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Abstract
Adversarial training has been demonstrated to
be the most effective approach to defend against
adversarial attacks. However, existing adversar-
ial training methods show apparent oscillations
and overfitting issues in the training process, de-
grading the defense efficacy. In this work, we
propose a novel framework, termed Parameter
Interpolation based Adversarial Training (PIAT),
that makes full use of the historical information
during training. Specifically, at the end of each
epoch, PIAT tunes the model parameters as the
interpolation of the parameters of the previous
and current epochs. Besides, we suggest to use
the Normalized Mean Square Error (NMSE) to
further improve the robustness by aligning the
relative magnitude of logits between clean and ad-
versarial examples, rather than the absolute mag-
nitude. Extensive experiments on several bench-
mark datasets and various networks show that our
framework could prominently improve the model
robustness and reduce the generalization error.

1. Introduction
Deep Neural Networks (DNNs) have been widely used in
various tasks of computer vision (He et al., 2016) and natural
language processing (Devlin et al., 2019). However, even
the model performance surpasses humans in some tasks,
they are known to be vulnerable to adversarial examples by
injecting malicious and imperceptible perturbations to clean
inputs that can cause the model to misclassify inputs with
high confidence (Szegedy et al., 2014; Goodfellow et al.,
2015; Madry et al., 2018; Croce & Hein, 2020; Athalye
et al., 2018; Hendrycks et al., 2019; Xie et al., 2017; Meng
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Figure 1. Illustration of the parameter update for PIAT framework.
The start and end points of each epoch are in colored dots.

& Chen, 2017). Since DNNs are applied in many safety
systems, it is crucial to make them more reliable and robust.

To improve the model’s robustness against adversarial at-
tacks, Adversarial Training (AT) is known to be the most
effective approach to defend against adversarial attacks,
which generates adversarial examples during the training
and incorporates them into the training. However, the train-
ing process of AT has apparent oscillations in the early stage
and overfitting issues in the later stage. In the early stage, the
model parameters are updated rapidly with a large learning
rate, thus the adversarial examples generated at each epoch
are pretty different, leading to the oscillations on robust ac-
curacy. In the later stage, many works (Yu et al., 2022; Rice
et al., 2020; Dong et al., 2022) and our experiments have
shown that the overfitting issue occurs, that is, the training
accuracy continues to increase but the robust accuracy on
the testing data begins to decline.

Therefore, we propose a Parameter Interpolation based Ad-
versarial Training (PIAT) framework to solve the oscillation
and overfitting issues. As illustrated in Figure 1, at the end
of each epoch of the training, we tune the model parameters
as the interpolation of the model parameters of the previous
and current epochs. In the early stage of AT, the adversarial
examples generated at each epoch is significantly different,
and the model’s decision boundary changes dramatically. In
contrast, PIAT tunes the model parameters with the previous
epoch and makes the change of the decision boundary more
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moderate, helping to eliminate the oscillation. In the later
stage, PIAT considers the previous boundary, preventing the
decision boundary from becoming too complex and alleviat-
ing the overfitting issue. As the training continues and the
model parameters become more valuable, PIAT gradually
increases the weight of the previous parameters when tuning
the current parameters.

There have been many works proposed to encourage sim-
ilarity between the output of clean and adversarial exam-
ples. We observe that ALP (Kannan et al., 2018b) uses the
Square Error (SE) loss to align absolute magnitude of log-
its between clean and adversarial examples. However, the
data distribution of clean and adversarial examples is quite
different, and simply forcing the output to be close is too
demanding. We suggest that AT should pay more attention
to aligning the relative magnitude, rather than the absolute
magnitude of logits. Therefore, we propose a new metric
called Normalized Mean Square Error (NMSE) to better
align the clean and adversarial examples.

We incorporate the Normalized Mean Square Error (NMSE)
as the regularization term into the proposed PIAT frame-
work. Extensive experiments on CIFAR10, CIFAR100, and
SVHN datasets show that our method performs better and
effectively improves the adversarial robustness of the model
against white-box and black-box attacks. In addition, our
PIAT framework is general and other adversarial training
methods can be incorporated into our framework to achieve
better performance.

