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ABSTRACT

We investigate phase transitions in a Toy Model of Superposition (TMS) (Elhage
et al., 2022) using Singular Learning Theory (SLT). We derive a closed formula
for the theoretical loss and, in the case of two hidden dimensions, discover that
regular k-gons are critical points. We present supporting theory indicating that the
local learning coefficient (a geometric invariant) of these k-gons determines phase
transitions in the Bayesian posterior as a function of training sample size. We then
show empirically that the same k-gon critical points also determine the behavior
of SGD training. The picture that emerges adds evidence to the conjecture that the
SGD learning trajectory is subject to a sequential learning mechanism. Specifi-
cally, we find that the learning process in TMS, be it through SGD or Bayesian
learning, can be characterized by a journey through parameter space from regions
of high loss and low complexity to regions of low loss and high complexity.

1 INTRODUCTION

The apparent simplicity of the Toy Model of Superposition (TMS) proposed in Elhage et al. (2022)
conceals a remarkably intricate phase structure. During training, a plateau in the loss is often fol-
lowed by a sudden discrete drop, suggesting some development in the network’s internal structure.
To shed light on these transitions and their significance, this paper examines the dynamical transi-
tions in TMS during SGD training, connecting them to phase transitions of the Bayesian posterior
with respect to sample size n. While the former transitions have been observed in several recent
works in deep learning (Olsson et al., 2022; McGrath et al., 2022; Wei et al., 2022a), their formal
status has remained elusive. In contrast, phase transitions of the Bayesian posterior are mathemati-
cally well-defined in Singular Learning Theory (SLT) (Watanabe, 2009).

Using SLT, we can show formally that the Bayesian posterior is subject to an internal model selection
mechanism in the following sense: the posterior prefers, for small training sample size n, critical
points with low complexity but potentially high loss. The opposite is true for high n where the
posterior prefers low loss critical points at the cost of higher complexity. The measure of complexity
here is very specific: it is the local learning coefficient, λ, of the critical points, first alluded to by
Watanabe (2009, §7.6) and clarified recently in Lau et al. (2023). We can think of this internal model
selection as a discrete dynamical process: at various critical sample sizes the posterior concentration
“jumps” from one region Wα of parameter space to another region Wβ . We refer to an event of this
kind as a Bayesian phase transition α → β.

For the TMS model with two hidden dimensions we show that these Bayesian phase transitions
actually occur and do so between phases dominated by weight configurations representing regular
polygons (termed here k-gons). The main result of SLT, the asymptotic expansion of the free energy
(Watanabe, 2018), predicts phase transitions as a function of the loss and local learning coefficient
of each phase. For TMS, we are in the fortunate position of being able to derive theoretically the
exact local learning coefficient of the k-gons which are most commonly encountered during MCMC
sampling of the posterior, and thereby verify that the mathematical theory correctly predicts the
empirically observed phases and phase transitions. Altogether, this forms a mathematically well-
founded toolkit for reasoning about phase transitions in the Bayesian posterior of TMS.

It has been observed empirically in TMS that SGD training also undergoes “phase transitions” (El-
hage et al., 2022) in the sense that we often see steady plateaus in the training (and test) loss separated
by sudden transitions, associated with geometric transformations in the configuration of the columns
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Figure 1: For r = 2 hidden dimensions and c = 6 feature dimensions, neural network parameters
w = (W, b) for TMS with high loss are tolerated at the beginning of training because they have
low complexity (low local learning coefficient λ̂) but at the end of training low loss solutions are
attractive despite their high complexity (high λ̂). First row: columns Wi ∈ R2 of W are shown as
black arrows for three snapshots (timestamps shown as red dots in the third row). Adjacent columns
are connected by a blue line, the red dashed line shows the convex hull. Second row: for columns Wi

ordered 1 ≤ i ≤ 6 from the negative x-axis in a counter-clockwise direction, the norm ∥Wi∥ (black)
and |bi| (red, green) are shown. A white plus sign indicates a bias that exceeds 1.25∗maxi∈I ∥Wi∥2
where I is the set of all columns i where bi ≥ ∥Wi∥. All snapshots share the same axes. Third row:
losses and local learning coefficient, with the latter smoothed over a window of size 6, where λ̂ is
measured every 30 epochs. For more examples see Appendix B.

of the weight matrix. Figure 1 shows a typical example. We refer to these as dynamical transitions.
A striking pattern emerges when we observe the evolution of the loss and the estimated local learn-
ing coefficient, λ̂, over the course of training: we see “opposing staircases” where each drop in the
training and test loss is accompanied by a jump in the (estimated) local complexity measure. In
essence, during the training process, as SGD reduces the loss, it exhibits an increasing tolerance for
complex solutions. On these grounds we propose the Bayesian antecedent hypothesis, which says
that these dynamical transtions have “standing behind them” a Bayesian phase transition.

We begin in Section 3.1 by recalling the TMS, and present a closed form for the population loss in
the high sparsity limit. In our first contribution, we provide a partial classification of critical points
of the population loss (Section 3.2) and document the local learning coefficients of several of these
critical points (Section 3.3). In our second contribution, we experimentally verify that the main
phase transition predicted by the internal model selection theory, using the theoretically derived
local learning coefficients, actually takes place (Section 4.2). In Section 5 we present experimental
results on dynamical transitions in TMS. Our third contribution is to show empirically that SGD
training in TMS transitions from high-loss-low-complexity solutions to low-loss-high-complexity
solutions, where complexity is measured by the estimated local learning coefficient. This provides
support for our proposed relation between Bayesian and dynamical transitions (Section 5.1).
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2 RELATED WORK

The TMS problem is, with the nonlinearity removed and varying importance factors, solved by com-
puting principal components; it has long been understood that the learning dynamics of computing
principal components is determined by a unique global minimum and a hierarchy of saddle points
of decreasing loss (Baldi & Hornik, 1989), (Amari, 2016, §13.1.3). In recent decades an extensive
literature has emerged on Deep Linear Networks (DLNs) building on these results, and applying
them to explain phenomena in the development of both natural and artificial neural networks (Saxe
et al., 2019). Under some hypotheses the saddles of a DLN are strict (Kawaguchi, 2016) and all local
minima are global; this suggests a picture of gradient descent dynamics moving through neighbour-
hoods of saddles of ever-decreasing index until reaching a global minima. This has been termed
“saddle-to-saddle” dynamics by Jacot et al. (2021). Through careful analysis of training dynamics
it has been shown for DLNs that there is a general tendency of optimization trajectories towards
solutions of lower loss and higher “complexity”, which is generally defined in an ad-hoc way de-
pending on the data distribution (Arora et al., 2018; Li et al., 2020; Eftekhari, 2020; Advani et al.,
2020). For example, it has been shown that gradient-based optimization introduces a form of implicit
regularization towards low-rank solutions in deep matrix factorization (Arora et al., 2019).

Viewing the optimization process as a search for solutions which begins at candidates of low com-
plexity, the tendency to gradually increase complexity “only when necessary” has been put forward
as a potential explanation for the generalization performance of neural networks (Gissin et al., 2019).
This intuition is backed by results such as (Gidel et al., 2019; Saxe et al., 2013), which show that
for DLNs the singular values of the model are learned separately at different rates, with features
corresponding to larger singular values learned first.

Outside of the DLN models, saddle-to-saddle dynamics of SGD training have been studied in toy
non-linear models often referred to as single-index or multi-index models. In these models, the
target function for input x ∈ Rd is generated by a non-linear, low dimensional function φ : Rk → R
via f(x) = φ(θTx) with θ ∈ Rd×k where k ≪ d. Single-index refers to k = 1. In a very recent
work, Abbe et al. (2023) showed that for a particular multi-index model with certain restrictions
on the input data distribution, SGD follows a saddle-to-saddle dynamic where the learning process
adaptively selects target functions of increasing complexity. Their Figure 1 tells the same story as
our Figure 1: at the beginning of training, low complexity solutions are preferred, and the opposite
preference develops as training progresses.

One attempt to put these intuitions in a broader context is (Zhang et al., 2018) which relates the above
phenomena to entropy-energy competition in statistical physics. However this approach suffers from
a lack of theoretical justification due to an incorrect application of the Laplace approximation (Wei
et al., 2022b; Lau et al., 2023). The internal model selection principle (Section 4.1) in singular
learning theory provides the correct form of entropy-energy competition for neural networks and
potentially gives a theoretical backing for the intuitions developed in the DLN literature.

3 TOY MODEL OF SUPERPOSITION

3.1 THE TMS POTENTIAL

We recall the Toy Model of Superposition (TMS) setup from (Elhage et al., 2022) and derive a
closed-form expression for the population loss in the high sparsity limit. The TMS is an autoencoder
with input and output dimension c and hidden dimension r < c:

f : X ×W −→ Rc ,

f(x,w) = ReLU(WTWx+ b) , (1)

where w = (W, b) ∈ W ⊆ Mr,c(R) × Rc and inputs are taken from x ∈ X = [0, 1]c. We suppose
that the (unknown) true generating mechanism of x is given by the distribution

q(x) =

c∑
i=1

1

c
δx∈Ci

(2)

where Ci denotes the ith coordinate axis intersected with X . Sampling from q(x) can be described
as follows: uniformly sample a coordinate 1 ≤ i ≤ c and then uniformly sample a length 0 ≤ µ ≤ 1,
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return µei where ei is the ith unit vector. This is the high sparsity limit of the TMS input distribution
of Elhage et al. (2022), see also Henighan et al. (2023). We posit the probability model

p(x|w) ∝ exp
(
− 1

2∥x− f(x,w)∥2
)
, (3)

which leads to the expected negative log likelihood −
∫
q(x) log p(x|w) dx. Dropping terms con-

stant with respect to w we arrive at the population loss function

L(w) =

∫
q(x)∥x− f(x,w)∥2dx .

Given W ∈ Mr,c(R) we denote by W1, . . . ,Wc the columns of W . We set

1. Pi,j = {(W, b) ∈ Mr,c(R)× Rc |Wi ·Wj > 0 and −Wi ·Wj ≤ bi ≤ 0};

2. Pi = {(W, b) ∈ Mr,c(R)× Rc | ∥Wi∥2 > 0 and − ∥Wi∥2 ≤ bi ≤ 0};

3. Qi,j = {(W, b) ∈ Mr,c(R)× Rc | −Wi ·Wj > bi > 0}

For w = (W, b) we set δ(Pi,j) to be 1 if w ∈ Pi,j and 0 otherwise, similarly for δ(Pi), δ(Qi,j).

Lemma 3.1. For w = (W, b) ∈ Mr,c(R)× Rc we have L(w) = 1
3cH(w) where

H(W, b) =

c∑
i=1

δ(bi ≤ 0)H−
i (W, b) + δ(bi > 0)H+

i (W, b) (4)

and

H−
i (W, b) =

∑
j ̸=i

δ(Pi,j)

[
1

Wi ·Wj
(Wi ·Wj + bi)

3

]

+ δ(Pi)

[
b3i

∥Wi∥4
+

b3i
∥Wi∥2

]
+ (1− δ(Pi)) + δ(Pi)Ni

H+
i (W, b) =

∑
j ̸=i

δ(Qi,j)

[
− 1

Wi ·Wj
b3i

]

+
∑
j ̸=i

(1− δ(Qi,j))

[
(Wi ·Wj)

2 + 3(Wi ·Wj)bi + 3b2i

]
+Ni

where Ni = (1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i

Proof. See Appendix G.

We refer to H(w) as the TMS potential. While this function is analytic at many of the critical
points of relevance when r = 2, it is not analytic at the 4-gons (see Appendix J).

3.2 k-GON CRITICAL POINTS

We prove that various k-gons are critical points for H when r = 2. Recall that w∗ ∈ W is a critical
point of H if ∇H|w=w∗ = 0. The function H is clearly O(r)-invariant: if O is an orthogonal matrix
then H(OW, b) = H(W, b). The potential is also invariant to jointly permuting the columns and
biases. Due to these generic symmetries we may without loss of generality assume that the columns
Wi of W are ordered anti-clockwise in R2 with zero columns coming last.

For i = 1, . . . , c, let θi ∈ [0, 2π) denote the angle between nonzero columns Wi and Wi+1, where
c + 1 is defined to be 1. Let li ∈ R≥0 denote ∥Wi∥. In this parametrization W has coordinate
(l1, . . . , lc, θ1, . . . , θc, b1, . . . , bc) with constraint θ1 + · · · + θc = 2π. Since O(2) has dimension
1 any critical point of H is automatically part of a 1-parameter family. For convenience we refer
to a critical point as non-degenerate (resp. minimally singular) if it has these properties modulo the
generic symmetries, that is, in the θ, l, b parametrization. Thus, a critical point is non-degenerate
(resp. minimally singular) if in a local neighbourhood in the θ, l, b parametrization H can be written
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as a full sum of squares with nonzero coefficients (resp. a non-full sum of squares). For background
on the minimal singularity condition see (Wei et al., 2022b, §4) and (Lau et al., 2023, Appendix A).

We call w ∈ M2,c(R)× Rc a standard k-gon for k ∈ {4, 5, 6, 7, 8} and k ≤ c if it has coordinate

l1 = · · · = lk = l∗, lk+1 = · · · = lc = 0 ,

θ1 = · · · = θk−1 = 2π
k , θk + · · ·+ θc =

2π
k ,

b1 = · · · = bk = b∗ , bk+1 < 0 , . . . , bc < 0

where l∗ ∈ R>0, b
∗ ∈ R≤0 are the unique joint solution to −(l∗)2 cos(s 2π

k ) ≤ b∗ where s is the
unique integer in [k4 − 1, k

4 ) (see Theorem H.1). For values of l∗, b∗ see Table A.1. Any parameter
of this form is proven to be a critical point of H in Appendix H. For k as above and 0 ≤ σ ≤ c−k a
kσ+-gon is a parameter with the same specification as the standard k-gon except that σ of the biases
bk+1, . . . , bc are equal to 1/(2c) and the rest have arbitrary negative values. We usually write for
example k++ when σ = 2, noting that the k0+-gon is the standard k-gon. These parameters are
proven to be critical points of H when k ≥ 5 in Appendix I and for k = 4 in Appendix J.2.

For k = 4 there are a number of additional “exotic” 4-gons. They are parametrized by 0 ≤ σ ≤ c−k
and 0 ≤ ϕ ≤ 4. A 4σ+,ϕ−-gon has the same specification as the 4σ+-gon, except that a subset of
the biases I ⊆ {1, 2, 3, 4} of size |I| = ϕ are special in the following sense: for any i /∈ I the bias
bi has the optimal value bi = b∗ = 0 and the corresponding length is standard li = l∗ = 1, but if
i ∈ I then bi < 0 and li is subject only to the constraint l2i < −bi. We write for example 4++− for
the 42+,1−-gon. These are proven to be critical points of H in Appendix J.2. In Appendix A, we
provide visualizations and a quick guide for recognizing these critical points and their variants.

What we know is the following: the standard k-gon for k = c is a non-degenerate critical point
(modulo the generic symmetries) for c ∈ {5, 6, 7, 8} in the sense that in local coordianates in the
l, θ, b-parametrization near the critical point H can be written as a full sum of squares (Section H.1).
For c > 8 and c being a multiple of 4, we conjecture that the c-gon is a critical point (Section H.2),
and we also conjecture that for c > 8 and c not a multiple of 4 there is no c-gon which is a critical
point. When k ∈ {5, 6, 7, 8} and k < c the standard k-gon is minimally singular (Appendix H.3).

3.3 LOCAL LEARNING COEFFICIENTS

The learning coefficient λ was established by Watanabe (2009) as a central invariant of Bayesian
statistics. In (Lau et al., 2023) a local form of the learning coefficient λ(w∗) was proposed as a
general measure of the degeneracy of a critical point w∗ in singular models (such as neural networks)
and an estimator λ̂(w∗) was proposed based on the WBIC (Watanabe, 2013).

Table 1 summarises theoretical local learning coefficients λ and losses L for some critical points1.
For more theoretical values see Table H.2 and Appendix H, and for empirical estimates Appendix K.
In minimally singular cases (including 5, 5+, 6) the local learning coefficient agrees with a simple
dimension count (half the number of normal directions to the level set, which is locally a manifold).
This explains why the coefficient increases by 3

2 as we move from the k-gon to the (k + 1)-gon:
this transition fixes one column of W (2 parameters) and the corresponding entry in the bias b, and
so reduces by 3 the number of free parameters, increasing the learning coefficient by 3

2 (for further
discussion see Appendix E).

Critical points Local learning coefficient λ Loss L
4 4, 4.5, 5, 5.5 0.11111
4+ 5, 5.5, 6, 6.5 0.10417
5 7 0.06874
5+ 8 0.06180
6 8.5 0.04819

Table 1: Critical points and their theoretical λ and L values for the r = 2, c = 6 TMS potential.

