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Abstract

Stock movement prediction has always been a challenging but attractive task
for researchers in machine learning and data mining. Generally speaking, two
challenges for stock time series prediction remain not well-explored. One is the
overfitting of deep learning models due to the data shortage and the other one is the
potential domain shift that may happen during the evolution of stock time series. In
this paper, we present Meta-Adaptive Stock movement prediction with two-StagE
Representation learning (MASSER), a novel framework for stock movement
prediction based on self-supervised learning and meta-learning. Specifically, we
first build up a two-stage representation learning framework; the first stage of
representation learning aims for unified embedding learning for the data. And the
second stage of learning, which is based on the first stage, is used for temporal
domain shift detection via self-supervised learning. Then, we formalize the problem
of stock movement prediction into a standard meta-learning setting. Inspired by
importance sampling, we estimate sampling probability for tasks to balance the
domain discrepancy caused by evolving temporal domains. Extensive experiment
results on two open source datasets show that our framework with two simple but
classical architectures (GRU and ResNet) as a model achieves improvements of
5% - 9.5% on average accuracy, compared to state-of-the-art baselines.

1 Introduction

One challenge for applying deep learning models to stock movement prediction is that there are
always limited data and the models trained on small datasets are susceptible to overfitting [4]. Due
to this difficulty, a common solution is applying pre-trained models [15]. Instead of training a large
deep learning model from scratch, a model trained on relevant data in advance improves the model’s
performance in time series classification [11]. However, the conventional transfer learning setting
may be inappropriate for stock prediction because of significant heterogeneity among different items.
The ideal framework should have strong generalization with flexibility that can be fast adapted for all
the stock with this issue of limited data.

Apart from the limited data, another issue is the domain shift in temporal patterns. In real-world
scenarios, when researchers are making predictions on the stock market, an important concern is non-
stationarity [28]. Due to the fact that the environment evolves with time, streaming data distribution
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may change in unpredictable ways. In other words, the temporal distribution may shift within a
large time scale [20, 34]. More precisely, three main problems lie in this issue, (i) how to detect
the domain shift within time scales, (ii) how to perform well towards all the domain shifts since
domain shifts could happen in both the training data and testing data, (iii) is there any importance or
quantification for domain shifts when considering the shifting degree between different domains. A
model aiming to train well on the training set can possibly have poor performance on testing sets
because of the potential domain shifts in testing data. Thus, the model we desire here should have a
strong generalization ability towards non-IID tasks from different distributions rather than improving
performance on a specific target domain or distribution.

Before introducing our framework, we first identify two essential definitions of our problem setup.

Stock Movement Prediction Given a stock and its sequential features X = {x1, · · · , xT } ∈ RD×T

within T timestamps, where D denotes the dimension of the feature at each timestamp. The goal is
to learn a prediction function Y (X) = f(X; θ), which maps the stock from its sequential features X
to the label space, where the function f with parameters θ aims to predict the movement of stock s at
the next timestamp either rise (Y (X) = 1) or fall (Y (X) = 0)

Temporal Domain Shift Suppose X = {X1, · · · , Xn} is the sequence of stock and movement
label sequence Y = {Y1, · · · , Yn} corresponds to X . Xi and Yi are drawn from their corresponding
distribution Xi ∼ Pi(X) and Yi ∼ Pi(Y ). The temporal domain shift can be defined as ∃ k, l:
Pk(X) ̸= Pl(X) or Pk(X,Y ) ̸= Pl(X,Y ) or Pk(Y | X) ̸= Pl(Y | X).

To address the two mentioned issues, we propose Meta-Adaptive Stock movement prediction with two-
StagE Representation learning (MASSER), a stock prediction framework that combines supervised
learning, self-supervised learning, and meta-learning. Extensive experiments show that MASSER
outperforms the strong baseline models on several benchmarks in offline settings and online settings.
The framework pipeline is shown in Figure 1. Furthermore, MASSER’s performance is better than a
SOTA [33] even when MASSER has no access to the social media information in ACL18 dataset [43].
We summarize our contributions as follows,

• We propose a two-stage encoder for stock price representation learning. The first stage aims at
learning unified representations of data. The second stage is used to detect temporal domain shifts
via self-supervised learning. To enhance the generalization ability, we formulate a meta-adaptive
learning paradigm for stock movement prediction. The meta-learning framework efficiently learns
knowledge across large temporal scales and different stocks and agilely adapts to unseen domains.

• Extensive experiments on two datasets demonstrate the effectiveness of the proposed method
for improving prediction accuracy and increasing the generalization ability to temporal domain
shift. We extend the offline setting of stock movement prediction to an online paradigm, admitting
temporal domain shift could happen in testing streaming data, which is closer to the real day-trading
scenarios.

