch-size pretrain-batch-size valid-batch-size
MIPlib 20 64 64 64
Coral 20 64 64 64
Cut 20 64 64 64

ECOGCNN 20 64 64 64
HEM knapsack 20 64 64 64

HEM mis 20 64 64 64
HEM setcover 20 64 64 64

HEM corlat 20 64 64 64
HEM mik 20 64 64 64

item placement 20 64 64 64
load balancing 20 64 64 64

anonymous 20 64 64 64
Nexp 20 64 64 64

Transportation 20 64 64 64
vary bounds s1 20 64 64 64
vary bounds s2 20 64 64 64
vary bounds s3 20 64 64 64
vary matrix s1 20 64 64 64

vary matrix rhs bounds s1 20 64 64 64
vary matrix rhs bounds obj s1 20 64 64 64

vary obj s1 20 64 64 64
vary obj s2 20 64 64 64
vary obj s3 20 64 64 64
vary rhs s1 20 64 64 64
vary rhs s2 20 64 64 64
vary rhs s3 20 64 64 64
vary rhs s4 20 64 64 64

vary rhs obj s1 20 64 64 64
vary rhs obj s2 20 64 64 64

Aclib 20 64 64 64
fc.data 20 64 64 64

nn verification 20 64 64 64

Table 11: Hyperparameter selection for Learn2Branch (Part 2).

Problem learning-rate max-patient
-epoch batch-size n estimators max depth rate fix

MIS easy 0.0001 10 1 30 5 0.4 0.6
MIS medium 0.0001 10 1 30 5 0.4 0.6

MIS hard 0.0001 10 1 30 5 0.4 0.6
MCV easy 0.0001 10 1 30 5 0.4 0.6

MVC medium 0.0001 10 1 30 5 0.4 0.6
MVC hard 0.0001 10 1 30 5 0.4 0.6

SC easy 0.0001 10 1 30 5 0.4 0.6
SC medium 0.0001 10 1 30 5 0.4 0.6

SC hard 0.0001 10 1 30 5 0.4 0.6
MIPlib 0.0001 10 1 30 5 0.4 0.6
Coral 0.0001 10 1 30 5 0.4 0.6
Cut 0.0001 10 1 30 5 0.4 0.6

ECOGCNN 0.0001 10 1 30 5 0.4 0.6
HEM knapsack 0.0001 10 1 30 5 0.4 0.6

HEM mis 0.0001 10 1 30 5 0.4 0.6
HEM setcover 0.0001 10 1 30 5 0.4 0.6

HEM corlat 0.0001 10 1 30 5 0.4 0.6
HEM mik 0.0001 10 1 30 5 0.4 0.6

item placement 0.0001 10 1 30 5 0.4 0.6
load balancing 0.0001 10 1 30 5 0.4 0.6

anonymous 0.0001 10 1 30 5 0.4 0.6
Nexp 0.0001 10 1 30 5 0.4 0.6

Transportation 0.0001 10 1 30 5 0.4 0.6
vary bounds s1 0.0001 10 1 30 5 0.4 0.6
vary bounds s2 0.0001 10 1 30 5 0.4 0.6
vary bounds s3 0.0001 10 1 30 5 0.4 0.6
vary matrix s1 0.0001 10 1 30 5 0.4 0.6

vary matrix rhs bounds s1 0.0001 10 1 30 5 0.4 0.6
vary matrix rhs bounds obj s1 0.0001 10 1 30 5 0.4 0.6

vary obj s1 0.0001 10 1 30 5 0.4 0.6
vary obj s2 0.0001 10 1 30 5 0.4 0.6
vary obj s3 0.0001 10 1 30 5 0.4 0.6
vary rhs s1 0.0001 10 1 30 5 0.4 0.6
vary rhs s2 0.0001 10 1 30 5 0.4 0.6
vary rhs s3 0.0001 10 1 30 5 0.4 0.6
vary rhs s4 0.0001 10 1 30 5 0.4 0.6

vary rhs obj s1 0.0001 10 1 30 5 0.4 0.6
vary rhs obj s2 0.0001 10 1 30 5 0.4 0.6

Aclib 0.0001 10 1 30 5 0.4 0.6
fc.data 0.0001 10 1 30 5 0.4 0.6

nn verification 0.0001 10 1 30 5 0.4 0.6

Table 12: Hyperparameter selection for GNN&GBDT.

C.5 BENCHMARKING STUDY

To validate the effectiveness of ML4MILP and assess the performance of various baseline algo-
rithms across different scenarios, we conducted a comprehensive benchmarking study. The evalu-

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Problem learning-rate NB-epochs batch-size weight-norm
MIS easy 0.001 9999 4 100

MIS medium 0.001 9999 4 100
MIS hard 0.001 9999 4 100
MCV easy 0.001 9999 4 100

MVC medium 0.001 9999 4 100
MVC hard 0.001 9999 4 100

SC easy 0.001 9999 4 100
SC medium 0.001 9999 4 100

SC hard 0.001 9999 4 100
MIPlib 0.001 9999 4 100
Coral 0.001 9999 4 100
Cut 0.001 9999 4 100

ECOGCNN 0.001 9999 4 100
HEM knapsack 0.001 9999 4 100

HEM mis 0.001 9999 4 100
HEM setcover 0.001 9999 4 100

HEM corlat 0.001 9999 4 100
HEM mik 0.001 9999 4 100

item placement 0.001 9999 4 100
load balancing 0.001 9999 4 100

anonymous 0.001 9999 4 100
Nexp 0.001 9999 4 100

Transportation 0.001 9999 4 100
vary bounds s1 0.001 9999 4 100
vary bounds s2 0.001 9999 4 100
vary bounds s3 0.001 9999 4 100
vary matrix s1 0.001 9999 4 100

vary matrix rhs bounds s1 0.001 9999 4 100
vary matrix rhs bounds obj s1 0.001 9999 4 100

vary obj s1 0.001 9999 4 100
vary obj s2 0.001 9999 4 100
vary obj s3 0.001 9999 4 100
vary rhs s1 0.001 9999 4 100
vary rhs s2 0.001 9999 4 100
vary rhs s3 0.001 9999 4 100
vary rhs s4 0.001 9999 4 100

vary rhs obj s1 0.001 9999 4 100
vary rhs obj s2 0.001 9999 4 100

Aclib 0.001 9999 4 100
fc.data 0.001 9999 4 100

nn verification 0.001 9999 4 100

Table 13: Hyperparameter selection for Predict&Search.