Our main contributions are summarized as follows: (1) We
propose the PIAT framework that interpolates the model
parameters of the previous and current epochs to consider
the historical information during training. (2) We propose
to use the NMSE loss as a new regularization term to better
align the clean and adversarial examples by the relative mag-
nitude of logits. (3) Extensive experiments on three standard
datasets and two networks show that PIAT combined with
NMSE offers excellent robustness without incurring addi-
tional cost. Besides, the framework is general and various
AT methods can be integrated with it to further boost their
robustness.

2. Related Work
Adversarial Training (AT) (Madry et al., 2018) has been
demonstrated to be one of the most effective defensive meth-
ods against adversarial attacks, which generates a locally
most adversarial perturbed point for each clean example and
trains the model to classify them correctly.

Given an image classification task, the training dataset
D = {(xi, yi)}ni=1 consists of n clean examples with c
classes, where xi ∈ Rd represents a clean example with the
ground-truth label yi ∈ {1, 2, ..., c}. The adversarial train-

ing optimization problem can be formulated as the following
min-max problem:

min
θ

∑
i

max
x′
i∈S(xi,ϵ)

L(fθ(x′
i), yi), (1)

where fθ(·) : Rd → Rc is the DNN classifier with pa-
rameter θ. L(·, ·) represents the cross entropy loss and
S(xi, ϵ) = {||x′

i − xi||p ≤ ϵ} represents an ϵ-ball of a
benign data point xi. x′

i denotes the adversarial example
generated from xi.

For the inner maximization problem, the adversarial exam-
ple x′

i is often crafted by the Projected Gradient Decent
(PGD) attack (Madry et al., 2018), formulated by:

xt+1
i =

∏
S(xi,ϵ)

(xt
i + α · sign(∇xt

i
L(fθ(xt

i), yi)), (2)

where xt
i denotes the adversarial example at the tth step,∏

(·) is the projection operator, and α is the step size.

Subsequent efforts have been devoted to achieve better per-
formance of AT. TRADES (Zhang et al., 2019) optimizes
to classify the clean examples and align the logits between
clean examples and corresponding adversarial examples to
achieve a better tradeoff between accuracy and robustness.
MART (Wang et al., 2019) explicitly differentiates the mis-
classified and correctly classified examples during the train-
ing. STAT (Li et al., 2023) takes both adversarial examples
and collaborative examples into account for regularizing the
loss landscape. FreeAT (Shafahi et al., 2019) considers the
adversarial examples of each epoch of PGD. FAT (Zhang
et al., 2020a) searches for the least adversarial data for train-
ing, rather than employing the most adversarial data that
maximizes the loss. LAS-AT (Jia et al., 2022) learns to au-
tomatically produce attack strategies to generate adversarial
examples for training. SCORE (Pang et al., 2022) facilitates
the reconciliation between robustness and accuracy, while
still handles worst-case uncertainty via robust optimization.

The works most related to ours are SEAT (Wang & Wang,
2022) and ALP (Kannan et al., 2018b). SEAT trains the
model with standard AT and gets the ensemble model by av-
eraging weights of the historical model at each minibatch. In
contrast, our PIAT framework interpolates the last and cur-
rent model parameters to achieve a more moderate change in
the decision boundary at each epoch and continues to train
the model using the interpolated parameters. ALP calculates
the regularization loss using the absolute magnitude of log-
its with the SE loss. In contrast, our NMSE regularization
focuses on aligning the relative magnitude of logits, rather
than the absolute magnitude.

3. Motivation
This section further analyzes the oscillations in the early
stage and the overfitting issues in the later stage of the
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(a) Test accuracy on clean examples
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(b) Test accuracy on adversarial examples

Figure 2. Test accuracy on clean and adversarial examples of ResNet18 trained by various AT methods on CIFAR10.