2 Two-Stage Representation Learning for Encoders

2.1 First Stage: Macro Representation Learning

Due to the magnitude of the time scale of the datasets, forecasting decisions are often based on
subsequence [43, 12, 33]. In our framework, we segment the raw data into several subsequences
and feed them into the encoder. As it has been shown that temporal convolutional networks (TCN)
can often produce superior prediction performance with sequential data [17] and are generally easier
to train, we construct our encoder based on TCN. The first-stage encoder θ1 aims to learn unified
representation on the dataset level of the subsequences of raw data via (i) extracting useful features
for prediction and (ii) matching the mapping between the inner structure of learned embeddings and
their corresponding prediction labels. The loss function of the first stage is a convex combination
of two terms, which match goals i) and (ii). Suppose X = {X1, · · · , Xn} denotes the segmented
subsequences input for the encoder and Y ′ = {Y ′

1 , · · · , Y ′
n} as the next day rate of change (ROC) of

each corresponding subsequence. The first term is mean squared error (MSE), which can be defined as

LMSE = 1
n

∑n
i=1

(
Y ′
i − Ŷ ′

i

)2

, where Ŷi
′

denotes the first-stage encoder’s prediction of Xi. MSE
is used to train the model to precisely predict the input subsequence. In order to achieve goal (ii), the
second term is the Frobenius norm of the difference between the normalized embedding distance
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matrix and labels distance matrix within a mini-batch. Let Xi+1, · · · , Xi+m denote a mini-batch
of subsequences, Eθ1

i+1, · · · , E
θ1
i+m the embeddings generated by the TCN θ1, and Y ′

i+1, · · · , Y ′
i+m

the ROC, where m denotes the batch size. Then we pair every two items l and k inside the same
batch and compute the pairwise MSE loss on (Eθ1

l , Eθ1
k ) and (Y ′

l , Y
′
k). All the pairwise MSEs can

be put into two matrices Eθ1
b and Y ′

b , and b represents the b-th mini-batch. These two matrices
share the same size as m × m. We take the Frobenius norm of Eθ1

b − Y ′
b and name it LabelSim:

LLabelSim =∥ Eθ1
b −Y ′

b ∥2F . The loss function term above forces the model to learn the alignment of
intra-batch embeddings Eθ1

b and ROC prediction label Y ′
b . Through this objective, the subsequences

with a similar ROC could be mapped near each other in the latent space. Thus, the encoder for macro
representation learning θ1can be described as θ1 = argminθ EX∈Xa∗LMSE +(1−a)∗LLabelSim

, where a is a factor to control the importance of two terms.

2.2 Second Stage: Micro Representation Learning

The macro representation learning neglects the temporal order among individual subsequences so
that the encoder hardly captures the evolution continuously. Therefore, the macro representation
learning may be fragile towards the domain shifts. In the second stage, we modify the encoder to
be more sensitive to the temporal domain shift between the continuous subsequences. We name the
second stage micro representation learning. Similar to TS-CP2[9], we apply contrastive learning
for temporal domain detection. We set two paired consecutive subsequences as dual windows, the
embedding Eθ2

i and its dual Eθ2
(d),i, to train the second-stage encoder θ2 and make it adapt to domain

shift detection. Specifically, InfoNCE [30] is used for the loss function to maximize the mutual
information of dual windows. Suppose there is a mini-batch of embeddings Eθ2

i+1, · · · , E
θ2
i+m with

batch size m, let (Eθ2
i , Eθ2

(d),i) denotes the dual windows of Xi and (Eθ2
k , Eθ2

(d),l)k ̸=l
represents the

random pairs within the mini-batch. We take (Eθ2
i , Eθ2

(d),i) as positive pair and (Eθ2
i , Eθ2

(d),l)i ̸=l
as

its corresponding negative pairs. The predicting probability qi of positive pair (Eθ2
i , Eθ2

(d),i) in each
batch is as follows,

Raw Data 

Stage 2 Encoder

Stage 1 Encoder

Data (Window) Embeddings

Domain Shift Embeddings

Task Constructor

Data (Window) Embeddings
with Different Domains

Task 1

Task 2

Task K

Task SamplerMeta Model

M eta-A daptive  M odel

Online Evaluation Offline Evaluation

Figure 1: The figure demonstrates the whole pro-
cess of the model prototype. First, we derive the
embedding of raw time series data through the first
stage encoder. Meta-learning tasks are constructed
for each domain that is separated based on the re-
sults of the second stage encoder. We use a task
sampler to select proper tasks for meta-training.
Finally, the performance of the well-trained meta-
model is evaluated in both offline and online exper-
iment settings.

qi =
exp

(
dcos

(
E

θ2
i ,E

θ2
(d),i

)
/τ

)
∑m

j=1 exp
(
dcos

(
E

θ2
i ,E

θ2
(d),j

)
/τ

) where τ is

a temperature hyper-parameter for scaling and
dcos is cosine similarity between each pair
embeddings. The second-stage learning ob-
jective can be described as the minimization
of binary cross entropy of the probabilities
of all m positive pairs within the mini-batch.
θ2 = argminθ −EX∈X

∑
i,j Ii=j log (qi) +

Ii ̸=j log (1− qi) where Ii=j and Ii̸=j are indica-
tor functions. We put more details in Appendix
B.1.

