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ABSTRACT

Identifying cancer driver genes is a critical challenge in cancer genomics. While
hypergraph neural networks are powerful tools for identifying cancer genes by
modeling higher-order functional relationships, they face a critical limitation in
integrating multi-omics features. To address this, we propose DEMONet, a Dual-
channel Multi-Omics Integration Hypergraph Network. DEMONet enhances
multi-omics integration through three synergistic modules: (1) a tree-based sparse
encoder that transforms raw multi-omics features into a robust, structured rep-
resentation; (2) a biologically-informed node-weighted hypergraph convolutional
layer to capture gene importances within functional hyperedges; and (3) a dual-
channel architecture to prevent information interference between different hyper-
graph sources before final fusion. Benchmark results demonstrate that DEMONet
outperforms existing state-of-the-art methods, improving AUROC by 1.9% and
AUPRC by 2.3% over prior methods. Its generalization and robustness are further
validated on two independent test sets. Analysis of multiple independent func-
tional genomics data validated the significant biological associations between the
DEMONet-predicted top candidate genes and cancer genes. Furthermore, TCGA
survival analysis further reveals that 16 novel cancer genes identified by DE-
MONet are significantly associated with patient outcomes, highlighting the po-
tential of our model to discover actionable targets for cancer research.

1 INTRODUCTION

Cancer arises from the progressive accumulation of somatic genomic alterations that deregulate
cellular processes and endow cells with malignant capabilities (Hanahan & Weinberg, 2011). Iden-
tifying the driver genes responsible for these changes is a central goal in cancer genomics, as a
comprehensive catalog of cancer driver genes is essential for precision diagnostics and targeted
therapies (Garraway & Lander, 2013; Alexandrov et al., 2013). Although large-scale sequencing
projects have produced invaluable resources like the COSMIC Cancer Gene Census (CGC) and the
Network of Cancer Genes (NCG) (Sondka et al., 2018; Repana et al., 2019), these catalogs remain
far from complete. The sheer diversity and complexity of the cancer genome mean that many driver
genes, particularly those mutated at lower frequencies or acting in a context-dependent manner,
are yet to be discovered (Lawrence et al., 2014). Thus, the accurate identification of cancer genes
remains a critical challenge.

In response, the computational biology community has developed a sophisticated suite of tools for
cancer gene prioritization, which have evolved through several distinct methodological paradigms.
The earliest approaches were mutation-centric, with methods like MutSigCV (Lawrence et al., 2013)
employing statistical models to identify genes mutated more frequently than expected by chance,
and later methods like 20/20+ (Tokheim et al., 2016) and DORGE (Lyu et al., 2020) engineering
these statistics into machine learning features. A subsequent paradigm shift leveraged biological
networks, such as the graph neural network-based EMOGI (Schulte-Sasse et al., 2021) and MTGCN
(Peng et al., 2022). Most recently, the field has begun to embrace higher-order functional modules,
recognizing that genes often act in coordinated groups. For example, DISHyper (Deng et al., 2024)
utilizes hypergraph neural networks to learn powerful gene representations from the higher-order
functional association of annotated gene sets, such as those from pathway and ontology databases.
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Despite their advancements, their methods still face significant limitations. First, multi-omics fea-
tures exhibit a high degree of heterogeneity, manifested in a wide range of skewness and kurtosis
values and large standard deviations (details in Appendix A and Appendix Figure 3). This char-
acteristic poses significant challenges for their effective integration with network topologies. This
often forces models to choose between rich topological context and powerful but incompatible node
features, and our preliminary experiments confirm that naive fusion can degrade performance. Sec-
ond, current hypergraph models typically assume node homogeneity within a hyperedge, treating all
genes in a pathway as equally important. This simplification overlooks the context-dependent and
hierarchical nature of biological systems. For example, a gene like MYC can act as a key regulator
of cell proliferation, yet it also functions as a downstream target of mitogenic signaling pathways in
other contexts. Existing models fail to capture the gene’s contextual functional specificity, thereby
diluting the learned signals. Finally, the strategy for fusing disparate hypergraph sources via simple
concatenation is suboptimal, as it may lead to representational interference, where unique topologi-
cal patterns from different sources become obscured by one another.

To overcome these challenges, we propose DEMONet, a novel hypergraph framework that inte-
grates three synergistic modules. First, to effectively integrate heterogeneous multi-omics features,
DEMONet introduces a tree-based multi-omics sparse encoding module. This module transforms
the irregular heterogeneous features into a sparse, high-dimensional representation that is more
amenable to deep learning models. Second, to model the heterogeneous importance of genes within
a functional hyperedge, we develop a biologically-informed node-weighted hypergraph convolu-
tional layer. Third, to mitigate representational interference, DEMONet employs a dual-channel
architecture. This design learns representations from two hypergraphs in parallel and then fuses
their final embeddings for prediction.

Our contributions are highlighted as follows:

• We propose a novel hypergraph framework, DEMONet, that systematically addresses key
limitations in cancer gene identification.

• We demonstrate through extensive experiments that DEMONet significantly outperforms
state-of-the-art methods on both pan-cancer and two independent test sets.

• We systematically validate the effectiveness and synergy of our three core modules through
comprehensive ablation studies.

• We validate the biological and clinical relevance of DEMONet-predicted cancer genes us-
ing independent functional genomics and The Cancer Genome Atlas (TCGA) patient sur-
vival data. This real-world validation underscores the practical utility of our approach in
cancer research.