Problem sample-rate learning-rate max-epoch patience
HEM knapsack 10 0.001 1000 10

HEM mis 10 0.001 1000 10
HEM setcover 10 0.001 1000 10
vary bounds s1 10 0.001 1000 10
vary matrix s1 10 0.001 1000 10

vary matrix rhs bounds obj s1 10 0.001 1000 10
vary obj s1 10 0.001 1000 10
vary obj s3 10 0.001 1000 10
vary rhs s2 10 0.001 1000 10
vary rhs s4 10 0.001 1000 10

vary rhs obj s2 10 0.001 1000 10

Table 14: Hyperparameter selection for Hybrid Learn2Branch (Part 1).

ation metrics include objective function values and gap estimations under identical wall-clock time
constraints. The complete results can be found in Tables 18, 19, 20, and 21.

In the benchmarking study, the Learn2Branch configuration was set with a maximum of 1000
epochs, and batch sizes for training, validation, and pre-training were all set to 64. The learning
rate was fixed at 1e-3, and the initial sampling rate was set at 10. If effective sampling could not
be achieved, the rate was progressively reduced to a minimum of 1. For the GNN&GBDT frame-
work, we limited the solver to handle only 40% of the original problem size, aiming to highlight its
effectiveness in working with smaller-scale solvers while maintaining overall solution quality.

The experimental results align with previous findings in the literature. Despite claims that ma-
chine learning (ML)-based methods can outperform traditional solvers, Gurobi remains the dom-
inant solver across most problem instances, particularly those derived from real-world scenarios.
SCIP demonstrated robustness but generally underperformed relative to Gurobi. While Large Neigh-
borhood Search (LNS) had been reported to outperform Gurobi in certain medium- to large-scale
generated problems, our experiments showed that Gurobi still outperformed LNS in many cases
across a broader range of tests.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Problem early-stopping epoch-size batch-size pretrain-batch-size valid-batch-size
HEM knapsack 20 312 32 128 128

HEM mis 20 312 32 128 128
HEM setcover 20 312 32 128 128
vary bounds s1 20 312 32 128 128
vary matrix s1 20 312 32 128 128

vary matrix rhs bounds obj s1 20 312 32 128 128
vary obj s1 20 312 32 128 128
vary obj s3 20 312 32 128 128
vary rhs s2 20 312 32 128 128
vary rhs s4 20 312 32 128 128

vary rhs obj s2 20 312 32 128 128

Table 15: Hyperparameter selection for Hybrid Learn2Branch (Part 2).

Problem learning-rate max-epoch
HEM knapsack 0.003 200

HEM mis 0.003 200
HEM setcover 0.003 200
vary bounds s1 0.003 200
vary matrix s1 0.003 200

vary matrix rhs bounds obj s1 0.003 200
vary obj s1 0.003 200
vary obj s3 0.003 200
vary rhs s2 0.003 200
vary rhs s4 0.003 200

vary rhs obj s2 0.003 200

Table 16: Hyperparameter selection for GNN-MILP.

The Adaptive Constraint Partition Based Optimization Framework (ACP), an improvement over
LNS, exhibited superior performance compared to LNS in almost all scenarios. In several cases,
ACP matched or even surpassed Gurobi’s performance. Among machine learning-based algorithms,
the GNN&GBDT framework, which integrates small-scale solvers as sub-solvers in a large-scale
integer programming framework, demonstrated excellent problem reduction capabilities and per-
formed notably well in large-scale problems. However, due to structural limitations, GNN&GBDT
is only applicable to pure integer programming problems, restricting its use in MILP scenarios.

The Learn2Branch approach, which relies on computationally expensive strong branching to collect
training samples, encountered difficulties in gathering sufficient training data within reasonable time
frames for many mid- to large-scale problems. In some cases, ineffective sampling resulted in errors,
highlighting the need for further improvement in the sampling strategy to improve the approach’s
robustness across a broader set of problem instances.

In addition to the initially tested machine learning-based algorithms—Learn2Branch and
GNN&GBDT—as well as traditional solvers like Gurobi, SCIP, LNS, and ACP, we evaluated four
additional ML-based algorithms: Neural Diving (Nair et al., 2020b), Predict&Search (Han et al.,
2023), Hybrid Learn2Branch (Gupta et al., 2020), and GNN-MILP (Chen et al., 2022). These meth-
ods were tested on selected datasets, with results presented in Tables 20 and 21.

Neural Diving and Predict&Search showed competitive performance across certain datasets. Pre-
dict&Search demonstrated particularly strong results on small- to medium-scale problem instances,
while Hybrid Learn2Branch provided some of the best objective function values for specific prob-
lems such as vary obj s1. However, similar to Learn2Branch, this method encountered difficulties
in certain scenarios due to challenges in collecting sufficient training data. GNN-MILP, while show-
ing promise in synthetic problem settings, faced difficulties when applied to real-world scenarios,
often producing infeasible solutions, as indicated by the ! markers in Table 20. This suggests that
GNN-MILP requires further refinement to improve its generalization beyond synthetic problems.

As shown in Tables 18, 19, 20, and 21, Gurobi consistently delivered the best results across
most problem instances. It performed particularly well on real-world datasets such as Coral and
HEM knapsack. SCIP and ACP performed well in certain cases but were generally outperformed
by Gurobi, especially in large-scale problems where Gurobi’s commercial optimization techniques
excel.

Among the ML-based solvers, GNN&GBDT was competitive but had difficulty handling MIP prob-
lems, limiting its broader applicability. Learn2Branch and Hybrid Learn2Branch showed poten-
tial, but both encountered difficulties in collecting sufficient training data for large-scale problem
settings, as indicated by the + markers in Tables 18 and 19. Neural Diving and Predict&Search

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Problem batch-size learning-rate num-epochs
HEM knapsack 1 0.0001 30

HEM mis 1 0.0001 30
HEM setcover 1 0.0001 30
vary bounds s1 1 0.0001 30
vary matrix s1 1 0.0001 30

vary matrix rhs bounds obj s1 1 0.0001 30
vary obj s1 1 0.0001 30
vary obj s3 1 0.0001 30
vary rhs s2 1 0.0001 30
vary rhs s4 1 0.0001 30

vary rhs obj s2 1 0.0001 30

Table 17: Hyperparameter selection for Neural Diving.

