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ABSTRACT

Evaluating multimodal large language models (MLLMs) is increasingly expensive,
as the growing size and cross-modality complexity of benchmarks demand sig-
nificant scoring efforts. To tackle with this difficulty, we introduce AutoJudger,
an agent-driven framework for efficient and adaptive benchmarking of MLLMs
that tackles this escalating cost. AutoJudger employs the Item Response Theory
(IRT) to estimate the question difficulty and an autonomous evaluation agent to
dynamically select the most informative test questions based on the model’s real-
time performance. Specifically, AutoJudger incorporates two pivotal components:
a semantic-aware retrieval mechanism to ensure that selected questions cover
diverse and challenging scenarios across both vision and language modalities, and
a dynamic memory that maintains contextual statistics of previously evaluated
questions to guide coherent and globally informed question selection throughout
the evaluation process. Extensive experiments on four representative multimodal
benchmarks demonstrate that our adaptive framework dramatically reduces evalua-
tion expenses, i.e. AutoJudger uses only 4% of the data and 10% computational
cost (for evaluating 7B model) to achieve over 90% ranking accuracy with the
full-benchmark evaluation results on MMT-Bench.

1 INTRODUCTION

Motivated by the success of Large Language Models (LLMs) (Achiam et al., [2023} Touvron et al.,
2023};[Yang et al., [2024} Liu et al.,|2024a), Multimodal Large Language Models (MLLMs) (Hurst
et al., [2024; Liu et al., [2023; Bai et al., [2025; |Chen et al., |2025) have been developed to tackle
challenging tasks involving the joint understanding and generation of information across multiple
modalities, such as text and images (Li et al., [2024d; |2025)). To assess the full spectrum of MLLM
capabilities, a growing number of benchmarks have been introduced as illustrated in Figure
spanning diverse domains (Fu et al.| 2023 Liu et al.| 2024d; |Yue et al., 2024} |Li et al.| 2023 [2024c).
However, this also introduces a computational burden for comprehensive evaluation.

Compared to text-only scenarios, the evaluation cost problem becomes more pronounced in multi-
modal benchmarks, as including visual contexts substantially lengthens the input sequences (Terragni
et al.| 2024} Xu et al.| 2025). In addition, incorporating reasoning-enhancement methods like chain-
of-thought (Wei et al.| 2022} |Guo et al.}|2025) and employing ChatGPT to assist in scoring model
responses (Liu et al.| [2024d; |Lu et al., 2023)) will further increase the cost. This raises a critical
question: Can we evaluate MLLMs more efficiently without sacrificing reliability?

To address this problem, a line of studies focuses on exploring efficient benchmarking methods (Perlitz
et al., [2023} |Polo et al., 2024; [Vivek et al.l 2023): selecting a subset from the benchmark for efficient
evaluation while maintaining consistency with the results obtained from full-set evaluation. Existing
approaches are primarily designed for text-only benchmarks, performing stratified sampling based on
question categories (Perlitz et al.,[2023) and difficulty levels (Zhuang et al.||2023bj; [Polo et al.| 2024)
to construct subsets for evaluation. However, multimodal scenarios pose additional challenges: (i)
Most multimodal benchmarks do not explicitly assess or characterize question difficulty; (ii) Each
image-question pair contains rich multimodal semantic information, merely relying on coarse-grained
information like question categories struggles to ensure semantic diversity within the subset; (iii)
There exists large performance variance across models. Assigning the same subset of questions to all
models may limit the efficiency in distinguishing between models, e.g., evaluating powerful models
with too many simple questions provides little information gain.
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Figure 1: Benchmark scale and efficiency of AutoJudger. (a) plots the scales of various benchmarks
that are commonly adopted in MLLM evaluation. The triangle and pentagon markers indicate the
number of samples required by AutoJudger to achieve 85% and 90% consistency with the full-set
evaluation results, respectively. (b) compares different efficient benchmarking methods.

Facing above challenges, an ideal evaluation system needs to comprehensively consider factors
including the performance of evaluated models, question difficulties and semantics, iteratively
constructing subsets during assessment. To tackle such a dynamic decision-making problem, we
propose AutoJudger, an agent-driven multimodal evaluation framework. We formulate efficient
benchmarking as an interview scenario, where an agent powered by MLLM serves as the interviewer,
continuously interacting with the environment (the question pool and the evaluated models) to select
appropriate questions, dynamically assessing model capabilities throughout the interview.

Furthermore, we design three modules to assist AutoJudger in the interaction with the interview
environment and the evaluation process. (i) We collect extensive offline evaluation results of various
MLLMs and characterize the difficulty of benchmark questions based on Item Response Theory
(IRT) (Cai et al.,|2016). This difficulty framework supports subsequent question selection and real-
time performance assessment during the interview. (ii) Considering the large scale of the question
pool, we augment AutoJudger with a multimodal semantic-aware retrieval module to access the
entire benchmark. The retrieval module performs a coarse filtering process, the interviewer agent
then conduct fine-grained analysis and select the retrieved candidates. This strategy fully leverages
sample-level semantics to ensure richness of the selected subset while maintaining efficiency. (iii) We
introduce a dynamic memory module to help the agent summarize about previously tested questions
and the model performance. This module assists the agent in making personalized question selections
for different models and provides an interpretable analysis of model capabilities.

AutoJudger can be seamlessly integrated into the evaluation of any MLLMs in a plug-and-play manner.
We conduct extensive experiments to demonstrate that AutoJudger significantly reduces evaluation
costs across different benchmarks while maintaining the reliability and stability. Despite the growing
size of modern benchmarks, AutoJudger still achieves remarkable rank consistency—85% and even
90%—with only a small fraction of the samples, as shown in Figure[I] For instance, on MMT-Bench,
AutoJudger reaches 92% rank consistency using merely 4% of the data (125 samples).

The key contributions are summarized as follows:

* We propose AutoJudger, the first agent-driven framework for efficient benchmarking of MLLMs.
Unlike prior static methods, AutoJudger adaptively selects informative questions by interacting
with evaluated models, leveraging the reasoning ability of the judging agent to guide the evaluation.

* To jointly capture the question difficulty and the cross-modal semantic diversity, we equip Au-
toJudger with a semantic-aware retrieval mechanism grounded in Item Response Theory (IRT),
ensuring representative question selection. To further enhance adaptivity, we incorporate a dynamic
memory that tracks contextual statistics from previously evaluated questions, enabling coherent
and globally informed question selection throughout the evaluation process.

* We extensively evaluate 17 MLLMs on four popular multimodal benchmarks with AutoJudger,
showing that our adaptive framework significantly reduces evaluation costs — AutoJudger achieves
over 90% ranking accuracy on MMT-Bench using only 4% of the data and 10% of the computation.
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Figure 2: The framework of AutoJudger. Before evaluation, the difficulties of question from a
benchmark are computed by utilizing a set of offline models. At each evaluation iteration, AutoJudger
firstly retrieve the candidate questions based on the estimated ability. Then, AutoJudger selects the
most proper question, collect the response from the evaluated model, and update its memory.

2 PROBLEM STATEMENT OF EFFICIENT BENCHMARKING

Efficient benchmarking aims to reliably evaluate a model on a specific benchmark with as less
expenses as possible. In this work, we constrain the scope of evaluated models to MLLMs, due to
the rapidly increasing cost of these models and the lack of prior work in this area. We denote the
complete evaluation benchmark as Q = {¢;}}¥., where each ¢; is a test question, representing a
multimodal question-answer pair. Given a candidate model m, the objective is to find a mapping

f: Q — Q such that the performance of model m on the selected subset (), denoted as P(m|@),
is consistent with its performance on the full benchmark set Q, i.e. p (P(m\@), P(m|Q)) > o,

where p represents the consistency scoring function, and o is the consistency threshold. Typically,
the consistency is estimated by comparing the ranking of a evaluated model m; on a group of models
M = {m;}. Therefore, the problem of efficient benchmarking is formulated as follows:

maxp ({P(mlQ) b, crr APOms[Q)}mcnr) st Q@ IQI<dxlal @
Q—
where § denotes the compression ratio. In this work, J is set to 5% unless otherwise specified.

