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Abstract

Learning chemically meaningful representations from unlabeled molecules plays a vital role
in AI-based drug design and discovery. In response to this, several self-supervised learning
methods have been developed, focusing either on global (e.g., graph-level) or local (e.g.,
motif-level) information of molecular graphs. However, it is still unclear which approach
is more effective for learning better molecular representations. In this paper, we propose
a novel holistic self-supervised molecular representation learning framework that effectively
learns both global and local molecular information. Our key idea is to utilize fragmentation,
which decomposes a molecule into a set of chemically meaningful fragments (e.g., functional
groups), to associate a global graph structure to a set of local substructures, thereby preserv-
ing chemical properties and learn both information via contrastive learning between them.
Additionally, we also consider the 3D geometry of molecules as another view for contrastive
learning. We demonstrate that our framework outperforms prior molecular representation
learning methods across various molecular property prediction tasks.

1 Introduction

Obtaining discriminative representations of molecules is a long-standing problem in chemistry (Morgan,
1965). Such a task is critical for many applications, such as drug discovery (Capecchi et al., 2020) and mate-
rial design (Gómez-Bombarelli et al., 2018), since it is a fundamental building block for various downstream
tasks, e.g., molecular property prediction (Duvenaud et al., 2015) and molecular generation (Mahmood
et al., 2021). Over the past decades, researchers have focused on handcrafting the molecular fingerprint
representation which encodes the presence of chemically informative substructures, e.g., functional groups,
in a molecule (Rogers & Hahn, 2010; Seo et al., 2020).
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Figure 1: An overview of Holistic Molecular representation learning via multi-view fragmentation (Holi-
Mol). (a) Fragment-based single-view contrastive learning: a set of fragments is regarded as a positive
view of the molecule. ri and {rj

i }ni
j=1 refer to representations of the molecular graph Mi and its fragments,

respectively. (b) Fragment-based cross-view contrastive learning: positive pairs are constructed using 2D and
3D views of a molecule and its fragments. (c) Torsional angle prediction between fragments: 3D contextual
information is learned by predicting the torsional angle.

Recently, graph neural networks (GNNs, Kipf & Welling, 2017) have gained much attention as a framework to
learn the molecular graph representation due to its remarkable performance in predicting chemical properties
(Wu et al., 2018). However, they often suffer from overfitting when the number of labeled training samples is
insufficient (Rong et al., 2020b). To resolve this, researchers have investigated self-supervised learning that
generates supervisory signals without labels to utilize a huge amount of unlabeled molecules (Rong et al.,
2020a; Zhou et al., 2022).

The self-supervised learning approaches for 2D molecular graphs fall in two categories: (a) contrastive
learning with graph augmentations, e.g., edge drop (Wang et al., 2021), and (b) masked substructure,
e.g., motifs prediction (Hu et al., 2020a; Zhang et al., 2021). Specifically, the former (a) learns molecular
representations by maximizing the agreement of similar positive views while minimizing that of dissimilar
negative views on the representation space. Although this approach can learn global graph structures,
it often fails to capture chemically meaningful local information (e.g., functional groups) since the graph
augmentations may not preserve such substructures. In contrast, the latter approach (b) captures the local
information well by predicting substructures directly from masked molecular graphs. Yet, it is unclear
whether they learn the global information well.

In the field of chemistry, both global and local information in molecular graphs are chemically important.
For example, long chain-like global molecular structures are associated with high water-octanol partition
coefficients (Bhal, 2007), while the molecules with the fluorobenzene substructure are highly likely to be
active on blood-brain barrier permeability (i.e., 97% active ratio in the BBBP dataset (Wu et al., 2018)).
This inspires us to explore the following research question: how to capture both global and local information
for learning better molecular representations?

Contribution. Our key idea is to (i) associate a global structure with a set of substructures and (ii)
learn their relationships via contrastive learning to capture both global and local information. Specifically,
we utilize fragmentation that decomposes a molecule into a set of chemically meaningful fragments, e.g.,
functional groups. In particular, we use the popular fragmentation strategy, Breaking of Retrosynthetically
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Interesting Chemical Substructures (BRICS, Degen et al., 2008), which preserves the functional groups (Liu
et al., 2017). We also utilize the 3D geometry1 as another global and substructure views of contrastive
learning and propose the 3D torsional angle prediction task between fragments. They enrich the molecular
representations since such 3D information is related to various molecular properties, e.g., polarizability
(Anslyn & Dougherty, 2006).