1The 4-gons are on the boundary of multiple chambers (see Appendix J). We list 4, 4.5, 5, 5.5 as the lo-
cal learning coefficient for the standard 4-gon as these are the effective dimensions when the parameter is
approached from the four incident chambers.
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4 BAYESIAN PHASE TRANSITIONS

In Bayesian statistics there is a fundamental distinction between the learning process for regular
models and singular models. In regular models, as the number of samples n increases, the posterior
concentrates at the MAP estimator and looks increasingly Gaussian. In singular models, which in-
clude neural networks, we expect rather that the learning process is dominated by phase transitions,
where at some critical values n ≈ ncr the posterior “jumps” from one region of parameter space to
another.2 This is a universal phenomena in singular learning theory (Watanabe, 2009; 2020).

4.1 INTERNAL MODEL SELECTION

We present phase transitions of the Bayesian posterior in SLT building on (Watanabe, 2009, §7.6),
(Watanabe, 2018, §9.4), Watanabe (2020). We assume (p(x|w), q(x), φ(w)) is a model-truth-prior
triplet with parameter space W ⊆ Rd satisfying the fundamental conditions of (Watanabe, 2009)
and the relative finite variance condition (Watanabe, 2018). Given a dataset Dn = {x1, . . . , xn}, we
define the empirical negative log likelihood function Ln(w) = − 1

n

∑n
i=1 log p(xi|w). The posterior

distribution p(w|Dn) is, up to a normalizing constant, given by exp(−nLn(w))φ(w). The marginal
likelihood is the intractable normalizing constant of the posterior distribution. The free energy Fn is
defined to be the negative log of the marginal likelihood:

Fn = − log

∫
W

exp(−nLn(w))φ(w)dw . (5)

The asymptotic expansion in n is (Watanabe, 2018, §6.3) given by

Fn = nLn(w0) + λ log n− (m− 1) log log n+Op(1) (6)

where w0 is an optimal parameter, λ is the learning coefficient and m is the multiplicity. We refer to
this as the free energy formula.

The philosophy behind using the marginal likelihood (or equivalently, the free energy) to perform
model selection is well established. Thus we could use the first two terms in (6) to choose between
two competing models on the basis of their fit (as measured by nLn) and their complexity (as
measured by λ). We can also apply the same principle to different regions of the parameter space
in the same model. Let {Wα}α be a finite collection of compact semi-analytic subsets of W with
nonempty interior, whose interiors cover W . We assume each Wα contains in its interior a point w∗

α
minimising L on Wα and that the triple (p, q, φ) restricted to Wα in the obvious sense has relative
finite variance. We refer to the α rather loosely as phases. We can choose a partition of unity ρα
subordinate to a suitably chosen cover, so as to define φα(w) = ρα(w)φ(w) with

Fn = − log

∫
W

e−nLn(w)φ(w)dw = − log
∑
α

∫
Wα

e−nLn(w)φα(w)dw

= − log
∑
α

Vα

∫
Wα

e−nLn(w)φα(w)dw = − log
∑
α

e−Fn(Wα)−vα

where φα = 1
Vα

φα for Vα =
∫
Wα

φαdw, vα = − log(Vα) and

Fn(Wα) = − log

∫
Wα

e−nLn(w)φα(w)dw (7)

denotes the free energy of the restricted tuple (p, q, φα,Wα). We will refer to Fn(Wα) as the local
free energy. Using the log-sum-exp approximation, we can write Fn = − log

∑
α e−Fn(Wα)−vα ≈

minα
[
Fn(Wα) + vα

]
. Since (6) applies to the restricted tuple (p, q, φα,Wα) we have

Fn(Wα) = nLn(w
∗
α) + λα log n− (mα − 1) log log n+Op(1) (8)

which we refer to as the local free energy formula.3

2Another important class of phase transitions, where the posterior jumps as a hyperparameter in the prior or
true distribution is varied, will not be discussed here; see (Watanabe, 2018, §9.4), (Carroll, 2021).

3In general deriving the free energy formula requires some sophisticated mathematics (Watanabe, 2009;
2018) but when the critical point w∗

α dominating the phase Wα is minimally singular, simpler techniques
similar to (Balasubramanian, 1997) suffice; see (Lau et al., 2023, Appendix A). Many, but not all, of the
singularities appearing in this paper are minimally singular.
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In this paper we absorb the volume constant vα and terms of order log log n or lower in (8) into a
term cα that we treat as effectively constant, giving

Fn ≈ min
α

[
nLn(w

∗
α) + λα log n+ cα

]
. (9)

A principle of internal model selection is suggested by (9) whereby the Bayesian posterior “selects”
a phase α based on the local free energy of the phase, in the sense that this phase contains most of
the probability mass of the posterior for this value of n (Watanabe, 2009, §7.6).4 At a given value of
n we can order the phases by their posterior concentration, or what is the same, their free energies
Fn(Wα). We say there is a local phase transition between phases α, β at critical sample size ncr,
written α → β, if the position of α, β in this ordered list of phases swaps. That is, for n ≈ ncr and
n < ncr the Bayesian posterior prefers α to β, and the reverse is true for n > ncr. We say that a
phase α dominates the posterior at n if it has the highest posterior mass, that is, Fn(Wα) < Fn(Wβ)
for all β ̸= α. A global phase transition is a local phase transition where α dominates the posterior
for n < ncr and β dominates for n > ncr with n near ncr. Generally when we speak of a phase
transition in this paper we mean a local transition.

Generically, phase transitions occur when, as n increases, phases with lower loss and higher com-
plexity are preferred; this expectation is verified in TMS in the next section. For more on the theory
of Bayesian phase transitions see Appendix C.

Figure 2: Proportion of Bayesian posterior concentrated in regions Wk,σ for r = 2, c = 6 according
to the free energy formula (theory, left) and MCMC sampling of the posterior (experimental, right).
Theory predicts, and experiments show, a phase transition 5 → 6 in the range 600 ≤ n ≤ 700.

4.2 EXPERIMENTS

There is a tension in the internal model selection story: the free energy formula is asymptotic in n,
but the discussion of phase transitions involves Fn(Wα) at finite n. Whether this is valid, in a given
range of n and for a given system, is a question that may be difficult to resolve purely theoretically.
We show experimentally for r = 2, c = 6 that a Bayesian phase transition actually takes place
between the 5-gon and the 6-gon, within a range of n values consistent with the free energy formula.

In this section we focus on the case r = 2, c = 6. For c ∈ {4, 5} see Appendix F.4. We first define
regions of parameter space {Wα}α. Given a matrix W we write ConvHull(W ) for the number of
points in the convex hull of the set of columns. For 3 ≤ k ≤ c, 0 ≤ σ ≤ c− k we define

Wk,σ =
{
w = (W, b) ∈ W | ConvHull(W ) = k and b has σ positive entries

}
.

The set Wk,σ ⊆ Rd is semi-analytic and contains the kσ+-gon in its interior. For α = (k, σ)
we let w∗

α denote the parameter of the kσ+-gon. We verify experimentally the hypothesis that this
parameter dominates the Bayesian posterior of Wα (see Appendix F) by which we mean that most
samples from the posterior for a relevant range of n values are “close” to w∗

α.5 In this sense the
choice of phases Wα is appropriate for the range of sample sizes we consider.

4We often replace Ln(w
∗
α) by L(w∗

α) in comparing phases; see (Watanabe, 2018, §9.4).
5The kσ+,ϕ−-gons for ϕ > 0 have high loss but may nonetheless dominate the posterior for very low n,

however this is outside the scope of our experiments, which ultimately dictates the choice of the set Wk,σ .
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We draw posterior samples using MCMC-NUTS (Homan & Gelman, 2014) with prior distribution
N(0, 1) and sample sizes n. Each posterior sample is then classified into some Wk,σ (our classifica-
tion algorithm for the deciding the appropriate value of k is not error-free.) For each n, 10 datasets
are generated and the average proportion of the k-gons, and standard error, is reported in Figure 2.
Details of the theoretical proportion plot are given in Appendix F.1.

Let w∗
α, w

∗
β be k-gons dominating phases Wα,Wβ . A Bayesian phase transition α → β occurs

when the difference between the free energies Fn(Wβ)−Fn(Wα) changes from positive to negative.

The most distinctive feature in the experimental plot is the 5 → 6 transition in the range 600 ≤ n ≤
700. The free energy formula predicts this transition at ncr ≈ 600 (Appendix C.2). An alternative
visualization of the 5 → 6 transition using t-SNE is given in Appendix F.2. As n decreases past 400
the MCMC classification becomes increasingly uncertain, and it is less clear that we should expect
the free energy formula to be a good model of the Bayesian posterior, so we should not read too
much into any correspondence between the plots for n ≤ 400 (see Appendix F.2).

Figure 3: Visualization of 400 SGD trajectories initialized at MCMC samples from the Bayesian
posterior for r = 2, c = 6 at sample size n = 100. We see that SGD trajectories are dominated
by plateaus at loss values corresponding to our classification of critical points (Appendix A) and
that lower loss critical points have higher estimated local learning coefficients. Note that for highly
singular critical points we see that λ̂ is unable to provide non-negative values without additional
hyperparameter tuning, but the ordinality (more positive is less degenerate) is nonetheless correct.
See Appendix K for details and caveats for the λ̂ estimation.

5 DYNAMICAL PHASE TRANSITIONS

A dynamical transition α → β occurs in a trajectory if it is near a critical point w∗
α of the loss at

some time τ1 (e.g. there is a visible plateau in the loss) and at some later time τ2 > τ1 it is near
w∗

β without encountering an intermediate critical point. We conduct an empirical investigation into
whether the k-gon critical points of the TMS potential dominate the behaviour of SGD trajectories
for r = 2, c = 6, and the existence of dynamical transitions.

There are two sets of experiments. In the first we draw a training dataset Dn = {x1, . . . , xn}
where n = 1000 from the true distribution q(x). We also draw a test set of size 5000. We use
minibatch-SGD initialized at a 4-gon plus Gaussian noise of standard deviation 0.01, and run for
4500 epochs with batch size 20 and learning rate 0.005. This initialisation is chosen to encourage
the SGD trajectory to pass through critical points with high loss after a small number of SGD steps,
allowing us to observe phase transitions more easily. Along the trajectory, we keep track of each
iterate’s training loss, test set loss and theoretical test loss. Figure 1 is a typical example, additional
plots are collected in Figures B.1-B.7. In the second set of experiments, summarized in Figure 3,
we take the same size training dataset but initialize SGD trajectories differently, at random MCMC
samples from the Bayesian posterior at n = 100 (a small value of n). The number of epochs is 5000.

8
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In both cases we estimate the local learning coefficient of the training iterates wt. This is a newly-
developed estimator Lau et al. (2023) that uses SGLD (Welling & Teh, 2011) to estimate a version
of the WBIC (Watanabe, 2013) localized to wt and then forms an estimate of the local learning
coefficient λ̂(wt) based on the approximation that WBIC(wt) ≈ nLn(wt) + λ(wt) log n where
λ(wt) is the local RLCT. In the language of Lau et al. (2023), we use a full-batch version of SGLD
with hyperparameters ϵ = 0.001, γ = 1 and 500 steps to estimate the local WBIC.

These experiments support the following description of SGD training for the TMS potential when
r = 2, c = 6: trajectories are characterised by plateaus associated to the critical points described in
Section 3.2 and further discussed in Appendix A. The dynamical transitions encountered are

4++−−− −→ 4+−− −→ 4− , 4+−−− −→ 4−− ,

4++−− −→ 4+− −→ 4 , 4++− −→ 4+ −→ 5 −→ 5+ . (10)

The dominance of the classified critical points, and the general relationship of decreasing loss and
increasing complexity, can be seen in Figure 3.

5.1 RELATION BETWEEN BAYESIAN AND DYNAMICAL TRANSITIONS

Phases of the Bayesian posterior for TMS with r = 2, c = 6 are dominated by k-gons which are
critical points of the TMS potential (Section 4). The same critical points explain plateaus of the SGD
training curves (Section 5). This is not a coincidence: on the one hand SLT predicts that phases of
the Bayesian posterior will be associated to singularities of the KL divergence, and on the other
hand it is a general principle of nonlinear dynamics that singularities of a potential dictate the global
behaviour of solution trajectories (Strogatz, 2018; Gilmore, 1981).

However, the relation between transitions of the Bayesian posterior and transitions over SGD train-
ing is more subtle. There is no necessary relation between these two kinds of transitions. A Bayesian
transition α → β might not have an associated dynamical transition if, for example, the regions
Wα,Wβ are distant or separated by high energy barriers. For example, the Bayesian phase transi-
tion 5 → 6 has not been observed as a dynamical transition (it may occur, just with low probability
per SGD step). However, it seems reasonable to expect that for many dynamical transitions there
exists a Bayesian transition between the same phases. We call this the Bayesian antecedent of the
dynamical transition if it exists. This leads us to:

Bayesian Antecedent Hypothesis (BAH). The dynamical transitions α → β encountered in neural
network training have Bayesian antecedents.

Since a dynamical transition decreases the loss, the main obstruction to having a Bayesian antecedent
is that in a Bayesian phase transition α → β the local learning coefficient should increase (Appendix
D). Thus the BAH is in a similar conceptual vein to the expectation, discussed in Section 2, that SGD
prefers higher complexity critical points as training progresses. While the dynamical transitions in
(10) are all associated with increases in our estimate of the local learning coefficient, we also know
that at low n, the constant terms can play a nontrivial role in the free energy formula. Our analysis
(Appendix D.1) suggests that all dynamical transitions in (10) have Bayesian antecedents, with the
possible exception of 4++−−− → 4+−− and 4+−−− → 4−− where the analysis is inconclusive.

6 CONCLUSION

Phase transitions and emergent structure are among the most interesting phenomena in modern deep
learning (Wei et al., 2022a; Barak et al., 2022; Liu et al., 2022) and provide an interesting avenue
for fundamental progress in neural network interpretability (Olsson et al., 2022; Nanda et al., 2023)
and AI safety (Hoogland et al., 2023). Building on Elhage et al. (2022) we have shown that the Toy
Model of Superposition with two hidden dimensions has, in the high sparsity limit, phase transitions
in both stochastic gradient-based and Bayesian learning. We have shown that phases are in both
cases dominated by k-gon critical points which we have classified, and we have proposed with the
BAH a relation between transitions in SGD training and phase transitions in the Bayesian posterior.

Our analysis of TMS also demonstrates the practical utility of the local complexity measure λ̂ intro-
duced in (Lau et al., 2023), which is an all-purpose tool for measuring model complexity.
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A FANTASTIC CRITICAL POINTS AND WHERE TO FIND THEM

In this section we provide a brief guide, using loose intuitive language, to recognise known critical
parameters and their variations. Rigorous derivation and details are given in Appendix H, I, and J.

Broadly speaking, known critical parameters, (W ∗, b∗), are classified by three discrete numbers:

• k: the number of vertices in the regular polygon formed by the convex hull of the columns
of the W ∗ matrix, interpreted as a vector in R2. The length of these vectors (for any k ≤ c)
have to be at the optimal values derived in Appendix H and listed in Table A.1.

• σ: the number of positive values in the bias vector. These positive biases are required to
take on the optimal value at b∗ = 1/(2c) and have to occur at indices that do not correspond
to the k-gon vertices.

• ϕ: the number of large negative values in the bias vectors. So far, we’ve only observed
ϕ > 0 when k = 4, i.e. this discrete subcategory only applies to 4-gons. These biases have
to occur at indices that do correspond to the 4-gon vertices.

For r = 2, c = 6, the above description and constraints result in the 18 families of critical points
whose representative members are shown in Figure A.1 and their loss or potential energy levels are
shown in Figure A.2.

Next, we discuss possible variations within these families of critical points. Aside from the ever-
present rotational and permutation symmetries discussed elsewhere, there are variations of these
standard descriptions that allow the parameter to stay on the same critical submanifold. Figure A.3
shows some examples of irregular versions of known critical points. One can cross-check that their
potential values L are the same as their regular counterpart. Most of these variation is the result of
having negative values in the bias vectors allowing for extra variability without changing the loss
value. To explain the examples in Figure A.3,

• 5-gon (top left). In the standard 5-gon family, the vestigial bias b′ can have arbitrary neg-
ative value and corresponding weight column can be any vector so long as its length l′ is
smaller than

√
min{|b′|, |b∗|} where b∗ is the optimal negative bias for the main columns

(see Table A.1).
• 4-gon (top right). The two vestigial biases can take arbitrary negative values.
• 4+−−-gon (bottom left). Having two negative biases with large magnitude afford a few

other degrees of freedom. The weight columns W3,W4 with those large negative biases
can be any vector as long as (1) they lengths is smaller than

√
|bi| for their respective biases

and (2) they form obtuse angle relative other columns W1 and W2, i.e the other two vertices
of the 4-gon.

• 4−−-gon (bottom right). Other than the variation in the main columns W3,W6 with large
negative biases, the two vestigial columns can also be any vectors as long as they stay
within the sector between W1 and W2 and their lengths are bounded by min

{√
|bi| | i =

3, 4, 5, 6
}

.