3 AutoJudger

To address this problem, we propose AutoJudger, an agent-driven efficient benchmarking framework
as shown in Figure 2] Our underlying intuition is that, analogous to human interview, the effective
evaluation of a model entails dynamically selecting the most appropriate questions based on its
real-time performance. Therefore, we formulate the construction of mapping f as as a dynamic
decision-making problem. Specifically, the next question used to evaluate model m; is selected
by considering the memory M, of previously attempted questions Q) = {¢;}¥_, and responses
{ri;}#_,, current model performance P (m;|{g;}}_,) and the complete evaluation benchmark Q:

Qi1 = f(Mi, P(m]Q1), Q) Mi = {qi,rij}imy )
To select appropriate samples, AutoJudger should acquire a clear understanding of the difficulty
of questions during evaluation. To this end, we first leverage Item Response Theory (IRT) (Cai
et al., 2016) to characterize the difficulty d; of each question ¢; before the evaluation (§ @ We
then employ an intelligent agent powered by an MLLM to recommend questions of appropriate
difficulty. Such recommendation is based on the current estimation of model’s ability (§ 3.2). Since
the full benchmark @ is too large to be processed efficiently, we design a semantic-aware retrieval
mechanism to reduce the candidate pool size (§ [3.3). This mechanism also ensures that the selected
questions span diverse and challenging scenarios. Subsequently, we prompt an MLLM-based agent
to choose the most appropriate question from the retrieved candidate questions (§ [3.4). After the
evaluated model answers a newly selected question, we record its response. The history of attempted
questions and model responses is summarized by the agent, stored and updated in the memory M of
the agent to guide coherent and globally informed question selection during evaluation (§ [3.3).
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3.1 QUESTION DIFFICULTY ESTIMATION

To preform efficient sample selection, AutoJudger adopts Item Response Theory (IRT) (Cai et al.}
2016)) to estimate the difficulty of the questions from a specific benchmark by utilizing a set of offline
MLLMs before evaluation. Note that, to prevent information leakage, we carefully ensure that there
is no overlap between the offline MLLMs and the models under evaluation (see Appendix D).

Modeling with IRT We adopt a logistic IRT model, also known as the Rasch model (Rasch, |[1993)),

which defines the correct probability of a response 7;; of model m; on question g; as:
1

1+ exp(—(a; — di))

where a; is the latent ability of the model m; , and d; is the difficulty of the question g;. Intuitively, a
model is more likely to succeed on questions with lower difficulty than its ability level.

p (ri; is correct) =

3

Estimating Question Difficulty Given a collection of response records {r;;} from a set of pre-
viously evaluated offline models M’ = {m/;} on benchmark Q) = {¢;}, we fit the Rasch model to
estimate the question difficulties D = {d;} via maximum likelihood estimation, using the Bayesian
variational framework proposed by (Ding et al.,2024) (please refer to Appendix [B|for more details).
Once estimated, these difficulty scores are fixed and serve as priors for subsequent question selection.

3.2 MODEL ABILITY ESTIMATION

Given the estimated question difficulties D = {d;}, IRT enables the real-time assessment of model
ability based on its response history, supervising the model proficiency during evaluation. When
evaluating the model m; at k-th iteration, according to Equation equation [3] we use maximum
likelihood estimation to infer the current ability a; ; based on the selected questions ()},, model
responses {7 }%_|, and the fixed difficulties D. We develop a binary search algorithm to efficiently
find the optimum for a; , as detailed in Appendix[C} This allows us to track the model’s progress over
time and guide the adaptive selection of future questions. Notably, we define the model performance
P(m;|Q},) as its current ability value a; ; estimated through IRT.

3.3 CANDIDATE QUESTION RETRIEVAL

Given the large scale of existing benchmarks, it is impractical for the agent to directly select questions
from the entire question pool (). To address this challenge, we design a retrieval strategy to provide
the agent with a candidate set C; with feasible size |C}| < |Q|. We aim to select questions that are
both appropriate in difficulty and semantically distinct from those previously attempted in Q.

Gk+1 = f My, a;,C), CrCQ 4

Initialization At the beginning, the ability of the model P(m, @) remains unknown. To build a
strong starting point, we adopt a clustering-based strategy to ensure semantic diversity across the
initial set Q(. We first encode each question with a semantic feature extractor (e.g., CLIP (Radford
et al., 2021)), Qwen2.5-VL (Bai et al.| [2025)) to obtain meaningful embeddings. Based on these
embeddings, we perform K-means clustering over the entire benchmark to group questions with
similar semantics. From each cluster, we uniformly sample a small number of questions to construct
the initial candidate pool Q. This approach ensures broad semantic coverage and avoids the
early-stage selection bias, enabling robust ability estimation and question selection in later adaptive
steps.

During Iteration Firstly, we filter out questions that are either too hard or too easy for the current
model. We compute the estimated probability p of the target model m,; correctly answering each
question ¢; € Q/Q)},, based on its current ability a; and the question difficulty d;, using the IRT
formulation defined in Equation equation [3] We keep a candidate set C, to retain only questions
whose success probabilities fall within a desirable range (we set pin as 0.2 and pmax as 0.8):

Ck = {7' S Q/Qgc | Pmin S p S pmax} (5)

Subsequently, to encourage semantic diversity, we apply a max-min retrieval strategy. For each
candidate ¢ € C, we compute its distance to the previously selected question set ()}, and select the
questions with the maximum distance:

C; = {qf, o, @r | ¢* = argmax min dist(q,q')} (6)
q€Cr ¢'€Q),
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We retain the top-5 questions that exhibit the greatest Euclidean distance from @)}, as the final
candidate set C;. Consequently, such a semantic-aware retrieval strategy ensures that the selected
questions not only align with real-time ability but also introduce novel semantic coverage.

3.4 NEXT QUESTION SELECTION

Based on the retrieved results C};, we prompt the interviewer agent to perform fine-grained analysis
on candidates questions and recommend the next question for the tested model as:

Ger1 = fo(My,a;x,Cp, Dy) where qrq1 € Cf (N

As the agent is powered by strong MLLM fy, we leverage its multimodal understanding capability
to analyze each question, providing its reasoning process by comprehensively considering previous
interview history My, the real-time model capability a; 1, the detailed semantics of candidate
questions C} and the corresponding difficulties of candidate questions Dj. Ultimately, the agent
selects the most appropriate question g1 from these five candidates to serve as the next evaluation
question, and we update the previously attempted question set as (| < Q) U {qx1}. Detailed
prompts used for the interviewer agent are provided in Appendix I}

3.5 DYNAMIC MEMORY UPDATE

To maintain contextual coherence during evaluation, AutoJudger supports the memory mechanism.
Emphasizing long-term statistical awareness, the memory M accumulates high-level information
about previously selected questions and model responses, grouped by semantically inferred cate-
gories as a markdown table. Since many benchmarks lack predefined class labels or contain noisy
annotations, AutoJudger assigns categories based on semantic features and dynamically expands the
category table as new topics emerge. For each category, the memory tracks statistics including the
number of questions, max/min/average difficulty, and overall accuracy. This enables the agent to
maintain global awareness of coverage and balance across domains. A representative example is:

Category | Count | Max Difficulty | Min Difficulty | Avg Difficulty | Accuracy

Accounting 5 5.21 -1.02 1.15 0.60
Art History 20 1.01 -5.20 -0.83 0.71
Botany 9 0.45 -5.30 -1.31 0.56
Cell Biology 14 4.90 -2.44 -0.70 0.50

This memory table illustrates a more realistic usage scenario, featuring a broad range of question
difficulties and imbalanced category distributions. For example, Art History contains 20 questions
spanning a wide difficulty range with relatively high accuracy, while Accounting tend to be more
difficult with greater outcome variance. Such statistical tracking allows the agent to identify under-
represented or overly challenging areas, informing more targeted selection in subsequent iterations.

4 EXPERIMENT

4.1 EXPERIMENT SETUPS

Benchmarks We validate the effectiveness of AutoJudger on four commonly-adopted benchmarks:
MMMU-Dev&Val (Yue et al., 2024), SEEDBench-Image (Li et al., 2024b), MMT-Bench-Val (Ying
et al., [2024)), and AI2D-Test (Kembhavi et al.l 2016). AI2D represents a relatively simple sce-
nario, while the other three benchmarks are used for comprehensive multi-dimensional evaluation,
simulating complex environment with a diverse question pool.

Metrics We propose a metric, ranking accuracy, to quantitatively assess the consistency between
our evaluation results and the results on the full benchmark, defined as:

. # Inversions
p = Ranking Accuracy (%) (1 oy 1)/2> % 100 ®)
where the number of inversions refers to pairwise discrepancies between the predicted and ground-
truth rankings, where the ground-truth ranking is determined by the model accuracy over the full
benchmark. In addition to consistency, efficient benchmarking methods are supposed to be stable. We
also report the confidence intervals (1.96 times the standard deviation) of the ranking accuracy based
on multiple experiments. A narrower interval indicates the corresponding method is more stable.
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Table 1: Performance of different methods under 5% compression ratio. We report the average
ranking accuracy together with the confidence intervals. The best results are highlighted in bold.

Method ‘ AI2DTEST MMMUDE\/& VAL MMT-Bench SEEDBenchIMG
Random 93.82+3.71 81.47+6.28 85.88+6.14 92.65+4.74
Cluster 93.53+3.80 78.97+11.62 87.79+3.71 92.50+3.58
Stratified 93.97+3.08 84.26+6.22 84.1246.61 90.88+3.82
IRT 89.71+0.00 82.35+0.00 88.24+0.00 91.91+0.00
AutoJudger \ 94.85+0.00 87.94+0.71 92.06+1.41 90.74+0.71
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Figure 3: Evaluation performance and stability under varying compression ratios.