In an effort to jointly consider both global and local information acquired through fragmentation of the 2D
and 3D multi-view unlabeled molecules, we introduce a novel molecular representation learning framework,
Holistic Molecular reprsentation learning via multi-view fragmentation (Holi-Mol). To be specific, Holi-
Mol consists of the following components (see Figure 1).

(a) Fragment-based single-view contrastive learning. To facilitate interaction between a molecule
and its substructures, we consider a set of fragments as a positive view of the molecule. We then apply
contrastive learning between the whole molecular structure and the set of fragments for learning
molecular representations via 2D and 3D molecule GNNs separately (i.e., single-view).

(b) Fragment-based cross-view contrastive learning. We consider molecule-level and fragment-
level positive pairs between 2D topological and 3D geometric graphs. We then apply contrastive
learning between the 2D and 3D views for learning 2D and 3D molecule GNNs jointly (i.e., cross-
view). This cross-view objective enriches both global-level and local-level representations.

(c) Torsional angle prediction between fragments. To further exploit 3D geometric fragment-
wise information, we suggest solving the torsional angle prediction task between adjacent fragments.
Note that the torsional angle, defined by the dihedral angle of four adjacent atoms, is related to
several 3D contextual properties, e.g., the energy surface around the bond (Smith, 2008).

For evaluation, we follow the multi-view pretraining setup (Stärk et al., 2022; Liu et al., 2022b): (i) pretrain
a 2D molecule GNN using an unlabeled molecular dataset containing both 2D and 3D information, and
then (ii) fine-tune the GNN on downstream tasks without 3D information. This setup using only 2D GNN
is practically important since 3D information is often unattainable in downstream tasks due to the high
computation cost. We explore the usefulness of our pre-trained 3D GNN in Appendix G.

Through extensive experiments, we demonstrate the superiority of our Holi-Mol framework over existing
pretraining methods. Specifically, our GNN pretrained by Holi-Mol on the GEOM (Axelrod & Gomez-
Bombarelli, 2022) dataset consistently outperforms the state-of-the-art method, GraphMVP (Liu et al.,
2022b), when transferred to both MoleculeNet classification (Wu et al., 2018) and QM9 regression (Ramakr-
ishnan et al., 2014) benchmarks (see Table 1 and 2, respectively). For example, we improve the average
ROC-AUC score by 74.1 → 75.5 over the prior art on MoleculeNet. We further demonstrate the potential
of Holi-Mol for other applications: semi-supervised/fully-supervised learning (see Table 3) and molecule
retrieval (see Table 4).

2 Preliminaries

Multi-view molecular representation learning. The problem of interest in this paper is molecular
representation learning (MRL) which aims to (i) learn a generalizable neural network for molecules f : M →
Rd where M is the molecular space and Rd is the embedding space, and (ii) utilize the network f for various
chemical downstream tasks (e.g., toxicity prediction). Usually, (i) utilizes only unlabeled molecules (Sun
et al., 2019; You et al., 2020; 2021; Liu et al., 2022b) due to the significant experimental cost to obtain label
information of molecules compared to the cost of the collection of unlabeled molecules.

In general, a molecule M ∈ M can be represented by an attributed graph M = (V, E, A, B, R) where V is
a set of nodes associated with atom features A ∈ R|V |×datom (e.g., atomic numbers), E ⊆ V × V is a set of
edges associated with bond features B ∈ R|E|×dbond (e.g., bond types), and R ∈ R|V |×3 is an array of 3D atom

1A molecule can be represented by (a) a 2D topological graph (V, E) of nodes V and edges E or (b) a 3D geometric graph
(V, R) of nodes V and 3D coordinates R.
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positions. Conventionally, M2D = (V, E, A, B) and M3D = (V, A, R) are referred to 2D and 3D molecular
graphs, respectively (Stärk et al., 2022; Liu et al., 2022b). We note that obtaining accurate 3D information
R is very expensive due to iterative quantum computations and thus many real-world applications suffer
from the lack of such 3D information (Liu et al., 2022b).