With the encoder θ2 in hand, we compute the
similarity of dual windows dsim(Eθ2

i , Eθ2
(d),i) for

all the input, where Eθ2
i is the embedding for

Xi from encoder θ2. A threshold η is set for in-
ferring whether the embedding contains a shift
or not. For a specific embedding Eθ2

i , we in-
fer the the subsequence Xi is under a temporal
domain shift if η ≥ dcos(E

θ2
i , Eθ2

(d),i). Specific
algorithms can be found in Appendix B.2.
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3 Meta-Adaptive Stock Movement Prediction

We elaborate on the meta-learning part of MASSER. Details about (i) the specific process of how to
utilize the learned two-stage encoder for constructing meta-learning tasks and (ii) how to make the
meta-model adaptive to the domain shifts can be found in Appendix C.

With meta-learning, we construct tasks for the meta-learning model. For classification, each task
is further split into support set S and query set Q with items with balanced classes. Note that we
don’t allow any constructed task contains temporal domain shift (detected by stage 2 representation
learning). All the constructed tasks are evaluated by specific criteria of (i) alignment of support set
and query set, (ii) temporal adjacency, and (iii) representation adjacency. Each task will be given an
appropriate probability for sampling to the training process of the meta-learning model after the task
evaluation process. Tasks with good quality are more likely to be sampled for the training. Details
can be found in Appendix C.3.

4 Experiment Result

We choose two open-source stock datasets for evaluation, ACL18 dataset[43]2 and KDD17[47]3.
To evaluate MASSER’s performance, we compare it with the strong baselines for stock movement
prediction: Momentum(MOM), LSTM[18], GRU[8], ALSTM[31], StockNet[43], Adv-ALSTM[12],
and MAN-SF[33]. We evaluate the prediction performance by two metrics, Accuracy (Acc) and
Matthews Correlation Coefficient (MCC)[43, 12, 33]. Note that better performance is evidenced by
the higher value of the metrics.

We use a 4-layers TCN as our two-stage representation learning encoder, and the window size
for the TCN encoder to generate embedding is 25. Furthermore, we apply ResNet for time series
classification [40] and GRU[8] as the meta-model architectures with MAML[13] as meta-algorithm
for updating parameters. Specifically, We use the Adam[21] for the MAML outer loop training and
stochastic gradient descent (SGD) for the inner loop training. Utilizing the proposed task constructor,
we formulate the meta tasks as 2-way 5-shot. After the meta-training process of MASSER, we first
test the performance of the well-trained meta-model on testing data by directly using it to make
predictions and then take an adaptation method to make the meta-model more specific to different
stocks. Concretely, we randomly select data with the latest timestamps in the training set within
the individual stock and slightly update the model parameters based on these selected data to help
MASSER better capture the feature of each stock. We report the mean of best testing performance
over six different random seeds. Additional description about the experiment setup and results of
online setting, backtesting, and ablation study can be found in Appendix D.

4.1 Offline Experiment Settings

The offline setting here means the model is frozen after the entire learning process and output
prediction on all the testing data simultaneously. Table 1 compares the Acc and MCC of our model
and baselines for stock movement prediction in ACL18 and KDD17. MASSER-ResNet* (* denotes
adaptation) achieves the best accuracy and MCC. Compared to the baselines, MASSER-ResNet*
exhibits an improvement of 9.1% and 64.9% (2.3% and 50.0%) on the ACL18 (KDD17) dataset
regarding Acc and MCC, respectively. It is worth noting that the Acc (MCC) of MASSER is 2.6%
(25.1%) higher than MAN-SF, even though MAN-SF utilizes social media information. Another
observation worth mentioning here is that the MASSER-GRU without adaptation averagely increases
1% Acc on Adv-ALSTM. This justifies the effectiveness of two-stage representation learning and
meta-adaptive training, which may be caused by well-learned embedding and meta-adaptive learning
on good-quality tasks. With two simple architectures as the meta-model, MASSER shows its strong
generalization ability for unseen data and good ability to learn representations, which beats complex
architectures with attention module[27] and transformer[39].

2https://github.com/yumoxu/stocknet-dataset
3https://github.com/z331565360/State-Frequency-Memory-stock-prediction/tree/master/dataset
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ACL18 KDD17
Model Acc MCC Acc MCC
MOM 0.470 −0.064 0.498 −0.013
LSTM 0.532 0.067 0.516 0.018
ALSTM 0.549 0.104 0.519 0.026
StockNet 0.550 0.017 0.499 0.499
Adv-ALSTM 0.572 0.148 0.531 0.052
MAN-SF 0.608 0.195 −− −−
MASSER-ResNet 0.552 0.099 0.535 0.074
MASSER-GRU 0.579 0.141 0.543 0.073
MASSER-ResNet* 0.624 0.244 0.542 0.078
MASSER-GRU* 0.581 0.162 0.543 0.047

Table 1: Offline Setting Acc and MCC on ACL18 and KDD17 (* means adaptation)