Gurobi SCIP LNS ACP Learn2branch GNN&GBDT Time
MIS easy 4598.1000 3723.4000 4587.1000 4610.7000 + 4507.5000 600s

MIS medium 2.18e+04 1.86e+04 2.28e+04 2.32e+04 + 2.27e+04 2000s
MIS hard 2.17e+05 9078.9000 2.17e+05 2.27e+05 + 2.27e+05 4000s
MVC easy 5383.0000 6291.0000 5395.7000 5368.4000 + 5473.3000 600s

MVC medium 2.82e+04 3.13e+04 2.71e+04 2.68e+04 + 2.73e+04 2000s
MVC hard 2.83e+05 4.91e+05 2.74e+05 2.76e+05 + 2.72e+05 4000s

SC easy 3301.3000 5047.5000 3252.5000 3190.5000 + 3285.6000 600s
SC medium 1.80e+04 2.52e+04 1.63e+04 1.59e+04 + 1.65e+04 2000s

SC hard 3.20e+05 9.19e+05 1.73e+05 1.70e+05 + 2.29e+05 4000s
MIPlib 1.84e+04 1.84e+04 1.98e+04 1.84e+04 1.89e+04 - 150s
Coral 3805.7000 8.48e+07 4.67e+08 1.40e+08 + - 4000s
Cut 2.89e+04 3.70e+04 3.35e+04 3.07e+04 3.71e+04 - 4000s

ECOGCNN 7.56e+05 7.56e+05 7.58e+05 7.57e+05 + - 4000s
HEM knapsack 422.6000 422.6000 422.6000 422.6000 422.6000 422.6000 100s

HEM mis 228.8000 228.8000 227.6000 228.8000 228.8000 216.6000 100s
HEM setcover 231.6000 231.6000 233.0000 231.6000 231.6000 231.8000 100s

HEM corlat 251.0000 251.0000 248.8000 251.0000 ! - 100s
HEM mik -6.28e+04 -6.28e+04 -6.25e+04 -6.18e+04 ! - 100s

item placement 5.3000 10.8000 12.8000 10.7000 16.5000 - 4000s
load balancing 708.8000 712.0000 723.2000 709.3000 + - 1000s

anonymous 2.50e+05 1.07e+06 2.04e+06 5.29e+05 + - 4000s
Nexp 1.16e+08 1.17e+08 1.18e+08 1.16e+08 1.18e+08 - 4000s

Transportation 1.24e+06 1.30e+06 1.40e+06 1.28e+06 1.31e+06 - 4000s
vary bounds s1 1.24e+04 1.25e+04 2.07e+04 1.24e+04 1.29e+04 - 400s
vary bounds s2 351.0000 351.0000 413.6000 351.0000 ! - 1000s
vary bounds s3 351.0000 351.0000 417.2000 351.0000 ! - 1000s
vary matrix s1 61.6000 62.6000 61.6000 61.6000 62.7000 - 100s

vary matrix rhs bounds s1 2.00e+09 2.00e+09 2.88e+09 5.89e+09 + - 100s
vary matrix rhs bounds obj -5.16e+04 -4.56e+04 -2.13e+04 -4.82e+04 -4.76e+04 - 100s

vary obj s1 8625.4000 8630.0000 8642.0000 8625.4000 8633.6000 8625.4000 100s
vary obj s2 1169.5000 1171.0000 4045.9000 1169.5000 ! - 150s
vary obj s3 -2180.1000 30.3000 1127.3000 638.8000 -2180.1000 - 100s
vary rhs s1 -349.5000 -338.9000 -54.4000 -291.5000 + - 100s
vary rhs s2 -1.72e+04 -1.72e+04 -1.67e+04 -1.72e+04 -1.72e+04 - 100s
vary rhs s3 5.73e+04 5.73e+04 5.73e+04 5.73e+04 + 5.73e+04 100s
vary rhs s4 -1.72e+04 -1.72e+04 -1.68e+04 -1.71e+04 -1.72e+04 - 100s

vary rhs obj s1 -1.79e+05 -1.78e+05 -1.76e+05 -1.79e+05 + - 600s
vary rhs obj s2 -8.08e+05 -8.08e+05 -7.07e+05 -7.64e+05 -8.08e+05 - 100s

Aclib 8.24e+04 8.24e+04 8.25e+04 8.28e+04 ! - 100s
fc.data 378.6000 378.6000 490.4000 378.6000 ! - 100s

nn verification -8.3000 -8.4000 -9.7000 -9.7000 ! - 100s

Table 18: Objective function value of baselines. + represents the problem of scale being too large to
accept the time to collect training samples. ! represents the problem of errors during band training.
-represents MILP problems that cannot be solved by the IP framework, GNN&GBDT.

also showed promise, with Predict&Search achieving superior gap estimations on problems such as
vary matrix s1 and vary rhs obj s2.

In conclusion, while traditional solvers like Gurobi remain top performers in most cases, the inclu-
sion of these new ML-based methods—particularly Neural Diving and Predict&Search—suggests
that machine learning techniques can offer competitive performance, especially in small- to medium-
scale or synthetic problem settings. However, challenges remain in scaling these methods to larger,
real-world problems, and further research is necessary to overcome these limitations.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Gurobi SCIP LNS ACP Learn2branch GNN&GBDT Time
MIS easy 0.0908 0.3555 0.0934 0.0878 + 0.1127 600s

MIS medium 0.1634 0.3607 0.1077 0.0916 + 0.1148 2000s
MIS hard 0.1714 53.4844 0.1714 0.1184 + 0.1169 4000s
MVC easy 0.0751 0.2707 0.0773 0.0726 + 0.0903 600s

MVC medium 0.1255 0.2697 0.0895 0.0787 + 0.0976 2000s
MVC hard 0.1310 93.5867 0.1018 0.1077 + 0.0951 4000s