Critical point l∗ b∗

4-gon 1 0
5-gon 1.17046 −0.28230
6-gon 1.32053 −0.61814

Table A.1: Parameters of certain k-gons.

12



Under review as a conference paper at ICLR 2024

Figure A.1: Representative of each known class of critical parameters in r = 2, c = 6.
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Figure A.2: Potential energy levels L for known critical points in r = 2, c = 6.

Figure A.3: Irregular versions of known critical points in r = 2, c = 6.
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B ADDITIONAL EXAMPLES OF SGD TRAJECTORIES FOR THE r = 2, c = 6
TMS POTENTIAL

In this Appendix we collect additional individual SGD trajectories for the r = 2, c = 6 TMS
potential, with the same hyperparameters as discussed in Section 5. These are all of the runs from 30
random seeds that had a dynamical transition. We note that each of the critical points encountered in
a plateau fall into the classification discussed in Appendix A and the estimator λ̂ for the local learning
coefficient jumps in each transition. Note that the transitions in Figure 1 are 4++− → 4+ → 5.

The instructions for reading the figures in this appendix, for example Figure B.1, are the same as for
Figure 1 in the main text.

We note that in some runs containing particularly degenerate k-gons, such as the 4++−−− in Figure
B.1, the estimator λ̂ produces negative values for the standard hyperparameter ϵ = 0.001. By
adapting this hyperparameter to the level of degeneracy we can correct for this and avoid invalid
estimates (see Appendix K). But since we cannot predict the trajectory of SGD iterates, we choose
to use a fixed hyperparameter γ = 1.0, ϵ = 0.001, number of SGLD steps = 500 in all Figures of
this form.

Figure B.1: Trajectory with dynamical transitions 4++−−− → 4+−− → 4−.
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Figure B.2: Trajectory with dynamical transition 4+− → 4.

Figure B.3: Trajectory with dynamical transition 4+ → 5.
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Figure B.4: Trajectory with dynamical transition 4+ → 5.

Figure B.5: Trajectory with dynamical transition 4+−−− → 4−−.
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Figure B.6: Trajectory with dynamical transition 4+ → 5.

Figure B.7: Trajectory with dynamical transition 4++−− → 4+− → 4.
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C USING THE FREE ENERGY FORMULA

In Section 4.1 we defined a (local) phase transition α → β at a critical sample size ncr to take place
when the local free energies swap order, as in the following table, with n taken close to ncr:

n < ncr n = ncr n > ncr

Fn(Wα) < Fn(Wβ) Fn(Wα) ≈ Fn(Wβ) Fn(Wα) > Fn(Wβ)

We assume n is in a range where the local free energies for γ ∈ {α, β} are well-approximated by
the right hand-side of the following

Fn(Wγ) ≈ nL(w∗
γ) + λγ log n+ cγ (11)

for some constant cγ . While n is of course an integer, to find where the free energy curves cross we
may treat n as a real variable. To an ordered pair α, β we may associate

∆L = L(w∗
β)− L(w∗

α)

∆λ = λβ − λα

∆c = cβ − cα

Then to solve Fn(Wα) = Fn(Wβ) for n we may instead solve

n∆L+∆λ log n+∆c = 0 . (12)

Theoretically, a phase transition α → β exists if and only if this equation has a positive solution.
However, in practice the free energy formula on which this equation is based will only well describe
the Bayesian posterior for sufficiently large n, and it is an empirical question what this n may be.
In the following when we say that a phase transition is predicted to exist (or not), the reader should
keep this caveat in mind.

When we refer to theoretically derived values for phase transitions, we mean that we solve (12) with
the given values of ∆L,∆λ,∆c. Note that if the phase β has lower loss, learning coefficient and
constant term (so that ∆L, ∆λ and ∆c are all negative) then there can be no phase transition α → β
as Fn(Wα) is never lower than Fn(Wβ).

Although the constant (and lower order) terms in the free energy expansion are not well-understood,
in this paper we proceed assuming that the leading contribution comes from the prior in the manner
described in Section C.1 below.

C.1 CONSTANT TERMS IN THE FREE ENERGY FORMULA

Recall from Section 4.1 that given a collection of phases {Wα} the free energy is

Fn = − log
∑
α

Vα

∫
Wα

e−nLn(w)φα(w)dw

where φα = 1
Vα

φα for Vα =
∫
Wα

φαdw. Suppose that the phase Wα is dominated by a critical
point w∗

α and that the partition of unity is chosen so that φα(w
∗
α) ≈ φ(wα) (this is reasonable since

the critical point is in the interior). We explore the following approximation to the contribution of α
to the above integral ∫

Wα

e−nLn(w)φα(w)dw ≈ φ(w∗
α)

∫
Wα

e−nLn(w)dw .

This means that the prior contributes to cα of (8) through − log(Vαφ(w
∗
α)) as well as through the

OP (1) term of the asymptotic expansion. With a normal prior φ = 1

σ
√

(2π)d
exp(− 1

2σ2 ∥w∥2)

Vαφ(w
∗
α) = φα(w

∗
α) ≈

1

σ
√

(2π)d
exp

(
− 1

2σ2
∥w∗

α∥2
)
.

Hence − log(Vαφ(w
∗
α)) depends on σ through the sum log σ + 1

2σ2 ∥wα∥2. Here if w∗
α = (W ∗

α, b
∗
α)

we have ∥w∗
α∥2 = ∥W ∗

α∥2 + ∥b∗α∥2. In Table C.1, Table C.2 we show the value of this contribution
when σ = 1 for c ∈ {5, 6}. Note that for some k-gons there are negative biases that can take
arbitrarily large values, so the shown values are lower bounds.
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Critical point 1
2∥w

∗
α∥2

4 ≥ 2
4+ ≥ 2.05
5 ≥ 3.62417

Table C.1: Prior factors for k-gons when c = 5.

Critical point 1
2∥w

∗
α∥2

6 6.37767
5 > 3.62417
5+ 3.62764
4 2
4− > 1.5
4−− > 1
4−−− > 0.5
4−−−− > 0
4+ 2.00347
4+− > 1.50347
4+−− > 1.00347
4+−−− > 0.50347
4+−−−− > 0.00347
4++ 2.00694
4++− > 1.50694
4++−− > 1.00694
4++−−− > 0.50694
4++−−−− > 0.00694

Table C.2: Prior factors for k-gons when c = 6.

C.2 THEORETICAL PREDICTIONS FOR THE 5-GON TO 6-GON TRANSITION FOR r = 2, c = 6

With α = 5 and β = 6 we have from Table 1 and Table C.2 that

∆L = 0.04819− 0.06874 = −0.02055

∆λ = 8.5− 7 = 1.5

∆c = 6.37767− 3.62417 = 2.7535

Solving (12) numerically gives ncr = 601 as the closest integer.

C.3 INFLUENCE OF CONSTANT TERMS

Dividing (12) through by log n we have

n

log n
= − 1

log n

∆c

∆L
− ∆λ

∆L
= − 1

∆L

[ ∆c

log n
+∆λ

]
. (13)

In the phase transitions we analyse in this paper ∆L is on the order of 0.01, ∆λ is on the order of 1,
and ∆c is on the order of 1, so ∆λ/∆L,∆c/∆L are on the order of 10. In Figure 2 we care about
roughly 200 ≤ n ≤ 1000 so 5 ≤ log n ≤ 7. Hence in practice the first term in (13) is roughly one
order of magnitude lower than the second; the upshot being that the primary determinant of ncr is
|∆λ/∆L| but the influence of the constant terms can be significant.

In the second transition of Figure 1 from 4+ → 5 we have ∆λ = 2, ∆L = 0.06874 − 0.10417 =
−0.03543 (based on Table 1) and ∆c = 3.62417 − 2.00347 = 1.6207 (based on Table C.2) so
−∆c/∆L ≈ 45 and −∆λ/∆L ≈ 56. Solving (12) numerically yields ncr ≈ 380. Solving the
equation with ∆c = 0 gives ncr ≈ 327, so as suggested above including the constant term shifts the
critical sample size by a lower order term.
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C.4 DOUBLE TRANSITIONS

Assume that there are transitions α → β at critical sample size n1 and β → γ at critical sample size
n2, both involving no change in constant terms so that (16) applies. Since n/ log n is increasing, if
n1 < n2 we deduce

−∆λ1

∆L1
< −∆λ2

∆L2
(14)

where

∆λ1 = λβ − λα ,

∆λ2 = λγ − λβ ,

∆L1 = L(w∗
β)− L(w∗

α) ,

∆L2 = L(w∗
γ)− L(w∗

β) .

From (14) we obtain the inequality

∆L2∆λ1 > ∆λ2∆L1 =⇒ ∆L2

∆λ2
>

∆L1

∆λ1
(15)

which says that: along any curve in the (λ, L) plane following a sequence of Bayesian phase tran-
sitions, the slope must increase. For example, we observe in Figure D.1 that the negative slopes
become successively less negative as we move along a sequence of transitions. This is the least
obvious for the pair of transitions 4+−− → 4+ and 4+ → 5 which corresponds to the fact that the
gap n2 − n1 is small in Figure D.5.

D BAYESIAN ANTECEDENTS

In this section we review whether the phase transitions we find empirically have Bayesian an-
tecedents. To begin we consider the case where ∆c = 0. Then from (13) we deduce

n

log n
= −∆λ

∆L
. (16)

For n > 3, n/ log n is positive and an increasing function of n, and we denote the inverse function
by N . Since the critical sample size for a transition α → β must be positive, if ∆L < 0 (the loss
decreases) then (16) has a (unique) solution if and only if ∆λ > 0 (the complexity increases). The
unique solution is the critical sample size

ncr = N
(
− ∆λ

∆L

)
.

If ∆L < 0 and ∆c ̸= 0 we simply plot the free energy curves and see if they intersect. Given the
orders of magnitude discussed in Section C.3 we expect if ∆c > 0, ∆λ > 0 then there is likely to be
a solution, whereas if ∆c < 0, ∆λ < 0 then the right hand side of (13) is negative and no transition
can exist. The mixed cases are harder to argue about in general terms.

D.1 THE BAH FOR r = 2, c = 6

We examine the evidence for the existence of Bayesian antecedents of the dynamical transitions in
TMS for r = 2, c = 6 exhibited in Section 5. The known dynamical transitions are summarised
in Figure D.1. The slope of the lines is, in the notation of (16), equal to ∆L

∆λ and so the fact that
all observed phase transitions go down and to the right would indicate, if the constant terms were
ignored, that the critical sample size is positive and a Bayesian phase transition exists. Here the L

values are from Section A and the λ̂ values from Table K.1 (note the caveats there) for those k-gons
where we do not have theoretically derived values (for α ∈ {5, 5+, 6} see Table 1).

To perform a more refined analysis which includes the constant terms we use Table C.2 and com-
pare plots of free energy curves. In the cases where we use an empirical estimate of the learning
coefficient, we display the curve as part of a shaded region made up of curves with coefficients of
log n within one standard deviation of the estimate. The results are shown in Figures D.2-D.5.
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Figure D.1: Summary of known dynamical transitions and the phases involved. Each scatter point
(λ̂α, Lα) corresponds to one of our classified critical points w∗

α and a red line is drawn between
phases with dynamical transitions connecting them (in the direction that goes right and down) as
listed in (10). These “curves” are necessarily concave up if the time order of dynamical transitions
matches the sample size order of Bayesian transitions, see C.4.

For phase transitions occurring at large values of n, the existence of a transition is relatively insensi-
tive to small changes in the learning coefficient or constant terms, and we can also be more confident
that the predicted transition translates (via the correspondence between the free energy formula and
the posterior, which is only valid for sufficiently large n) to an actual phase transition in the pos-
terior. For transitions occurring at low n, such as those in Figure D.2 and Figure D.3, the analysis
is strongly affected by small changes in learning coefficient or constant terms, and so we cannot be
sure that a Bayesian transition exists.

Figure D.2: Free energy plot providing evidence of Bayesian transitions 4++−−− → 4+−− and
4+−− → 4−. In the former case the plot is merely suggestive, since the transition takes place at low
n and is very sensitive to the learning coefficients and constant terms.
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Figure D.3: Free energy plot providing weak evidence of a Bayesian transition 4+−−− → 4−−. The
transition takes place at low n and is very sensitive to the learning coefficients and constant terms.

Figure D.4: Free energy plots suggesting Bayesian transitions 4++−− → 4+− and 4+− → 4.

Figure D.5: Free energy plots suggesting Bayesian transitions 4++− → 4+, 4+ → 5 and 5 → 5+.
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E INTUITION FOR THE LOCAL LEARNING COEFFICIENT AS COMPLEXITY
MEASURE FOR c = 6

Here we provide some intuition for why critical points in TMS with higher local learning coefficient
should be thought of as more complex. It seems uncontroversial that the standard (k+1)-gon is more
complex than the standard k-gon. We focus on explaining why increasing the number of positive
biases on a k-gon causes a slight increase in the model complexity and increasing the number of
large negative biases on the 4-gon causes a large decrease in the complexity. This pattern can be
seen empirically in Table K.1.

The basic fact that informs this discussion is that the local learning coefficient is half the number of
normal directions to the level set L(w) = L(w∗

α) at w∗
α when L is Morse-Bott at w∗

α so that a naive
count of normal directions captures the degeneracy. See (Watanabe, 2009, §7.1), (Wei et al., 2022b,
§4) and (Lau et al., 2023, Appendix A) for relevant mathematical discussion. That means that if
we increase the number of directions we can travel in the level set by 1 when we move from w∗

α to
w∗

β then we expect to decrease the learning coefficient by 1
2 . When the level set is more degenerate

at w∗
α such naive dimension counts fail to be the correct measure and it is more difficult to provide

simple intuitions. However in TMS we are fortunate that some of the critical points (e.g. 5, 5+) are
minimally singular so naive counts actually do capture what is going on.

So let us do some naive counting. Recall that any positive bias bi associated with a column Wi with
zero norm must have the exact value 1

2c , whereas negative biases associated with such columns can
take on any value. Fixing the value of the bias reduces the number of free parameters by 2, since if
we have a positive bias at bi then li = ∥Wi∥ must be zero. This explains why the learning coefficient
of the 5+-gon is one larger than that of the 5-gon, since both are minimally singular and we have
decreased the number of free parameters (dimension of the level set) by 2.

Next we consider large negative biases. For the 4−-gon, note that the neuron with the large negative
bias never fires (it is a “dead” neuron), so this critical point only really has representations for three
inputs. In fact, when there are no positive biases, the family of parameters that we call a 4−-gon
includes w ∈ W with (using the l, θ, b parametrization) any b4 < 0 and any l24 < −b4 including l4
arbitrarily close to zero, with a convex hull containing only three vertices. Further, in the case of the
4−−-gon, this configuration only has representations for two inputs. In this case, if the two weights
with negative biases are adjacent then there is an entire “dead” quarter-plane of the activation space,
and the 5th and 6th columns of W can take on nonzero values in that quarter plane (provided they
satisfy l2i < −bi for i ∈ {5, 6}). This extra freedom means that the number of bits required to
“pin down” a 4−−-gon is less than a 4−gon, which is less than a 4-gon. Similarly, specifying
the 4−−−-gon and 4−−−−-gon requires even less information, so it is appropriate that the local
learning coefficient classifies them as less complex.
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F MCMC EXPERIMENTS

We give further details about the experiments where we use MCMC to sample the Bayesian posterior
to establish the phase occupancy plot in 2. For a given number of columns c and sample size n, we
generate n samples Xi from the true distribution q(x) and obtain a likelihood function

∏n
i=1 p(Xi |

w) with q(x) and p(x | w) given by (2) and (3) respectively. We choose a prior on the parameter
space w = (W, b) to be the standard multivariate Gaussian prior (i.e. with zero mean and identity
covariance matrix).

To sample from the corresponding posterior distribution, we run Markov Chain Monte Carlo
(MCMC), specifically with the No U-Turn sampler (NUTS) (Homan & Gelman, 2014), with 6
randomly initialised MCMC chains, each with 5000 iterations after 500 iterations of burn-in. We
thin the resulting chain by a factor of 10 resulting in a total posterior sample size of 3000. For
each combination of n and c, we run the above posterior sampling procedure for 10 different PRNG
seeds, which produces different input samples Xi as well as changing MCMC trajectories.

F.1 DETAILS OF THEORETICAL PROPORTION CURVES

Figure F.1: Extended version of theoretical occupancy plot shown previously in Figure 2 where
the effect of sub-dominant phases is now included. Note that exact theoretical values of the loss
and prior contributions were used for all critical points shown, and exact values of the local learning
coefficient were used for the 6-gon, 5+-gon and 5-gon, but estimates of the local learning coefficients
were used for other critical points (Table K.1).