5 Conclusion

In this paper, We introduce MASSER, a novel framework for stock movement prediction based
on self-supervised learning and meta-learning. Extensive experiments on two datasets show that
MASSER outperforms baselines in both offline and online settings, which justifies MASSER’s strong
generalization ability. We propose two-stage representation learning to train encoders for downstream
meta-framework and detect domain shifts. We construct tasks, evaluate their quality, and then sample
the task adaptively to feed the meta-framework. For future work, we would like to explore the
causality over MASSER via a graph neural network.
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A Related Work

Stock Movement and Trading Modeling The previous work of stock movement can be separated
into two categories. Individual stock modeling, which captures complex repetitive patterns from the
historical prices of each individual stock instead of finding the correlations between multiple stocks
[29, 43, 12, 42]. And taking the correlation between different stocks into consideration because
correlations between multiple stocks may help to make robust and consistent predictions [31, 33, 45].
MASSER extends the view of correlation to meta-learn unified representations on the dataset level.
In MASSER, not only is domain shift detection is considered, but also the importance of different
domains, which could make our framework more consistent with the general pattern of historical
data. Furthermore, our framework is flexible with online adaptation and offline scenarios. All the
related works mentioned above are inappropriate with online settings, and those models haven’t taken
domain shifts within testing data into consideration.

Time Series Modeling with Domain Shifts Deep learning-based methods for time series modeling
gained popularity over the past years [35, 36]. Recently, domain shift and concept drift modeling for
time series have become a popular topic in the community of data mining [10, 46]. And more recently,
Li et al. [23] construct a resampling strategy for data distribution generation for predictable concept
drift adaptation. In MASSER, we aim to solve the temporal domain shift issue as well. The high
stochasticity of stock data is a significant property. Therefore, we design a two-stage encoder learning
process to handle this issue. The first stage encoder can learn the general features and denoise the
data for the second stage domain shift detection. The second stage follows the first one by taking the
encoder as a pre-trained model and learning to detect domain shifts via self-supervised learning.

Meta-learning By using the information gained from earlier assignments, meta-learning has
emerged as an efficient model for learning with minimal data [13, 37, 22, 14, 5]. In common
scenarios for meta-learning, the assumption that all tasks are equally important is held, therefore
each iteration samples tasks at random. In [32, 19, 25], the probability of sampling a task from
existing meta-training tasks is proportional to the amount of information it provides. Recently,
some work [24, 44, 7] focused on task selection via reinforcement learning [41] and submodular
maximization [3]. From the perspective of meta-learning, MASSER focuses on the same issue of
task sampling but additionally takes domain shifts into consideration. We do not assume that tasks
are equally significant. MASSER adaptively samples tasks for the meta-model based on learned
temporal patterns via self-supervised representations to enhance the learning of general patterns
against out-of-distribution (OOD) data.

Self-Supervised Learning Self-supervised learning has been utilized to capture informative and
compact representations of video [1], image [6], and time series [9]. Specifically, we consider
contrastive learning for our framework. Contrastive learning uses a collection of training examples
made up of positive and negative sample pairs to establish what makes the samples in a dataset similar
or dissimilar. N -Paired loss [38] and InfoNCE based on Noise Contrastive Estimation [16, 26]
are examples of recent multiple negative learning loss functions that examine numerous negative
sample pairs at the same time. Auto-regressive models are used in Contrastive Predictive Coding
(CPC) [30, 17] to learn representations within a latent embedding space. CPC aims to learn inside a
global, abstract representation of the signal rather than a high-dimensional, lower-level representation.
Recently, TSCP2 [9] uses CPC to learn latent representations and find dissimilarities in time series
data.

B Detailed Two-stage Representation Learning

Figure 2 shows the pipeline and illustration of our two-stage representation learning.

B.1 The InfoNCE Loss

The InfoNCE loss was first proposed by Oord et al. [30]. It has been proven that by minimizing the
InfoNCE loss, we are actually maximizing the mutual information between dual windows. Take the
same annotations in main context, X = {X1, · · · , Xn} denotes the segmented subsequences input
for the encoder, Eθ2

i+1, · · · , E
θ2
i+m is a mini-batch of embeddings with batch size m, let (Eθ2

i , Eθ2
(d),i)
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Figure 2: The two-stage encoder training framework pipeline. On the left side of the figure, the
first-stage encoder is trained with a weighted sum of Label similarity loss and prediction loss to
learn unified representations. Then on the right side, the second-stage encoder is trained based
on the Temporal Conv encoder duplicated from the first stage to detect temporal domain shift via
self-supervised learning of dual windows. The specific network structure of the Temporal Conv
encoder is shown on the top of the middle.

denotes the dual windows of Xi and is taken as positive pair, (Eθ2
k , Eθ2

(d),l)k ̸=l
represents the random

pairs within the mini-batch and they are all negative pairs. By the original definition of the InfoNCE
loss, we are about to minimize:

LN = −E

log exp
(
dcos

(
Eθ2

i , Eθ2
(d),i

)
/τ

)
∑m

j=1 exp
(
dcos

(
Eθ2

i , Eθ2
(d),j

)
/τ

)
 (1)