SC easy 0.0415 1.00e+20 0.0292 0.0104 + 0.0390 600s
SC medium 0.9861 2.00e+19 0.9846 0.9843 + 0.9848 2000s

SC hard 0.9920 4.25e+05 0.9852 0.9850 + 0.9887 4000s
MIPlib 0.0000 0.0587 0.2157 0.0004 0.3363 - 150s
Coral 2.85e+04 2.86e+19 3.05e+04 3.05e+04 + - 4000s
Cut 0.1490 0.5387 0.2744 0.1651 0.5782 - 4000s

ECOGCNN 0.2512 4.6056 0.2730 0.2516 + - 4000s
HEM knapsack 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100s

HEM mis 0.0000 0.0000 0.0053 0.0000 0.0000 0.0568 100s
HEM setcover 0.0000 0.0000 0.0067 0.0000 0.0000 0.0007 100s

HEM corlat 0.0000 0.0000 0.0129 0.0000 ! - 100s
HEM mik 0.0000 0.0000 0.0034 0.0146 ! - 100s

item placement 0.6481 2.33e+07 0.8431 0.8076 4.17e+07 - 4000s
load balancing 0.0028 0.0273 0.0227 0.0035 + - 1000s

anonymous 0.3088 4.2244 0.9256 0.5449 + - 4000s
Nexp 0.0787 0.1514 0.1095 0.0754 0.1629 - 4000s

Transportation 0.1512 0.2575 0.2490 0.1767 0.2725 - 4000s
vary bounds s1 0.0000 0.0487 0.3956 0.0000 0.1518 - 400s
vary bounds s2 0.0000 0.0864 0.1511 0.0000 ! - 1000s
vary bounds s3 0.0000 0.0893 0.1587 0.0000 ! - 1000s
vary matrix s1 0.0000 0.3796 0.0008 0.0008 0.4002 - 100s

vary matrix rhs bounds s1 0.0000 0.0000 0.2865 0.5566 + - 100s
vary matrix rhs bounds obj 0.0000 0.1128 1.9199 0.0666 0.0953 - 100s

vary obj s1 0.0000 0.0031 0.0019 0.0000 0.0054 0.0000 100s
vary obj s2 0.0000 6.8251 0.7232 0.0000 ! - 150s
vary obj s3 0.0000 6.00e+19 2.1882 10.0836 0.0672 - 100s
vary rhs s1 0.0003 0.0364 5.5134 0.2037 + - 100s
vary rhs s2 0.0000 0.0013 0.0274 0.0009 0.0018 - 100s
vary rhs s3 0.0001 0.0001 0.0000 0.0000 + 0.0007 100s
vary rhs s4 0.0000 0.0000 0.0224 0.0016 0.0033 - 100s

vary rhs obj s1 0.0001 0.0087 0.0191 0.0039 + - 600s
vary rhs obj s2 0.0001 0.0000 0.1032 0.0367 0.0011 - 100s

Aclib 0.0000 0.0000 0.0006 0.0028 ! - 100s
fc.data 0.0000 0.0000 0.1729 0.0000 ! - 100s

nn verification 0.0001 0.0756 0.1493 0.1493 ! - 100s

Table 19: Gap estimation of baselines. + represents the problem of scale being too large to accept the
time to collect training samples. ! represents the problem of errors during band training. -represents
MILP problems that cannot be solved by the IP framework, GNN&GBDT.

Predict&Search Hybrid Learn2branch GNN-MILP Neural Diving Time
HEM knapsack 422.6000 420.6000 0.0000 0.0000 100s

HEM mis 228.8000 228.8000 192.4000 0.0000 100s
HEM setcover 231.6000 ! 256.0000 231.6000 100s
vary bounds s1 12384.8000 13054.4000 12381.8000 12381.8000 400s
vary matrix s1 61.5939 62.9221 ! 61.5939 100s

vary matrix rhs bounds obj s1 -51638.3000 -27727.0100 -51637.9000 -51638.2900 100s
vary obj s1 8625.4000 8629.0000 8625.4000 8625.4000 100s
vary obj s3 -2180.0980 ! ! -2180.0980 100s
vary rhs s2 -17168.3500 -17168.2400 * -17168.3500 100s
vary rhs s4 -17166.2500 -17166.4600 ! -17166.4600 100s

vary rhs obj s2 -807964.3000 -807871.0000 ! -807962.3000 100s

Table 20: Objective function value of new added baseline on selected datasets. ! represents the
problem of errors during training. * represents that can not find a feasible solution.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Predict&Search Hybrid Learn2branch GNN-MILP Neural Diving Time
HEM knapsack 0.0000 0.0047 +∞ +∞ 100s

HEM mis 0.0000 0.0000 0.1908 +∞ 100s
HEM setcover 0.0000 ! 0.0404 0.0976 100s
vary bounds s1 0.0179 0.1430 0.0363 0.0363 400s
vary matrix s1 0.0000 0.5513 ! 0.0000 100s

vary matrix rhs bounds obj s1 3.81e-05 2.0e19 0.0048 3.91e-05 100s
vary obj s1 0.0000 0.0035 0.0025 0.0009 100s
vary obj s3 0.0000 ! ! 0.1275 100s
vary rhs s2 1.3e-5 0.0001 * 1.6e-5 100s
vary rhs s4 3.7e-5 0.0000 ! 5.4e-5 100s

vary rhs obj s2 6.9e-5 0.0011 ! 1.6e-5 100s

Table 21: Gap estimation of new added baseline on selected datasets. ! represents the problem of
errors during training. * represents that can not find a feasible solution.

avg obj obj std error obj error bar avg gap gap std error gap error bar
MIS easy 4.36e+03 18.4347 30.6534 0.1506 0.0020 0.0026

MIS medium 2.32e+04 32.1560 50.5459 0.0923 0.0020 0.0033
MIS hard + + + + + +
MVC easy 5.61e+03 28.9665 54.5941 0.1130 0.0043 0.0068