This section contains details of the theoretical component of Figure 2. For each α ∈ {4, 4+, 5, 5+, 6}
we consider the free energy approximation

fα(n) = nLα + λα log n+ cα
where Lα is the theoretical value taken from Section A and cα are the constant terms from Table
C.2. We use the theoretically derived value of λα in Table 1 for α ∈ {5, 5+, 6} and the empirically
estimated λ̂α for α ∈ {4, 4+} from Table K.1. We then define

pα(n) = exp(−fα(n)) , Z(n) =
∑
α

pα(n)

and the theory plot in Figure 2 shows the curves { 1
Z pα(n)}α. Figure F.1 is produced in the same

way, with a larger range of phases α.

F.2 VERIFYING DOMINANT PHASES FOR r = 2, c = 6

To quantify the relative frequency of each phase at a given sample size n, we classify all posterior
samples into various phases Wk,σ by counting the vertices in their convex hull (k) and the number
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of positive biases (σ), and compute the proportion of samples that falls into each phase. We then
plot the frequencies of each phase as a function of sample size n to visualize how preferred phases
changed with n. Figure 2 shows the corresponding plot in the case for r = 2, c = 6. The lines show
the frequencies of the phases 6, 5, 5+, 4 and 4+, while unclassified posterior samples are labelled as
“other”.

While this convex-hull and positive bias counting classification scheme is based on the characteris-
tics of known critical points, it is only an imperfect reflection. There is the risk of mistaking posterior
samples in Wk,σ as evidence of occupation in the kσ+-gon phase when it is not. Since we do not
claim to have found all possible critical points of the TMS potential and have neglected the higher
loss variants of 4-gon (explained below), it is possible that MCMC samples do not reflect known
phases. If this misclassification happens sufficiently often, it could invalidate the comparison of the
occupancy plots with theoretical predictions.

To guard against this, we should check that every MCMC sample in Wk,σ is close to a known critical
point in Wk,σ , or is classified as “other”. To reduce the amount of labour for this task, we run t-
SNE projection (van der Maaten & Hinton, 2008) of the parameters into a 2D space with a custom
metric design to remove known symmetries allowing samples that are similar to each other to show
up in t-SNE projections as clusters regardless of the irrelevant differences between their angular
displacement and column permutation. The custom t-SNE metric is such that distance between a
pair of parameters, (W, b), (W ′, b′), is given by the sum

HammingDistance(b > 0, b′ > 0) + min
i,j∈{1,...c}

∥Normalize(W, i)−Normalize(W, j)∥Frobenius

where b > 0 denotes the binary array (1b1>0, . . . ,1bc>0) and Normalise(W, i) denotes a normalised
weight matrix where all column vectors are rotated by a fixed angle so that ith column vector is
aligned with the positive x-axis and the columns are reordered so that the column indices reflects the
order of the vectors when read counter-clockwise starting from the positive x-axis.

With this, we can verify the occupancy of dominant phases by checking several samples in each
cluster to verify the phase classification of the entire cluster. To illustrate, let us verify the phase
occupancy for c = 6 at n = 1000 as shown in Figure 2. Figure F.2 shows the t-SNE projection of
the samples for a particular MCMC run. Looking at both the theoretical and empirical occupancy
curves at n = 1000, the posterior is dominated by the 6-gon, followed by the 5-gon and then the
5+-gon. Looking at various samples in the largest (green) t-SNE cluster, they do correspond to the 6-
gon all with biases near the optimal negative value. The minor cluster (in dark purple) corresponds
to the 5-gon. This cluster of 5-gons includes samples with a sixth “vestigial leg” with non-zero
length. However, these belong to the same phase (same critical submanifold as the 5-gon) since the
corresponding bias has large negative value. The t-SNE projection also reveals a small number of
5+-gon samples.

Performing similar inspections for MCMC chains at n = 500, 700 allows us to confirm that the
dominant phase switches from the 5 to 6-gon in the interval 600 ≤ n ≤ 700. This inspection
also confirms that clusters of 5+-gons coexist with the two dominant phases albeit at a much lower
probability.

For sufficiently low values of n, we encounter two issues in establishing phase occupancy.

1. Other higher loss phases such as variants of the 4-gon with large negative biases, and poten-
tially other higher energy phases that we have not characterised start to have non-negligible
occupancy.

2. As n becomes lower, the posterior distribution becomes less concentrated. This means that
significantly more posterior mass, and hence a higher fraction of MCMC samples, is ac-
counted for by regions of parameter space that are further away from critical points. These
points may be close to the boundaries between different regions, increasing the chance of
misclassification, or they may bear little resemblance to the critical point associated with
the region they are classified into.

For n > 400, from inspecting t-SNE clusters, the above issues do not arise: the samples are close
to known critical points, and the frequency of unclassified “other” samples is low enough that it
won’t significantly affect the relative frequency of the dominant phases. Furthermore, we also do
not observe many samples that are close to high loss 4-gon variants. This supports the prediction
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depicted in the extended theoretical occupancy curve shown in Figure F.1 which suggests that these
4-gon variants only show up in the n < 400 regime.

We caution the reader in regards to interpreting the phase occupancy diagrams for the range 100 <
n < 400 where one or more of the issues above could affect the empirical frequency.

Figure F.2: t-SNE plots of MCMC samples from the posterior at a range of sample sizes n encom-
passing the phase transition from the 5-gon to the 6-gon.

F.3 MCMC HEALTH

MCMC sampling for high dimensional posterior distributions is challenging. In our case there is
the added challenge of the posterior being multi-modal (the posterior density has local maxima at
the dominant phases) where the modes are not points, but submanifolds of varying codimension.
To ensure that the proportion of MCMC samples that falls into Wk,σ is a good reflection of the
probability of Wk,σ , we need to make sure that our Markov chains are well mixed.

For this purpose, we produce and check two different types of diagnostic plots for each MCMC run:

• Theoretical loss trace plots. We plot the theoretical loss of each MCMC sample against
its sample index which orders the samples in each MCMC chain in increasing order of
MCMC iterations required to generate the sample. An unhealthy MCMC chain will show
up on such a plot as points occupying a very narrow band of theoretical loss values.

• Phase type trace plots. On the same trace plots, we color each sample by their phase
classification. Successful posterior sampling should produce samples in each phase with a
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frequency that is roughly the same as the posterior probability of that phase. While we do
not know the true probability of a given phase, we can cross reference each MCMC chain
with other chains performing sampling on the same posterior to see that every MCMC
chain visits phases discovered by any other MCMC chain. An unhealthy MCMC chain
will show up on such a plot as a chain that only contains samples of one phase type when
there is more than one phase type observed across all chains.

Figure F.3 shows a examples of such diagnostic trace plots for a few experiments (with c = 6 and
matching those in Figure F.2) at n = 300, 1000. All six chains run in these experiments are plotted
on the same plot and distinguished by color. At the higher sample size n = 1000, we expect and
do indeed observe that a particular phase, the 6-gon, dominates the posterior but every chain visits
sub-dominant phases as well.

The diagnostics detect no sign of problems for the experiments used to establish the phase occu-
pancy curves in Figures 2, F.5 and F.6. However, we do observe that MCMC fails for sample sizes
n significantly greater than those we report in this paper. With large sample sizes, the posterior dis-
tribution becomes highly concentrated at each phase, posing a significant challenge for an MCMC
chain to escape its starting point (controlled by random initialization and the trajectory of the burn-in
phase). Figure F.4 shows an example at n = 4000, where we see

• A chain (colored pink) which, for many iterations, produces samples in a very narrow band
of loss.

• Most chains have a starting point falling into the 5+-gon phase and rarely escape (only the
red chain found the lower loss 6-gon region).

• The proportion of 6-gons is mostly determined by how many chains have their starting
point already in the 6-gon phase. In this run, this proportion is dominated by the last
orange chain.
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Figure F.3: Trace plots displaying theoretical loss of the MCMC samples ordered by their MCMC
iteration number and colored by MCMC chain index (top) and the same scatter plot but colored by
phase classification (bottom).

Figure F.4: Unhealthy trace plots.
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F.4 THEORY AND EXPERIMENTS FOR c = 4 AND c = 5

In this section we repeat the analysis of Section 4.2 for c = 4 and c = 5 with the same experimental
setup as explained at the beginning of that section. When c = 4 the 4-gon is a true parameter (it has
zero loss) and any 3-gon is not, so the theory predicts that the 4-gon must dominate the posterior for
all n, as seen in Figure F.5.

Critical point Local learning coefficient λ Loss L
4-gon 4, 4.5, 5, 5.5 0

Table F.1: r = 2, c = 4

Figure F.5: r = 2, c = 4. The standard 4-gon dominates for all n.

When c = 5 the theory and experimental curves in Figure F.6 show the 4 → 5 transition. Note
that 4+ is correctly predicted to never dominate the posterior despite having lower energy than the
standard 4-gon.

Critical point Local learning coefficient λ Loss L
4-gon 4, 4.5, 5, 5.5 0.06667
4+-gon 5, 5.5, 6, 6.5 0.05667
5−-gon 7 0.01583

.

Table F.2: r = 2, c = 5

Figure F.6: Proportion of Bayesian posterior density concentrated in regions Wk,σ associated to
k-gons, as a function of the number n of samples for r = 2, c = 5.

We note that the classification of MCMC samples in c = 4, 5 described in this section is slightly
different from what was described for c = 6 in Section 4.2. The main reason being that we need to
handle variants of the 4-gon more carefully in c = 4, 5.

• For c = 4, we classify a sample (W, b) only by the number of vertices on the convex
hull formed by the column vectors with no additional subcategories defined by the number
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of positive biases. Theoretically we know that there are no critical 4-gons with positive
bias and the standard 4-gon is a critical point with all zero bias and is thus susceptible to
misclassification even with slight perturbation when the the number of positive biases is
counted.

• For c = 5, the situation is similar except for one extra case where need to allow for the
possibility of a 4+-gon. A sample (W, b) is classified as a 4+-gon when it has 4 vertices in
its convex hull, and if bi > 0 then li = ∥Wi∥ < 0.5.

In the cases c = 4, 5 we also manually verify the dominant phases by visually inspecting t-SNE
clusters of MCMC samples at multiple sample sizes.
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G POTENTIAL IN LOCAL COORDINATES

Proof of Lemma 3.1. By definition

L(W, b) =
1

c

∑
i ̸=j

∫ 1

0

ReLU(Wj ·Wixi + bj)
2dxi

+

c∑
i=1

∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi

)
.

Let i, j ∈ {1, . . . , c} be such that i ̸= j. To compute the integral∫ 1

0

ReLU(Wj ·Wixi + bj)
2dxi,

we first find the region in [0, 1] on which Wj ·Wixi + bj ≥ 0. Let

Dj,i = {xi ∈ [0, 1] |Wj ·Wixi + bj ≥ 0}.

1. If Wj ·Wi > 0 and −Wj ·Wi ≤ bj ≤ 0, then

Dj,i =

[
−bj

Wj ·Wi
, 1

]
.

2. If Wj ·Wi > 0 and bj ≤ −Wj ·Wi, then

Dj,i = ∅.

3. If Wj ·Wi = 0 and bj = 0, then
Dj,i = [0, 1].

Note that in this case, Wj ·Wixi + bj = 0 for all xi ∈ [0, 1].

4. If Wj ·Wi = 0 and bj < 0, then
Dj,i = ∅.

5. If Wj ·Wi < 0 and bj ≤ 0, then
Dj,i = ∅.

6. If Wj ·Wi > 0 and bj > 0, then
Dj,i = [0, 1].

7. If Wj ·Wi = 0 and bj > 0, then
Dj,i = [0, 1].

8. If Wj ·Wi < 0 and bj ≥ −Wj ·Wi > 0, then

Dj,i = [0, 1].

9. If Wj ·Wi < 0 and −Wj ·Wi > bj > 0, then

Dj,i =

[
0,

−bj
Wj ·Wi

]
Recall the definition of Pj,i, Pi, and Qj,i from (Lemma 3.1). Then for bj ≤ 0,∫ 1

0

ReLU(Wj ·Wixi + bj)
2dxi = δ(Pj,i)

∫ 1

−bj/(Wj ·Wi)

(Wj ·Wixi + bj)
2dxi

= δ(Pj,i)

[
1

3Wj ·Wi
(Wj ·Wixi + bj)

3

]1
−bj/(Wj ·Wi)

= δ(Pj,i)
1

3Wj ·Wi
(Wj ·Wi + bj)

3.
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and for bj > 0,∫ 1

0

ReLU(Wj ·Wixi + bj)
2dxi = δ(Qj,i)

∫ −bj/(Wj ·Wi)

0

(Wj ·Wixi + bj)
2dxi

+
(
1− δ(Qj,i)

) ∫ 1

0

(Wj ·Wixi + bj)
2dxi

= δ(Qj,i)

[
1

3Wj ·Wi
(Wj ·Wixi + bj)

3

]−bj/(Wj ·Wi)

0

+
(
1− δ(Qj,i)

) [ 1

3Wj ·Wi
(Wj ·Wixi + bj)

3

]1
0

= δ(Qj,i)
1

3

(
−b3j

Wj ·Wi

)

+
(
1− δ(Qj,i)

)1
3
[(Wj ·Wi)

2 + 3(Wj ·Wi)bj + 3b2j ]

It remains to compute ∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi

for each i ∈ {1, . . . , c}. We first find the region in [0, 1] on which ∥Wi∥2xi + bi ≥ 0. Let

Di = {xi ∈ [0, 1] | ∥Wi∥2xi + bi ≥ 0}.

1. If ∥Wi∥2 > 0 and −∥Wi∥2 ≤ bi ≤ 0, then

Di =

[
−bi

∥Wi∥2
, 1

]
.

2. If ∥Wi∥2 > 0 and bi ≤ −∥Wi∥2, then

Di = ∅.

In this case ∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

0

x2
i dxi =

1

3
.

3. If ∥Wi∥2 = 0 and bi = 0, then
Di = [0, 1].

Note that in this case, ∥Wi∥2xi + bi = 0 for all xi ∈ [0, 1]. So∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

0

x2
i dxi =

1

3
.

4. If ∥Wi∥2 = 0 and bi < 0, then
Di = ∅.

In this case ∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

0

x2
i dxi =

1

3
.

5. If ∥Wi∥2 > 0 and bi > 0, then
Di = [0, 1].

6. If ∥Wi∥2 = 0 and bi > 0, then
Di = [0, 1].

33



Under review as a conference paper at ICLR 2024

For i with bi ≤ 0, on Pi,∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

−bi/∥Wi∥2

(xi − ∥Wi∥2xi − bi)
2dxi

+

∫ −bi/∥Wi∥2

0

x2
i dxi

=

∫ 1

−bi/∥Wi∥2

(
(1− ∥Wi∥2)xi − bi

)2
dxi

+

[
1

3
x3
i

]−bi/∥Wi∥2

0

.

If ∥Wi∥ ≠ 1, then the integral is equal to

1

3

{
(1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i +

b3i
∥Wi∥4

+
b3i

∥Wi∥2

}
.

If ∥Wi∥ = 1, then the integral is equal to
1

3
(3b2i + 2b3i ).

Since

lim
∥Wi∥→1

1

3

{
(1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i +

b3i
∥Wi∥4

+
b3i

∥Wi∥2

}
=

1

3
(3b2i + 2b3i ),

We know that in Pi,∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi

=
1

3

{
(1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i +

b3i
∥Wi∥4

+
b3i

∥Wi∥2

}
.

For i with bi > 0,∫ 1

0

(
xi − ReLU(∥Wi∥2xi + bi)

)2
dxi =

∫ 1

0

(
xi − (∥Wi∥2xi + bi)

)2
dxi

=
1

3(1− ∥Wi∥2)
{
[(1− ∥Wi∥2)− bi]

3 + b3i
}

=
1

3

[
(1− ∥Wi∥2)2 − 3(1− ∥Wi∥2)bi + 3b2i

]
Thus, L(W, b) = 1

3cH(W, b) as claimed.

Now we introduce a new coordinate system of the parameter space which is used to analyse the local
geometry around a critical point. Let C = {{i, j} | i ̸= j ∈ {1, 2, . . . , c}}. For a subset C ⊂ C,
define a subset WC of Mr,c(R), called a chamber, by

WC = {W ∈ Mr,c(R) |Wi ·Wj > 0 if and only if {i, j} ∈ C}.

Note that

1. Some subsets C of C define an empty chamber WC = ∅. For example, when r = 2 and
c = 4, the set

C = {{1, 2}, {2, 3}, {3, 4}, {4, 1}} ⊂ C
defines an empty chamber because within this set, to satisfy Wi ·Wi+1 > 0,Wi+1 ·Wi+2 >
0,Wi ·Wi+2 ≤ 0 we must have that Wi+1 is between Wi and Wi+1 on the circle. Therefore
we require that the sum of angles between Wi and Wi+1 = 2π, but each of these 4 angles
must be more than π/2 so the configuration isn’t possible.