Baselines We compare AutoJudger against a set of baseline strategies categorized into two groups:
unified sampling and model-specific sampling. Unified sampling methods use a shared question pool
for all models, including Random Sampling (Random), which selects a fixed number of questions at
random; Stratified Random Sampling (Stratified) (Perlitz et al.l 2023)) also selects a fixed number of
questions randomly, but applies weighted sampling based on the number of categories within each
benchmark; and Cluster-Based Sampling (Cluster), which applies K-means clustering to the BERT
embeddings of questions and selects those closest to each cluster centroid as the evaluation questions.
In contrast, model-specific sampling strategies adapt question selection to individual models. The
most representative method is Optimal IRT Difficulty Choosing (IRT) (Lord, 2012), which iteratively
selects questions whose IRT-estimated difficulty is closest to the model’s latent ability until the
desired sample size is reached. Appendix D] provides a detailed introduction to baseline methods.

Implementation Details We deploy our AutoJudger framework based on the Qwen2.5-VL-7B-
Instruct model (Bai et al., 2025) where the retrieval module is driven by CLIP ViT-B/32 (Radford
et al.l [2021)). For IRT-based difficulty assessment of the questions, we collect offline evaluation
results from 60 models (training setﬂ During evaluation, we used AutoJudger to assess another 17
models (test set). Both subsets of models cover a wide range of parameter scales, including both
open-source and proprietary models, with no overlap between them. Please refer to Appendix [D]for
more details. Each experiment is repeated five times to reduce the impact of randomness. We conduct
all experiments on a Linux machine running Ubuntu 22, with § NVIDIA RTX 4090 GPUs.

4.2 MAIN RESULTS

In Table[T} we compare our framework with several efficient benchmarking baselines using only 5%
of the data across four widely-used benchmarks. Three key observations emerge: (1) AutoJudger

'Offline results are collected from VLMEvalKit (Duan et al, [2024): https://github.com/
open-compass/VLMEvalKit
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Table 2: Impact of different framework design of AutoJudger on four benchmarks.
Method Variant AIZDTEST MMMUDE\/&VAL MMT-Bench SEEDBGDCh[MG

AutoJudger 94.85 88.24 93.38 91.18

w/o agent 92.28 82.87 86.62 91.10

w/o visual 94.85 87.50 91.18 91.18

w/o memory 94.12 89.71 89.71 91.18
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Figure 4: Ranking accuracy of AutoJudger Figure 5: Comparison of ability-difficulty distance
computed at MMMUpgy yar, under three (bar chart, left y-axis) and semantic distance (line
distinct difficulty settings. plot, right y-axis) with and without memroy.

consistently outperforms all baselines on most benchmarks, demonstrating strong effectiveness
in low-data regimes. (2) Compared to stochastic baselines (e.g., Random, Cluster, Stratified),
AutoJudger exhibits significantly lower variance, indicating enhanced stability and robustness. (3)
The IRT baseline, being a deterministic method, does not introduce randomness, but it suffers
from suboptimal performance—for example, IRT performs notably worse on MMMU. In contrast,
AutoJudger integrates real-time model feedback and history records to dynamically select appropriate
questions. This adaptive strategy gradually mitigates the negative effects of randomness, improving
the stability while achieving superior overall performance. Beyond the general datasets, we further
explore applying AutoJudger to reasoning-oriented benchmarks, with results provided in Appendix [F]

As illustrated in Figure 3] we compare methods across varying compression ratios. (1) Accuracy:
While all baselines achieve good performance on AI2D, a relatively simple benchmark, AutoJudger
exhibits consistent and substantial advantages on more complex benchmarks such as MMT-Bench
and MMMU. Its smaller gains on SEEDBench can be attributed to the dataset’s larger scale — about
four times that of the others — where even 5% provides sufficient data for baseline convergence. At
lower compression rates (<1%), however, AutoJudger’s advantage becomes markedly pronounced,
demonstrating reliable evaluation of complex benchmarks at significantly reduced cost. (2) Stability:
Baseline methods require large subsets to ensure stability, whereas AutoJudger’s adaptive strategy
effectively maintains strong stability across different data scales. Besides different compression
ratios, Appendix [E]investigates the effects of multiple factors (e.g. randomness in initialization) on
AutoJudger, to demonstrate its stability and generalization capability.

4.3 EFFECTIVENESS OF THE AUTOJUDGER FRAMEWORK
Moreover, we conduct experiments to validate the effectiveness of core designs within AutoJudger.

Necessity of Question Difficulty Estimation. To investigate the necessity of providing question
difficulty as reference information during the agent-driven next question selection, we conduct
experiments on the MMMU dataset, which includes human-annotated difficulty labels. We compare
three difficulty settings: (1) using IRT-estimated difficulty, (2) using human-annotated difficulty, and
(3) excluding difficulty information entirely. Results in Figure []illustrate that applying IRT-estimated
difficulty outperforms the other two settings across various compression ratios, indicating that the
difficulty information is crucial for adaptive evaluation. However, manually-assessed difficulty may
not align with the difficulty perceived by existing MLLMs.

Necessity of Agent-based Question Selection. To validate the necessity of agent-driven question
selection, we conduct an ablation study by removing the agent from the AutoJudger framework. In
this case, candidate questions are filtered using Equation [5] and a weighted sampling mechanism is
performed based on the proximity between question difficulty and the model’s estimated ability. As
shown in the second line of Table 2] removing the agent leads to a significant performance drop in
three datasets. The effect on SeedBench is less significant due to its large size, which causes different
methods to converge. However, when the compression ratio is reduced to 1%, the ranking accuracy
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Table 3: Mean semantic distance between questions under 5% compression ratio.

Method AIZDTEST MMMUDEv& VAL MMT-Bench SEEDBGHCh[MG
Random 0.8169 0.7534 0.7446 0.7359
Cluster 0.7661 0.7534 0.7549 0.7402
IRT 0.8198 0.7568 0.7417 0.7451
AutoJudger 0.9385 0.8149 0.8594 0.8262
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Figure 6: The evolution of the estimated MiniCPM-V-2’s ability and the question difficulty over
the course of evaluation on MMMUpgy y4r. “Smoothed difficulty” is the average difficulty of the
20 nearest questions, while “difficulty” is the difficulty of the question selected at each iteration.

drops from 86.32% (with agent) to 84.56% (without agent). This demonstrates that the agent as the
judger plays a crucial role in improving evaluation quality, especially in low-data scenarios.

Necessity of using Visual Information. To assess the importance of multimodal understanding in
AutoJudger’s decision-making process, we investigate the role of visual information in evaluation.
We construct an ablated method where visual information is excluded from the context provided
to the agent, offering only textual information instead. As presented in Table 2] removing visual
information consistently harms the performance, indicating that the semantics of images are crucial
for ensuring the diversity of selected questions in multimodal benchmarks.

Necessity of Dynamic Memory M. To understand the contribution of the proposed dynamic
memory M, we analyze the impact of removing it from the framework. The ablated framework keeps
the memory of AutoJudger empty, which transforms Equation equationinto Gr+1 = f (9, a;%,Cf).
As presented in the third line in Table [2] the performance degrades on AI2D and MMT-Bench. We
hypothesize that without memory M, AutoJudger relies solely on the estimated model ability a; for
question selection, leading it to favor questions whose difficulty closely matches that ability. To verify
our hypothesis, we compute the averaged absolute distance |qu 41— aj, k| between the difficulty of
selected question g1 and the estimated ability a; ;, of model m;. As shown in the bar chart of
Figure [5] (left y-axis), the ability-difficulty distance significantly decreases when memory is absent.
We also compute the semantic distances between questions selected by AutoJudger. As illustrated by
the line plot in Figure [5] (right y-axis), semantic diversity is higher when memory is present. These
findings highlight the importance of memory in preserving a global view of model strengths and
weaknesses, enabling more balanced and informative question selection.

4.4 COMPUTATIONAL OVERHEAD OF AUTOJUDGER

While AutoJudger substantially reduces the number of evaluation queries by selecting only the
most informative ones, it inevitably introduces additional computational overhead. Taking that into
consideration, we display the computational cost in Table [ (see details in Appendix [H.

* Evaluating a 7B model: One AutoJudger iteration incurs about 2.68x the cost of Qwen2.5-VL-7B
model forward pass. However, since AutoJudger achieves high accuracy with only 4% of the full
dataset, this translates to a relative cost of 10.7% compared to full-scale evaluation.