To consider a wide range of downstream tasks, we focus on learning a graph neural network (GNN) for
2D molecular graphs f2D : M2D → Rd where M2D is the 2D molecular graph space. To be specific, we (i)
pretrain a 2D molecule GNN f2D using an unlabeled set of molecules Du ⊆ M containing both 2D and 3D
information, and then (ii) fine-tune f2D on downstream tasks without 3D information, i.e., each task has a
dataset D ⊆ M2D ×Y where Y is the label space. Therefore, it is important to inject not only 2D topological
information, but also 3D geometric information into the 2D molecule GNN f2D during pretraining. We
remark that this multi-view pretraining setup has been recently investigated (Stärk et al., 2022; Liu et al.,
2022b) to alleviate the scarcity of 3D topological information.

2D molecule GNN f2D : M2D → Rd. For any 2D molecule M2D = (V, E, A, B) ∈ M2D, GNNs for 2D
molecules (2D-GNNs in short) compute molecular representations by applying (a) iterative neighborhood
aggregation (i.e., message passing) to acquire node-level representations based on the graph (V, E) and then
(b) a readout function (e.g., mean pooling) to create graph-level representations. Formally, node- and graph-
level representations of L-layer 2D-GNN are as follows:

h(ℓ)
v := MP(h(ℓ−1)

v , {h(ℓ−1)
u , Buv}u∈N (v)), ℓ ∈ [L],

f2D(M) := f2D(M2D) = Readout({h(L)
v }v∈V ),

where MP(·) is a message passing layer, Readout(·) is a readout function, h(0)
v = Av is the atom feature for

a node v, Buv is the bond feature for an edge (u, v) ∈ E, and N (v) is the set of adjacent nodes of v. In
this work, we mainly use the graph isomorphism network (GIN) architecture (Xu et al., 2019) following the
standard MRL setup (Hu et al., 2020a).

3D molecule GNN f3D : M3D → Rd. For any 3D molecule M3D = (V, A, R) ∈ M3D, GNNs for 3D molecules
(3D-GNNs in short) compute molecular representations by applying (a) iterative geometric interactions
through distances and angles between nodes (i.e., atoms) to acquire node-level representations based on the
3D geometry R and then (b) a readout function to create graph-level representation Formally, node- and
graph- level representations of L-layer 3D-GNN are as follows:

h(ℓ)
v := IB(h(ℓ−1)

v , Rv, {h(ℓ−1)
u , Ru}u∈V \{v}), ℓ ∈ [L],

f3D(M) := f3D(M3D) = Readout({h(L)
v }v∈V ),

where IB(·) is an interaction block, Readout(·) is a readout function, h(0)
v = Av and Rv is the atom feature

and the 3D position for a node v, respectively. In this work, we mainly use the SchNet architecture (Schütt
et al., 2017) following the setup of Liu et al. (2022b).

Contrastive learning. Contrastive learning aims to learn discriminative representations by attracting
positive views while repelling negative views on the representation space, e.g., see Chen et al. (2020). A
common practice for generating positive views is to utilize semantic-preserving transformations. Let (x, x+)
be a positive pair generated by the transformations and (x, x−) be a negative pair obtained from different
instances in a mini-batch. If z, z+, and z− are the representations of x, x+, and x−, respectively, then the
contrastive learning objective LCL can be written as follows (You et al., 2020; Chen et al., 2020):

LCL(z, z+, {z−}) = − log exp(sim(z, z+)/τ)∑
z− exp(sim(z, z−)/τ) , (1)

where sim(z, z̃) = z⊤z̃/∥z∥2∥z̃∥2 is the cosine similarity and τ is a temperature-scaler. Here, the set {z−}
may include the positive z+ depending on the choice of objectives, e.g., NT-Xent (Chen et al., 2020).