34



Under review as a conference paper at ICLR 2024

2. if C ⊂ C defines a nonempty chamber WC containing a W with
Wi ·Wj > 0 ∀{i, j} ∈ C and Wu ·Wv < 0 ∀{u, v} /∈ C,

then WC contains the open subset
{W ∈ Mr,c(R) |Wi ·Wj > 0 ∀{i, j} ∈ C and Wu ·Wv < 0 ∀{u, v} /∈ C}

of Mr,c(R);
3. if C ⊂ C defines a nonempty chamber WC , then for any Q ⊂ C,

{W ∈ Mr,c(R) |Wi ·Wj = 0 ∀{i, j} ∈ Q and Wu ·Wv > 0 ⇔ {u, v} ∈ C\Q}
defines a boundary of WC ;

4. for any distinct subsets C, Q of C, WC ∩WQ = ∅;
5. the union of all chambers cover Mr,c(R).

Consider a nonempty chamber WC for some C ⊂ C. Suppose that WC contains an open subset of
Mr,c(R). Let i ̸= j ∈ {1, 2, . . . , c}. If {j, i} /∈ C, then for all W ∈ WC ,

δ(Pj,i) = 0.

Thus, in WC × Rc, for each i ∈ {1, 2, . . . , c}, H−
i (W, b) (see Lemma 3.1) is given by

H−
i (W, b) =

∑
j ̸=i:{j,i}∈C

δ(Pi,j)

[
1

Wi ·Wj
(Wi ·Wj + bi)

3

]

+ δ(Pi)

[
b3i

∥Wi∥4
+

b3i
∥Wi∥2

]
+ (1− δ(Pi)) + δ(Pi)Ni.

Now we focus on the case r = 2. Let W ∈ M2,c(R). Then W is contained in some chamber
WC . In the new parametrization (l, θ), we can describe the chamber WC in a different way. Let
(l1, . . . , lc, θ1, . . . , θc) be the coordinate of W . For each i = 1, . . . , c, a wedge Mij is defined by

Mij =

{
(i, i+ 1, . . . , i+ j − 1), if j > 0 and θi + · · ·+ θi+j−1 < π

2 ;
∅, if j = 0 or θi + · · ·+ θi+j−1 ≥ π

2 ,

where addtions are computed cyclically. For each i = 1, . . . , c, let t(i) denote the integer such that

θi + · · ·+ θi+t(i)−1 <
π

2
and θi + · · ·+ θi+t(i) ≥

π

2
.

We use the convention where t(i) = 0 if θi ≥ π/2. Then Mij = ∅ for all j ≥ t(i). So we can list
the set of all wedges M = {Mij} into a table:

M11 M12 · · · · · · M1t(1)

M21 M21 · · · · · · M2t(2)

...

...
M(c−1)1 M(c−1)2 · · · · · · M(c−1)t(c−1)

Mc1 Mc2 · · · · · · Mct(c)

This set of wedges M describes a chamber WC containing W , where
C =

{
{1, 2},{1, 3}, . . . , {1, t(1) + 1}, {2, 3}, {2, 4}, . . . , {2, t(2) + 2}, . . . ,

. . . , {c− 1, c}, . . . , {c− 1, t(c− 1) + c− 1}, {c, 1}, . . . , {c, t(c) + c}
}
,

and the addtions are computed cyclically. For example, if c = 5, then a 5-gon has coordinate
l1 = l2 = l3 = l4 = l5;

θ1 = θ2 = θ3 = θ4 =
2π

5
.

It is contained in the interior of the chamber WC , where
C = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

This chamber is described by the set of wedges:
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(1)
(2)
(3)
(4)
(5)

.

Now let WC ⊂ M2,c(R) be a nonempty chamber. Suppose that WC contains an open subset of
M2,c(R). Let M be the set of wedges describing WC . Set

1. T
(1)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi+j

}
;

2. T
(2)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi

}
;

3. Ti = {(l, θ, b) | − l2i ≤ bi};
4. Sij = {(l, θ, b) | − lilj cos(θi + · · · θj−1) > bi > 0}.

Then in WC × Rc, the TMS potential H(l, θ, b) in the new parametrization is

H(l, θ, b) =

c∑
i=1

δ(bi ≤ 0)H−
i (l, θ, b) + δ(bi > 0)H+

i (l, θ, b), (17)

where

H−
i (l, θ, b) =

∑
j:M(i−j)j∈M

δ(T
(1)
M(i−j)j

)

[
li−j li cos

(∑
k∈M(i−j)j

θk
)
+ bi

]3
li−j li cos

(∑
k∈M(i−j)j

θk
)

+
∑

j:Mij∈M
δ(T

(2)
Mij

)

[
lili+j cos

(∑
k∈Mij

θk
)
+ bi

]3
lili+j cos

(∑
k∈Mij

θk
)

+ δ(Ti)

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+
(
1− δ(Ti)

)
and

H+
i (l, θ, b) =

∑
j ̸=i

δ(Sij)

[
−b3i

lilj cos(θi + θi+1 + · · · θj−1)

]

+
(
1− δ(Sij)

)[(
lilj cos(θij)

)2
+ 3
(
lilj cos(θij)

)
bi + 3b2i

]
+
[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i
]
,

where θij = θi + θi+1 + · · ·+ θj−1 is the angle between Wi and Wj .
Remark G.1. If a critical point of H is contained in the interior of a chamber (see Appendix
H.1), then there is an open neighbourhood of the critical point in which H is of the above form.
However, critical points are not always contained in the interior of some chamber. If a critical point
is contained in the boundary of different chambers (see Appendix J and Appendix H.3), then extra
efforts are required for analysing the local geometry around the critical point.
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H DERIVATION OF LOCAL LEARNING COEFFICIENTS

H.1 k-GONS WITH NEGTIVE BIAS FOR k = c /∈ 4Z

In this section, we show that for c ∈ {5, 6, 7}, the c-gon with coordinate

l1 = · · · = lc = x∗, θ1 = · · · = θc = α =
2π

c
, b1 = · · · = bc = y∗,

where the values of x∗ and y∗ is given in Table H.1, is a non-degenerate critical point of the TMS
potential. Therefore, the local learning coefficient of c-gon is (3c− 1)/2.

c x∗ y∗

5 1.17046 −0.28230
6 1.32053 −0.61814
7 1.44839 −0.96691

Table H.1: Parameters of c-gons.

Let c be an integer greater than or equal to 4. We consider the case where c is not a multiple of 4.
Consider the c-gon with coordinate (l∗, θ∗, b∗)

l∗ : l1 = · · · = lc = x, θ∗ : θ1 = · · · = θc = α =
2π

c
, b∗ : b1 = · · · = bc = y,

for some x > 0 and y < 0. The chamber containing c-gons is described by the following wedges
(see Appendix G):

(1) (1, 2) · · · · · · (1, 2, . . . , s)
(2) (2, 3) · · · · · · (2, 3, . . . , s+ 1)

...
... · · · · · ·

...
(c+ 1− s) (c+ 1− s, c+ 2− s) · · · · · · (c+ 1− s, c+ 2− s, . . . , c)
(c+ 2− s) (c+ 2− s, c+ 3− s) · · · · · · (c+ 2− s, c+ 3− s, . . . , c, 1)

...
... · · · · · ·

...
(c− 1) (c− 1, c) · · · · · · (c− 1, c, 1, . . . , s− 2)
(c) (c, 1) · · · · · · (c, 1, 2, . . . , s− 1)

where s is the unique integer in the interval
[
c
4 − 1, c

4

)
. Let Mij be the wedge in the (i, j)-position

in the above table. Then Mij = (i, i + 1, . . . , i + j − 1), where additions are computed cyclically.
Then the local TMS potential (see Appendix G) is

H(l, θ, b) =
∑

Mij∈M
δ(T

(1)
Mij

)
1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑

Mij∈M
δ(T

(2)
Mij

)
1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

c∑
i=1

δ(Ti)

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+ (1− δ(Ti)),

where

1. T
(1)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi+j

}
;

2. T
(2)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi

}
;

3. Ti = {(l, θ, b) | − l2i ≤ bi};
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4. θ1 + θ2 + · · ·+ θc = 2π.

Consider the open subset of the parameter space defined by

−lili+j cos

 ∑
k∈Mij

θk

 < bi+j , −lili+j cos

 ∑
k∈Mij

θk

 < bi

for all Mij and
−l2i < bi

for all i = 1, . . . , c. In this open subset, we have

H(l, θ, b) =
∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

c∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,

with constraint θ1 + θ2 + · · · + θc = 2π. It follows from the Lagrangian multiplier method that a
point (l∗, θ∗, b∗) is a critical point of H(l, θ, b) with constraint θ1 + · · · + θc = 2π if and only if
there exists λ ∈ R such that for all a = 1, 2, . . . , c,

1. ∂
∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = λ;

2. ∂
∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0;

3. ∂
∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0.

We compute the partial derivative of H(l, θ, b) with respect to ba:

∂

∂ba
H(l, θ, b) =

∑
Mij :i+j=a

3

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

2

+
∑

Mij :i=a

3

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

2

− 3(1− l2a) + 6ba +
3

l4a
b2a +

3

l2a
b2a.

We list all Mij with i = a and all Mij with i+ j = a:

i = a : (a) (a, a+ 1) · · · · · · (a, a+ 1, . . . , a+ s− 1)
i+ j = a : (a− 1) (a− 2, a− 1) · · · · · · (a− s, . . . , a− 2, a− 1)

Then

∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = x2

3 + 6

s∑
j=1

cos(jα)

+
y2

x2

3 + 6

s∑
j=1

1

cos(jα)


+ y(12s+ 6) + 3

y2

x4
− 3.
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Multiplying both sides of the equation

x2

3 + 6

s∑
j=1

cos(jα)

+
y2

x2

3 + 6

s∑
j=1

1

cos(jα)

+ y(12s+ 6) + 3
y2

x4
− 3 = 0

by 1
3x

4, we have

x6

1 + 2

s∑
j=1

cos(jα)

+ x2y2

1 + 2

s∑
j=1

1

cos(jα)

+ 2x4y(2s+ 1) + y2 − x4 = 0.

Let G(s) = 1 + 2
∑s

j=1 cos(jα), H(s) = 1 + 2
∑s

j=1
1

cos(jα) , M(s) = 1 + 2s. Then we obtain a
parametrized polynomial equation in two variables:

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0.

Now we compute the partial derivative of H(l, θ, b) with respect to la:

∂

∂la
H(l, θ, b) =

∂

∂la

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∂

∂la

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

− 4(1− l2a)la + 6laba − 4
b3a
l5a

− 2
b3a
l3a
.

From the list of all Mij with i = a and all Mij with i+ j = a, we have

∂

∂la

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

=

s∑
j=1

3
(
lala+j cos

(∑
k∈Maj

θk

)
+ ba+j

)2
la

−

(
lala+j cos

(∑
k∈Maj

θk

)
+ ba+j

)3
l2ala+j cos

(∑
k∈Maj

θk

)
+

s∑
j=1

3
(
la−j la cos

(∑
k∈M(a−j)j

θk

)
+ ba

)2
la

−

(
la−j la cos

(∑
k∈M(a−j)j

θk

)
+ ba

)3
la−j l2a cos

(∑
k∈M(a−j)j

θk

) .

So

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

= 2

s∑
j=1

(
3
(
x2 cos(jα) + y

)2
x

−
(
x2 cos(jα) + y

)3
x3 cos(jα)

)
Similarly,

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

= 2

s∑
j=1

(
3
(
x2 cos(jα) + y

)2
x

−
(
x2 cos(jα) + y

)3
x3 cos(jα)

)
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Thus,

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = x3

4 + 8

s∑
j=1

cos2(jα)

+ xy

6 + 12

s∑
j=1

cos(jα)


− y3

x3

2 + 4

s∑
j=1

1

cos(jα)

− 4x− 4
y3

x5
.

Multiplying both sides of the equation

x3

4 + 8

s∑
j=1

cos2(jα)

+ xy

6 + 12

s∑
j=1

cos(jα)

− y3

x3

2 + 4

s∑
j=1

1

cos(jα)


− 4x− 4

y3

x5
= 0

by 1
2x

5, we have

2x8

1 + 2

s∑
j=1

cos2(jα)

+ 3x6y

1 + 2

s∑
j=1

cos(jα)

− x2y3

1 + 2

s∑
j=1

1

cos(jα)


− 2x6 − 2y3 = 0.

Let F (s) = 1 + 2
∑s

j=1 cos
2(jα). Then we obtain a parametrized polynomial equation in two

variables:
2x8F (s) + 3x6yG(s)− x2y3H(s)− 2x6 − 2y3 = 0.

Therefore, we need to determine whether the system of two parametrized polynomial equations in
two variables

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0

2x8F (s) + 3x6yG(s)− zy3H(s)− 2x6 − 2y3 = 0

where

1. F (s) = 1 + 2
∑s

j=1 cos
2(jα);

2. G(s) = 1 + 2
∑s

j=1 cos(jα);

3. H(s) = 1 + 2
∑s

j=1
1

cos(jα) ;

4. M(s) = 1 + 2s.

have common solutions in R>0 × R<0 with −x2 cos(sα) < y or not . Now we compute the partial
derivative of H(l, θ, b) with respect to θa.

∂

∂θa
H(l, θ, b) =

∂

∂θa

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∂

∂θa

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

.

We list all Mij containing a:

Ma1 Ma2 · · · · · · · · · Mas

M(a−s+1)s

M(a−s+2)(s−1) M(a−s+2)s

...
M(a−2)3 · · · · · · M(a−2)s

M(a−1)2 M(a−1)3 · · · · · · M(a−1)s

40



Under review as a conference paper at ICLR 2024

Rearrange these wedges in terms of the length:

length 1: Ma1

length 2: Ma2 M(a−1)2

length 3 Ma3 M(a−1)3 M(a−2)3

...
length s− 1: Ma(s−1) M(a−1)(s−1 · · · M(a−s+2)(s−1)

length s: Mas M(a−1)s · · · M(a−s+2)s M(a−s+1)s

Note that for j = 1, . . . , s, there exactly j wedges of length j containing a. Then

∂

∂θa

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

=
∑

Mij :a∈Mij

−3
[
lili+j cos

(∑
k∈Mij

θk

)
+ bi+j

]2
sin
(∑

k∈Mij
θk

)
cos
(∑

k∈Mij
θk

)
+

∑
Mij :a∈Mij

sin
(∑

k∈Mij
θk

) [
lili+j cos

(∑
k∈Mij

θk

)
+ bi+j

]3
lili+j cos2

(∑
k∈Mij

θk

) .

Then

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

=

s∑
j=1

j ·

(
−3
[
x2 cos (jα) + y

]2
sin (jα)

cos (jα)
+

sin (jα)
[
x2 cos (jα) + y

]3
x2 cos2 (jα)

)
.

Similarly,

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

=

s∑
j=1

j ·

(
−3
[
x2 cos (jα) + y

]2
sin (jα)

cos (jα)
+

sin (jα)
[
x2 cos (jα) + y

]3
x2 cos2 (jα)

)
.

Thus,

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 2

s∑
j=1

j ·
(−3

[
x2 cos (jα) + y

]2
sin (jα)

cos (jα)

+
sin (jα)

[
x2 cos (jα) + y

]3
x2 cos2 (jα)

)
,

which is independent of a. So if the system of polynomial equations

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0

2x8F (s) + 3x6yG(s)− x2y3H(s)− 2x6 − 2y3 = 0

has a common solution (x∗, y∗) ∈ R>0 × R<0 with −x2 cos(sα) < y, then the Lagrangian multi-
plier is

2

s∑
j=1

j ·

(
−3
[
(x∗)2 cos (jα) + y∗

]2
sin (jα)

cos (jα)
+

sin (jα)
[
(x∗)2 cos (jα) + y∗

]3
(x∗)2 cos2 (jα)

)
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and the Lagrangian multipler method implies that the c-gon with coordinate

l1 = · · · = lc = x∗, b1 = · · · = bc = y∗, θ1 = · · · = θc = α =
2π

c
,

is a critical point of H(l, θ, b) with constraint θ1+ · · ·+θc = 2π. So it remains to determine whether
the system of two parametrized polynomial equations in two variables

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0

2x8F (s) + 3x6yG(s)− x2y3H(s)− 2x6 − 2y3 = 0

have common solutions (x∗, y∗) ∈ R>0 × R≤0 with −x2 cos(sα) < y or not. We compute the
common solution using Mathematica.