* For larger or smaller models: As evaluated model size changes, the evaluated model’s inference
cost adjusts, while the cost of AutoJudger remains fixed. The relative computational cost on
evaluating 3B and 72B models is 19.4% and 4.7% respectively. The advantage is amplified when
the evaluated model uses CoT reasoning or when external evaluators (e.g., GPT-4) are invoked for
assessment — both of which add significant per-step overhead that AutoJudger avoids by design.

4.5 AUTOJUDGER STRIKES A BALANCE BETWEEN DIFFICULTY AND SEMANTIC DIVERSITY

AutoJudger is designed to select questions that both align with the model’s ability and exhibit maximal
diversity. To validate this, we first investigate the relationship between the estimated model’s ability
and the difficulty of reccommended questions. As illustrated in Figure[6] AutoJudger adaptively selects
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Table 4: Computational overhead of AutoJudger. Fi 4 is the FLOPs of a single forward pass
of the evaluated model. Fi, is the per-step computational cost when evaluated with AutoJudger.
R(0.04) is the relative computational cost under 4% of the data.

Model Frnodel Fﬁtep Rtep/Fmodel R(004)
Qwen2.5-VL-3B 6.04 29.29 4.85% 19.4%
Qwen2.5-VL-7B 13.85 37.10 2.68x 10.7%
Qwen2.5-VL-72B  139.97 163.22 1.17x 4.7%

questions whose difficulty values dynamically match the ability of the evaluated model. Beyond
difficulty alignment, we then assess whether AutoJudger preserves semantic diversity in the selected
questions. We quantify the semantic similarity among selected questions via the average Euclidean
distance between the embeddings generated by CLIP ViT-B/32. As shown in Table[3] the questions
selected by AutoJudger have a significantly higher average semantic distance than those from other
methods, indicating that AutoJudger achieves superior semantic diversity.

Besides quantitative analysis, we provide several cases in Appendix [G]for qualitative analysis. These
examples demonstrate that AutoJudger is capable of comprehensively analyzing both difficulty and
semantics of questions, and making recommendations based on historical information.

5 RELATED WORK

5.1 EFFICIENT BENCHMARKING

As MLLMs advance, numerous large-scale benchmarks (Xu et al.| [2024bj Liu et al., 2024f; Lu et al.|
2023};12022)) have been proposed to assess their capabilities across diverse tasks, such as diagram
reasoning (Kembhavi et al., | 2016)), expert-level subject reasoning (Yue et al., 2024) and so on (Ying
et al.| 2024; [Li et al., 2023} |2024b). While these resources provide broad coverage, their scale
makes the evaluation increasingly expensive, especially when proprietary models (e.g., ChatGPT) are
employed for scoring (Liu et al., [2023} [2024d; [Lu et al., 2023).

To mitigate this, efficient benchmarking aims to select smaller yet informative subsets that preserve
evaluation fidelity. Existing approaches fall into two categories: feature-based and difficulty-based
sampling. Feature-based methods reduce redundancy by ensuring semantic representativeness, such
as stratified sampling by sub-scenarios (Perlitz et al.,[2023)) or grouping by model confidence (Vivek
et al.,|2023). Difficulty-based methods adapt to model performance, by leveraging IRT (Cai et al.|
2016) (Zhuang et al.| [2023a), clustering by difficulty (Polo et al.| [2024), or integrating IRT with
Glicko-2 ratings (Ding et al., [2024). Beyond specific perspectives, AutoJudger unifies semantic
diversity and difficulty adaptiveness, enabling both efficient and adaptive benchmarking of MLLMs.

5.2 DIFFICULTY ESTIMATION

Most existing benchmarks lack explicit difficulty annotations, limiting the granularity of capability
evaluation. Classical psychometric frameworks such as IRT (Cati et al., 2016)) model the probability of
a correct response as a function of latent question difficulty and subject ability. Traditionally used in
standardized exams like the GRE and SAT (An & Yung} 2014)), IRT has been extended to NLP settings
to analyze benchmark saturation (Vania et al., 2021)) and estimate model proficiency (Park et al.,
2024). These applications demonstrate IRT’s flexibility in both question-level diagnostics and model
ranking, making it a natural fit for difficulty estimation in LLM evaluation. Other lines of works
access difficulty via content-based features (Jiao et al., 2023 Xu et al., [20244a)), step-level reasoning
complexity (Cheng et al.| 2021} [Wang et al., |2024b), or LLM-based prediction models (Gao et al.|
2018} Lee et al.}[2023)). In our work, we incorporate IRT into the adaptive benchmark construction
process, where question difficulty is pre-estimated from historical model responses and then used to
enable dynamic, targeted evaluations across varying model capabilities.

6 CONCLUSION

We propose AutoJudger to tackle the rising cost of evaluating MLLMs. Leveraging an agent-driven
question selection framework, we demonstrate that it is possible to consistently assess the capabilities
of MLLMs with only 5% samples in multimodal benchmarks. Extensive experiments illustrate
that AutoJudger is not only effective but also stable under various evaluation settings. We believe
AutoJudger is a promising solution for scalable and reliable MLLM evaluation.
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7 ETHICS STATEMENT

All benchmark datasets and evaluation records used in this research are publicly available and properly
cited. The experiments were conducted in accordance with the original dataset licenses and usage
guidelines.

8 REPRODUCIBILITY STATEMENT

We provide all code, data, and instructions necessary to reproduce the results reported in this
paper. The materials are available through the following anonymized link: https://anonymous .
4open.science/r/AutoJudger—anonymous.

The repository includes:
* Source code for the AutoJudger framework.
* Data used in our experiments.

* Detailed instructions for running experiments and reproducing all reported results.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were employed solely to polish the text and correct minor grammar issues.

B DETAILS OF RASCH MODEL (IRT) FITTING

To estimate the question difficulty vector D from the binary response matrix {r;;}, where r;; = 1
indicates that model m/’; correctly answers question ¢;, we adopt the Rasch model—a one-parameter
logistic IRT model as shown in Equation 3]

Variational Bayesian Framework We use variational inference to approximate the posterior
distribution over model abilities and question difficulties. Specifically, we assume a fully factorized
variational distribution (Ding et al., 2024):

q(a, D) = [ ala;) [ ] a(ds) ©
j i
Each latent variable is modeled as a Gaussian:

q(a;) = N'(a;,00,)s  a(di) = N(pa,, 03,) (10)

The optimization target is the evidence lower bound (ELBO):

Leso = Eq(a,p)[logp(r | a, D)] = KL(q(a, D) || p(a, D)) (11)

We adopt standard Gaussian priors: p(a;) = N(0,1) and p(d;) = N(0,10%), which yield closed-
form KL divergences.

Optimization We optimize the ELBO using stochastic gradient descent. Gradients are estimated
via the reparameterization trick:

aj = fla; +0a; - €5, € ~N(0,1)

12
di:[tdi'f‘O'di'Gi, EZNN(O,].) ( )

This leads to efficient and low-variance updates for the variational parameters p and o.

Implementation Setting We implement the model using PyTorch (Paszke et al., 2017) and
Pyro (Bingham et al.|[2017)). The variational distributions over model abilities and question difficulties
are initialized with zero mean and large variance. Specifically, the ability parameters a; are initialized
with pi,, = 0, 04; = 1, while the difficulty parameters d; are initialized with pg4, = 0, 04, = 103,
corresponding to vague priors that reflect minimal prior knowledge.

We optimize the ELBO (Kingma & Welling}, |2022) using the Adam optimizer (Kingma & Ba}[2017)
with a learning rate of 0.1 for 3,200 steps, using mini-batches sampled from the response matrix {r;;}.
Training terminates when the relative change in ELBO falls below 1 x 10~# within a moving window.
During inference, we use the variational mean 4, as the point estimate of question difficulty.

C DETAILS OF MODEL ABILITY ESTIMATION

To estimate the model ability a; based on its responses to a subset of questions, we employ a binary
search algorithm grounded in the one-parameter logistic IRT (Rasch) model. Specifically, we solve
the following maximum likelihood estimation problem:

max Z log p(rij | aj, d;), (13)
Erra
where p(r;; | a;,d;) is defined in Equation Since the log likelihood is a monotonic function with
respect to a;, we perform binary search within a bounded interval [—30, 30], iteratively updating the
estimate until convergence. The stopping criterion is based on a fixed threshold of 10~ for either the
log-likelihood difference or the change in a;.
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This procedure enables efficient and stable estimation of real-time model ability during evaluation,
while keeping the question difficulties {d; } fixed.

D IMPLEMENTATION DETAILS OF EFFICIENT BENCHMARKING METHODS

D.1 BASELINES

We detail the implementation of the baselines below.

* Random Sampling (Random): We uniformly sample ¢ * |Q| questions from the complete
evaluation benchmark @) without replacement.

o Stratified Random Sampling (Stratified) (Perlitz et al., |2023)): We partition the question pool
based on provided category labels and draw approximately equal numbers of questions from
each partition. We ensure that the maximum size difference between any two categories is no
greater than one. Sampling is performed independently per category without replacement.