2 RELATED WORKS

The identification of cancer genes can be conceptualized as a classification problem. The objec-
tive is to accurately distinguish the relatively small set of true cancer-driving genes from the vast
background of passenger genes. Research in this area encompasses several major methodological
paradigms.

Early approaches are primarily feature-based, relying on statistical properties derived directly from
sequencing data. A foundational method in this category is MutSigCV (Lawrence et al., 2013).
Building upon this, subsequent methods incorporate machine learning. For instance, 20/20+ and
DORGE engineer a wide array of features, including mutation patterns and epigenetic markers, to
train classifiers such as elastic net–based logistic regression, thereby transitioning from rule-based
identification to predictive modeling (Tokheim et al., 2016; Lyu et al., 2020; Lee et al., 2024).

A second major paradigm involves leveraging the context of biological networks. These methods are
grounded in the ”guilt-by-association” principle, positing that genes involved in the same disease are
often functionally linked. For example, HotNet2 (Leiserson et al., 2015) and Hierarchical HotNet
(Reyna et al., 2018) use heat diffusion models on a protein-protein interaction (PPI) network to
identify subnetworks significantly enriched with cancer mutation signatures.

With the development of deep learning, Graph Neural Networks (GNNs) represent a dominant force
in this field, offering a more powerful way to learn representations from complex network struc-
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tures. EMOGI (Schulte-Sasse et al., 2021) employs a GNN to integrate multi-omics features with
a PPI network. MTGCN (Peng et al., 2022) enhances this by introducing a PPI network recon-
struction task, using multi-task learning to enrich the learned gene representations. Others employ
more advanced architectures, such as graph attention networks (MODIG (Zhao et al., 2022)) or
multi-network contrastive learning (MNGCL (Peng et al., 2024)), to fuse information from diverse
biological sources. Distinct from these pairwise network models, a new paradigm emerges that fo-
cuses on higher-order functional associations. These methods recognize that genes often function
in complex, multi-member groups rather than simple pairs. For example, DISHyper (Deng et al.,
2024) utilizes a hypergraph neural network to model these higher-order relationships in annotated
gene sets explicitly. However, critical limitations exist in current hypergraph-based approaches that
we aim to resolve.

Multi-omics 
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Ontology gene sets

Pathway gene sets

Multi-omics feature

BNHC Layer BNHC LayerBNHC Layer
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Figure 1: Overview of the DEMONet framework. DEMONet predicts cancer driver scores by pro-
cessing two hypergraphs within a dual-channel architecture. Input multi-omics features are first uni-
fied via a tree-based sparse encoding module. Each channel then employs a biologically-informed
node-weighted hypergraph convolutional layer to learn gene representations. The resulting embed-
dings are fused for the final prediction.

3 METHODOLOGY

The architecture of the DEMONet is designed to overcome the primary obstacles in computational
cancer genomics. It comprises three core components: (1) a multi-omics sparse encoding (MSE)
module, which transforms irregular cancer multi-omics features into a feature space compatible
with deep learning through a tree model; (2) a biologically-informed node-weighted hypergraph
convolutional (BNHC) layer, which introduces prior node weights to guide the message-passing
process; and (3) a dual-channel hypergraph network architecture that preserves the informational
integrity of disparate hypergraph sources before final fusion. The overall workflow is depicted in
Figure 1.

3.1 MULTI-OMICS SPARSE ENCODING MODULE

For any given gene, its multi-omics features (e.g., somatic mutation frequency, DNA methylation)
form a heterogeneous vector with diverse statistical properties, exhibiting highly non-Gaussian dis-
tributions (Appendix A and Appendix Figure 3). While neural networks do not make explicit distri-
butional assumptions, their training dynamics and performance are highly sensitive to the scale and
shape of input features. Therefore, directly inputting these raw, irregular features into a deep hyper-
graph neural network can impede the training process, leading to models that struggle to effectively
handle disparate feature scales and are less efficient at learning complex nonlinear interactions. To
address this problem, we propose the MSE module. The objective of this module is to perform a
non-linear transformation that maps the original multi-omics feature space into a high-dimensional,
sparse, and structured latent space.

3
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Our methodology leverages a Random Forest to achieve this feature transformation. A forest con-
sisting of T decision trees is first trained using only the training set data. Once trained, we utilize its
learned structure as a feature encoder. For any given gene g with its raw feature vector Xg , we pass it
through every tree in the forest to obtain a set of terminal leaf node indices. The final sparse feature
representation, X

′

g , is generated by concatenating the one-hot encodings of these leaf indices. This
process can be formally expressed as:

X
′

g =

T⊕
t=1

one-hot(lt(Xg)) (1)

where lt(Xg) is the index of the leaf node that the feature vector Xg lands in for tree Tt, and
⊕

denotes the concatenation operation. The resulting vector X
′

g is a high-dimensional and sparse
binary representation. This new representation implicitly encodes higher-order feature interactions
by converting complex numerical relationships into a robust binary feature format, making it more
amenable to deep learning architectures.

3.2 BIOLOGICALLY-INFORMED NODE-WEIGHTED HYPERGRAPH CONVOLUTIONAL LAYER

Annotated gene sets, such as those from ontology gene sets or pathway gene sets, naturally capture
the higher-order functional relationships among multiple genes. To leverage this gene functional
association information, we model it as a hypergraph, denoted as G = (V, E ,We). The set of nodes
V = {v1, . . . , vn} represents the n genes, and the set of hyperedges E = {e1, . . . , em} represents the
m annotated gene sets. The structure of the hypergraph is mathematically described by its incidence
matrix H ∈ Rn×m, where an entry H(v, e) = 1 if gene v is a member of gene set e, and 0 otherwise.
Furthermore, We is a diagonal matrix containing the weights assigned to each hyperedge.