AT process. Based on our observations, we propose to
fully utilize the historical training information by parameter
interpolation at the end of each epoch.

Figure 2 illustrates the test accuracy on clean and adversarial
examples of several popular AT methods during training,
including PGD-AT (Madry et al., 2018), ALP (Kannan et al.,
2018a), FAT (Zhang et al., 2020a), TRADES (Zhang et al.,
2019), MART (Wang et al., 2019) and GAIRAT (Zhang
et al., 2020b). As illustrated in Figure 2 (b), over all these
AT methods except our method (PIAT + NMSE), we can
observe that in the early stage, there are apparent oscilla-
tions in terms of robust accuracy, and in the later stage, the
adversarial robustness declines as the model overfits the
adversarial examples.

In the early stage of AT, a large learning rate leads to rapid
changes on the decision boundary, causing the adversarial
examples generated by the PGD attack to vary significantly
at each epoch. This makes it hard for the model to learn
features and have good generalization, resulting in unstable
robust accuracy. To address this issue, the change on the
decision boundary needs to be more moderate, which can
be achieved by reducing the learning rate. However, a low
learning rate will slow down the convergence of AT and lead
to overfitting.

In the later stage, as the learning rate of most AT methods
is reduced significantly, the decision boundary will become
overly complex when the model struggles to well fit the
adversarial examples crafted during training. As a result,
the learned model is not robust enough to well handle unseen
adversarial examples, leading to the overfitting issue.

We observe that existing AT methods ignore the historical

information in the training process, which would be useful
to stabilize the training and alleviate overfitting. To this
end, we propose to utilize the model parameters of previ-
ous epoch to tune the current parameters at the end of each
epoch. Such an approach allows us to leverage historical
information and improve the the robust generalization ca-
pability. In the early stage, considering parameters of the
previous epoch will result in a more moderate update on the
model parameters, helping to ensure a smoother and more
stable training. In the later stage, mixing parameters of the
previous epoch could smooth the decision boundary and
prevent the model from overfitting.

4. Methodology
In this section, we introduce the realization of the PIAT
framework, and also describe how to combine with our
proposed Normalized Mean Square Error (NMSE).

4.1. The PIAT Framework

To fully utilize the historical information during training, at
the end of each epoch, PIAT tunes the model parameters as
the interpolation of parameters of the previous and current
epochs, which can be formalized as:

θ′
t = λ · θ′

t−1 + (1− λ) · θt, 0 ≤ λ ≤ 1, (3)

where θ′
t−1 is the model parameters of the previous epoch

after interpolation, and θt is current parameters before in-
terpolation at the end of the training epoch. Before starting
the next epoch, we tune the parameters to θ′

t. The hyper-
parameter λ controls the tradeoff between previous and
current parameters.



PIAT: Parameter Interpolation based Adversarial Training for Image Classification

Algorithm 1 The PIAT Framework

Input: Initial model parameters θ0, perturbation size ϵ,
number of adversarial attack steps K, number of epochs
N , weight function g(·)
Output: θ′

N

Initialize θ′
0 ← θ0

for i = 1 to N do
θi ← θ′

i−1

for minibatch x ⊂ X do
xadv ← x
for k = 1 to K do
xadv ← xadv + ϵ · sign(∇xLCE(xadv, y))
xadv ← clip(xadv,x− ϵ,x+ ϵ)

end for
loss = L(xadv, y)
update θi

end for
λ← g(i)
θ′
i ← λ · θ′

i−1 + (1− λ) · θi

end for
return θ′

N

The value of λ is critical to PIAT. In the early stage of AT,
the model has not yet fit the training data well enough. Thus,
the model is not robust enough against adversarial attacks,
and its parameters are not very informative. If λ is set
too large, the model mainly relies on previous parameters
and learns the training data in small steps, leading to slow
convergence. Therefore, λ should be small in the early
stage.