* Cluster-Based Sampling (Cluster): Each question is embedded using the CLIP ViT-B/32
encoder (Radford et al.| 2021), producing a 512-dimensional representation. Embeddings
are L2-normalized before clustering. We apply K-means clustering to partition the question
pool. The number of clusters K is set to the number of desired questions, i.e., K = ¢ - |Q)|.
One question is selected per cluster, chosen as the one closest to the centroid in Euclidean
space.

* Optimal IRT Difficulty Choosing (IRT) (Lord,2012): We use a one-parameter logistic Item
Response Theory model to adaptively select questions based on the model’s estimated ability.
The ability score is initialized with a simple prior: we assume the model has answered five
medium-difficulty questions (difficulty 0) and got 2.5 correct on average. This initialization
prevents unstable updates in early iterations.

D.2 OUR FRAMEWORK: AUTOJUDGER

The evaluation workflow of AutoJudger is presented in Algorithm[T] All questions in each benchmark
are first annotated with estimated difficulty levels. Then, evaluation begins with a standardized
initialization, followed by iterative refinement of the question set based on the model’s responses.

Training and Test Models To ensure a representative and balanced evaluation, we partition the
models based on parameter scale, as the model capability is generally observed to improve with
increasing parameter size. Accordingly, we divide the models into four groups: < 5B, < 9B, < 168,
and > 1685 (including proprietary models). From each group, we randomly sample 20% of the
models as test models, the remaining 80% are used as training models to collect offline responses
which are utilized for question difficulty estimation. This stratified selection strategy ensures that
AutoJudger is evaluated across a wide spectrum in terms of model abilities. The complete list of the
60 training models used for IRT-based question difficulty assessment are provided in Table5]and the
left 17 models evaluated via AutoJudger are listed in Table[6]
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Algorithm 1 AutoJudger - Adaptive Ability Estimation via Multimodal Large Language Model

Require:
1: Question Pool = {g¢;}, Testing Models M = {m,}
2: An Agent as the judger to select the question
3: for all test model m; € M do
4: Initialize problem assistant Agent
5: Sample initial batch of questions Qg
6: collect model responses Ry
7: Estimate initial model ability ay.
8: Generate init memory M.
9: fort =1to (6 x |Q| — |Qo|) do

10: Get the candidate set C*

11: Agent select the next question with M;_1,a;—1 given. (¢ = f(M¢—1,a:-1,C*))
12: Get the answer 75, update the ability a;

13: Update M, with g; included.

14: end for

15: Get the final ability estimation a5 x|Q|—|Qo|)

16: end for

Initialization Details In the initialization phase, we take the text of each question as input and use
CLIP ViT-B/32 as the encoding model (this design choice is provided in Appendix [E.T)) to generate
normalized vector representations. We aim to select a diverse and representative set of questions, so
we apply k-means clustering with k=10 and select the questions closest (in terms of L2 distance) to
each of the resulting cluster centers. To mitigate the instability of k-means, we repeat the clustering
process 50 times and choose the set that achieves the highest ranking accuracy on the training set.

E FURTHER ANALYSIS ON GENERALIZATION AND STABILITY OF
AUTOJUDGER ACROSS DIFFERENT FACTORS

In this section, we investigate how different factors affect the performance of AutoJudger. Overall,
this section demonstrates AutoJudger’s stability and generalization across various factors, including:
robustness to random initialization (E.T)); generalization under different question selection strategies
and even in the absence of historical problem-solving records (E.2)); generalization across different
agent backbones (E.3); and generalization across different IRT settings (E.4).

E.1 THE IMPACT OF INITIALIZATION

Initialization is a crucial component of the AutoJudger framework, as it determines the starting point
for iterative evaluation. To systematically investigate its impact, we conduct experiments to compare
the performance of different initialization methods, including two baselines: random sampling and
sampling based on question difficulty quantiles (denoted as IRT), as well as our clustering-based
initialization. Additionally, we compare the performance of different embedding strategies, including
the use of different encoders and different semantic representations of questions.

To reduce the impact of randomness, each configuration is evaluated over 50 independent trials,
and the average ranking accuracy is reported. To avoid information leakage and overfitting to the
test set, we report the ranking accuracy on the training-set models. As shown in Table [/| there
are several findings: (1) Incorporating additional information—whether related to difficulty or
semantics—through appropriate methods improves the effectiveness of initialization. (2) While
approaches based on difficulty perform well, using semantic information yields the best results. (3)
Unlike Qwen2.5-VL, the dual-encoder CLIP model struggles to integrate information from multiple
modalities. (4) Textual features reflect the diversity of questions more effectively than visual features,
suggesting that current benchmarks may not consider the richness of visual information.

E.2 THE IMPACT OF CANDIDATE QUESTION RETRIEVAL STRATEGY

Superiority of Personalized Retrieval As argued in the introduction, we believe each model
should be assigned with a personalized evaluation subset since models vary in capability. For instance,
evaluating powerful models with too many easy questions may provide limited information. To
validate this argument, we conduct an experiment to assess top-performing models (top 50% in terms
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Table 5: List of 60 training set models used for IRT-based question difficulty assessment. These
models span a range of sizes and include both open-source and proprietary models.

Models Open-source  # Params (B) Date
InternVL2-1B gChen et al.{2024¢ Yes 0.9 2024.11
llava-onevision-qwen2-0.5B-ov (L1 et al.|[2024a Yes 0.9 2024.07
llava-onevision-qwen2-0.5B-si (L1 et al. a Yes 0.9 2024.07
h2ovl-mississippi-1B (Galib et al. Yes 0.8 2024.01
NVLM (Dai et al.jj202 Yes 79.4 2024.09
Qwen2-VL-72B-Instruct (Wang et al.{|2024a Yes 72 2024.08
360VL-70B (Qihoo36! al Yes 71 2024.04
InternVL2-40B (Chen et al. C Yes 40.1 2024.06
InternVL-Chat-V1-5 (Chen et al. 4c Yes 25.5 2024.03
InternVL2-26B (Chen et al. | C Yes 25.5 2024.11
MMAlayaZ (Ltd.][2024' Yes 25.5 2024.08
Eagle-X5-13B (Shi et al.||2024 Yes 15.4 2024.08
Slime-13B (Zhang et al. a Yes 13.4 2024.05
TransCore- esearc Yes 13.4 2024.03
llava-v1.5-13 1u et al. Yes 13 2024.01
Falcon2-VLM-11B (Technology Innovation Institute (TII) Yes 11 2024.07
Ovis1.6-GemmaZ- uetal. c Yes 10.2 2024.09
monkey (Li et al. 5 Yes 9.8 2023.11
monkey-chat (L1 et al. de. Yes 9.8 2023.11
POINTS-Yi-1.5-9B-Chat (Liu et al.|[2024e Yes 9.5 2024.09
Mantis-8B-Fuyu (Jiang et al. Yes 9.4 2024.04
Eagle-X5-7B (Shi et al.. Yes 9.1 2024.08
Bunny-llama3-8 e et al 4 Yes 8.5 2024.04
Mantis-8B-siglip-llama3 {(Jiang et al.||2024a] Yes 8.5 2024.04
Mantis-8B-Idefics2 (Jiang et al. a Yes 8.4 2024.05
Slime-8B (Zhang et al.![202 Yes 8.4 2024.05
llava-next-llama3 (Liu et al. 4c Yes 8.3 2024.04
POINTS-Qwen-2.5-7B-Chat (Liu et al.|[2024e Yes 8.3 2024.12
llava-next-interleave-7B (Liu et al. C| Yes 8.1 2024.06
1lava-next-interleave-7B-dpo (Liu et al. c Yes 8.1 2024.06
MiniCPM-V-2-6 (Yao et al. Yes 8.1 2024.07
InternVL2-8B (Chen et al. Yes 8.1 2024.11
llava-onevision-qwenZ-7B-ov (L1 et al.[[2024a Yes 8.0 2024.07
Ovisl.5-Llama3-8B (Lu et al. C| Yes 8 2024.07
molmo-7B-0-0924 (Deitke et al. a Yes 7.1 2024.09
1lava-next-mistral-7 1u et al. C Yes 7.6 2024.03
deepseek-vI-7B (Lu et al. a Yes 13 2024.02
Ilava-next-vicuna-7 1u et al. 4c¢ Yes 7.1 2024.05
XComposer2 (Dong et al. Yes 7 2024.01
llava-v1.5-7B (Liu et al. Yes 7 2024.01
Phi-3-Vision in et al. Yes 42 2024.05
InternVL2-4B en et al. Yes 3.7 2024.11
Vintern-3B-beta (Doan et al. Yes 32 2024.01
BlueLM-V (Lu et al. No 3 2024.11
paligemma-3B-mix- eyer™ et al.|[2024 Yes 29 2024.04
InternVL2-2B (Chen et al. Yes 22 2024.11
Aquila-VL-2! u et al. Yes 22 2024.01
deepseek-vl-1.3B (Lu et al. Yes 2.0 2024.02
Moondream1 (vikhyaf Yes 1.9 2024.01
XComposer2-1.8 ong et al.l[2024 Yes 1.8 2024.01
Kosmos2 (Peng et al.. Yes 1.7 2023.06
molmoE-1B-09! eitke et al.[[2024b Yes 1 2024.09
GPT4V-20240409- e, No - 2024.04
GPT4o dHursl et al. No - 2024.05
GPT40-HIGH (Hurst et al.|[2024 No - 2024.05
GeminiFlash1-5 (Team et al. No - 2024.09
JT-VL-Chat (Corporation No - 2024.10
Qwen-VL-Max-| i et al.]2023) No - 2024.08
Qwen-VL-Plus-0809 (Bai et al.j2023} No - 2024.08
Taiyi (Luo et al.|2024] No - 2023.11

of average ranks), either with their personalized questions picked by AutoJudger or simple questions
that are selected to evaluate the worst model.