Armed with the knowledge of multi-class classification, it is easy to show that Equation 1 is the
cross-entropy loss of classifying the positive pair correctly, and the predicting probability qi of
positive pair (Eθ2

i , Eθ2
(d),i) in each mini-batch is exactly the interior part of LN:

qi =
exp

(
dcos

(
Eθ2

i , Eθ2
(d),i

)
/τ

)
∑m

j=1 exp
(
dcos

(
Eθ2

i , Eθ2
(d),j

)
/τ

)
Finally, the optimal parameter θ2 can be obtained by:

θ2 = argmin
θ

−EX∈X

∑
i,j

Ii=j log (qi) + Ii̸=j log (1− qi)

B.2 Details about Detecting Temporal Domain Shift

As shown in Figure 3, we slide dual windows in the time domain and apply the second-stage encoder
to transform them into embedding pairs (Eθ2

i , Eθ2
(d),i). Next we compute the similarity of adjacent

embedding from the same pair and filter the pairs whose similarity is below the threshold η, which
can be computed as:

η = ε ∗ (δ ∗ ηpos + (1− δ) ∗ ηneg)
where ηpos is the average of positive pairs’ similarities in the training set, and ηneg represents the
negative ones’. The adjustability coefficient ε and δ are set to 0.35 and 0.66 empirically. For each
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Figure 3: The specific process of how to utilize the learned two-stage encoder for constructing
meta-learning tasks.

filtered embedding pair, we take the time point ti which is corresponded to the junction of Eθ2
i and

Eθ2
(d),i as the midpoint and extent it to a forbidden time range (ti −τ, ti +τ), which possibly contains

domain shift. Let set S be the union of all the timestamps of the raw stock data. After dropping the
timestamps in forbidden ranges, stock data in the time domain is split into the consecutive segments
S1, · · · , Sj . Then, generate all their embeddings using the first-stage encoder consecutively for
constructing meta-learning tasks.

C Detailed Meta-Adaptive Stock Movement Prediction

In this section, we elaborate on the meta-learning part of MASSER, (i) the specific process of how to
utilize the learned two-stage encoder for constructing meta-learning tasks, and (ii) the details of how
to make the meta-model adaptive to the domain shifts. The motivation for (i) is that tasks containing
domain shifts are not desired for the construction because of the assumption that the data inside the
support set and query set is roughly IID in a meta-learning setting. When facing multiple domains
following different distributions, the model needs to focus more on the general patterns within the
whole time scale and prioritize the tasks with good quality. To demonstrate (ii), we first introduce
how to evaluate task quality and then show how to make the meta-model adaptive.

C.1 Meta-learning Task Construction

We compute the similarity of dual windows {dcos(Eθ2
i , Eθ2

(d),i)}i=1,···,n and search all the dual
windows whose similarity is below the threshold η. Let set S be the union of all the timestamps
that are covered in inferred embedding entries {Eθ2

i }i=1,···,n that is below the threshold and take the
complement of S within all the timestamps as the feasible set for the following task construction. Let
S1, · · · , Sj be the consecutive segments within the feasible set. Then, generate all their embeddings
from first-stage encoder θ1 consecutively and we consider the embedding group of each segment Si

as a domain Di, which doesn’t contain shift inside.

With meta-learning, we construct tasks for the meta-learning model. For classification, each task is
further split into support set S and query set Q with items with balanced classes. For task Tij , all the
data (subsequences) is selected from Di and ij denotes the j-th task constructed inside domain Di.
Suppose there are n∗ classes in the whole dataset, and we intend to build a n way k shot task Tij
(n∗ ≥ n). We first build the support set. As for the time series data, we set the data in the support
set ahead of the data in the query set. We build a candidate pool for each class and scan the domain
Di by temporal order to divide data into the class candidate pools. The dividing process stops by
checking all the class candidate pools have a number of data no less than k. For the class candidate
pools that have a number of data larger than k, we use random sampling to draw k samples into the
support set Sij . Then we start to build to query set Qij for task Tij by the same process. Tasks in Di

are constructed in order, and we allow different tasks’ support sets have overlapped.

We show the detailed procedures of task construction in Algorithm 1.
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Algorithm 1 Task Construction

Require: Domains D1, · · · ,Dm, n way k shot, k′ for query set , window size l, retreated ratio α
1: for t = 1, 2, . . .m do
2: Construct class candidate pools C1, · · · , Cn∗ for all the classes
3: //Stage I: Support Set Construction
4: Sample n classes for current task Ttj
5: while not all the item numbers for sampled class candidate pools |Ci| ≥ k do
6: Add data into corresponding class candidate pool Ci

7: end while
8: for sampled class candidate pools |Ci| > k do
9: Random draw k samples to keep in the class candidate pool and delete the rest

10: end for
11: Merge the current sampled class candidate pool Ci and save as task Ttj’s support set Stj

12: //Stage II: Query Set Construction
13: Clean all the sampled class candidate pools Ci

14: while not all the item numbers for sampled class candidate pools |Ci| ≥ k′ do
15: Add data into corresponding class candidate pool Ci

16: end while
17: Merge the current sampled class candidate pool Ci and save as task Ttj’s query set Qtj

18: Initialize a new starting time stamp for the new task Tt(j+1) with the retreated ratio α and last
task Ttj’s starting point

19: Check whether the data in Dt after the starting point is enough for constructing a new task or
not. If enough, return to line 4 for Tt(j+1) construction. If not, shift to Dt+1

20: end for

C.2 Task Evaluation

We present detailed criteria for evaluating task quality after task construction according to the
following three factors.