As the training continues, the model starts to learn enough
information from the adversarial examples and attains adver-
sarial robustness. In the later stage, the model has learned
enough information and gained good robustness. λ should
be close to 1, otherwise the model tends to discard useful
information learned over the training process and overfit the
current adversarial examples.

According to the above analysis, λ should change over the
course of training, instead of using a fixed value. The value
of λ should be small in the early stage of training and gradu-
ally increase along with the training, which not only ensures
the convergence speed but also alleviates the overfitting
issue in AT. In this paper, we set λ as follows:

λ = g(n) =
an+ b

cn+ d
, c ≥ a, d ≥ b, (4)

where n denotes the current number of training epochs. a,
b, c and d are hyper-parameters and we set a = b = c = 1,
d = 10 in this work. We verify that a dynamic λ has better
robustness against a fixed value in Appendix A.

Algorithm 1 concludes the overall framework. Since PIAT
does not restrict the type of loss function in the framework,

it is flexible and can be combined with various adversarial
training methods such as TRADES (Zhang et al., 2019),
MART (Wang et al., 2019) and GAIRAT (Zhang et al.,
2020b).

4.2. The NMSE Regularization

According to the discussion in Section 3, instead of align-
ing the clean and adversarial examples by classification
probabilities, we utilize the output logits normalized with
l2-norm.

We align the clean and adversarial examples by minimiz-
ing the mean square error between their normalized output
logits. Besides, we set (1− pclean) as the weight for differ-
ent adversarial examples so that the model will pay more
attention to the clean examples which are vulnerable. We
formulate the Normalized Mean Square Error (NMSE) reg-
ularization as follows:

LNMSE = (1− pclean) ·
∥∥∥∥ fθ(x)

||fθ(x)||2
− fθ(x

′)

||fθ(x′)||2

∥∥∥∥2
2

,

(5)
where x′ is the adversarial example, fθ(x) is the output
logits of the model, and || · ||2 denotes l2-norm.

In summary, the overall loss function in PIAT framework
with NMSE is as follows:

L = LCE + µ · LNMSE , (6)

where µ is a hyper-parameter to trade off the cross-entropy
loss LCE on adversarial examples and the NMSE regular-
ization term LNMSE . Moreover, we could replace the loss
function in PIAT framework to combine with various AT
methods.

5. Experiments
5.1. Experimental Setup

Datasets and Models We conduct experiments on
three benchmark datasets including CIFAR10 (Krizhevsky
et al., 2009), CIFAR100 (Krizhevsky et al., 2009), and
SVHN (Netzer et al., 2011). All images are normalized
into [0, 1]. We do evaluation on two models, ResNet18 (He
et al., 2016) and WRN-32-10 (Zagoruyko & Komodakis,
2016), to verify the efficacy of our method.

Evaluation Details We compare the PIAT combined
with NMSE regularization with the following AT baselines:
TRADES (Zhang et al., 2019), MART (Wang et al., 2019),
and GAIRAT (Zhang et al., 2020b). To thoroughly evaluate
the defense efficacy of our method and the baselines, we
adopt various adversarial attacks including PGD (Madry
et al., 2018), MIM (Dong et al., 2018), CW (Carlini & Wag-
ner, 2017), and AA (Croce & Hein, 2020). For crafting
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Table 1. The accuracy (%) of our method and AT baselines under various adversarial attacks on CIFAR10, CIFAR100 and SVHN datasets
with ResNet18 model.