Results are provided in Table[§] Considering the efficiency, SEEDBench is excluded in this experiment
due to its large scale. Since AI2D is a relatively easy scenario (minimal variation in difficulty across
the questions), the “simplest” strategy demonstrates comparative performance. However, on more
complex benchmarks like MMT and MMMU, the personalized approach demonstrates superior
performance. Additionally, we observed that the “simplest™ strategy lacks stability and does not
necessarily improve as the dataset size increases. Generally, by dynamically selecting questions
tailored to each model’s capability, the proposed AutoJudger framework better accommodates varying
model strengths and avoids overfitting to the preference of specific models. Therefore, we adopt the
personalized strategy to retrieve questions.

Candidate Question Selection Strategy As stated in Equation[6in Section[3.3] we select questions
with largest semantic distance as the candidates (“semantic farthest”). To demonstrate the superiority
of our approach, we compare it against two widely adopted question selection baselines: random sam-
pling (“random”), and selecting questions with the smallest difficulty distance (“optimal difficulty”).
As summarized in Table[9] while the “optimal difficulty” strategy achieves the best performance on
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Table 6: List of 17 test set models evaluated using AutoJudger. These models are disjoint from the
training set and representative in terms of diverse types and scales.

Models Open-source  # Params (B) Date
InternVL2-76B (Chen et al.,[2024a) Yes 76.3 2024.06
llava-next-vicuna-13B (Liu et al.| 2024c) Yes 13.4 2024.02
Pixtral-12B (Agrawal et al.,|[2024) Yes 12 2024.08
Ovisl.5-Gemma?2-9B (Lu et al.,[2024c) Yes 114 2024.07
idefics2-8B (Laurencon et al.,2024) Yes 8.4 2024.03
Mantis-8B-clip-llama3 (Jiang et al.|[2024b) Yes 8.3 2024.01
llava-onevision-qwen2-7B_si (L1 et al.| |2024a) Yes 8.0 2024.07
molmo-7B-D-0924 (Deitke et al.,|2024a) Yes 8.0 2024.09
Slime-7B (Zhang et al.,|2024al) Yes 7.1 2024.05
Ovisl.6-Llama3.2-3B (Lu et al.,[2024c) Yes 4.1 2024.01
MiniCPM-V-2 (Yao et al .| [2024) Yes 3.4 2024.11
h2ovl-mississippi-2B (Galib et al.,|[2024) Yes 2.1 2024.01
Janus-1.3B (Wu et al.| [2024) Yes 2.1 2024.01
Moondream?2 (Korrapati} 2024) Yes 1.9 2024.02
GPT40-20240806 (Hurst et al.,|2024) No - 2024.08
GeminiProl-5 (Team et al., 2024 No - 2024.09
Step1V (StepFun||2024) No - 2024.03

Table 7: Comparison between different initialization methods. “Multi-concat” and “multi-mean”
refer to concatenating and averaging the image and text embeddings, respectively, to serve as the
multi-modal representations of questions. We report the average rank of each method (among all
methods) across four benchmarks as the overall performance.

Encoding Models  Input AI2D7gsy  MMMUpgye,va, MMT-Bench  SEEDBenchy,s Avg Rank
multiconcat  74.98 7254 6181 58.00 775
. multi-mean 72.61 70.57 55.07 55.92 10.00
CLIPVITB32  nage 69.80 64.72 66.07 65.45 7.50
text 8131 73.02 60.88 75.59 3.75
multiconcat _ 67.23 7553 52.00 61.61 9.50
. multi-mean 75.70 75.79 67.00 54.88 5.25
CLIPVIFL/I4 5 ave 73.24 74.52 62.30 64.01 6.00
fext 77.45 66.38 66.15 62.62 6.25
text&image  78.12 62.77 62.02 6791 6.25
Qwen2.5-VL-7B  image 70.77 64.77 63.55 64.53 8.00
fext 79.58 66.15 59.82 64.53 7.25
IRT - 80.40 70.40 6181 64.75 5.00
Random - 74.62 68.83 60.36 63.33 8.50

the AI2Dtgst benchmark, its effectiveness does not generalize well across other benchmarks. In
contrast, the “semantic farthest” strategy demonstrates consistently strong performance across all
evaluated benchmarks and under different compression ratios. Therefore, we choose to use semantic
farthest strategy, as it not only exhibits broad applicability and consistent performance across diverse
benchmarks, but can also introduce greater informational diversity.

Expansion of Candidate Question Pool We investigate the impact of the number of candidate
questions (see Equation@) on the performance of AutoJudger by expanding |C}| from 5 to 7 and 10.
As shown in Table[I0] a larger candidate set introduces more flexibility, but also brings additional
noise, making it harder to identify the optimal next question.

Evaluation without Historical Records AutoJudger leverages item-level difficulty estimates and
historical model response records to guide question selection. To examine its robustness when
historical records are unavailable (e.g., in benchmarks expanded with new tasks), we conducted an
ablation study comparing standard AutoJudger with a variant that does not use difficulty information.
In the difficulty-agnostic variant (w/o difficulty), all questions are assumed to have the same difficulty
level. Table [TT] summarizes the results across multiple benchmarks. The results show that even
without explicit difficulty information, AutoJudger maintains competitive performance, though with
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Table 8: Ranking accuracy for top-performing models with personalized and unified question
selection strategies. “personalized” means the questions are selected via Equation[5] “simplest”
means the questions are from the evaluation of the lowest-ranked model and fixed for all models.

Compression Ratio

Benchmark Questions ‘
| 1% 2% 3% 4% 5%
AD2D personalized | 95.24 9524 9524 95.24 95.24
TEST simplest 8571 9048 100.0 9524 90.48
personalized | 78.57 81.25 82.14 88.39 88.39
MMMUpevewat = Gmplest ‘ 78.57 80.00 80.71 8571 85.71
. personalized | 86.61 86.61 90.18 92.86 93.75
MMT-Bench simplest ‘ 8571 8214 7857 6571 67.14

Table 9: Comparison of different candidate question selection strategies. "Semantic farthest"
means selecting questions with the largest semantic distance, "optimal difficulty" means selecting
questions with the smallest difficulty distance, and "random" means purely random selection.

Benchmark Strategy ‘ Compression Ratio

| 1% 2% 3% 4% 5%

semantic farthest | 85.29 89.71 93.38 92.65 94.85
AI2D7gsr optimal difficulty | 90.44 93.38 93.38 94.12 95.59
random 86.76 91.18 91.18 9191 91.18

semantic farthest | 77.21 82.54 8474 85.85 87.94
MMMUpgyevar  optimal difficulty | 77.21  77.21 78.68 80.15 83.09

random 7721 83.09 86.03 83.82 83.82

semantic farthest | 85.66 87.87 89.34 9191 92.06

MMT-Bench optimal difficulty | 72.06 78.68 78.68 83.09 82.35
random 7794 83.82 88.97 86.76 91.18

semantic farthest | 86.40 88.24 89.89 90.99 90.74
SEEDBench;yg  optimal difficulty | 72.06 78.68 78.68 83.09 82.35
random 78.68 83.82 81.68 83.82 88.97

some degradation on more challenging benchmarks. This suggests that the framework is robust to the
absence of historical response data.

E.3 THE IMPACT OF FOUNDATION MODELS ON AUTOJUDGER

Scaling up the Judging Agent As the capability of the interviewer/judging agent plays a crucial
role in our framework. We first explore to replace the original 7B-scale agent with a larger backbone,
i.e. Qwen2.5-VL-32B-Instruct, to assess the impact of the scale of judging agent. Figure[7]presents
a comparison between the 7B and 32B models on SEEDBench under varying compression ratios.
The results show that the 32B model consistently outperforms the 7B models, especially in low-ratio
settings. For example, at a compression ratio of 0.2%, the 32B model achieves a ranking accuracy
of 82.7%, representing a 3.3% improvement over the 7B model. Although both models improve as
the compression ratio increases, the 32B model remains consistently stronger, demonstrating better
generalization and selection capability.