MVC medium + + + + + +
MVC hard + + + + + +

SC easy 3.23e+03 18.6588 33.5314 0.0224 0.0047 0.0091
SC medium + + + + + +

SC hard + + + + + +
MIPlib 1.84e+04 3.23e+04 5.59e+04 0.0000 0.0000 0.0000
Coral 14.5999 22.8699 45.3997 2.33e+04 4.66e+04 9.32e+04
Cut 2.93e+04 1.98e+04 2.80e+04 0.1568 0.1775 0.2491

ECOGCNN 7.56e+05 1.07e+06 1.51e+06 0.2512 0.3527 0.4988
HEM knapsack 422.6000 12.7844 22.6000 0.0000 0.0000 0.0000

HEM mis 228.8000 3.6551 6.8000 0.0000 0.0000 0.0000
HEM setcover 231.6000 28.5909 47.4000 0.0000 0.0000 0.0000

HEM corlat 251.0000 135.0704 269.0000 0.0000 0.0000 0.0000
HEM mik -6.28e+04 1.46e+04 2.91e+04 0.0000 0.0000 0.0000

item placement 5.5310 1.0528 2.7063 0.6595 0.1639 0.3395
load balancing 708.8000 21.7246 41.2000 0.0028 0.0001 0.0002

anonymous 2.46e+05 1.67e+05 2.77e+05 0.2909 0.1246 0.1874
Nexp 1.16e+08 2.10e+08 4.18e+08 0.0759 0.1345 0.2679

Transportation 1.25e+06 1.32e+04 2.51e+04 0.1568 0.0050 0.0084
vary bounds s1 1.24e+04 863.5863 1.13e+03 0.0003 0.0005 0.0010
vary bounds s2 355.0000 0.0000 0.0000 0.0113 0.0000 0.0000
vary bounds s3 355.0000 0.0000 0.0000 0.0113 0.0000 0.0000
vary matrix s1 61.5939 0.9036 1.5450 0.0000 0.0000 0.0000

vary matrix rhs bounds s1 2.00e+09 1.31e+08 2.11e+08 0.0000 0.0000 0.0001
vary matrix rhs bounds obj s1 -5.16e+04 2.16e+04 3.46e+04 0.0000 0.0000 0.0001

vary obj s1 8.63e+03 101.7342 184.6000 0.0000 0.0000 0.0000
vary obj s2 1.17e+03 1.12e+03 2.12e+03 0.0000 0.0000 0.0000
vary obj s3 -2.18e+03 352.3199 598.5451 0.0000 0.0000 0.0000
varh rhs s1 -349.4640 5.8607 10.2160 0.0003 0.0005 0.0011
vary rhs s2 -1.72e+04 1.6904 3.3795 0.0000 0.0000 0.0000
vary rhs s3 5.73e+04 6.14e+04 1.11e+04 0.0001 0.0000 0.0000
vary rhs s4 -1.72e+04 3.0168 3.7753 0.0000 0.0000 0.0000

vary rhs obj s1 -1.79e+05 4.09e+04 6.33e+04 0.0001 0.0000 0.0000
vary rhs obj s2 -8.08e+05 3.53e+05 6.94e+05 0.0001 0.0000 0.0000

Aclib 8.24e+04 9.40e+04 2.31e+05 0.0000 0.0000 0.0000
fc.data 378.6000 196.6750 384.4000 0.0000 0.0000 0.0000

nn verification -8.2514 9.6160 24.5807 0.0001 0.0000 0.0001

Table 22: Experimental results of Predict&Search on selected datasets. + represents the problem of
scale being too large to accept the time to collect training samples.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Gurobi SCIP LNS ACP Learn2branch GNN&GBDT
MIS easy 36.7445 49.5063 34.6024 34.1673 + 21.4168

MIS medium 30.6104 82.5639 59.6125 54.2726 + 57.9730
MIS hard 197.1507 159.7765 222.3543 1648.7565 + 273.1787

MCV easy 21.3176 26.2868 18.2733 27.6136 + 27.3013
MVC medium 101.2970 170.3988 113.3693 112.3249 + 116.6010

MVC hard 303.5272 263.6697 262.7302 1719.3960 + 647.3696
SC easy 326.5255 31.3076 29.4139 23.8124 + 30.7511

SC medium 99.3993 174.7215 82.8357 79.5404 + 66.2896
SC hard 493.9357 1122.9085 1415.5947 6466.7330 + 3.90e+04
MIPlib 5.59e+04 5.59e+04 5.99e+04 5.59e+04 5.73e+04 -
Coral 2.28e+04 5.09e+08 2.80e+09 8.40e+08 + -
Cut 2.75e+04 4.29e+04 3.09e+04 3.10e+04 4.31e+04 -

ECOGCNN 1.51e+06 1.51e+06 1.52e+06 1.51e+06 + -
HEM knapsack 22.6000 22.6000 22.6000 22.6000 22.6000 22.6000

HEM mis 6.8000 6.8000 7.6000 6.8000 6.8000 10.6000
HEM setcover 47.4000 47.4000 46.0000 47.4000 47.4000 48.2000

HEM corlat 269.0000 269.0000 271.2000 269.0000 ! -
HEM mik 2.91e+04 2.91e+04 2.89e+04 2.81e+04 ! -

item placement 2.5066 3.9976 5.9915 6.4424 5.2309 -
load balancing 41.2000 42.0000 40.2000 41.7000 + -

anonymous 2.59e+05 1.95e+06 1.11e+06 6.77e+05 + -
Nexp 4.18e+08 4.19e+08 4.22e+08 4.18e+08 4.22e+08 -

Transportation 2.23e+04 2.61e+04 4.90e+04 2.94e+04 2.15e+04 -
vary bounds s1 1130.2000 1256.8000 2502.6000 1130.2000 1333.6000 -
vary bound s2 0.0000 0.0000 14.6000 0.0000 ! -
vary bounds s3 0.0000 0.0000 0.8000 0.0000 ! -
vary matrix s1 1.5450 0.7618 1.4971 1.5403 1.6728 -

vary matrix rhs bounds s1 2.11e+08 2.11e+08 1.18e+09 7.99e+09 + -
vary matrix rhs bounds obj 3.46e+04 2.85e+04 2.04e+04 3.26e+04 3.08e+04 -

vary obj s1 184.6000 181.0000 190.0000 184.6000 186.4000 184.6000
vary obj s2 2120.3583 2118.8228 3292.1402 2120.3530 ! -
vary obj s3 598.5451 650.1423 6178.0536 6588.9847 598.5451 -
vary rhs s1 10.2160 28.3040 12.8240 34.0080 + -
vary rhs s2 3.3795 1.1493 74.5091 13.0051 2.2173 -
vary rhs s3 2.19e+04 2.19e+04 2.19e+04 2.19e+04 + 2.18e+04
vary rhs s4 3.9644 3.9789 278.7842 26.1177 5.1057 -

vary rhs obj s1 6.33e+04 6.39e+04 6.05e+04 6.35e+04 + -
vary rhs obj s2 6.94e+05 6.94e+05 3.53e+05 5.37e+05 6.94e+05 -