A critical limitation of conventional hypergraph neural networks is their assumption of uniform
node importance within a hyperedge. This implies that all genes in a biological pathway contribute
equally. However, this is a stark oversimplification of biological reality, as the roles of genes are
highly context-dependent. For instance, a transcription factor might play a pivotal regulatory role,
while other genes in the same pathway act as downstream effectors. To overcome this, we introduce
the BNHC layer. The BNHC layer assigns biologically-informed prior weights to nodes within each
hyperedge, thereby guiding the message aggregation process to focus on functionally central genes.

Biologically-informed node weight calculation. The core of the BNHC layer is the computation
of a unique prior weight for each node v within a specific hyperedge e. Due to the distinct intrinsic
properties of our hypergraph sources, this biologically-informed weighting strategy is specifically
applied to the ontology gene sets, while pathway gene sets receive uniform weights (details in Ap-
pendix B). This weight, denoted as wve, quantifies the node’s importance in the context of that
biological function. We derive this weight by assessing whether the local connectivity of gene v
with other members of e in HumanNet v3 (Kim et al., 2022) is significantly higher than expected
by chance. If the local connectivity is higher than expected, it means that the gene is likely to play
a key role in the biological process. This statistical enrichment, modeled via the hypergeometric
distribution, serves as a powerful proxy for gene importance (Fang et al., 2012). Specifically, we
treat the genes in HumanNet v3 as the population, the genes in hyperedge e as the sample, and the
neighbors of v in the HumanNet v3 as the items of interest. We then calculate the expectation E[kev]
under this null hypothesis. The raw enrichment score is then transformed into a stable weight:

wve = log2 ((k
e
v − E[kev]) · I(kev > E[kev]) + 2) (2)

where kev is the number of connections observed in HumanNet v3 between gene v and other genes
in hyperedge e, and I is the indicator function. The constant 2 ensures a baseline weight of 1 (for
non-enriched genes, where the difference is zero or negative) and produces weights significantly
greater than 1 for genes with higher-than-expected connectivity.

Node-weighted aggregation. The BNHC layer then performs the first stage of message passing:
node-to-hyperedge aggregation. This process is guided by our pre-computed, biologically-informed
node weights wve, which act as local importance scores. The representation of hyperedge e at layer
(l), denoted as h(l)

e , is constructed by a weighted aggregation of its constituent node features:

h(l)
e =

∑
v∈e

wve ·W(l)
n→eh

(l−1)
v (3)
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where h
(l−1)
v is the feature vector of the node v from the previous layer (with h

(0)
v = X

′
), and

W
(l)
n→e is a learnable linear transformation for the (l)-th layer. This weighted aggregation ensures

that the resulting hyperedge representation is dominated by its most functionally relevant members,
leading to more meaningful and biologically plausible embeddings.

Supervised Hyperedge-to-Node Aggregation. The second stage of the BNHC layer is hyperedge-
to-node aggregation, where each node updates its representation by integrating information from its
incident hyperedges.

To enhance the learning process in a high-noise biological context, we adopt a supervised hyperedge
weighting scheme to prioritize hyperedges with higher known relevance to cancer. This strategy,
whose utility has been demonstrated in prior hypergraph-based methods (Deng et al., 2024), acts
as a strong inductive bias. Specifically, using the labels of training set exclusively, we compute a
global weight we for each hyperedge e as the proportion of known cancer driver genes it contains.
This weight is designed to reflect the cancer-specific relevance of the hyperedge. The updated node
representation h

(l)
v is computed as:

h(l)
v = σ

(∑
e∈Ev

we ·W(l)
e→nh

(l)
e + h(l−1)

v

)
(4)

w(e) =

∑
v∈V H(v, e)f(v, Vd)∑

v∈V H(v, e)
(5)

where Ev is the set of hyperedges containing node v, h(l)
e is the hyperedge representation from the

first stage, and W
(l)
e→n is another learnable weight matrix. The σ is a non-linear activation function.

The Vd denotes the known cancer gene in the training set, and f(v, Vd) is used to indicate whether
gene v belongs to Vd. This supervised weighting approach may have potential drawbacks, but
our model exhibits strong generalization ability on two independent test sets and demonstrates its
ability to identify cancer genes in validation analyses of prediction results. This dual-stage, weighted
message-passing mechanism allows the model to learn a more expressive and biologically plausible
representation of genes.

3.3 DUAL-CHANNEL HYPERGRAPH NETWORK ARCHITECTURE

To effectively leverage hypergraphs from disparate sources, we introduce a dual-channel hypergraph
network architecture. The rationale behind this design is that different databases, such as ontology
gene sets and pathway gene sets, capture distinct facets of gene function with unique topological
properties. The naive approach of merging them into a single overall hypergraph may result in
one type of information obscuring or dominating the other. Our dual-channel architecture mitigates
this by processing hypergraphs from different sources in parallel, allowing for specialized learning
before final fusion.