Generalization to Different Backbones We further evaluate AutoJudger with diverse judging
backbones to determine whether its performance gains arise from the framework itself rather than a
specific model. Table[T2]reports results across representative benchmarks. In all cases, AutoJudger
consistently surpasses the strongest baseline. For example, with Qwen2.5-VL-7B, InternVL2.5-8B,
and GPT-40-mini, AutoJudger improves accuracy on MMMU by up to 3.7% compared to the best
baseline. The above findings indicate that the AutoJudger framework not only demonstrates strong
performance, but also shows potential for further expansion. A more advanced interviewer agent
could further enhance the effectiveness of AutoJudger.

21



Under review as a conference paper at ICLR 2026

Table 10: The impact of different number of candidate questions.

Benchmark # Candidate ‘ Compression Ratio

‘ 1% 2% 3% 4% 5%
5 8529 89.71 9338 92.65 94.85
AI2D7gsr 7 88.24 92.65 93.38 93.38 94.85
10 83.82 86.03 89.71 91.18 9191
7721 8254 84.74 8585 87.94
MMMU pevevar 7 77.21 82.35 80.88 83.09 83.82
10 77.21 8235 83.82 8529 8529
85.66 87.87 89.34 9191 92.06
MMT-Bench 7 83.09 88.24 88.24 88.97 92.65
10 82.35 86.03 88.24 91.18 91.18
86.40 88.24 89.89 90.99 90.74
SEEDBench;yg 7 84.56 86.76 88.97 92.65 92.65
10 86.03 86.76 88.24 88.24 88.97
95.0
Qwen2.5-VL-7B-Instruct 93.0
9255 Qwen2.5-VL-32B-Instruct 228
90.8 904 91.0 90.7
@ 90.0 800 89.9
S; ' 88.2
9 850 84.9
<
o T 83.1
_E 82.5 506
& 80.0 e
775
75.0
0.2% 0.4% 0.6% 0.8% 1% 2% 3% 4% 5%

Figure 7: Comparison of 7B and 32B models on SEEDBenchy,; at different compression ratios.

E.4 THE IMPACT OF IRT MODELS

In AutoJudger, question difficulty is estimated using a 1PL model, combined with semantic features
for item selection. To investigate whether incorporating additional IRT parameters improves perfor-
mance, we consider more complex models: 2PL, which models item discrimination, and 3PL, which
additionally accounts for guessing.

We conducted experiments on two representative benchmarks, and the results are summarized in
Table[T3] The results indicate that increasing the complexity of the IRT model does not consistently
improve recommendation performance (AutoJudger still outperforms the strongest baseline across
all settings). In these multi-modal, high-dimensionall settings, additional parameters may lead to
overfitting or provide limited benefit. Therefore, the 1PL model offers a favorable balance between
simplicity and effectiveness for AutoJudger.

F EMPIRICAL EVIDENCE ON REASONING-ORIENTED BENCHMARKS

To further assess the robustness of AUTOJUDGER under reasoning-oriented benchmarks, we con-
ducted evaluations on MathVista-testmini, a subset of MathVista designed for complex reasoning
problems. As shown in Table[T4] AutoJudger achieves the best performance, demonstrating strong
generalizability in reasoning-intensive settings.

G CASE STUDY

As an agent-driven evaluation framework, AutoJudger offers a major advantage in enhancing the
interpretability of assessment results. We provide two representative examples in Figure [8| and
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Table 11: Performance of AutoJudger with and without difficulty modeling.

Method AI2DTEST MMMUDE‘/& VAL MMT-Bench SEEDBCHCh]MG
Baseline (best) 93.97 84.26 88.24 92.65
AutoJudger 94.85 87.94 92.06 90.74
w/o difficulty 94.85 86.76 89.71 88.97

Table 12: Performance of AutoJudger with different backbones.

Method AIZDTEST MMMUDE\/& VAL MMT-Bench SEEDBenchIMG
Baseline (best) 93.97 84.26 88.24 85.74
Qwen2.5-VL-7B 94.85 87.94 92.06 86.32
InternVL2.5-8B 94.12 88.24 91.91 85.29
GPT-40-mini - - 90.44 -

Figure[0] These cases illustrate how information stored in the dynamic memory enables the agent to
efficiently analyze the evaluated model’s performance across different types of questions (highlighted
in blue text in the figures), thereby guiding more informed selection of subsequent evaluation items.
Furthermore, the combination of model ability estimation and corresponding question difficulty
analysis (marked in yellow and orange) assists the agent in identifying the most appropriate questions.
Supported by these key components, AutoJudger can not only evaluate models efficiently, but also
provide transparent reasoning behind each evaluation decision. We believe this is an essential step
toward building trustworthy and transparent evaluation frameworks for future Al systems.

H DETAILS OF COMPUTATIONAL COST

According to the framework we have introduced in Section [3] the computational cost of AutoJudger
can be divided into three parts: question difficulty estimation, initialization and iteration.

Question Difficulty Estimation (pre-computed, negligible cost) Before the evaluation begins,
AutoJudger estimates the difficulty of each benchmark question using offline evaluation results from
a set of models. These response records are processed with Item Response Theory (IRT) to derive
fixed difficulty scores. Since this procedure is performed entirely offline and does not recur during
the actual evaluation, its cost is negligible and excluded from the runtime computation overhead.

Initialization (one-time cost) At the start of evaluation, as the ability of the model is unknown,
AutoJudger constructs an initial question pool to build a strong starting point. This involves:

* Autojudger computing semantic embeddings for all questions (e.g., via CLIP),

* Autojudger performing similarity computation and clustering,

* Autojudger sampling a diverse subset of 3 questions to bootstrap ability estimation,

* the evaluated model solving the selected questions (via forwad pass), and

* Autojudger generating an intial summary and memory table.

The cost of this one-time procedure is fixed and denoted as Fj,;;. Let us take AutoJudger built upon
Qwen2.5-VL-7B to conduct evaluations on the MMT benchmark as an example. The initialization
cost involves encoding the CLIP embeddings of questions (6.06 TFLOPs), calculating the pairwise
similarity between these questions (15.02 GFLOPs), sampling (negligible), letting the evaluated

model solve the 5 questions (i.e., 5 Fmoger) and initial summarization (21.52 TFLOPs). Together,
these operations amount to about Finiy = 8 Foeger + 27.6 TFLOPs in total.

Iteration (main source of computational cost) At each evaluation step, AutoJudger follows its
agent-driven workflow. We denote the computation cost from AutoJudger as Faj, which includes:

* Candidate Retrieval: filter questions based on current ability estimates and ensure diversity.

* Question Selection: the AutoJudger agent analyzes retrieved candidates, incorporating dynamic
memory and IRT-based model ability estimates to pick the most informative next question.
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Table 13: Performance of AutoJudger with different IRT model configurations.

Method MMMUDEV&VAL MMT-Bench
Baseline (best) 84.26 88.24
1PL 87.94 92.06
2PL 84.56 91.18
3PL 86.03 91.91

Table 14: Performance of different methods on MathVista-MINI.

Method MathVista-MINI

Random 85.44
Cluster 86.32
Stratified 85.15
IRT 83.09
AutoJudger 88.24

* Memory Update: update the memory table to track semantic coverage and difficulty distribution.

Combined with the computation cost of a single Model Forward Pass from the evaluated model,
denoted as Fiyoqel, the total per-step iteration computation cost is

Fstep = Finodel + FAJ7

Using the MMT benchmark as an example, the computation cost of per-step candidate retrieval (<3
MFLOPs), per-step question selection (19.63 TFLOPs) and per-step memory update (3.62 TFLOPs),
totaling Fay = 23.25 TFLOPs and Fiep, = Fiogel + 23.25 TFLOPs.

To compare AutoJudger with full-scale evaluation, we define the relative cost ratio as

R(O&ﬁ ‘Q| F )_(a‘Ql_B)*Fstep'i‘F‘inil_a Fstep +Enit_6*FStep

del) = =
o 1o ‘Q| * Fmodel Fmodel |Q|Fmodel ,
where « is the fraction of evaluation questions used, 3 is the number of questions during initialization
and | @] is the full size of evaluation benchmark. This formula means that, in practice, the relative cost
ratio can be conservatively estimated by the fraction « of evaluation questions used and the per-step
overhead of AutoJudger relative to the evaluated model’s forward cost. Therefore, the computational
overhead introduced by AutoJudger scales linearly with « and is bounded above by

F, step

F model

R(Oé,ﬁ, |Q|7Fm0del) S a

This indicates that AutoJudger achieves significant computational savings compared to full-scale
evaluation: by adaptively selecting only a small fraction of questions (o < 1), the overall evaluation
cost can be reduced by an order of magnitude while maintaining reliable ranking consistency.