• Alignment of Support Sets and Query Sets Task Tij similarity between the support and query set
embeddings Eθ1

Sij
, Eθ1

Qij
with respect to the first-stage encoder, i.e.,

SC(E
θ1
Sij

, Eθ1
Qij

) :=
Eθ1

Sij
· Eθ1

Qij

∥Eθ1
Sij

∥∥Eθ1
Qij

∥
(2)

Here, we use cosine similarity as metric (2). Specifically, the embedding similarity signifies the
generalization gap from the support set to the query set since segmentation results from the second-
stage encoder could not strictly guarantee the unification and stationary of data in the support set
and query set. Ideally, good quality tasks we desire should have close embeddings for support sets
and query sets.

• Temporal Adjacency When facing a large temporal scale time series, the data with later timestamps
may be more important than the former ones, particularly for those that have domain shifts inside
the time series but no shift within the latest parts. In the general case, any monotonically increasing
function can be used here. For simplicity, we apply a linear monotonically increasing function,
i.e., STA(Tij) = k ∗ tTij , where k (k > 0) is the slope of the linear function and t is the average
timestamp of Tij .

• Representation Adjacency Since focusing on general patterns at the dataset level, we want to
degrade the importance of OOD data. For simplicity, we consider this issue from the inter-domain
level rather than the intra-domain (task) level. We propose to compute how close a single domain
is to the others. In terms of efficiency, assuming a large number of domains inside the dataset, it is
computationally costive to compute all the distances between a specific domain and the rest. Thus,
we intend to partition domains randomly into several groups and compute the sum of the distance
inside each group. Suppose for each randomly partitioned group whose size is m, and then we can
input all the pairwise domain embedding distance into a symmetric square matrix with the size of
m ∗m. To sum up all the columns or rows, the distance between a specific domain and all the rest
is acquired. Let SRA(Tij) denote the distance sum of task Tij within its random partitioned group.
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We elaborate the steps of task evaluation in Algorithm 2

Algorithm 2 Task Evaluation

Require: Tasks T11, · · · , T1j1 , T21, · · · , Tmjm , Domains D1, · · · ,Dm, Starting Timestamps of Tasks
tT11

, · · · , tT1j1
, tT21

, · · · , tTmjm
, Temporal Adjacency Slope k, Representation Adjacency Group

Size m′, Factor Rate β1, β2, β3

1: //Alignment of Support and Query and Temporal Adjacency
2: for T11, · · · , T1j1 , T21, · · · , Tmjm do
3: Get support embedding Eθ1

Sij
and query embedding Eθ1

Qij
for task Tij through encoder θ1

4: Compute alignment of support set and query set:

SC(E
θ1
Sij

, Eθ1
Qij

) :=
Eθ1

Sij
· Eθ1

Qij

∥Eθ1
Sij

∥∥Eθ1
Qij

∥
(3)

5: Compute temporal adjacency:
STA(Tij) = k ∗ tTij (4)

6: end for
7: //Representation Adjacency
8: Random partition tasks T11, · · · , T1j1 , T21, · · · , Tmjm into different groups with the group size

m′ (assume there are l groups)
9: for k = 1, · · · , l do

10: Compute pairwise task similarity SC(E
θ1
Tij

, Eθ1
Ti′j′

) and fill the similarity into the pairwise
similarity matrix RAk

11: Compute the representation adjacency SRA(Tij) by sum up the similarity of itself with the
other tasks within group k (sum up the corresponding row/column of RAk)

12: end for
13: for T11, · · · , T1j1 , T21, · · · , Tmjm do
14: Compute the sampling probability of task Tij with normalization by:

wij = β1SC(E
θ1
Sij

, Eθ1
Qij

) + β2STA(Tij) + β3SRA(Tij) (5)

15: end for

C.3 Training Meta-Models Adaptively

Considering three factors simultaneously, we define the sampling probability wij of each task Tij as

wij = β1SC(E
θ1
Sij

, Eθ1
Qij

) + β2STA(Tij) + β3SRA(Tij) (6)

where β1, β2, β3 are parameters controlling its corresponding factor.

We use sampling probability weight wij to sample B tasks from the task pool for current meta-training
iteration, where a larger value of wij represents higher probability.

We demonstrate our pipeline of Meta-Adaptive Framework in Algorithm 3 with MAML[13] as the
meta-learning algorithm. The two-stage representation learning process is not included.