Aclib 1.78e+05 1.78e+05 1.78e+05 1.80e+05 ! -
fc.data 384.4000 384.4000 307.6000 384.4000 ! -

nn verification 24.5807 24.7198 24.5584 24.5584 ! -

Table 23: The error bar of objective function value. + represents the problem of scale being too
large to accept the time to collect training samples. ! represents the problem of errors during band
training. -represents MILP problems that cannot be solved by the IP framework, GNN&GBDT.

C.6 ERROR BARS OF BENCHMARKING STUDY

To enhance the reliability and reproducibility of our benchmarking study, we analyzed the error bars
from multiple experiments. The results are displayed in Tables 23 and Table 24, respectively show-
ing the error bars for objective function values and gap estimates. Under various data conditions,
the solvers Gurobi and SCIP and the machine learning-based optimization algorithms Learn2branch
and GNN&GBDT exhibited consistent stability across different problems.

However, the classical optimization algorithms LNS and ACP demonstrated significant instability
in some instances, such as with the datasets ”vary obj s3” and ”Coral.” This instability can likely
be attributed to these algorithms’ heavy reliance on selecting initial feasible solutions. In complex
problem spaces, the distribution of initial feasible solutions may exhibit randomness, leading to
instability in the final solutions. This aspect underlines the importance of considering initial solution
strategies and their impact on the performance of optimization algorithms, particularly in diverse and
challenging problem settings.

C.7 STANDARD DEVIATIONS OF BENCHMARKING STUDY

In benchmark studies, the stability of baseline methods is often assessed using metrics such as
error bars and standard deviations. In this work, we provide additional insights into the stability of
the methods by reporting standard deviations alongside the objective values and gap estimations.
Specifically, Tables 23 and 24 in the appendix present the error bars for both the objective and gap
values across various problem instances.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Gurobi SCIP LNS ACP Learn2branch GNN&GBDT
MIS easy 0.0081 0.0131 0.0076 0.0075 + 0.0047

MIS medium 0.0014 0.0044 0.0026 0.0023 + 0.0026
MIS hard 0.0009 0.0179 0.0010 0.0072 + 0.0012

MCV easy 0.0039 0.0042 0.0034 0.0051 + 0.0050
MVC medium 0.0036 0.0055 0.0042 0.0042 + 0.0042

MVC hard 0.0011 0.0005 0.0010 0.0063 + 0.0024
SC easy 0.0900 0.0062 0.0091 0.0075 + 0.0094

SC medium 0.0055 0.0070 0.0051 0.0050 + 0.0040
SC hard 0.0015 0.0012 0.0083 0.0395 + 0.1456
MIPlib 2047.4498 1842.6534 1410.9864 2047.4730 1350.1054 -
Coral 1.90e+08 2.01e+22 2.49e+13 7.47e+12 + -
Cut 1.0088 1.5437 1.0304 1.1291 1.5354 -

ECOGCNN 2.70e+04 2.10e+04 2.11e+04 2.70e+04 + -
HEM knapsack 0.0565 0.0565 0.0565 0.0565 0.0565 0.0565

HEM mis 0.0306 0.0306 0.0345 0.0306 0.0306 0.0515
HEM setcover 0.2254 0.2254 0.2073 0.2254 0.2254 0.2265

HEM corlat 0.5305 0.5305 0.5215 0.5305 ! -
HEM mik 0.8654 0.8654 0.8584 0.8357 ! -

item placement 0.8876 0.5874 0.4809 0.5202 0.4637 -
load balancing 0.0611 0.0579 0.0589 0.0602 + -

anonymous 2.1649 8.1505 0.8448 6.0986 + -
Nexp 1.85e+06 1.85e+06 2.00e+06 1.85e+06 1.90e+06 -

Transportation 0.0183 0.0205 0.0362 0.0235 0.0167 -
vary bounds s1 0.0836 0.0911 0.1080 0.0836 0.0971 -
vary bound s2 0.0000 0.0000 0.0366 0.0000 ! -
vary bounds s3 0.0000 0.0000 0.0019 0.0000 ! -
vary matrix s1 0.0245 0.0123 0.0237 0.0244 0.0260 -

vary matrix rhs bounds s1 0.1181 0.1181 0.2905 0.6868 + -
vary matrix rhs bounds obj 2.0235 1.6706 2.8904 2.0977 1.8306 -

vary obj s1 0.0210 0.0205 0.0215 0.0210 0.0211 0.0210
vary obj s2 4.0368 4.0243 4.3674 4.0368 ! -
vary obj s3 0.3042 1.0641 5.4783 10.9865 0.3042 -
vary rhs s1 0.0284 0.0911 0.1954 0.1321 + -
vary rhs s2 0.0002 0.0001 0.0044 0.0008 0.0001 -
vary rhs s3 0.6191 0.6189 0.6190 0.6191 + 0.6162
vary rhs s4 0.0002 0.0002 0.0169 0.0015 0.0003 -

vary rhs obj s1 0.3073 0.3076 0.2931 0.3020 + -
vary rhs obj s2 0.4622 0.4622 0.3328 0.4127 0.4622 -

Aclib 5.9017 5.9017 5.9037 5.9271 ! -
fc.data 0.8559 0.8559 1.3806 0.8559 ! -

nn verification 3.0632 3.1317 1.6548 1.6548 ! -

Table 24: The error bar of gap estimation. + represents the problem of scale being too large to
accept the time to collect training samples. ! represents the problem of errors during band training.
-represents MILP problems that cannot be solved by the IP framework, GNN&GBDT.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Gurobi SCIP LNS ACP Learn2branch GNNGBDT
MIS easy 21.5005 29.0341 20.4964 20.2003 + 16.0027