1. c = 5: in this case, s = 1. Then (x∗, y∗) ≈ (1.17046,−0.28230) is the unique common
solution such that −x2 cos(2π/5) < y. Moreover, the Hessian of H at this 5-gon is non-
degenerate. So the 5-gon with coordinate:

l1 = l2 = · · · = l5 = x ≈ 1.17046;

θ1 = θ2 = · · · = θ4 =
2π

5
;

b1 = b2 = · · · = b5 = y ≈ −0.28230,

is a non-degenerate critical point. So its local learning coefficient is (3c− 1)/2 = 7.
2. c = 6: in this case s = 1. Then (x∗, y∗) ≈ (1.32053,−0.61814) is the unique common

solution such that −x2 cos(π/3) < y. Moreover, the Hessian of H at this 6-gon is non-
degenerate. So the 6-gon with coordinate:

l1 = l2 = · · · = l6 ≈ 1.32053;

θ1 = θ2 = · · · = θ5 =
π

3
;

b1 = b2 = · · · = b6 ≈ −0.61814,

is a non-degenerate critical point. So its learning coefficient is (3c− 1)/2 = 8.5.
3. c = 7: in this case s = 1. Then (x∗, y∗) ≈ (1.44839,−0.96691) is the unique common

solution such that −x2 cos(2π/7) < y. Moreover, the Hessian of H at this 7-gon is non-
degenerate. So the 5-gon with coordinate:

l1 = l2 = · · · = l7 ≈ 1.44839;

θ1 = θ2 = · · · = θ6 =
2π

7
;

b1 = b2 = · · · = b7 ≈ −0.96691,

is a non-degenerate critical point. So itslocal learning coefficient is (3c− 1)/2 = 10.
4. c = 9: in this case s = 2. There is no common solution.
5. c = 10: in this case s = 2. There is no common solution.
6. c = 11: in this case s = 2. There is no common solution.
7. c = 13: in this case s = 3. There is no common solution.
8. We checked that for any 9 ≤ c ≤ 203 which is not a multiple of 4, there is no common

solution.

H.2 k-GONS WITH NEGATIVE BIAS FOR k = c ∈ 4Z

In this section, we show that for c = 8, the 8-gon with coordinate

l1 = l2 = · · · = l8 ≈ 1.55041, θ1 = θ2 = · · · = θ8 =
π

4
, b1 = b2 = · · · = b8 ≈ −1.29122,

is a non-degenerate critical point of the TMS potential. So the local learning coefficient of 8-gon is
11.5. Let c > 4 being a multiple of 4. A c-gon has θ-coordinate:

θ1 = θ2 = · · · = θc =
2π

c
.
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Let s = c/4− 1 ∈ Z. Then (s+ 1) · (2π/c) = π/2. So

Wi ·Wi+s = lili+s cos

(
(s+ 1) · 2π

c

)
= lili+s cos

(
(s+ 1) · π

2

)
= 0

for all i = 1, . . . , c. So c-gons are on the boundaries of some chambers.

Since c > 4, s ≥ 1. Let M = {Mij} be wedges describing a chamber whose boundary contains
c-gons. If bi < 0 for all i = 1, . . . , c, then the TMS potential (see Appendix G) is

H(l, θ, b) =
∑

Mij∈M
δ(T

(1)
Mij

)
1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑

Mij∈M
δ(T

(2)
Mij

)
1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

c∑
i=1

δ(Ti)

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+ (1− δ(Ti)),

where

1. T
(1)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi+j

}
;

2. T
(2)
Mij

=
{
(l, θ, b) | − lili+j cos

(∑
k∈Mij

θk

)
≤ bi

}
;

3. Ti = {(l, θ, b) | − l2i ≤ bi};

4. θ1 + θ2 + · · ·+ θc = 2π.

Consider the c-gon with coordinate

l∗ : l1 = · · · = lc = x, θ∗ : θ1 = · · · = θc = α =
2π

c
, b∗ : b1 = · · · = bc = y

for some x > 0 and y < 0. Suppose that −x2 < −x2 cos(α) < · · · < −x2 cos(s · α) < y.

Lemma H.1. The c-gon (l∗, θ∗, b∗) has an open neighbourhood in which the TMS potential is

H(l, θ, b) =
∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑
Mij

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

c∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,

where θ1 + θ2 + · · ·+ θc = 2π, and M = {Mij} is

(1) (1, 2) · · · · · · (1, 2, . . . , s)
(2) (2, 3) · · · · · · (2, 3, . . . , s+ 1)

...
... · · · · · ·

...
(c+ 1− s) (c+ 1− s, c+ 2− s) · · · · · · (c+ 1− s, c+ 2− s, . . . , c)
(c+ 2− s) (c+ 2− s, c+ 3− s) · · · · · · (c+ 2− s, c+ 3− s, . . . , c, 1)

...
... · · · · · ·

...
(c− 1) (c− 1, c) · · · · · · (c− 1, c, 1, . . . , s− 2)
(c) (c, 1) · · · · · · (c, 1, 2, . . . , s− 1)

.
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Proof. Since x > 0 and y < 0, there are positive small real numbers ϵx, ϵy such that x − ϵx > 0
and y + ϵb < 0. Then

y + ϵb
−(x+ ϵx)2

is a positive number. Then there exists γ > 0 such that

cos
(π
2
− γ
)
<

y + ϵb
−(x+ ϵx)2

.

Let ϵθ = γ/(s+ 1). Consider the open neighbourhood of (l∗, θ∗, b∗) given by

(x− ϵx, x+ ϵx)× (α− ϵθ, α+ ϵθ)× (y − ϵb, y + ϵb).

Let (l, θ, b) be a point in this open neighbourhood. Consider for any wedge Mij containing more
than s numbers. Without loss of generality, assume that Mij contain s+1 elements. If

∑
k∈Mij

θk >

π/2, then

−lili+j cos

 ∑
k∈Mij

θk

 > 0 > y + ϵb.

Otherwise, suppose
∑

k∈Mij
θk ≤ π/2. Then

−lili+j cos

 ∑
k∈Mij

θk

 > −(x+ ϵx)
2 cos

 ∑
k∈Mij

θk


> −(x+ ϵx)

2 cos

(
(s+ 1)×

(
2π

n
− ϵθ

))
= −(x+ ϵx)

2 cos
(π
2
− γ
)

> y + ϵb

> bi or bi+j .

Thus (l, θ, b) /∈ T
(1)
Mij

and (l, θ, b) /∈ T
(2)
Mij

. Thus, the term in H(l, θ, b) indexed by this Mij disap-
pears. So only Mij containing less than (s+ 1) numbers remain in the sum.

It follows from the calculations in (Appendix H.1) that

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b)

is independent of a. Moreover, the same calculations show that

∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0

and
∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0

give rise to a system of parametrized polynomial equations in x and y:

x6G(s) + x2y2H(s) + 2x4yM(s) + y2 − x4 = 0

2x8F (s) + 3x6yG(s)− x2y3H(s)− 2x6 − 2y3 = 0

where

1. F (s) = 1 + 2
∑s

j=1 cos
2(jα);

2. G(s) = 1 + 2
∑s

j=1 cos(jα);

3. H(s) = 1 + 2
∑s

j=1
1

cos(jα) ;
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4. M(s) = 1 + 2s.

We compute the common solution using Mathematica.

1. c = 8: in this case, s = 1. Then (x∗, y∗) ≈ (1.55045,−1.29119) is a common solution
such that −x2 cos(π/4) < y. Moreover, the Hessian of H(l, θ, b) at this 8-gon is non-
degenerate. So the 8-gon with coordinate:

l1 = l2 = · · · = l8 ≈ 1.55045;

θ1 = θ2 = · · · = θ8 =
π

4
;

b1 = b2 = · · · = b8 ≈ −1.29119,

is a non-degenerate critical point. So its local learning coefficient is (3c− 1)/2 = 11.5

2. n = 12: in this case, s = 2. Then (x∗, y∗) ≈ (1.03322,−0.46654) and (x∗, y∗) ≈
(1.24975,−0.85483) are common solutions such that −x2 cos(π/6) < y.

3. We plot the level sets of two polynomial equations for 1 ≤ s ≤ 50. There is always a
common solution.

H.3 k-GONS WITH NEGATIVE BIAS FOR k < c

Now for a fixed c, we discuss arbitrary k-gons where k ≤ c. A k-gon is obtained by shrinking c− k
Wi’s to zero. Without loss of generality, we assume that Wc,Wc−1, . . . ,Wk+1 are shrinking to zero.
So a k-gon is on the boundary of some chamber. Note that different angles between Wi and Wj for
i, j ∈ {c − k + 1, . . . , c} might give different chambers whose boundary contains the k-gon. The
following example illustrates the idea. Let c = 6 and k = 5. Then there are three different chambers
whose boundary contains the 5-gon.

1. Consider a family of 6-gons with coordinate l1 = l2 = l3 = l4 = l5 = l, l6 = u,
θ1 = θ2 = θ3 = θ4 = 2π

5 , θ5 = α where l, u > 0 and α ∈
[
0, π

10

)
. This family of 6-gons

is contained in the chamber described by the following wedges:

(1)
(2)
(3)
(4) (4, 5)
(5) (5, 6)
(6)

The 5-gon is obtained from this family of 6-gons by taking the limit as u → 0. So the
5-gon is on the boundary of this chamber.

2. Consider another family of 6-gons with coordinate l1 = l2 = l3 = l4 = l5 = l, l6 = u,
θ1 = θ2 = θ3 = θ4 = 2π

5 , θ5 = α where l, u > 0 and α ∈
[
π
10 ,

3π
10

]
. This family of 6-gons

is contained in the chamber described by the following wedges:

(1)
(2)
(3)
(4)
(5) (5, 6)
(6)

The 5-gon is obtained from this family of 6-gons by taking the limit as u → 0. So the
5-gon is on the boundary of this chamber.

3. Finally, consider the family of 6-gons with coordinate l1 = l2 = l3 = l4 = l5 = l, l6 = u,
θ1 = θ2 = θ3 = θ4 = 2π

5 , θ5 = α where l, u > 0 and α ∈
(
3π
10 ,

2π
5

]
. This family of 6-gons

is contained in the chamber described by the following wedges:
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(1)
(2)
(3)
(4)
(5) (5, 6)
(6) (6, 1)

The 5-gon is obtained from this family of 6-gons by taking the limit as u → 0. So the
5-gon is on the boundary of this chamber.

Theorem H.1. Let k ∈ Z>4 and s be the unique integer in the interval [k4 − 1, k
4 ). If a k-gon with

coordinate
l1 = · · · = lk = x; θ1 = · · · = θk =

2π

k
; b1 = · · · = bk = y

for some x > 0 and y < 0 satisfying

−x2 cos

(
s · 2π

k

)
≤ y

is a critical point of H(l, θ, b) with constraint θ1 + · · · + θk = 2π for c = k, then the k-gons with
coordinate

l1 = · · · = lk = x, lk+1 = · · · = lc = 0;

θ1 = · · · = θk−1 =
2π

k
, θk + · · ·+ θc =

2π

k
;

b1 = · · · = bk = y, bk+1, . . . , bc < 0,

are critical points of H(l, θ, b) with constraint θ1 + · · ·+ θc = 2π for any c > k.

Proof. We first show that for any bk+1, . . . , bc < 0 and θk, . . . , θc ∈ [0, 2π) with θk + · · · + θc =
2π/k, the k-gon (l∗, θ∗, b∗) with coordinate

l1 = · · · = lk = x, lk+1 = · · · = lc = 0;

θ1 = · · · = θk−1 = α =
2π

k
, θk, . . . , θc ∈ [0, 2π);

b1 = · · · = bk = y, bk+1, . . . , bc < 0

has an open neighbourhood in which only the following types of wedges showing up in H(l, θ, b):

1. Mij does not contain any of {k, k + 1, . . . , c} and has length at most s;

2. Mij contains (k, k + 1, . . . , c) and has length at most s+ c− k.

Since each coordinate in b∗ is less than zero, there is an open neighbourhood B of b∗ contained in
Rc

<0. Since l1 = · · · = lk = x > 0 and lk+1 = · · · = lc = 0, there exists an open neighbourhood L

of l∗ contained in Rk
>0 × Rc−k

≥0 . If k is not a multiple of 4, then s · α < π/2 and (s+ 1) · α > π/2.
So we can perturb each θi to obtain an open neighbourhood Θ of θ∗ in which

• θi+ · · ·+θi+s−1 < π/2 and θi+ · · · θi+s > π/2 for {i, i+1, . . . , i+s} ⊂ {1, . . . , k−1};

• θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i < π/2, θi+· · ·+θk−1+θk+· · ·+θc+θ1+
· · ·+θs−k+i > π/2, and θi−1+θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i < π/2.

If k is a multiple of 4, then s · α < π/2 and (s+ 1) · α = π/2. So we can perturb each θi to obtain
an open neighbourhood Θ of θ∗ in which

• θi + · · · + θi+s−1 < π/2 and θi + · · · θi+s is closed to π/2 for {i, i + 1, . . . , i + s} ⊂
{1, . . . , k − 1};

• θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i < π/2, θi+· · ·+θk−1+θk+· · ·+θc+θ1+
· · ·+θs−k+i is closed to π/2, and θi−1+θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i <
π/2.
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Then L × Θ × B is an open neighbourhood of (l∗, θ∗, b∗). Since lk+1 = · · · = lc = 0, we can
shrink L so that for every (l, θ, b) ∈ L×Θ×B,

−lili+j cos

 ∑
k∈Mij

θk

 > bi, −lili+j cos

 ∑
k∈Mij

θk

 > bi+j

for all Mij with either i ∈ {k + 1, . . . , c} or i+ j − 1 ∈ {k, . . . , c− 1}, and

−l2i > bi

for all i = k + 1, . . . , c. Since

−x2 < · · · < −x2 cos

(
(s− 1) · 2π

k

)
< −x2 cos

(
s · 2π

k

)
< y,

we can shrink L×Θ×B so that for every (l, θ, b) ∈ L×Θ×B,

−lili+j cos

 ∑
k∈Mij

θk

 < bi, −lili+j cos

 ∑
k∈Mij

θk

 < bi+j

for all i, j with i, i+ j ∈ {1, . . . , k} and

−l2i < bi

for all i = 1, . . . , k. Since any Mij containing only some of {k, k + 1, . . . , c} has either i ∈
{k + 1, . . . , c} or i + j − 1 ∈ {k, . . . , c − 1}, we know that for Mij containing only some of
{k, k + 1, . . . , c}, we have

(l, θ, b) /∈ T
(1)
Mij

and (l, θ, b) /∈ T
(2)
Mij

for all (l, θ, b) ∈ L×Θ×B. We have shown that if Mij contains some of {k, k+1, . . . , c}, then it
must contain (k, k + 1, . . . , c). Moreover, for k not being a multiple of 4, since

• θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i < π/2, θi+· · ·+θk−1+θk+· · ·+θc+θ1+
· · ·+θs−k+i > π/2, and θi−1+θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i < π/2,

we know that if Mij contains (k, k + 1, . . . , c), then it has length at most s + c − k. For k being a
multiple of 4, since

• θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i < π/2, θi+· · ·+θk−1+θk+· · ·+θc+θ1+
· · ·+θs−k+i is closed to π/2, and θi−1+θi+· · ·+θk−1+θk+· · ·+θc+θ1+· · ·+θs−1−k+i <
π/2,

by the same argument we use in the proof of Lemma H.1, we know that if Mij contains (k, k +
1, . . . , c), then it has length at most s+ c− k. Now for Mij not containing any of {k, k+1, . . . , c},
if k is not a multiple of 4, it follows from

• θi+ · · ·+θi+s−1 < π/2 and θi+ · · · θi+s > π/2 for {i, i+1, . . . , i+s} ⊂ {1, . . . , k−1}

that Mij has length at most s. If k is a multiple of 4, it follows from

• θi + · · · + θi+s−1 < π/2 and θi + · · · θi+s is closed to π/2 for {i, i + 1, . . . , i + s} ⊂
{1, . . . , k − 1}

and the same argument in Lemma H.1 that Mij has length at most s. Therefore in the open neigh-
bourhood L×Θ×B of (l∗, θ∗, b∗), only the following types of wedges showing up in H:

1. Mij does not contain any of {k, k + 1, . . . , c} and has length at most s;

2. Mij contains (k, k + 1, . . . , c) and has length at most s+ c− k.
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For a = k+1, . . . , c, since (L×Θ×B)∩Ta = ∅, and (L×Θ×B)∩T (1)
Mij

= (L×Θ×B)∩T (2)
Mij

= ∅
for Mij with either i ∈ {k + 1, . . . , c} or i+ j − 1 ∈ {k, . . . , c− 1}, we know that

∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0

and
∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0.

For a = 1, . . . , k, since

l1 = · · · = lk = x; θ1 = · · · = θk =
2π

k
; b1 = · · · = bk = y

is a critical point of the TMS potential for c = k, we know that

∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0

and
∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b) = 0.

For a = 1, . . . , c, we have

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

H(l, θ, b)

= 2

s∑
j=1

j ·

(
−3
[
x2 cos (jα) + y

]2
sin (jα)

cos (jα)
+

sin (jα)
[
x2 cos (jα) + y

]3
x2 cos2 (jα)

)

which is independent of a. Therefore, by Lagrangian multiplier method, the k-gon (l∗, θ∗, b∗) is a
critical point of H(l, θ, b) with constraint θ1 + · · ·+ θc = 2π.

In the previous example, we see that for n = 6, there are three different chambers whose boundary
contains the 5-gon. As different chambers give different explicit form of H , one might think H
is not differentiable at the 5-gon. However, in our proof, we show that the 5-gon has an open
neighbourhood in which H has the explicit form

∑
Mij∈M

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑

Mij∈M

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

5∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+ 1,

where θ1 + · · ·+ θ6 = 2π and M consists of the following wedges:

(1)
(2)
(3)
(4)
(5, 6)

.