Dataset Method Clean PGD20 PGD100 MIM CW AA

CIFAR10

PGD-AT 84.28 50.29 50.12 51.21 49.31 46.33
TRADES 82.39 53.60 53.65 54.55 50.90 48.04

MART 81.91 53.70 53.70 54.95 49.35 47.45
GAIRAT 81.69 55.84 55.90 56.62 45.50 40.85

PIAT 79.08 51.81 51.74 52.63 49.32 47.08
PIAT +NMSE 80.76 53.54 53.59 54.51 51.72 48.80

CIFAR100

PGD-AT 58.48 28.36 28.33 29.30 27.06 23.85
TRADES 57.98 29.90 29.88 29.55 26.14 24.72

MART 55.26 30.10 30.16 30.51 26.00 23.77
GAIRAT 50.26 23.33 23.35 23.90 21.55 19.26

PIAT 58.84 29.11 29.14 29.97 27.89 24.15
PIAT +NMSE 54.34 31.11 30.99 31.42 28.45 25.79

SVHN

PGD-AT 93.85 59.01 58.92 59.93 48.66 43.02
TRADES 90.88 59.50 59.43 60.52 52.76 46.59

MART 88.73 59.45 59.42 59.83 60.19 44.65
GAIRAT 90.50 54.14 54.09 55.88 50.71 44.57

PIAT 92.15 59.53 59.61 61.32 55.54 50.93
PIAT +NMSE 91.70 61.21 61.43 61.97 55.88 51.29
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Figure 3. The accuracy of the PIAT framework combined with various AT methods under the AA attack on CIFAR10, CIFAR100, and
SVHN datasets with ResNet18 model.

adversarial examples, the maximum perturbation of each
pixel is ϵ = 8

255 with the PGD step size κ = 2
255 and step

number of 10. We will provide more details in Appendix A.

5.2. Evaluation on Defense Efficacy

We compare the defense efficacy of our method with four
AT baselines including PGD-AT, TRADES, MART and
GAIRAT. Table 1 reports the accuracy of ResNet18 model
trained with our method or the defense baselines under
various adversarial attacks on three datasets.

As shown in Table 1, our method (PIAT + NMSE) exhibits
the best performance except for the PGD and MIM attack
on CIFAR10 dataset. Under the AA attack, our method
achieves 48.80%, 25.79% and 51.29% accuracy on CI-
FAR10, CIFAR100 and SVHN datasets. Compared to the
best results of defense baselines, we gain an improvement of

0.76%, 1.07% and 4.70% on the three datasets, respectively,
indicating the great superiority of our method. We do fur-
ther evaluation on the WRN-32-10 model. The results are
reported in Table 2, and our method achieves the dominant
robustness under the AA attack with a clear margin as well.

5.3. Ablation Study

PIAT Framework Since PIAT is a general framework,
we incorporate other AT methods into PIAT to demonstrate
its defense efficacy. Figure 3 illustrates the accuracy of PIAT
framework combined with TRADES, MART, and GAIRAT,
respectively, under the AA attack on the three datasets. As
shown in Figure 3, on ResNet18 model, PIAT boosts the
robustness of various AT methods against the AA attack
over all the three datasets. The results demonstrate that
we can easily incorporate other AT methods into our PIAT
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Table 2. The accuracy (%) of our method and AT baselines un-
der adversarial attacks on CIFAR10 and CIFAR100 datasets with
WRN-32-10 model.

DATASET METHOD CLEAN PGD20 AA

CIFAR10

PGD-AT 86.87 48.77 47.78
TRADES 82.13 55.14 50.38

MART 81.57 56.44 49.58
GAIRAT 82.97 59.16 40.28

PIAT 85.56 52.80 48.35
PIAT +TRADES 82.08 58.93 53.73

PIAT +MART 79.88 59.51 52.84
PIAT +GAIRAT 84.66 62.44 44.21
PIAT +NMSE 85.04 58.04 53.83

CIFAR100

PGD-AT 59.30 28.13 23.99
TRADES 57.99 31.97 26.76

MART 55.19 31.16 26.46
GAIRAT 53.90 26.09 21.69

PIAT 60.09 34.46 29.47
PIAT +TRADES 59.78 34.52 29.25

PIAT +MART 54.32 34.87 28.79
PIAT +GAIRAT 56.86 32.82 26.14
PIAT +NMSE 61.04 35.15 30.07

Table 3. The accuracy (%) of AT methods with or without NMSE
regularization under adversarial attacks on CIFAR10 and CI-
FAR100 dataset with ResNet18 model.