MIS medium 19.3987 58.5580 37.6426 33.0777 + 39.6546
MIS hard 120.8925 97.5889 124.2721 909.1139 + 167.5108
MVC easy 13.8075 18.7708 13.6796 16.1958 + 17.6541

MVC medium 62.4095 130.4566 69.8594 68.5705 + 73.5231
MVC hard 205.6697 171.6232 167.2595 1045.0330 + 347.4271

SC easy 164.1662 19.9643 20.3551 14.40201 + 16.6546
SC medium 61.0949 106.7979 58.4282 49.2778 + 46.6850

SC hard 293.1404 609.7831 971.0688 3344.7140 + 26217.9500
MIPlib 32273.2986 32273.0200 34572.4900 32273.1800 33097.8200 -
Coral 9288.9841 2.08e+08 1.14e+09 3.43e+08 + -
Cut 19438.9173 30348.1100 21880.4300 21924.4400 30492.4700 -

ECOGCNN 1068850.9350 1068849.0 1072247.0 1070354.0 + -
HEM knapsack 12.7844 12.7844 12.7844 12.7844 12.7844 12.7844

HEM mis 3.6551 3.6551 3.9294 3.6551 3.6551 6.2801
HEM setcover 28.5909 28.5909 27.3934 28.5909 28.5909 28.9234

HEM corlat 135.0704 135.0704 136.2606 135.0704 ! -
HEM mik 14597.0829 14597.0800 14488.5800 14094.3000 ! -

item placement 1.1097 2.4419 3.0860 2.7816 2.7569 -
load balancing 21.7246 21.4103 20.6630 21.6936 + -

anonymous 159911.2884 1142112 727716.3 419905.2 + -
Nexp 2.1e+08 2.1e+08 2.12e+08 2.1e+08 2.12e+08 -

Transportation 11884.7873 15847.25 36827.44 20618.52 13269.68 -
vary bounds s1 865.9897 865.157 1436.246 865.9897 1068.365 -
vary bounds s2 0.0000 0.0000 7.3103 0.0000 ! -
vary bounds s3 0.0000 0.0000 0.4000 5.22e-07 ! -
vary matrix s1 0.9036 0.5915 0.8855 0.8996 1.2523 -

vary matrix rhs bounds s1 1.31e+08 1.31e+08 5.94e+08 4e+09 + -
vary matrix rhs bounds obj s1 21607.4416 14560.27 13261.15 18427.69 19695 -

vary obj s1 101.7342 100.5107 104.858 101.7342 102.2518 101.7342
vary obj s2 1120.8703 1120.516 2426.985 1120.868 ! -
vary obj s3 352.3199 445.152 3413 3398.318 352.3199 -
vary rhs s1 5.8607 14.4301 7.0876 19.3488 + -
vary rhs s2 1.6904 0.5765 56.2404 7.6243 1.1923 -
vary rhs s3 11134.2517 11131.88 11132.79 11133.84 + 11107.51
vary rhs s4 3.0156 3.0021 148.6948 17.5912 3.5953 -

vary rhs obj s1 40944.9046 40723.93 38629.9 40612.03 + -
vary rhs obj s2 353075.129 353120.6 187573.9 276288.8 353085.4 -

Aclib 7822.2633 7822.263 7872.819 7885.637 ! -
fc.data 196.6750 196.675 242.2813 196.675 ! -

nn verification 9.6159 9.6724 9.4476 9.4476 ! -

Table 25: The standard deviations of objective function value.

To further enhance the robustness of our analysis, we have now included the standard deviations of
the objective values and gap values for different baseline methods across various problems. These
can be found in Tables 25 and 26 of the supplementary material. The inclusion of these standard
deviation values allows for a clearer understanding of the variability in performance across different
methods and problem classes, offering a more detailed perspective on the stability of the baseline
methods.

D RELATED WORK

D.1 MIXED INTEGER LINEAR PROGRAMMING

Mixed Integer Linear Programming (MILP) problem is a significant class within combinatorial op-
timization problems. With advancements in theoretical techniques and commercial solvers, MILP
has become a fundamental problem type for modeling and solving practical issues across various
fields. Formally, a MILP problem can be represented as follows:

min
x

cTx,

subject toAx ≤ b,

l ≤ x ≤ u,

xi ∈ Z,
i ∈ I,

(12)

where x represents the decision variables, with dimension denoted by n ∈ Z, and l, u, c ∈ Rn

correspond to the lower bounds, upper bounds, and coefficient values of the decision variables,
respectively. The matrix A ∈ Rm×n and the vector b ∈ Rm define the linear constraints of the
problem. The set I ⊆ {1, 2, . . . , n} denotes the indices of variables constrained to be integer values.
A solution to the MILP is considered feasible if the decision variable vector x ∈ Rn satisfies all

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Gurobi SCIP LNS ACP Learn2branch GNNGBDT
MIS easy 0.0013 0.0073 0.0020 0.0016 + 0.0030

MIS medium 0.0008 0.0051 0.0016 0.0020 + 0.0025
MIS hard 0.0007 0.6056 0.0006 0.0052 + 0.0012
MVC easy 0.0012 0.0023 0.0008 0.0015 + 0.0016

MVC medium 0.0006 0.0043 0.0010 0.0010 + 0.0011
MVC hard 0.0005 0.9541 0.0003 0.0032 + 0.0009

SC easy 0.0428 0.0000 0.0025 0.0008 + 0.0017
SC medium 0.0003 4e+19 0.0003 0.0003 + 0.0003

SC hard 5.26e-05 110596.4 8.79e-05 0.0003 + 0.0013
MIPlib 4.28e-05 0.0526 0.1853 0.0006 0.2812 -
Coral 69736.34 4.52e+19 74629.05 74629.13 + -
Cut 0.1765 0.5917 0.1451 0.2011 0.6116 -

ECOGCNN 0.3527 6.4973 0.3766 0.3523 + -
HEM knapsack 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HEM mis 0.0000 0.0000 0.0043 0.0000 0.0000 0.0184
HEM setcover 0.0000 0.0000 0.0086 0.0000 0.0000 0.0014