Algorithm 3 Meta-Adaptive Pipeline

Require: Domains D1, · · · ,Dm, Input Parameters of Task Construction ϕ1, Input Parameters of
Task Evaluation ϕ2, Task Sampling Size m′′

1: Get tasks T11, · · · , T1j1 , T21, · · · , Tmjm by Task Construction (Algorithm 1) with input parame-
ters ϕ1

2: Get task sampling probability w11, · · · , w1j1 , w21, · · · , wmjm by Task Evaluation (Algorithm 2)
with input parameters ϕ2

3: Sample m′′ tasks according to task sampling probability w11, · · · , w1j1 , w21, · · · , wmjm
4: Update Meta-Adaptive model with MAML
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Features Calculation
zopen zopen = open t/ close t − 1
zhigh zhigh = high t/ close t − 1
zlow zlow = low t/ close t − 1
zclose zclose = close t/ close t−1 − 1
zadj_close zadj_close = adj_close t/ adj_close t−1 − 1
zvolume /

Table 2: Features of ACL18 and KDD17 Dataset

D Additional Experiment Results

D.1 Dataset Description

We choose two open-source stock datasets for evaluation, ACL18 dataset[43]4 and KDD17[47]5.
ACL18 contains historical price and social media information from Jan-01-2014 to Jan-01-2016
of 88 high-trade-volume stocks in NYSE and NASDAQ markets. KDD17 includes longer history
ranging from Jan-01-2007 to Jan-01-2016 of 50 stocks in U.S. markets. Six features are included in
this dataset. Three technical indicators zopen, zhigh, zlow are inter-day-based features. Two technical
indicators close and zadj_close are intra-day-based features, where adj_close denotes the adjusted
closing price, which reflects the stock’s value after accounting for any corporate actions, such as
stock splits, dividend distribution, and rights offerings. For more details, please reach Table 2. The
labels are assigned to each time window based on the next day’s movement percent. Movement
percent ≥ 0.55% and ≤ −0.5% are labeled as positive and negative examples. In the offline setting
experiment of ACL18, we use the time period Jan-01-2014 to Aug-01-2015 as the training dataset
and Oct-01-2015 to Jan-01-2016 as the testing dataset. And for KDD17, we split the date from
Jan-04-2007 to Dec-31-2014 as the training set, Jan-02-2015 to Jan-04-2016 as a validation set,
and Jan-04-2016 to Dec-30-2016 as the testing set. The setting above is the same as [43] and [12].
Furthermore, for our proposed online setting, we set Oct-01-2015 to Sep-01-2016 as the online testing
set.

D.2 Baselines

We compare MASSER with the following baselines for stock movement prediction.

• MOM Momentum (MOM) is a technical indicator that predicts negative or positive for each
example with the trend in the last 10 days

• LSTM [18] is a baseline for stock movement prediction, which uses a neural network with an
LSTM layer and a prediction layer.

• ALSTM [31] represents attention LSTM that correlates multiple time steps using a temporal
attention mechanism.

• StockNet [43] uses variational autoencoders to encode stock movements as latent probabilistic
vectors.

• Adv-ALSTM [12] is the previous SOTA (with only stock price) that trains ALSTM with adversarial
data to improve the robustness of stock movement prediction.

• MAN-SF [33] is the previous SOTA (with social media information) that uses graph neural network
to blend chaotic temporal signals, social media, and inter-stock relationship.

D.3 Implementation Details

We set the learning rate for the meta-adaptive model as 0.004- 0.006 and batch size as 16, 32 and
64. The learning rate for online settings is 0.001. Grid search is used to find the appropriate learning
rates and batch size of the model.

4https://github.com/yumoxu/stocknet-dataset
5https://github.com/z331565360/State-Frequency-Memory-stock-prediction/tree/master/dataset
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D.4 Online Experiment Setting

We further demonstrate MASSER can deal with streaming data through an online experiment setting
as well. Under the online setting, future data flows in batches according to temporal order. When
the model gets access to a new batch of future data, we first use the model updated with the last
batch of data to make movement predictions and then leverage the information of this new batch of
data to update the model once again. When all the future data has been tested, we can calculate the
Acc and MCC of the online setting. To cope with domain shift, we additionally introduce Bayesian
Online Changepoint Detection (BOCPD) [2] to assist MASSER in this online setting as an advanced
detector. If there is no domain shift within a batch of new data according to the BOCPD result, we
use the former updated model to make predictions on this batch of data and update the model as usual.
However, When a domain shift occurs within a batch of new data, we use the previously updated
model to make predictions on the data before the domain shift point and use the meta-model without
any update to predict the data after the time domain shift occurs, and re-update the meta-model from
scratch.

Table 3 compares the Acc and MCC of our model and baselines for stock movement prediction on
ACL18 in the online setting. MASSER-ResNet outperforms baselines, with an average improvement
of 18.6% on Acc. Furthermore, BOCPD helps MASSER-ResNet to be more agile toward potential
domain shifts in the streaming data. From the experiment results of the online setting, we can tell that
meta-adaptive training precisely capture the general pattern of training data and make the model a
powerful generalization ability.