Specifically, for the two hypergraph sources—ontology gene sets and pathway gene sets—our
framework instantiates two independent hypergraph network channels, each composed of a stack
of the three BNHC layers described previously. One channel is dedicated to processing the hyper-
graph constructed from ontology gene sets, GOntology , while the other processes the hypergraph
derived from pathway gene sets, GPathway. The initial node features, X

′
, from the MSE module are

shared and serve as input to both channels. Each channel then learns a specialized node embedding
matrix that captures the functional context specific to its data source. The ontology channel produces
an ontology-centric embedding, ZOntology = ChannelOntology(X

′
,GOntology), while the pathway

channel generates a pathway-centric embedding, ZPathway = ChannelPathway(X
′
,GPathway).

After the final layer of each channel, the two specialized embedding matrices are fused to generate
a comprehensive gene representation. For this fusion, we employ a concatenation operation, which
preserves the complete information learned from both contexts:

Zfinal = ZOntology

⊕
ZPathway (6)

Ŷ = Softmax(ZfinalWfinal + b) (7)
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where
⊕

denotes concatenation, Wfinal is a learnable weight matrix and b is the bias vector.
Finally, the integrated representation Zfinal is input into a fully connected layer and a softmax
function to obtain the cancer gene probability score for each gene. This architecture ensures that
the model can learn from different biological function contexts without being disturbed, thereby
obtaining a more robust and accurate final prediction.
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Figure 2: Benchmarking results of DEMONet. (A) Performance comparison of DEMONet and
seven cancer gene identification methods. Bars represent the mean performance, and error bars indi-
cate the standard deviation across five independent runs. (B) Performance comparison of DEMONet
and other methods on two independent test sets.

4 EXPERIMENT

4.1 DATA SOURCE AND BASELINES

Data source. The input for DEMONet primarily consists of two components: multi-omics features
for each gene and two collections of annotated gene sets. Furthermore, we use a curated set of
known cancer and non-cancer genes as labeled data to train and evaluate our model.

The multi-omics features for each gene are compiled from multiple sources to provide a compre-
hensive biological profile. This includes somatic mutation, DNA methylation, and gene expression
data derived from approximately 8,000 tumor samples across 16 cancer types from TCGA study
(Schulte-Sasse et al., 2021). We augment this with 10 system-level properties, such as gene duplica-
tion status and miRNA interactions, as described by Nulsen et al (Nulsen et al., 2021). Additionally,
to capture network context, we include 16-dimensional topological features for each gene, which
are generated by applying the DeepWalk (Perozzi et al., 2014) algorithm to a PPI network. The
concatenation of these features results in a final 74-dimensional multi-omics feature vector for each
gene.

The annotated gene sets, which form the basis of our hypergraphs, are sourced from the Molecular
Signatures Database (MSigDB) (Liberzon et al., 2015). We utilize two collections: (1) ontology
gene sets, comprising 14,905 sets from the Gene Ontology (GO) (Consortium, 2004) and Human
Phenotype Ontology (HPO) databases (Köhler et al., 2021), and (2) pathway gene sets, consisting of
5,721 pathways curated from expert databases such as Reactome (Fabregat et al., 2018) and KEGG
(Kanehisa & Goto, 2000).

For model training and evaluation, we compile a high-confidence set of labeled genes. Positive
samples (known cancer driver genes) are collected from three authoritative databases: NCG (v6.0)
(Repana et al., 2019), COSMIC Cancer Gene Census (v91) (Sondka et al., 2018), and DigSEE (Kim
et al., 2013). Negative samples (non-cancer genes) are stringently defined by iteratively removing
any genes present in NCG, COSMIC CGC, DigSEE, and the KEGG cancer pathway gene sets. This
process yields a final dataset of 796 positive and 2,187 negative gene samples.

Baseline and implementation. We evaluate the performance of DEMONet against a comprehen-
sive set of seven state-of-the-art baseline methods, which span the major methodological paradigms

6
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in cancer gene identification. These include 20/20+ (Tokheim et al., 2016), DORGE (Lyu et al.,
2020), EMOGI (Schulte-Sasse et al., 2021), MTGCN (Peng et al., 2022), MODIG (Zhao et al.,
2022), DISHyper (Deng et al., 2024) and MNGCL (Peng et al., 2024). Further details regarding the
implementation of DEMONet and the experimental settings are provided in Appendix C. Our source
code and all data used in this study are made publicly available in the Supplementary Materials to
ensure reproducibility.

4.2 PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS

To evaluate the performance of DEMONet, we conduct a comprehensive benchmark against seven
state-of-the-art methods for cancer gene identification. We assess all models based on the area under
the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve
(AUPRC).

Our framework shows substantial performance gains over methods from all major paradigms (Figure
2A). When compared to traditional machine learning models that rely on manually engineered fea-
tures, such as 20/20+ and DORGE, DEMONet achieves a significant improvement of at least 5.5% in
AUROC and 6.1% in AUPRC (P-value < 0.05 by one-sided Wilcoxon signed-rank test). Similarly,
DEMONet outperforms representative biological network-based methods. Against EMOGI, MT-
GCN, and MODIG, our model yields performance boosts of no less than 4.6% in AUROC and 6.6%
in AUPRC (P-value < 0.05). Notably, even when benchmarked against MNGCL, a method that
integrates multiple biological networks, DEMONet exhibits a remarkable advantage, with relative
increases of 3.6% in AUROC and 5.8% in AUPRC (P-value < 0.05). Most importantly, compared
to DISHyper, the most comparable hypergraph-based baseline, DEMONet still delivers significant
enhancements of 1.9% in AUROC and 2.3% in AUPRC (P-value < 0.05). Collectively, these results
establish the superior performance of DEMONet.