So H is actually analytic at the 5-gon.
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Corollary H.1. Let k ∈ Z>4 and s be the unique integer in the interval [k4 −1, k
4 ). Let H(k)(l, θ, b)

denote the TMS potential for c = k. Suppose that a k-gon with coordinate

l1 = · · · = lk = x; θ1 = · · · = θk =
2π

k
; b1 = · · · = bk = y

for some x > 0 and y < 0 satisfying

−x2 cos

(
s · 2π

k

)
≤ y

is a critical point of H(k)(l, θ, b). Let Πc,k be the projection defined by

Πc,k : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , lk, θ1, . . . , θk−1, b1, . . . , bk).

Then for c > k, the k-gon with coordinate

l1 = · · · = lk = x, lk+1 = · · · = lc = 0;

θ1 = · · · = θk−1 =
2π

k
, θk + · · ·+ θc =

2π

k
;

b1 = · · · = bk = y, bk+1, . . . , bc < 0,

has an open neighbourhood in which

H(l, θ, b) = H(k) ◦Πc,k(l, θ, b) + (c− k).

Proof. Let τ = (k, k+1, . . . , c). From the proof of the theorem, we know that for c > k, the k-gon

l1 = · · · = lk = x, lk+1 = · · · = lc = 0;

θ1 = · · · = θk−1 =
2π

k
, θk + · · ·+ θc =

2π

k
;

b1 = · · · = bk = y, bk+1, . . . , bc < 0,

has an open neighbourhood in which

H(l, θ, b) =
∑

Mij∈M

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi+j

3

+
∑

Mij∈M

1

lili+j cos
(∑

k∈Mij
θk

)
lili+j cos

 ∑
k∈Mij

θk

+ bi

3

+

k∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
+ (c− k),

where θ1 + · · ·+ θc = 2π and M is

(1) (1, 2) · · · · · · (1, 2, . . . , s)
(2) (2, 3) · · · · · · (2, 3, . . . , s+ 1)

...
... · · · · · ·

...
(k − s) (k − s, k − s+ 1) · · · · · · (k − s, . . . , k − 1)

(k − s+ 1) (k − s+ 1, k − s+ 2) · · · · · · (k − s+ 1, . . . , k − 1, τ)
(k − s+ 2) (k − s+ 1, k − s+ 2) · · · · · · (k − s+ 1, . . . , k − 1, τ, 1)

...
... · · · · · ·

...
(τ ) (τ, 1) · · · · · · (τ, 1, . . . , s− 1)

.

Let H(k)(l1, . . . , lk, θ1, . . . , θk−1, b1, . . . , bk) denote the TMS potential for c = k. Consider the
projection

Πc,k : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , lk, θ1, . . . , θk−1, b1, . . . , bk).
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Since ∑
i∈τ

θi = 2π − (θ1 + · · ·+ θk−1),

we have
H(l, θ, b) = H(k) ◦Πc,k + (c− k).

Since the c-gons are non-degenerate (modulo O(c)-action) critical points for c = 5, 6, 7, 8, the
corollary implies that for c > k and k ∈ {5, 6, 7, 8}, the k-gon is a degenerate critical point but it
is minimally singular in the sense of the potential H being locally a sum of squares with all squares
having positive coefficients around the k-gon. We can compute the local learning coefficient of
each k-gon for k = 5, 6, 7, 8:

Critical point Local learning coefficient L
5 7 (0.23738 + c− 5)/3c
6 8.5 (0.86746 + c− 6)/3c
7 10 (1.74870 + c− 7)/3c
8 11.5 (2.77311 + c− 8)/3c

Table H.2: Local learning coefficients and losses for k-gons
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I INCLUDING POSITIVE BIASES

In this section, we discuss the kσ+-gon defined in Section 3.2. We show that for c = 6, 5+-gon
is a critical point and its local learning coefficient is 8. We also show that in general kσ+-gons
are critical points. Let WC be a nonempty chamber. Suppose that WC contains an open subset of
M2,c(R). Let M be the set of wedges describing WC . Recall that the local TMS potential is given
by (17) in Appendix G. Let’s first discuss c = 6. Consider the 5-gon (l∗, θ∗, b∗) with coordinate

l∗ : l1 = · · · = l5 = x ≈ 1.17046, l6 = 0;

θ∗ : θ1 = · · · = θ4 =
2π

5
, θ5 + θ6 =

2π

5
;

b∗ : b1 = · · · = b5 = y ≈ −0.28230, b6 = z ∈ R>0.

In Appendix H.3, we see that depending on the value of θ5, there are three different chambers whose
boundary containing the 5-gon, but for the negative bias case (bi < 0 for all i = 1, . . . , c), there is
an open neighbourhood in which the local TMS potential is smooth (Corollary H.1). Now we claim
that this holds for the general case, i.e. there is an open neighbourhood of the 5-gon in which the
local TMS potential is smooth. Since l6 = 0 and bi < 0 for all i = 1, . . . , 5, we know that

− l6l1 cos(θ6) = 0 > b1, l6l2 cos(θ6 + θ1) = 0 > b2,

− l5l6 cos(θ5) = 0 > b5, −l4l6 cos(θ4 + θ5) = 0 > b4

So there is an open neighbourhood U of the 5-gon in which these inequalities hold. Thus, in U , the
wedges appearing in the local TMS potential are

(1)
(2)
(3)
(4)
(5, 6)

.

Moreover, since b6 > 0, we have

−l6li cos(θ6 + · · ·+ θi−1) = 0 < bi,

for all i = 1, . . . , 5. We can shrink U so that these inequalities hold in U . Thus, in U , δ(S6j) = 0
for all j = 1, . . . , 5. Therefore, the local TMS potential is

4∑
i=1

1

lili+1 cos(θi)

(
lili+1 cos(θi) + bi

)3

+
1

l5l1 cos(θ5 + θ6)

(
l5l1 cos(θ5 + θ6) + b5

)3

+
4∑

i=1

1

lili+1 cos(θi)

(
lili+1 cos(θi) + bi+1

)3

+
1

l5l1 cos(θ5 + θ6)

(
l5l1 cos(θ5 + θ6) + b1

)3

+

5∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]

+

5∑
i=1

[(
l6li cos(θ6 + · · ·+ θi−1)

)2
+ 3
(
l6li cos(θ6 + · · ·+ θi−1)

)
b6 + 3b26

]
+
[
(1− l26)

2 − 3(1− l26)b6 + 3b26
]
.

Let

Φ(l, θ, b) =

4∑
i=1

(
lili+1 cos(θi) + bi

)3
lili+1 cos(θi)

+

(
l5l1 cos(θ5 + θ6) + b5

)3
l5l1 cos(θ5 + θ6)

+

4∑
i=1

(
lili+1 cos(θi) + bi+1

)3
lili+1 cos(θi)

+

(
l5l1 cos(θ5 + θ6) + b1

)3
l5l1 cos(θ5 + θ6)

+

5∑
i=1

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,
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and

Ψ(l, θ, b) =

5∑
i=1

[(
l6li cos(θ6 + · · ·+ θi−1)

)2
+ 3
(
l6li cos(θ6 + · · ·+ θi−1)

)
b6 + 3b26

)]
+
[
(1− l26)

2 − 3(1− l26)b6 + 3b26
]
,

Then the local TMS potential is

H(l, θ, b) = Φ(l, θ, b) + Ψ(l, θ, b).

Note that Corollary (H.1) implies that Φ(l, θ, b) = H(5) ◦ Π6,5(l, θ, b), where H(5) is the TMS
potential for n = 5 and Π6,5 is the projection

Π6,5 : (l1, . . . , l6, θ1, . . . , θ5, b1, . . . , b6) 7→ (l1, . . . , l5, θ1, . . . , θ4, b1, . . . , b5).

Thus, for all a = 1, . . . , 6,

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Φ(l, θ, b) = 0,
∂

∂ba

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Φ(l, θ, b) = 0,

and
∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Φ(l, θ, b)

is independent of i. For a = 1, . . . , 5,

∂

∂la
Ψ(l, θ, b) = 2

(
l6la cos(θ6 + · · ·+ θa−1)

)
l6 cos(θ6 + · · ·+ θa−1)

+ 3l6 cos(θ6 + · · ·+ θa−1)b6.

Since l6 = 0 for the 5-gon, for all a = 1, . . . , 5,

∂

∂la

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 0.

Compute

∂

∂l6
Ψ(l, θ, b) =

{
5∑

i=1

2
(
l6li cos(θ6 + · · ·+ θi−1)

)
li cos(θ6 + · · ·+ θi−1)

+ 3li cos(θ6 + · · ·+ θi−1)b6

}
− 4(1− l26)l6 + 6l6b6.

Then

∂

∂l6

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 3xz

5∑
i=1

cos

(
θ6 + (i− 1) · 2π

5

)

= 3xz

5∑
i=1

cos(θ6) cos

(
(i− 1) · 2π

5

)
− sin(θ6) sin

(
(i− 1) · 2π

5

)

= 3xz

[
cos(θ6)

5∑
i=1

cos

(
(i− 1) · 2π

5

)

− sin(θ6)

5∑
i=1

sin

(
(i− 1) · 2π

5

)]
= 3xz

[
cos(θ6) · 0− sin(θ6) · 0

]
= 0.
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For a = 1, . . . , 5,
∂

∂ba
Ψ(l, θ, b) = 0.

Compute

∂

∂b6
Ψ(l, θ, b) =

5∑
i=1

[
3
(
l6li cos(θ6 + · · ·+ θi−1)

)
+ 6b6

]
− 3(1− l26) + 6b6.

Then

∂

∂b6

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) =

( 5∑
i=1

6z

)
− 3 + 6z

= 36z − 3.

So
∂

∂b6

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 0

if and only if z = 1
12 . Note that

∂

∂θ5
Ψ(l, θ, b) = 0

as θ5 is not in Ψl,θ,b. For a = 1, . . . , 4,

∂

∂θa
Ψ(l, θ, b) =

5∑
i=a+1

[
− 2
(
l6li cos(θ6 + · · ·+ θi−1)

)
l6li sin(θ6 + · · ·+ θi−1)

− 3l6li sin(θ6 + · · ·+ θi−1)b6

]
.

Since for the 5-gon, l6 = 0, then for a = 1, . . . , 4,

∂

∂θa

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 0.

Compute

∂

∂θ6
Ψ(l, θ, b) =

5∑
i=1

[
− 2
(
l6li cos(θ6 + · · ·+ θi−1)

)
l6li sin(θ6 + · · ·+ θi−1)

− 3l6li sin(θ6 + · · ·+ θi−1)b6

]
.

Since for the 5-gon, l6 = 0, then

∂

∂θ6

∣∣∣∣
l=l∗,θ=θ∗,b=b∗

Ψ(l, θ, b) = 0.

Therefore, the 5-gon with coordinate

l∗ : l1 = · · · = l5 = x ≈ 1.17046, l6 = 0;

θ∗ : θ1 = · · · = θ4 =
2π

5
, θ5 + θ6 =

2π

5
;

b∗ : b1 = · · · = b5 = y ≈ −0.28230, b6 =
1

12
;

is a critical point of H(l, θ, b). Note that this is the 5+-gon defined in Section 3.2. We claim that
the TMS potential is minimally singular in some neighbourhood of 5+-gon and compute its local
learning coefficient.
Lemma I.1. For c = 6, the 5+-gon with coordinate (l∗, θ∗, b∗) has an open neighbourhood in
which the TMS potential is minimally singular. Moreover, its local learning coefficient is 8.
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Proof. Note that the Hessian of H at the 5+-gon (l∗, θ∗, b∗) has all positive eigenvalues except one
zero eigenvalue in the θ5-direction. Note that there is an open subset U of the parameter space such
that the connected 1-dimensional space:

C =

{
(l, θ, b) | l = l∗, b = b∗, θ1 = · · · θ4 =

2π

5
, 0 ≤ θ5 ≤ 2π

5

}
is the set of critical points of H in U . Moreover, since for all (l, θ, b) ∈ C, the Hessian of H at
(l, θ, b) is non-degenerate in the direction normal to T(l,θ,b)C, H|U is a Morse-Bott function with
index 0. It follows from the Morse-Bott lemma that H is minimally singular in U and the local
learning coefficient is (17− 1)/2 = 8.

Now we discuss the kσ+-gons (in Section 3.2) for k < c. Let B+ ⊂ {k + 1, . . . , c}. Let σ = |B+|.
Consider the k-gon (l∗, θ∗, b∗) with coordinate

l∗ :l1 = · · · = lk = x > 0, lk+1 = · · · = lc = 0;

θ∗ :θ1 = · · · = θk−1 =
2π

c
, θk + · · ·+ θc =

2π

c
;

b∗ :b1 = · · · = bk = y < 0,

for i = k + 1, . . . , c, bi < 0 if i /∈ B+ and bi = z > 0 if i ∈ B+.

Theorem I.1. There is an open neighbourhood of (l∗, θ∗, b∗) in which the TMS potential is

H(l, θ, b) = H(k) ◦Πc,k(l, θ, b) +
(
c− (k + σ)

)
+
∑
i∈B+

H+
i (l, θ, b),

where

1. H(k) is the TMS potential for c = k;

2. Πc,k is the projection:
Πc,k : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , lk, θ1, . . . , θk−1, b1, . . . , bk);

3. for each i ∈ B+,

H+
i (l, θ, b) =

∑
j ̸=i

[(
lilj cos(θij)

)2
+ 3
(
lilj cos(θij)

)
bi + 3b2i

]
+
[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i
]
,

where θij denote the angle between Wi and Wj .

Proof. This follows from applying the same argument in the c = 6 case.

Theorem I.2. Let k ∈ Z>4 and s be the unique integer in the interval [k4 − 1, k
4 ). If a k-gon with

coordinate
l1 = · · · = lk = x; θ1 = · · · = θk =

2π

k
; b1 = · · · = bk = y

for some x > 0 and y < 0 satisfying

−x2 cos

(
s · 2π

k

)
≤ y

is a critical point of H(l, θ, b) with constraint θ1 + · · · + θk = 2π for c = k, then for any integer
0 ≤ σ ≤ c− k, the kσ+-gons defined in Section 3.2 are critical points of H(l, θ, b) with constraint
θ1 + · · ·+ θc = 2π for any c > k.

Proof. This follows from applying the same argument in the c = 6 case.

Remark I.1. In Lemma I.1, we show that the 5+-gon for c = 6 is minimally singular and compute
the local learning coefficient. In general, we do not know whether the kσ+-gons are minimally
singular or not for c > k. However, given a kσ+-gon, the method to check whether it is minimally
singular or not is the same as the method used in Lemma I.1. We compute the Hessian of the TMS
potential at each kσ+-gon. Then check that the Hessian of the TMS potential is non-degenerate in
the direction normal to the tangent space of kσ+-gons. If this is the case, then we conclude that the
kσ+-gon is minimally singular by Morse-Bott lemma.
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J 4-GONS

In this section we discuss 4-gons. The subtlety here is that the TMS potential is not smooth at 4-gons.
In particular, the directional Hessian of the TMS potential at 4-gons depends on the direction.

J.1 c = 4

J.1.1 STANDARD 4-GON

For c = 4, consider the (standard) 4-gon (l∗, θ∗, b∗), where

l∗ = (1, 1, 1, 1), θ∗ =
(π
2
,
π

2
,
π

2
,
π

2

)
, b∗ = (0, 0, 0, 0).

Since H(l, θ, b) ≥ 0 and H(l∗, θ∗, b∗) = 0, we know the 4-gon is a global minimum. Let’s work out
the explicit form of H around the 4-gon (l∗, θ∗, b∗). Since cos(π/2) = 0, the 4-gon is at boundary
of some chambers. Let M = {Mij} be a chamber whose boundary contains the 4-gon (l∗, θ∗, b∗).
We claim that each wedge Mij is either empty or contains one number. Assume, by contradiction,
there is a Mij in M contains more than one number. Then we show that the 4-gon (l∗, θ∗, b∗) is not
in the boundary of the chamber described by M. Let ϵθ ∈ R>0 be such that

π − 2ϵθ >
π

2
.

Then for any θ, θ′ ∈
(
π
2 − ϵ, π

2 + ϵ
)
,

θ + θ′ >
π

2
− ϵθ +

π

2
− ϵθ = π − 2ϵθ >

π

2
.

Let ϵl ∈ R>0 be such that 1− ϵl > 0. So (l∗, θ∗, b∗) has an open neighbourhood given by

(1− ϵl, 1 + ϵl)
4 ×

(π
2
− ϵθ,

π

2
+ ϵθ

)3
× R4

which does not intersect the interior of the chamber described by M. Thus, (l∗, θ∗, b∗) is not in the
boundary of the chamber described by M when some of Mij in M contains more than one element.
So each wedge Mij in M contains at most one element. Because of the permutation symmetry, there
are three possible M:

M1 = (1) , M2 = (1)
(2)

, M3 = (1)
(3)

, M4 =
(1)
(2)
(3)

.