DATASET METHOD CLEAN PGD20 AA

CIFAR10

PGD-AT 84.28 50.29 46.33
PGD-AT+NMSE 84.77 51.56 46.60

PIAT 79.08 51.81 47.08
PIAT +NMSE 80.76 53.55 48.70

CIFAF100

PGD-AT 58.48 28.36 23.85
PGD-AT+NMSE 58.88 29.55 24.82

PIAT 58.84 29.11 24.15
PIAT +NMSE 54.34 31.11 25.79

framework without incurring any additional cost to achieve
better performance.

We also do ablation study on the WRN-32-10 model and
report the results in Table 2. Specifically, our PIAT frame-
work significantly boosts the robust accuracy of TRADES,
gaining the improvement of 3.35% and 2.49% on CIFAR10
and CIFAR100 under the AA attack, respectively. More-
over, our PIAT framework significantly enhances the robust
accuracy of both MART and GAIRAT, leading to a notewor-
thy improvement margin. Our framework leads to higher
robust accuracy when combined with other AT methods on
two models, indicating that PIAT has good flexibility and
generalization.

NMSE Regularization To evaluate the effectiveness of
our proposed NMSE regularization, we observe the per-

Table 4. The accuracy (%) of NMSE and ALP under adversar-
ial attacks on CIFAR10 and CIFAR100 datasets with ResNet18
model.

DATASET METHOD CLEAN PGD20 AA

CIFAF10 ALP 79.74 52.37 46.13
NMSE 84.77 51.56 46.60

CIFAF100 ALP 57.29 28.12 23.57
NMSE 58.88 29.55 24.82

formance of PGD-AT and PIAT with or without NMSE
regularization. Table 3 reports the accuracy of ResNet18
models against PGD and AA attack on the CIFAR10 and
CIFAR100 datasets. As shown in Table 3, both PGD-AT
and PIAT achieve better robustness with NMSE regulariza-
tion than that without NMSE. For instance, the accuracy
of PGD-AT against AA attack gains absolutely 0.27% and
0.97% on CIFAR10 and CIFAR100, respectively. It indi-
cates that the NMSE regularization greatly helps the model
learn the features of adversarial examples.

Moreover, we verify the effectiveness of NMSE regulariza-
tion by comparing with ALP in Table 4. Specifically, the
NMSE regularization obtains an absolute improvement of
0.47% and 1.25% on CIFAR10 and CIFAR100, respectively.
The results show that compared to ALP, the NMSE regular-
ization achieves better performance in both clean and robust
accuracy. More results are provided in Appendix B.3.

The hyper-parameter µ in Eq. 6 is used to trade off the
cross-entropy loss on adversarial examples and the NMSE
regularization term. We conduct further hyper-parameter
analysis in Appendix B.1.

6. Conclusion
In this work, we propose a novel AT framework called PIAT
to eliminate the oscillation phenomenon in the early stage
and alleviate the overfitting issue in the later stage of AT
by considering the parameters of previous training epochs.
We further suggest to use Normalized Mean Square Error
(NMSE) as regularization to align clean and adversarial ex-
amples, that focuses more on the relative magnitude of the
output logits rather than the absolute magnitude. Extensive
experiments verify that our framework can eliminate the
oscillation phenomenon and alleviate the overfitting issue
of AT. Furthermore, combining PIAT with the NMSE loss
improves the model robustness without extra computational
cost. In addition, PIAT is flexible and general, and vari-
ous adversarial training methods can be combined into our
framework to further boost their performance. Our work
shows that the historical information of adversarial training
process is very useful.
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A. Training Details
For all the experiments, we train ResNet18 (WRN-32-20) using SGD with 0.9 momentum for 120 (180) epochs. The weight
decay is 3.5× 10−3 for ResNet18 and 7× 10−4 for WRN-32-10 on the three datasets. The initial learning rate for ResNet18
(WRN-32-10) is 0.01 (0.1) till epoch 60 (90) and then linearly decays to 0.001 (0.01), 0.0001 (0.001) at epoch 90 (135)
and 120 (180). To address the cold boot problem of training, we perform standard training on clean data for the first 10
epochs, and then perform adversarial training. For crafting adversarial examples, the maximum perturbation of each pixel is
ϵ = 8