To further assess the generalization capability of DEMONet and its ability to identify novel cancer
genes, we evaluate its performance on two independent test sets of cancer genes curated from the
OncoKB (Chakravarty et al., 2017) and ONGene (Liu et al., 2017) databases. These sets, compris-
ing 313 and 382 cancer genes respectively, are not used during model training, thus providing an
unbiased testbed. For this evaluation, we use AUPRC as the primary metric, treating the genes in
each independent set as true positives and all other genes as negatives. As illustrated in Figure 2B,
DEMONet consistently achieves the best performance on both independent datasets, underscoring
its strong generalization power. Although the absolute AUPRC values are expectedly low due to
the high imbalance between positive and negative samples in this challenging task, the relative per-
formance gains are substantial. Compared to all other methods, DEMONet demonstrates a relative
improvement of at least 6% and 4.6% on the OncoKB and ONGene test sets, respectively. This
superior performance on unseen data strongly suggests that DEMONet is not merely memorizing
patterns in the training set but has learned a more fundamental and generalizable representation of
cancer gene properties, making it a more reliable tool for discovering novel cancer genes.

Table 1: Effectiveness of the MSE Module. The best performance is highlighted in bold.

Model Variant Feature Type Ontology Pathway
AUROC AUPRC AUROC AUPRC

(1) DEMONet w/o MSE One-hot (No features) 0.911 0.843 0.918 0.832
(2) RF + Raw Features Raw Multi-omics 0.922 0.828 0.922 0.828
(3) DEMONet-Raw Raw Multi-omics 0.841 0.735 0.881 0.774
(4) MLP + Sparse Features Sparse Encoded 0.916 0.833 0.916 0.833
(5) DEMONet Sparse Encoded 0.939 0.885 0.940 0.886

4.3 ABLATION STUDIES

To rigorously evaluate the contribution of each module within the DEMONet framework, we con-
duct a series of comprehensive ablation studies. These experiments are designed to systematically
isolate and evaluate the impact of the multi-omics sparse encoding module, the node-weighted hy-
pergraph convolution layer, and the dual-channel architecture.
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4.3.1 EFFECTIVENESS OF THE MULTI-OMICS SPARSE ENCODING MODULE

First, we investigate the impact of our proposed MSE module. We evaluate its effectiveness on both
the ontology and pathway gene sets by comparing the full DEMONet model against four baseline
variants: (1) DEMONet w/o MSE, which uses only one-hot vectors as input features; (2) RF +
Raw Features, a standard Random Forest classifier trained on the raw multi-omics features; (3)
DEMONet-Raw, where the raw multi-omics features are directly fed into our model; and (4) MLP
+ Sparse Features, a Multi-Layer Perceptron trained on our sparsely encoded features.

The results, presented in Table 1, reveal several key insights. A direct comparison between DE-
MONet (5) and DEMONet-Raw (3) shows that naively feeding raw features into the model degrades
performance, which we attribute to the irregular distribution and high bias of the multi-omics data
being incompatible with the deep learning architecture. Furthermore, comparing DEMONet (5)
with the MLP-based approach (4) and the RF classifier (2) demonstrates that neither the sparse en-
coding nor the raw features alone are sufficient for optimal performance when used with simpler
classifiers. It is the powerful synergy between the MSE module’s structured feature representation
and the DEMONet’s ability to learn from higher-order topology that yields the best results. These
findings underscore the critical importance of the MSE module in bridging the gap between complex
biological data and deep learning models.

Table 2: Ablation study of BNHC.
Components Performance
MSE BNHC AUROC AUPRC

0 0 0.896 0.827
0 1 0.911 0.843
1 0 0.931 0.876
1 1 0.939 0.885

Table 3: Ablation study of the dual-channel architecture.
Model / Data Configuration AUROC AUPRC

DEMONet - Ontology Channel Only 0.939 0.885

DEMONet - Pathway Channel Only 0.940 0.886

DEMONet - Concatenated Hypergraph 0.939 0.886

DEMONet - Dual-Channel 0.948 0.899

4.3.2 IMPACT OF THE BIOLOGICALLY-INFORMED NODE-WEIGHTED HYPERGRAPH
CONVOLUTIONAL LAYER

Next, we evaluate the contribution of the BNHC layer to the ontology gene set, since our prior
weight calculation scheme is designed for the ontology gene set. We conduct this analysis under
two conditions: with and without the MSE module, to test the robustness of the BNHC layer’s
contribution.

As shown in Table 2, the inclusion of the BNHC layer consistently improves model performance. In
the absence of the MSE module, adding the BNHC layer boosts AUROC and AUPRC by 1.5% and
1.6%, respectively. Even when integrated into the full DEMONet model, where rich node features
already provide a strong predictive signal, the BNHC layer still provides performance gains of 0.8%
in AUROC and 0.9% in AUPRC. This consistent improvement demonstrates that explicitly modeling
the heterogeneous importance of genes within functional pathways is a key factor in enhancing the
model’s predictive accuracy.

4.3.3 ANALYSIS OF THE DUAL-CHANNEL ARCHITECTURE

Finally, we validate the effectiveness of our dual-channel architecture. We compare the full DE-
MONet model against three alternatives: (1) a model using only the ontology gene set channel, (2) a
model only using the pathway gene set channel, and (3) a single-channel model trained on a naively
concatenated hypergraph of both gene sets.