When we take MMT benchmark as an example, the relative compuation cost is computed as:

23.25) 27.6 — 3% 23.25 N (1 n 23.25)
|Q‘Enodel

R(Oé, 57 |Q‘v Fmodel) =« (1 +

E model model
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I PROMPT OF AUTOJUGDER

Prompt 1: Category Identification for Initialization Stage

You are an expert educational AI assistant specializing in question
classification. Your task is to analyze the provided questions
and categorize them into meaningful subject/topic categories.

Task Overview:

You will analyze a set of practice questions (including both text
and images) and classify each question into a meaningful
category (Expect two or more question in the same category) .

The output should be a JSON object mapping question IDs to their
respective categories.

{

Question ID: # Question ID

Difficulty: # Difficulty

Content: # Content

# IAMAG

Options: # Options

}

Output Requirements:
— Return a JSON object with the following format:
{
"<Question_ID_1>": "<Category_Name_1>",
"<Question_ID_2>": "<Category_Name_2>",

— Keys are question IDs (index) from the input data.

— Values are descriptive category names that you assign.

— ONLY return the JSON object; do not include any other text or
explanation.

Prompt 2: Category Identification for Iteration Stage

You are an expert educational classifier. Analyze the question and
determine its category.

{

Question ID: # Question ID

Difficulty: # Difficulty

Content: # Content

# IAMAG

Options: # Options

}

Task: Review the question above. Determine all applicable
categories from the existing list: {# Category}, or include new
categories if necessary.

Output Requirements:

— Return a JSON object with:

{"category": ["Existing or new category name(s)"]}

- List ALL relevant categories (minimum 1 item) .

— Use EXACT names for existing categories.

— Include multiple entries if needed (e.g., mixed existing/new
categories) .

— Do NOT add explanations, only JSON.
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Prompt 3: Question Recommendend

You are an expert educational AI assistant. Your task is to select
the most appropriate next question from the candidate pool based

on:

. The student’s current ability (# ability) estimated by IRT.

. The diversity of question categories in the history.

. The match between question difficulty and student ability.

rioritize questions that balance category diversity and difficulty
alignment.

1
2
3
P

Statistics in history questions
{

# Memory

}

Candidate Question Pool:

{

Question ID: # Question ID
Difficulty: # Difficulty
Content: # Content

# IAMAG

Options: # Options

}
Available IDs: # List of Question ID

Output JSON format:
{
"summary": "Summary the Statistics in history questions.Don’t
merely state the facts; instead, synthesize deeper, abstract,
and even metaphysical patterns or principles.",
"think": "Reasoning here",
"question_index": "SELECTED_ID"
}
Only return the JSON object. DO NOT explain.
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/| Candidate Question | ~N

Question (9086): Figure shows a 1000-kg mass being lowered by a cable at a uniform rate of 4 m/s froma ...
& ) What additional brake torque is required to bring the system to rest in 0.60 s?<image 1>

ames | Options: Difficulty: -0.423
A. 9673J,2218N-m B. 5723J,1218N-m
C. 9673J,1218N-m D. 5723J,2218N:m
" . .. Question (9101): Find the equivalent torsional spring constant of the system shown in <image 1>. Assume
T L1 that k1, k2, k3, and k4 are torsional and k5 and k6 are linear spring constants.
Options: e
Kok Difficulty: 0.108
G ket = kzkg-i-‘llcflchik,kz + k5 + Rz(k4 + ks) B. ket = k2k3fkl:kl:+k1k2 + k4 + Rz(ks + ka)
kikoks

Cr C.kop = + kg + R?(ley + ks)

kokstkiks+kik,

] Question (5175): Find the Laplace transform of the periodic waveform shown in <image 1>.

y Options:T
1-e°\z, 2—e-sT e .
" SA—e—T) B. e Difficulty: 0.225
tg, 1 ! S T
1-e@ 1- @

"mo

O
o

" s(1-e~sT) “s(1-esT)

Question (7106): Refer to the figure <image 1>, which term refers to when text and illustration tell different
stories, such as in 'Rosie's Walk'?

Options: Difficulty: -2.181
A. Contrast B. Reasoning
C. Counterpoint D. Printmaking

Question (10700): Epidemiologically speaking, it is crucial to understand the contact structure through ...
Which of the following statements best explains Panel C?

__Options: Difficulty: -0.402
¢ & A:One individual's past .. B: It is a structure ...
C: One actor shows ... D: Two populations of ...

AAbility |

@ Statistics 15 531 0.13
Evaluated Model

\
I :
- » - . Economics 8 -0.61 .. | 025
® 2
J

J
‘ /| Dynamic Memory

Count | Max Diff. | ... | Acc.

&
ak =-1.09 é AM{-OD’Mdg‘Qr History 9 0.61 0.68

‘ (U Physics 17 0.72 ..| 0.40

"Summary”: "The table reflects a comprehensive analysis of question difficulty and accuracy across diverse categories in history )
and statistics, revealing patterns of variability in student performance. Categories like ‘Art History' and 'Psychology/Social
Psychology' show high accuracy rates, suggesting these topics might be more approachable or familiar to students.
Conversely, subjects like 'Statistics’ and 'Biology/Neuroscience’ present significant challenges, as indicated by low accuracy
scores and a wide range of difficulty levels. This variability suggests the need for targeted educational strategies that address
both foundational understanding and advanced application of concepts, particularly in challenging areas. Additionally, the low
engagement with categories like ‘Fashion/Textiles' and 'Clothing/Sleeve Design' indicates potential disinterest or lack of
relevance, which could influence future content development efforts to enhance engagement across all subjects. Such insights
highlight the importance of dynamically adapting educational content to meet diverse student needs and interests, as well as
enhancing visualization and intuitive concept explanation in complex areas.",

"Thiuk": "Given the , it is crucial to select a question that is neither too difficult nor too easy
to maintain engagement and foster learning. Considering the question pool, ID 9086 has a , closely
matching the student's estimated ability. Additionally, this engineering question falls under the 'Engineering/Fluid Mechanics'
category, which is relatively balanced in terms of difficulty and performance metrics. This selection strikes a balance between
providing an appropriate challenge and ensuring the student encounters a diverse range of categories based on historical
performance, which appears to be lacking in the provided categories.",

k"QuuHaw ID": 9086

\_

7

Figure 8: Response Examples from AutoJudger on MMMU.
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/| Candidate Question | ~\
re— ] Question (16505): Which object appears to be in the center of the image?

Difficulty: -1.388
A. Street lamp B. Building

C. Lamp post D. Tree

Question (59844): What can be found on the white wall in the bedroom image?

| E 1! =, Options: Difficulty: -0.436
"4 A Painting B. Mirror
C. Window D. Nothing

Question (73018): How many chairs are in the image?

Options: Difficulty: 0.024
A. Two chairs B. One chair

C. Three chairs D. Four chairs

Question (84043): What is the position of the mountain bike in the image?

([ Difficulty: -0.776
. A.On a flat surface B. On a curvy path

C. On a downhill slope D. On a steep slope

& Question (100255): How many players are in the image?

Difficulty: -0.544

B. 10
D. 13 )
AAbility N ‘ /| Dynamic Memory [\
H Count | Max Diff. | ... | Acc.
P Counting 7 -143 | .| 071
Evaluated Model 1 » - « Pose 8 541 |..| 087
abs A
ak =-1.16 é AM}LOJMAQ‘QY Color 13 6.76 .| 054
\ ) ‘ \ Design 9 -058 |..| 0.77

[ "Summary”; "The history of statistics in these questions reveals a diverse range of difficulty levels and content categories. The
data shows that certain categories, like Image Dominant Color," are the most frequent but have low accuracy, suggesting
they may be challenging or confusing for students. Other categories, such as 'Sports and Crowd Behavior' and 'Spatial
Relations," offer moderate difficulty levels with moderate accuracy, implying they might be appropriate for students with
varying skill levels. The inclusion of a ‘New: Plant Condition Analysis' category indicates exploration in expanding the
testing scope. Balancing difficulty with engagement and accurately assessing a student's ability requires carefully selecting
questions from underrepresented categories, such as 'Living Room Layout' or 'Sports and Crowd Behavior.",

"Thiuk": "Given the , we aim to select a question that is neither too easy nor too
challenging. The current history shows a distribution across various categories, and we should prioritize balancing category
diversity with appropriate difficulty alignment. Questions with difficulties close to -1.16 are ideal. '‘Question ID: 16505 has a
difficulty of -1.39, which is close to the student's ability level, and its content (determining the central object in an image)
is balanced and straightforward. Other options, such as 'Question ID: 59844' or 'Question ID: 84043," have slightly higher
difficulty levels but could still be within reach.”,

L“QHQSHOM ID": 16505

Figure 9: Response Examples from AutoJudger on SeedBench.
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