255 with the PGD step size κ = 2
255 and step number of 10. For the baseline of TRADES, we adopt β = 6 for the best

robustness.
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Figure 4. The accuracy on clean and adversarial examples of ResNet18 models trained by PIAT with different λ on the CIFAR10 dataset.
n denotes the current number of training epochs.

B. Further Experiments
B.1. Hyper-parameter Analysis

The hyper-parameter λ in Eq. 3 is used to control the trade-off between previous and current parameters for PIAT. In
Section 3, we intuitively suggest that λ should change over the course of training, instead of using a fixed value. To verify
this point, we compare the accuracy of PIAT combined with NMSE using fixed λ = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and our variable
λ as in Eq. 4. Figure 4 illustrates the results on the CIFAR10 dataset. It is obvious that the variable strategy of λ is vital to
alleviate the oscillations in the early stage and the overfitting issue in the later stage of the AT process.

The hyper-parameter µ in Eq. 6 is used to trade off the cross-entropy loss on adversarial examples and the NMSE
regularization term. We study the accuracy of PIAT combined with NMSE using different values of µ. Figure 5 illustrates
the results on the CIFAR10 dataset when we take µ = 3, 4, 5, 6. It indicates that the defense efficacy of our method is not
sensitive to µ. Similar observations can be obtained on the CIFAR-100 dataset. Therefore, we set µ = 5 in our experiments
for an appropriate trade-off between the accuracy on clean and adversarial examples.

B.2. Loss Landscape

To comprehensively evaluate the efficacy of our framework, we refer to the method proposed by Li et al. (2018) and compare
the model obtained by PIAT framework and PGD-AT in three dimension (3D). Let u and v be two random direction vectors
sampled from the Gaussian distribution. We plot the loss landscape around θ of the following equation when inputting the
same data, where m1,m2 ∈ [−1, 1]:

L(θ;u;v) = L
(
θ +m1

u

||u||
+m2

v

||v||

)
. (7)

Figure 6 illustrates the shape of the 3D landscape map. We observe that compared with PGD-AT, the model trained using the
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Figure 5. The clean and robust accuracy of different hyper-parameters of NMSE loss combined with PIAT framework on CIFAR10.
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Figure 6. Illustration of the loss landscape in three dimensions. Our PIAT framework has a flatter loss landscape than PGD-AT.

PIAT framework exhibits less fluctuation in the loss landscape under the same perturbation. Compared with PGD-AT, the
landscape obtained using PIAT framework indicates that the model converges to a flatter area and has better robust accuracy.

B.3. Comparison between ALP and NMSE

In order to demonstrate the effectiveness of the NMSE regularization, we conduct experiments on CIFAR10 and CIFAR100
using the ResNet18 model. The results show that compared to ALP, the NMSE loss regularization performs better on clean
examples and achieves higher accuracy against AA attacks. Specifically, the NMSE regularization obtains an absolute
improvement of 0.47% and 1.25% on CIFAR10 and CIFAR100, respectively. These results suggest that the relative
magnitude of logits is a more reasonable metric than the absolute magnitude of logits.

Table 5. The accuracy (%) of NMSE and ALP under adversarial attacks on CIFAR10 and CIFAR100 datasets with ResNet18 model.

DATASET METHOD CLEAN PGD20 PGD100 MIM CW AA

CIFAF10 ALP 79.74 52.37 52.30 53.29 49.60 46.13
NMSE 84.77 51.56 51.61 52.98 50.94 46.60

CIFAF100 ALP 57.29 28.12 28.21 28.96 26.84 23.57
NMSE 58.88 29.55 29.50 30.47 28.18 24.82