ACL18
Model Acc MCC
LSTM 0.516 0.045
GRU 0.509 0.041
ALSTM 0.487 0.012
MASSER-ResNet 0.612 0.216
MASSER-ResNet-BOCPD 0.625 0.251

Table 3: Online Setting Acc and MCC on ACL18

D.4.1 Backtesting

To illustrate how accurate stock movement prediction contributes to real investment tasks, we design
a straightforward strategy by making long-short decisions only based on the signals from the model.
Considering to trade on one type of stock, this strategy sells all holding shares for cash if the model
predicts the stock price to fall and purchases the maximum affordable shares if the model provides
rising signals. We construct the portfolio based on this strategy with predictions from MASSER-
ResNet and three baseline predictive models (LSTM, GRU, and ALSTM). On day t, our strategy
reacts directly based on the movement prediction ŷt. We assume that at the start of the backtesting,
the trader has 1 unit of asset, and on day t, the market value of his/her asset is wt. If the utilized
model predicts the price of the stock to rise from day t to t+ 1, say ŷt = 1, the trader will keep all
his/her wealth as stock. The action ’keep’ indicates that if the trader holds stocks on day t, he/she
will not take action for the position, and if the trader holds cash, he/she will purchase stocks with
all cash on day t. Otherwise (ŷt = 0), he/she will keep all his/her wealth as cash. Following this
strategy, if one model can predict all rises and falls accurately, we may take advantage of all the rises
and avoid all the falls, and the maximum final accumulative return will be

∏T−1
t=0 (1 + r+t ), where

r+t = max (rt, 0) and rt represents the daily return from day t to t+1. Intuitively, the more accurate
one movement prediction model is, the better investment return we can obtain through this signaling
strategy.

We list and compare the performance of our algorithm and baselines in terms of the average achieved
return rate of all 88 considered stocks within the 205-day testing period in Table 4. MASSER
outperforms all baselines, achieving a 29.52 % return rate, beating LSTM by 20.71%, GRU by
20.97% and ALSTM by 16.38 %.
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Models Achieved return rate
Stock 5.59%
LSTM 8.81%
GRU 8.55%

ALSTM 13.14%
MASSER-ResNet 29.52 %

Table 4: Average Online Return Rate on ACL18

D.5 Ablation Study

We conduct extensive ablation experiments on the overall proposed framework, including whether
to use macro representation learning (1st encoder) to derive good representations for downstream
meta-learning, whether to perform micro representation learning (2nd encoder), whether to use the
task sampler to adaptively meta-train the model (sampler), and whether to use a domain shift detector
in the online setting (BOCPD). The experiment results are shown in Table 5. It is worth noting that
the complete MASSER framework yields the best result among all the combinations in both offline
and online settings. Models with macro representation learning already achieve better performance
compared with other baseline models. After the second-stage self-supervised learning, potential
domain shift points are detected and left out, the overall accuracy further improves by 1% to 2 %. In
general, the task sampler contributes to the improvement of Acc according to the experiment results.
It is also evident that BOCPD indeed helps MASSER get more accurate online movement prediction
results, which can be attributed to BOCPD’s ability to detect potential domain shifts. The complete
MASSER framework also gets the best MCC compared with the framework without self-supervised
learning, the framework without task sampler, and the framework with only first-stage representation
learning.

ACL18
Model Acc MCC
MASSER-ResNet(w/o encoders) 0.544 0.089
MASSER-GRU(w/o encoders) 0.548 0.094
MASSER-ResNet(w/o 2nd encoder) 0.551 0.088
MASSER-GRU(w/o 2nd encoder) 0.573 0.130
MASSER-ResNet(w/o sampler) 0.550 0.097
MASSER-GRU(w/o sampler) 0.574 0.133
MASSER-ResNet 0.552 0.099
MASSER-GRU 0.579 0.141
MASSER-ResNet*(w/o 2nd encoder) 0.607 0.210
MASSER-GRU*(w/o 2nd encoder) 0.571 0.142
MASSER-ResNet*(w/o sampler) 0.619 0.234
MASSER-GRU*(w/o sampler) 0.580 0.160
MASSER-ResNet* 0.624 0.244
MASSER-GRU* 0.581 0.162
MASSER-ResNet(w/o 2nd encoder) 0.610 0.212
MASSER-ResNet 0.612 0.216
MASSER-ResNet-BOCPD(w/o 2nd) 0.605 0.207
MASSER-ResNet-BOCPD 0.625 0.251

Table 5: Ablation Study Acc and MCC on ACL18 (* means adaptation)

16


	Introduction
	Two-Stage Representation Learning for Encoders
	First Stage: Macro Representation Learning
	Second Stage: Micro Representation Learning

	Meta-Adaptive Stock Movement Prediction
	Experiment Result
	Offline Experiment Settings

	Conclusion
	Related Work
	Detailed Two-stage Representation Learning
	The InfoNCE Loss
	Details about Detecting Temporal Domain Shift

	Detailed Meta-Adaptive Stock Movement Prediction
	Meta-learning Task Construction
	Task Evaluation
	Training Meta-Models Adaptively

	Additional Experiment Results
	Dataset Description
	Baselines
	Implementation Details
	Online Experiment Setting
	Backtesting

	Ablation Study