The results in Table 3 clearly illustrate the benefits of the dual-channel design. While both individ-
ual channels show strong predictive power, simply concatenating the two hypergraph sources does
not lead to any performance improvement. This suggests that naive fusion can lead to the distinct
topological patterns of each data source being diluted. In contrast, our dual-channel architecture,
which learns specialized representations before fusion, achieves a performance increase, improving
AUROC by 0.8% and AUPRC by 1.3% over the best single-source model. This result validates
our hypothesis that processing disparate biological knowledge sources in parallel is a more effective
strategy for information integration.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 VALIDATION AND FUNCTIONAL CHARACTERIZATION OF PREDICTED CANCER GENES

To validate the ability of DEMONet to prioritize biologically relevant cancer genes, we first assess
our predictions against a high-confidence set of genes from the CancerMine database (Lever et al.,
2019). Our analysis reveals that top-ranked genes from DEMONet are highly enriched with these
literature-supported cancer genes. Specifically, 86 of the top 200 prioritized genes are present in
this high-confidence set (Appendix Figure 4). Furthermore, the decile analysis shows that the high-
confidence set is significantly enriched in the first decile, exhibiting a clear trend of decreasing
frequency in subsequent deciles (Appendix Figure 4). More detailed analysis results are in the
Appendix D. These results suggest that the genes ranked highest by our model are substantially
more likely to be genuine cancer-related genes.

To further investigate the biological significance of our predictions, we analyze the DEMONet-
predicted top-ranked 100 cancer genes (PCGs) for enrichment in three independent functional ge-
nomics datasets representing key cancer-driving mechanisms: transposon-based gene inactivation,
oncogenic gene fusions, and epigenetic regulation. We compare the enrichment of our PCGs against
that of known cancer genes (KCGs) and neutral genes (NGs). We find that our PCGs, much like
KCGs, are significantly enriched in all three functional categories, whereas neutral genes show no
such association (Appendix Figure 4). This demonstrates that our predicted genes share hallmark
properties with established cancer drivers operating through diverse molecular mechanisms. De-
tailed statistical results for each analysis are available in Appendix E.

4.5 CLINICAL RELEVANCE OF NOVEL CANDIDATE CANCER GENES REVEALED BY
SURVIVAL ANALYSIS

To demonstrate the practical value of DEMONet, we analyze the top candidate genes prioritized by
DEMONet. We identify 16 potential novel cancer genes (novelCGs, Appendix Table 4) within our
top 100 predictions that are absent from major cancer gene databases (CancerMine, NCG, COSMIC
CGC). Subsequently, to assess the association between the expression of these novelCGs and patient
prognosis, we perform a comprehensive survival analysis using the GEPIA2 platform (Tang et al.,
2019). The analysis is conducted across 33 cancer types from TCGA.

The results provide strong evidence for the clinical significance of our predictions. As shown in
Appendix Figure 5, the expression of all 16 novelCGs is significantly associated with patient prog-
nosis in at least one cancer type. Notably, 15 of these genes, including ITGB3, NRP1, and COL1A2,
show significant prognostic power in two or more cancer types, suggesting their broad involvement
in cancer progression. In addition, ITGB3 has also been mechanistically demonstrated to play an
important role in the metastasis of breast cancer (Fuentes et al., 2020). Down-regulation of NRP1
promotes breast cancer progression and may be a target for new strategies for the treatment of breast
and other cancers (Dong et al., 2021). COL1A2 has also been found to have an inhibitory effect
on colorectal cancer cell proliferation, migration, and invasion(Yu et al., 2018). The above results
demonstrate the potential of DEMONet to identify clinically actionable targets for future cancer
research.

5 CONCLUSION

In this paper, we introduce DEMONet, a novel dual-channel hypergraph network designed to address
key challenges in cancer gene identification. DEMONet advances the state-of-the-art by synergis-
tically integrating three key innovations: a multi-omics sparse encoder to robustly process complex
biological features, a biologically-informed node-weighted convolution to capture gene heterogene-
ity within a hyperedge, and a dual-channel architecture to effectively fuse disparate hypergraphs.
Extensive experiments demonstrate that DEMONet significantly outperforms a wide range of exist-
ing methods and exhibits superior generalization on two independent test sets. Our comprehensive
ablation studies rigorously validate the critical contribution of each proposed component. Most
importantly, we show that the novel candidate genes prioritized by DEMONet are not only highly
enriched in diverse cancer-driving mechanisms but also significantly associated with patient sur-
vival outcomes. These findings underscore the practical utility of DEMONet as a powerful tool for
discovering clinically relevant and actionable targets for future cancer research.
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REPRODUCIBILITY STATEMENT

The source code for the DEMONet model is provided as supplementary material. Our implementa-
tion is primarily built upon standard libraries, including PyTorch and PyTorch Geometric.

Details regarding the model’s architecture, such as the Random Forest configuration in the MSE
module, the hidden dimensions of the BNHC layers, the specific hyperparameters used for training
DEMONet, and the evaluation protocol for all baseline models, are described in Appendix C.

All datasets used in this study are publicly available. A comprehensive description of data sources,
pre-processing steps, and the construction of our training and validation sets is provided in Section
4.1.
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A STATISTICAL ANALYSIS OF MULTI-OMICS FEATURE DISTRIBUTIONS

We conduct a statistical analysis to characterize the distributions of five distinct sets of multi-omics
features: Somatic Mutation, DNA Methylation, Gene Expression, System-level properties, and
Topological features. By calculating the skewness and kurtosis for each gene’s feature vector, we
aim to quantify the shape and tail behavior of multi-omics features. To visually illustrate the statisti-
cal heterogeneity of the multi-omics features, we standardize all features via z-score transformation
and plot their distributions against a standard normal distribution (Figure 3). The analysis reveals
significant statistical heterogeneity across all feature sets, with substantial deviations from a normal
distribution, which motivates the need for models robust to such data characteristics.