Since −12 < 0, (l∗, θ∗, b∗) has an open neighbourhood in which

−l2i < bi

for i = 1, 2, 3, 4. Since cos(π) = −1 < 0, the 4-gon (l∗, θ∗, b∗) has an open neighbourhood in
which for all i = 1, 2, 3, 4, if bi > 0, then

lili+2 cos(θi + θi+1) < −bi.

Recall the formula 17 for the local TMS potential in Section G. The 4-gon (l∗, θ∗, b∗) has an open
neighbourhood in which the local TMS potential is

H(l, θ, b) =

4∑
i=1

δ(bi ≤ 0)H−
i (l, θ, b) + δ(bi > 0)H+

i (l, θ, b), (18)

where

H−
i (l, θ, b) = δ(T

(1)
M(i−1)1

)

[
li−1li cos(θi−1) + bi

]3
li−1li cos(θi−1)

+ δ(T
(2)
Mi1

)

[
lili+1 cos(θi) + bi

]3
lili+1 cos(θi)

+

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,
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and

H+
i (l, θ, b) = δ(Si(i+1))

[
−b3i

lili+1 cos(θi)

]
+
(
1− δ(Si(i+1))

)[(
lili+1 cos(θi)

)2
+ 3
(
lili+1 cos(θi)

)
bi + 3b2i

]
+

[
−b3i

lili+2 cos(θi + θi+1)

]
+ δ(Si(i+3))

[
−b3i

lili+3 cos(θi+3)

]
+
(
1− δ(Si(i+3))

)[(
lili+3 cos(θi+3)

)2
+ 3
(
lili+3 cos(θi+3)

)
bi + 3b2i

]
+ (1− l2i )

2 − 3(1− l2i )bi + 3b2i

We checked that each term in H−
i (l, θ, b) and H+

i (l, θ, b) has gradient zero when approaching
(l∗, θ∗, b∗) in the region specified by the indicator function associated with it. Thus, the TMS po-
tential is differentiable at the (l∗, θ∗, b∗), and (l∗, θ∗, b∗) is a critical point. However, the TMS
potential is not continuously differentiable twice, i.e. there are different directions in which direc-
tional Hessians are different. We checked that (l∗, θ∗, b∗) is minimally singular in each subspace
with nonempty interior containing (l∗, θ∗, b∗) in the boundary. So we obtain a list {4, 4.5, 5, 5.5} of
local learning coefficient when approached from these different subspaces.

J.1.2 4ϕ−-GON

Let B− ⊂ {1, 2, 3, 4} and ϕ = |B−|. Consider the 4ϕ−-gon (Section 3.2) with coordinate

θ∗ :θ1 = θ2 = θ3 = θ4 =
π

2
;

b∗ :bi < 0 if i ∈ B− and bi = 0 if i /∈ B−;

l∗ :0 < l2i < −bi if i ∈ B− and li = 1 if i /∈ B−.

Since cos(π/2) = 0, the 4ϕ−-gon is on the boundary of some chambers. Let M = {Mij} be a
chamber whose boundary contains 4ϕ−-gon. Using the same arguments in Section J.1.1, we know
that each Mij is either empty or contains one number. Because of the O(2)-symmetry, there are four
possible M:

M1 = (1) , M2 = (1)
(2)

, M3 = (1)
(3)

, M4 =
(1)
(2)
(3)

.

For i /∈ B−, we have l2i = 1 > 0 = bi. For i ∈ B−, we have −l2i > bi, −lili+1 cos(θi) = 0 > bi,
and −li−1li cos(θi−1) = 0 > bi. Since cos(π) = −1 < 0, the 4ϕ−-gon has an open neighbourhood
in which for all i = 1, 2, 3, 4, if bi > 0, then

lili1 cos(θi + θi+1) < bi.

So the 4ϕ−-gon has an open neighbourhood in which the local TMS potential is

H(l, θ, b) =

4∑
i=1

δ(bi ≤ 0)H−
i (l, θ, b) + δ(bi > 0)H+

i (l, θ, b), (19)

where

1. if i /∈ B−, then

H−
i (l, θ, b) = δ(T

(1)
M(i−1)1

)

[
li−1li cos(θi−1) + bi

]3
li−1li cos(θi−1)

+ δ(T
(2)
Mi1

)

[
lili+1 cos(θi) + bi

]3
lili+1 cos(θi)

+

[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i +
b3i
l4i

+
b3i
l2i

]
,
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and

H+
i (l, θ, b) = δ(Si(i+1))

[
−b3i

lili+1 cos(θi)

]
+
(
1− δ(Si(i+1))

)[(
lili+1 cos(θi)

)2
+ 3
(
lili+1 cos(θi)

)
bi + 3b2i

]
+

[
−b3i

lili+2 cos(θi + θi+1)

]
+ δ(Si(i+3))

[
−b3i

lili+3 cos(θi+3)

]
+
(
1− δ(Si(i+3))

)[(
lili+3 cos(θi+3)

)2
+ 3
(
lili+3 cos(θi+3)

)
bi + 3b2i

]
+ (1− l2i )

2 − 3(1− l2i )bi + 3b2i ;

2. if i ∈ B−, then

H−
i (l, θ, b) = 1,

and

H+
i (l, θ, b) = 0.

If ϕ = 4, then the 4ϕ−-gon has an open neighbourhood in which the TMS potential is the zero
function, hence it is a critical point with local learning coefficient 0. For 0 ≤ ϕ ≤ 3, we checked
that each term in H−

i (l, θ, b) and H+
i (l, θ, b) has gradient zero when approaching the 4ϕ−-gon in the

region specified by the indicator function associated with it. Thus, the TMS potential is differentiable
at the 4ϕ−-gon, and the 4ϕ−-gon is a critical point. However, the TMS potential is not continuously
differentiable twice, i.e. there are different directions in which directional Hessians are different. We
checked that the 4ϕ−-gon is minimally singular in each subspace with nonempty interior containing
the 4ϕ−-gon in the boundary. So we obtain lists

ϕ = 1 :{3, 3.5, 4, 4.5};
ϕ = 2 :{2, 2.5, 3, 3.5} for B− = {i, i+ 1}, where i = 1, 2, 3, 4,

{2.5, 3, 3.5, 4} for B− = {i, i+ 2}, where i = 1, 2, 3, 4;

ϕ = 3 :{1, 1.5, 2, 2.5};
ϕ = 4 :{0}.

of local learning coefficient for each when approached from these different subspaces.

J.2 c > 4

We analyse four typical 4-gons appearing as critical points of TMS potential in this section. In
particular, we state their coordinates (hence computing their loss), and discuss their local learning
coefficient. Because of the permutation symmetry, we may assume that 4-gons have θ-coordinate

θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
.

So for given l1, . . . , lc and biases b1, . . . , bc, there is a set of 4-gons given by (θ4, . . . , θc) with
θ4 + · · ·+ θc = π/2. As discussing in Appendix J.1, 4-gons are in the boundary of some chambers.
Let M = {Mij} be wedges describing a chamber containing 4-gons in its boundary. Let τ =
(4, 5, . . . , c). Applying the same arguments in Appendix H.3 and Appendix J.1, we know that M
can only be a proper subset of {(1), (2), (3), τ}.

Consider the standard 4-gons with coordinate

l1 = l2 = l3 = l4 = 1, l5 = · · · = lc = 0;

θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
;

b1 = b2 = b3 = b4 = 0, bk+1, . . . , bc < 0.
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Theorem J.1. For a fixed M, let H(4) denote the TMS potential in some neighbourhood of the
standard 4-gon for c = 4 (Appendix J.1.1). Consider the projection

Πc,4 : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , l4, θ1, . . . , θ3, b1, . . . , b4).

The TMS potential in the chamber described by M is

H(l, θ, b) = H(k) ◦Πc,4(l, θ, b) + (c− k).

Proof. This theorem follows from the same arguments used in Corollary H.1.

Thus, the standard 4-gons are critical points of the TMS potential. Moreover, we obtain a list
{4, 4.5, 5, 5.5} of local learning coefficient when approached from different chambers.

Let B− ⊂ {1, 2, 3, 4}. Let ϕ = |B−|. Consider the 4ϕ−-gons (Section 3.2) with coordinate

θ∗ : θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
b∗ : for i = 1, 2, 3, 4, bi < 0 if i ∈ B− and bi = 0 if i /∈ B−,

for j = 5, 6, · · · , c, bj < 0;

l∗ : for i = 1, 2, 3, 4, 0 < l2i < −bi if i ∈ B− and li = 1 if i /∈ B−,

for j = 5, 6, . . . , c, lj = 0.

Theorem J.2. For a fixed M, let H(4,−) denote the TMS potential in some neighbourhood of 4ϕ−-
gon for c = 4 (Appendix J.1.2). Consider the projection

Πc,4 : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , l4, θ1, . . . , θ3, b1, . . . , b4).

The TMS potential in the chamber described by M is

H(l, θ, b) = H(k,−) ◦Πc,4(l, θ, b) + (c− k).

Proof. This theorem follows from the same arguments used in Corollary H.1.

Thus, the 4ϕ−-gons are critical points of the TMS potential. Moreover, we obtain lists

ϕ = 1 :{3, 3.5, 4, 4.5};
ϕ = 2 :{2, 2.5, 3, 3.5} for B− = {i, i+ 1}, where i = 1, 2, 3, 4,

{2.5, 3, 3.5, 4} for B− = {i, i+ 2}, where i = 1, 2, 3, 4;

ϕ = 3 :{1, 1.5, 2, 2.5};
ϕ = 4 :{0}.

of local learning coefficient when approached from different chambers.

Now, we discuss when σ > 0. We show that all 4σ+,ϕ−-gons are critical points for σ = 1, 2 and
0 ≤ ϕ ≤ 4. However, we do not know whether these critical points are minimally singular or not.
Let B+ ⊂ {5, 6, . . . , c}. Let σ = |B+|. Consider the 4σ+-gons (Section 3.2) with coordinate

l∗ : l1 = l2 = l3 = l4 = 1 > 0, lk+1 = · · · = lc = 0;

θ∗ : θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
;

b∗ : b1 = b2 = b3 = b4 = 0,

for i = 5, 6, . . . , c, bi < 0 if i /∈ B+ and bi =
1

2c
if i ∈ B+.

Theorem J.3. For a fixed M, let H(4) denote the TMS potential in some neighbourhood of the
standard 4-gon for c = 4 (Appendix J.1.1). Consider the projection

Πc,4 : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , l4, θ1, . . . , θ3, b1, . . . , b4).

58



Under review as a conference paper at ICLR 2024

The TMS potential in the chamber described by M is

H(l, θ, b) = H(4) ◦Πc,4(l, θ, b) +
(
c− (4 + σ)

)
+
∑
i∈B+

H+
i (l, θ, b),

where for each i ∈ B+,

H+
i (l, θ, b) =

∑
j ̸=i

[(
lilj cos(θij)

)2
+ 3
(
lilj cos(θij)

)
bi + 3b2i

]
+
[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i
]
,

where θij denote the angle between Wi and Wj .

Proof. This follows from the same arguments in Theorem I.1.

Thus, the 4σ+-gons are critical points of the TMS potential. However, we do not know whether
the 4σ+-gons are minimally singular or not. In c = 6 case, we computed the directional Hessian at
4σ+-gon for σ = 1, 2 along various directions. For directions we have analysed, the eigenvectors
of the Hessian with negative eigenvalues point in directions that escapes the set where the current
form of the local TMS potential applies. By counting the number of zero eigenvalues, we obtain
a list {6, 6.5, 7, 7.5} of upper bounds for the local learning coefficients for 42+-gons, and a list of
{5, 5.5, 6, 6.5} of upper bounds of local learning coefficients for 4+-gons.

Let B− ⊂ {1, 2, 3, 4} and B+ ⊂ {5, 6, · · · , c}. Consider the 4σ+,ϕ−-gon (Section 3.2) with coor-
dinate

θ∗ : θ1 = θ2 = θ3 =
π

2
, θ4 + · · ·+ θc =

π

2
b∗ : for i = 1, 2, 3, 4, bi < 0 if i ∈ B− and bi = 0 if i /∈ B−,

for j = 5, 6, · · · , c, bj < 0 if j /∈ B+ and bj =
1

2c
if j ∈ B+;

l∗ : for i = 1, 2, 3, 4, 0 < l2i < −bi if i ∈ B− and li = 1 if i /∈ B−,

for j = 5, 6, . . . , c, lj = 0.

Theorem J.4. For a fixed M, let H(4,−) denote the TMS potential in some neighbourhood of the
4ϕ−-gon for c = 4 (Appendix J.1.2). Consider the projection

Πc,4 : (l1, . . . , lc, θ1, . . . , θc−1, b1, . . . , bc) 7→ (l1, . . . , l4, θ1, . . . , θ3, b1, . . . , b4).

The TMS potential in the chamber described by M is

H(l, θ, b) = H(4,−) ◦Πc,4(l, θ, b) +
(
c− (4 + σ)

)
+
∑
i∈B+

H+
i (l, θ, b),

where for each i ∈ B+,

H+
i (l, θ, b) =

∑
j ̸=i

[(
lilj cos(θij)

)2
+ 3
(
lilj cos(θij)

)
bi + 3b2i

]
+
[
(1− l2i )

2 − 3(1− l2i )bi + 3b2i
]
,

where θij denote the angle between Wi and Wj .

Proof. This follows from the same arguments in Theorem I.1.

Thus, the 4σ+,ϕ−-gons are critical points of the TMS potential. However, we do not know whether
the 4σ+,ϕ−-gons are minimally singular or not.
Remark J.1. For σ > 0, we do not have a precise value for the local learning coefficient. In
Appendix K, we provide estimation of local learning coefficients for 4σ+,ϕ−-gons.
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Figure K.1: Loss trace plots for samples used for λ̂ produced via SGLD sampling. The left plot show
SGLD chains that are all “healthy” and the right plot shows a trajectory that escapes the phase of the
initialising critical point (loss indicated by red horizontal line) to another phase with lower loss. To
obtain the estimates λ̂ listed in Table K.1, such unhealthy chains are removed from consideration.

K DETAILS OF LOCAL LEARNING COEFFICIENT ESTIMATION

In this section, we discuss technical details and caveats about the values of the local learning coeffi-
cient estimates λ̂ given throughout the paper. It was claimed in Lau et al. (2023) that the λ̂ algorithm
is valid for comparing or ordering critical points by their level of degeneracy. Obtaining the correct
local learning coefficient can prove challenging. For TMS, we find that

• The ordering of λ̂ for different critical points lines up with the theoretical prediction.

• For critical points with low loss such as 6, 5 and 5+-gon depicted in Figure A.2, the λ̂
values are close to theoretically derived values.

• However, for critical points with higher loss, mis-configured SGLD step size used in the
algorithm can causing the sample path itself to undergo a phase transition to a lower loss
state. See the diagnostic trace plot on the right of Figure K.1 for an example where SGLD
trajectory drop to a different phase. This is the reason for negative λ̂ values shown in Figure
3, in which we opted to use a uniform set of SGLD hyperparameters since we cannot a
priori predict which critical point an SGD trajectory will visit.

• Lowering SGLD step size can ameliorate this issue, at the cost of increasing the required
number of sampling steps needed.

Table K.1 shows a set of λ̂ values computed using bespoke SGLD step size (explained below) for
each group of 3 critical points with similar loss (again c.f. Figure A.2. Specifically, we take the
dataset size n = 5000, and SGLD hyperparameters γ = 0.1, number of steps = 10000.

Furthermore, for each critical point, we run 10 independent SGLD chains and discard any chain
where more than 5% of the samples have loss values that are lower than the critical point itself. The
λ̂ estimate and the standard deviation are then calculated from the remaining chains. The SGLD
step size is manually chosen so that the majority of chains in each group passes the test above.
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Critical point Estimated λ̂ (std) SGLD step size

4−−−− 0.000 (0.00) 0.0000005

4+−−−− 0.540 (0.16) 0.0000005

4++−−−− 0.998 (0.54) 0.0000005

4−−− 1.024 (0.74) 0.000001

4+−−− 1.619 (0.89) 0.000001

4++−−− 1.899 (0.76) 0.000001

4−− 1.689 (0.88) 0.000001

4+−− 2.096 (1.00) 0.000001

4++−− 2.597 (0.88) 0.000001

4− 2.991 (0.35) 0.000005

4+− 3.393 (0.65) 0.000005

4++− 4.097 (0.65) 0.000005

4 5.297 (0.04) 0.00001

4+ 5.761 (1.53) 0.00001

4++ 6.203 (0.99) 0.00001

5 7.705 (0.85) 0.00005

5+ 9.906 (1.27) 0.00005

6 9.027 (0.59) 0.00005

Table K.1: λ̂ for known critical points in r = 2, c = 6, their standard deviation across viable SGLD
chains and the SGLD step size used.
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