HEM corlat 0.0000 0.0000 0.0257 0.0000 ! -
HEM mik 6.16e-15 0.0000 0.0068 0.0127 ! -

item placement 0.1617 63245483 0.0818 0.0879 92385906 -
load balancing 8.65e-05 0.0089 0.0041 0.0007 + -

anonymous 0.0920 3.5603 0.0180 0.2357 + -
Nexp 0.1402 0.2481 0.1337 0.1318 0.2463 -

Transportation 0.0006 0.0039 0.0174 0.0121 0.0078 -
vary bounds s1 3.46e-05 0.0122 0.0793 3.46e-05 0.0359 -
vary bounds s2 0.0000 0.0024 0.0154 0.0000 ! -
vary bounds s3 0.0000 0.0000 0.0008 1.49e-09 ! -
vary matrix s1 0.0000 0.0698 0.0016 0.0008 0.0297 -

vary matrix rhs bounds s1 3.15r-05 5.41e-06 0.0881 0.1555 + -
vary matrix rhs bounds obj s1 4.48e-05 0.2003 0.9437 0.0673 0.1093 -

vary obj s1 0.0000 0.0008 0.0005 0.0000 0.0009 0.0000
vary obj s2 3.93e-07 8.1891 0.1437 7.59e-07 ! -
vary obj s3 0.0000 4.9e+19 2.7284 15.9961 0.1344 -
vary rhs s1 0.0005 0.0664 0.6963 0.0710 + -
vary rhs s2 1.73e-05 0.0004 0.0035 0.0005 0.0002 -
vary rhs s3 1.77e-05 5.62e-05 2.36e-05 8.8e-06 + 0.0008
vary rhs s4 3.13e-05 0.0000 0.0092 0.0010 9.11e-05 -

vary rhs obj s1 1.33e-05 0.0056 0.0098 0.0043 + -
vary rhs obj s2 1.95e-05 0.0000 0.1574 0.0595 0.0005 -

Aclib 8.97e-06 0.0000 0.0024 0.0031 ! -
fc.data 0.0000 0.0000 0.2091 1.3e-08 ! -

nn verification 3.08e-05 0.2137 0.1577 0.1577 ! -

Table 26: The standard deviations of gap estimation.

the constraints specified in Equation (12). Among feasible solutions, the one that minimizes the
objective function value is deemed optimal (Schrijver, 1998).

Based on the formulation of MILP, Gasse’s proposed MILP bipartite graph representation (Gasse
et al., 2019) achieves a lossless translation of the MILP problem into a graph format, serving as
input for the neural embedding network (Nair et al., 2020b). As shown in Figure 1, the n decision
variables in MILP are represented as the set of variable nodes on the right side of the bipartite graph,
while the m linear constraints are represented as the set of constraint nodes on the left side. An
edge connecting a variable node and a constraint node signifies the presence of the corresponding
variable in that constraint.

Furthermore, people often need to solve a series of homogeneous MILP problems in real-world
scenarios. By ”homogeneous” (Yang et al., 2023), we mean that the generated MILP problems
correspond to the same mathematical model. For example, the minimum vertex cover problem on
a graph with 200 vertices and the same problem on a graph with 500 vertices are homogeneous.
In contrast, the minimum vertex cover problem and the maximum cut problem are heterogeneous.
Homogeneous problems share similar structures, providing an opportunity to use machine learning
methods to learn the mapping from problem structures to key information for solving these prob-
lems.

D.2 SCORE METRIC

To summarize the results in Tables 2 and 3, we provided a score metric based on gap estimation,
which we apologize for not clearly defining in the main text. We appreciate the reviewer’s attention
to this detail. Specifically, to convert the calculated gap values into a 0–100 score, we experimented
with various mapping functions, including the Sigmoid function, and ultimately chose the normal

distribution function for scoring. Specifically, we set Score(x) ∼ 1√
2πσ

e−
(x−µ)2

σ2 , where x represents
the gap estimation of the baseline method on the corresponding problem.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

The rationale behind selecting the normal distribution function lies in its alignment with the law of
large numbers, which suggests that as the sample size increases, the sample mean will converge to
the expected value. Therefore, using a normal distribution for scoring may better reflect the natural
distribution of the data, providing a more accurate representation of the performance of different
baselines. Additionally, the central limit theorem indicates that the sum of multiple independent
random variables, regardless of their initial distribution, will tend to follow a normal distribution
as the sample size approaches infinity. This implies that even if the initial distribution of the gap
data is not normal, the distribution of gaps across multiple instances may tend towards normality.
Consequently, scoring based on a normal distribution can capture this underlying statistical property,
thereby providing a more objective assessment of baseline performance.

Moreover, the probability density function (PDF) of the normal distribution has a natural scaling
property, with sharper changes near the center and more gradual changes in the tails. By scaling
the PDF values to a 0–100 range, this property allows for a more nuanced evaluation of gap sizes,
enhancing the sensitivity and distinctiveness of the scores. Considering that solutions with a gap
greater than 200% are typically unusable, we ultimately chose a normal distribution centered at zero
with a standard deviation of 0.5 as our scoring function.

40


	Introduction
	Related Work
	Mixed Integer Linear Programming Problem
	Machine Learning-based Solving Algorithm
	Related Benchmark Dataset

	Proposed ML4MILP
	Similarity Evaluation
	Similarity Evaluation Metrics
	Classification Algorithm

	Benchmark Datasets
	MILP Instances
	Solution and Gap

	Baseline Library

	Experiments
	Dataset Analysis
	Dataset Reclassification
	Benchmarking Study

	Conclusion and Future Work
	Details of Benchmark Dataset
	Open-source Datasets
	Used Assets
	Standard Problem Instance
	Training and Testing Dataset Partition

	Details of Algorithm
	Adaptive Constraint Partition Based Optimization Framework
	Similarity Evaluation Metrics

	Details of Experiments
	Experiments Environments
	Dataset Analysis
	Dataset Reclassification
	Settings of Benchmarking Study
	Benchmarking Study
	Error Bars of Benchmarking Study
	Standard Deviations of Benchmarking Study

	Related Work
	Mixed Integer Linear Programming
	Score Metric