The mutation features exhibit the most extreme statistical properties, consistent with their sparse,
count-based nature. They are characterized by an exceptionally high average skewness of 19.04
and a staggering mean kurtosis of 1175.68. Crucially, the standard deviations of these metrics
(21.78 for skewness and 2417.19 for kurtosis) are even larger than their respective means, with the
maximum observed kurtosis reaching nearly 10,000. This indicates that the mutation data is sparse
and dominated by features with extreme outliers.

In comparison, gene methylation and gene expression features, while also markedly non-Gaussian,
exhibit more contained distributions. Both sets are strongly right-skewed (mean skewness of 2.64
and 2.78, respectively) and are highly leptokurtic, indicating a prevalence of heavy tails in these
molecular measurements. They differ, however, in their internal consistency. Methylation features
show a greater diversity in their tail behavior, with a kurtosis standard deviation (9.41) that is larger
than its mean (9.14). Gene expression features, conversely, are more uniformly heavy-tailed, with a
lower relative standard deviation in kurtosis (mean 12.09, std 5.47).

The final two feature sets capture higher-level properties of the genes. The system-level properties
are a mixed feature, containing both left-skewed (min skewness -1.09) and strongly right-skewed
features (max skewness 46.47), leading to a large standard deviation of skewness (14.22). The
topological features, which represent the structural properties of each gene within biological net-
works, are on average left-skewed (mean -1.43). However, this average conceals a balanced mixture
of left- and right-skewed distributions, as evidenced by a wide range from -9.37 to 9.93. Both of
these derived feature sets also exhibit highly variable kurtosis, confirming the diverse nature of their
constituent properties.

In summary, this analysis highlights the profound statistical heterogeneity inherent in gene-level
multi-omics data. The prevalence of severe skewness, heavy tails, and considerable variance in
these distributional properties underscores the need for a model architecture, such as the one we
propose, that is robust to the complex and varied statistical landscapes of multi-omics data.

B RATIONALE FOR ASYMMETRIC NODE WEIGHTING STRATEGY

In our model, the BNHC layer applies its non-uniform weighting scheme exclusively to the
ontology-derived hypergraph, while using uniform weights for the pathway-derived hypergraph.
This appendix details the rationale for this asymmetric design, which is grounded in the fundamen-
tal differences in granularity and functional coherence between these two biological data sources.

The primary distinction lies in their construction and scope. Ontology gene sets, such as those from
Gene Ontology (GO), are organized hierarchically and often represent broad functional categories
that can range from highly specific to very general. A high-level GO term like ”signal transduc-
tion” have thousands of genes whose functional roles and importance vary significantly. Within
such a large, heterogeneous collection, a mechanism is required to identify the core, functionally
central genes. In contrast, pathway gene sets from databases like KEGG or Reactome are typically
expert-curated to represent specific, well-defined molecular processes. These pathways are gener-
ally smaller, and their member genes are considered to be a more functionally homogeneous and
tightly coupled module, where each component plays an integral role.

For the broad and heterogeneous ontology gene sets, we use our statistics-based node weighting.
This method effectively prioritizes the likely ”core” members within a large functional group by
identifying those that form a dense local neighborhood in HumanNet v3. For the smaller, more
homogeneous pathway gene sets, applying such a statistical test is less informative. We therefore
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Figure 3: Distributions of multi-omics features. Kernel Density Estimate (KDE) plots for the five
feature categories after z-score standardization. The standard normal distribution is shown as a
dashed black line for reference. The visualization highlights the significant departures from normal-
ity and the profound statistical heterogeneity among different feature types.

use a uniform weight (wve = 1) to respect the expert curation that defines these pathways as cohesive
functional units. This tailored, asymmetric approach is a key modeling decision that allows for more
nuanced learning from each data source and directly motivates the dual-channel architecture used in
our framework.

C IMPLEMENTATION DETAILS

All experiments are conducted on an Ubuntu 20.04 server equipped with 256GB of RAM and an
NVIDIA A100 80G GPU. The DEMONet framework is implemented in Python 3.6.13, utilizing
PyTorch 1.13.0 and PyTorch Geometric 2.3.0 for model construction and training.

Model Configuration. In the MSE module, we employ a Random Forest classifier consisting of
200 decision trees, with a maximum depth of 5 for each tree. The resulting one-hot encoded vectors
from these trees are concatenated to form the initial sparse feature representation for each gene. For
the core network architecture, all BNHC layers in DEMONet utilize a hidden dimension of 256.

Training Protocol. The model is trained for 100 epochs using the Adam optimizer. We set the
initial learning rate to 2e-4 and apply L2 regularization with a weight decay coefficient of 5e-3. The
cross-entropy loss function is used to optimize the model parameters. To ensure reproducibility,
our complete source code, datasets, and detailed experimental configurations are provided in the
Supplementary Material.

Evaluation Protocol. For a fair and robust comparison, we evaluate all models under a stratified
five-fold cross-validation scheme. The final performance metrics are reported as the mean and stan-
dard deviation across five independent runs, each initiated with a different random seed.

For the baseline methods, we categorize them into two groups. For MTGCN, MODIG, DISHyper,
and MNGCL, we utilize their publicly available official implementations and maintain the default
hyperparameter settings as recommended by their authors. For 20/20+, EMOGI and DORGE, we
re-implemented the models following the descriptions in their original publications. Our implemen-
tation of EMOGI achieved slightly better performance than reported in its original paper on our
dataset.
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D ASSESSING DEMONET PREDICTION RESULTS USING
LITERATURE-ANNOTATED CANCER GENES

To validate the accuracy of our predictions, we assess the enrichment of literature-annotated cancer
genes within the DEMONet ranking results. For this analysis, we utilize a curated gene set from
the CancerMine database, a comprehensive resource that extracts cancer gene associations from
scientific literature. Specifically, we focus on a high-confidence subset of CancerMine genes, defined
as those supported by evidence from five or more publications, to ensure the robustness of our
validation.

Our analysis reveals a strong correspondence between DEMONet’s ranking results and this
literature-based evidence. First, we examine the density of these genes at the top of our ranked
list. We observe a remarkable enrichment: among the top 200 genes prioritized by DEMONet, 86
are present in the high-confidence CancerMine set (Figure 4A). This result underscores the high
quality and reliability of our model’s top predictions.

Second, to analyze the overall distribution, we partition the entire ranked list into ten deciles and
count the number of high-confidence CancerMine genes within each. A significant enrichment is
observed in the first decile, which contains the highest concentration of these literature-supported
genes (Figure 4B). Furthermore, we identify a clear and consistent trend across the deciles: the
number of high-confidence cancer genes progressively decreases as the rank decreases. This strong
negative correlation between rank and literature-based evidence collectively demonstrates that DE-
MONet effectively prioritizes genes with established roles in cancer, thereby validating its ability to
identify cancer genes.

E CHARACTERIZATION OF DEMONET-PREDICTED CANCER GENES

To further investigate the biological mechanisms of our top predictions, we analyze the Top-100
Predicted Cancer Genes (PCGs) from DEMONet for enrichment in three independent functional
genomics datasets representing key cancer-driving mechanisms. We compare the enrichment of our
PCGs against that of Known Cancer Genes (KCGs), which are expected to be enriched, and Neutral
Genes (NGs), which serve as a negative control.

Association with Transposon-based Gene Inactivation. First, we assess whether PCGs act as
tumor suppressor genes using data from Sleeping Beauty (SB) transposon insertional mutagene-
sis. This powerful genetic tool identifies potential tumor suppressors by screening for genes whose
disruption via transposon insertion drives tumorigenesis. Using a set of candidate genes identified
through SB screens (from the SBCDDB database), we perform an enrichment analysis. As ex-
pected, KCGs are significantly enriched in these inactivation-driven candidates, whereas NGs show
no enrichment (Figure 4B). Crucially, our PCGs also show a highly significant enrichment (P-value
= 4.5e-9). This result suggests that DEMONet can effectively identify genes that likely function as
tumor suppressors.

Involvement in Oncogenic Gene Fusions. Second, we examine the association of PCGs with
oncogenic gene fusions, a hallmark of cancer resulting from chromosomal rearrangements. We
analyze a comprehensive list of genes involved in fusions across 33 TCGA tumor types (collated
from TumorFusions and Gao et al.). The analysis confirms that KCGs are significantly enriched
in fusion events compared to NGs. Notably, our PCGs exhibit a similarly strong and significant
enrichment (P-value = 2.2e-8, Fisher’s exact test), a pattern not observed in randomly selected gene
sets (Figure 4C). This finding indicates that DEMONet is capable of identifying driver genes that
operate through gene fusion mechanisms.

Enrichment in Epigenetic Regulators. Finally, we investigate the link between our predictions and
epigenetic regulation, a critical process in tumorigenesis. We test for enrichment against a curated
list of 761 Epigenetic Regulator (ER) genes from the EpiFactors database. Our analysis shows that
while KCGs are strongly enriched in ERs, NGs are not (Figure 4D). Importantly, our PCGs are
also significantly enriched in this set of regulators (P-value = 5.6e-4). This suggests that a subset
of the genes prioritized by DEMONet may drive cancer through the dysregulation of epigenetic
modifications, highlighting another relevant mechanism captured by our model.
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F THE USE OF LARGE LANGUAGE MODELS

We utilize a Large Language Model (LLM) as a writing assistance tool in the preparation of this
manuscript. The primary role of the LLM is to improve the clarity, conciseness, and grammatical
accuracy of the text.

Figure 4: (A) Analysis of DEMONet ranking results based on CancerMine database. On the left,
the number of cancer genes enriched in each interval (with an interval size of 200) is depicted, while
the right side presents the decile enrichment analysis results. Enrichment analysis of KCGs, NGs,
and PCGs in SB inactivating pattern gene list (B), gene fusion list (C), and ER gene list (D).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: Results of survival analysis for 16 novel cancer genes across 33 cancer types. Points
outlined in red or blue highlight genes whose expression significantly impacts the survival duration
of specific cancers.

Table 4: The DEMONet-predicted 16 novel cancer genes.
Rank Gene Symbol

10 COL6A2
19 ITGB3
22 FBN1
29 LRP2
32 TGFB2
37 FANCM
38 APOB
57 NRP1
63 SPTBN1
65 PRKCQ
66 TGFB3
68 RARG
77 PLEC
78 ITGA2B
88 KMT2E
98 COL6A2
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