3 Holistic molecular representation learning via multi-view fragmentation

In this section, we propose a holistic molecular representation learning via multi-view fragmentation, coined
Holi-Mol, which fully exploits both global and local molecular information using 2D and 3D multi-view
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fragmentation in order to learn good representation of 2D-GNN f2D. First, we introduce our fragmentation
scheme (Section 3.1). Thereafter, we describe details of our fragment-based components: single-view con-
trastive learning (Section 3.2), cross-view contrastive learning (Section 3.3), and torsional angle prediction
between fragments (Section 3.4). Our framework is illustrated in Figure 1.

3.1 Molecular fragmentation

Our framework relies on the molecular fragmentation which decomposes a molecule into a set of chemically
meaningful fragments (i.e., substructures). In this paper, we mainly use the popular strategy, Breaking of
Retrosynthetically Interesting Chemical Substructures (BRICS, Degen et al., 2008), which is designed to
preserve most chemically informative substructures and has been widely adopted in the prior literatures
(Zhang et al., 2021; Yang et al., 2022). The efficacy of BRICS is further verified through an analysis in
Appendix H. Formally, for a molecule M = (V, E, A, B, R), a fragmentation scheme decomposes M into
a set of fragments {M j} where M j = (V j , Ej , Aj , Bj , Rj) is the j-th connected component of the graph
induced by the fragmentation. We refer 2D and 3D fragment as M j

2D and M j
3D, respectively.

3.2 Fragment-based contrastive learning: Single-view objective

To incorporate both global and local information into molecular representation, we propose contrastive learn-
ing objective upon molecular fragmentation. To achieve this, we first utilize fragmentation (see Section 3.1).
Then, Holi-Mol learns the relationship between molecule-level and fragment-level information by considering
a set of fragments as a positive view of a molecule. To be specific, given a training batch {Mi}n

i=1, we
consider (Mi, {M j

i }ni
j=1) as a positive pair (i.e., they share the same chemical semantics) where ni is the

number of fragments of the molecule Mi. To aggregate representations of {M j
i }ni

j=1, we use the attention
pooling (Li et al., 2016). Formally, the representation for the set {M j

i }ni
j=1 is:

rmix
i :=

ni∑
j=1

exp(a⊤rj
i + b)∑ni

l=1 exp(a⊤rl
i + b)

· rj
i ,

where rj
i := f(M j

i ) is the representation for each fragment, a ∈ Rd and b ∈ R are learnable parameters.
Similarly, we compute the molecular representation ri = f(Mi) for the whole structure. Then, we separately
optimize the 2D-GNN f2D and the 3D-GNN f3D along with projection heads g2D (or 3D) : Rd → Rd by the
following contrastive objective with the fragment-based positive pairs:

Lsingle := 1
n

n∑
i=1

(
LCL(z2D,i, zmix

2D,i, {zmix
2D,j}j ̸=i) + LCL(z3D,i, zmix

3D,i, {zmix
3D,j}j ̸=i)

)
, (2)

where zi = g(ri) and zmix
i = g(rmix

i ).

3.3 Fragment-based contrastive learning: Cross-view objective

To bring 3D geometric information into molecular representation of 2D-GNN effectively, we propose cross-
view contrastive objective. Since these views provide different chemical information (e.g., atom-bond con-
nectivity (Estrada et al., 1998) and energy surface (Smith, 2008) in the 2D and 3D views, respectively), such
a cross-view objective could make the representation f(M) more informative. To further utilize global and
local information of 3D molecules, we use both of molecule-level and fragment-level cross-view contrastive
learning objectives into our framework.

Molecule-level objective. Here, we consider (M2D,i, M3D,i) as a positive pair. Then, the molecule-level
contrastive objective can be written as follows:

Lcross,mol := 1
2n

n∑
i=1

(
LCL(z2D,i, z3D,i, {z3D,k}n

k=1) + LCL(z3D,i, z2D,i, {z2D,k}n
k=1)

)
. (3)
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This objective is well-known to be effective in general multi-view representation learning (Radford et al.,
2021; Tian et al., 2020), and also investigated in molecular representation learning (Stärk et al., 2022; Liu
et al., 2022b). However, modeling the cross-view contrastive objective based solely on the similarity of
molecule-level representations may lack capturing fragment-level information (i.e., chemical property at a
finer level). Therefore, inspired by token-wise contrastive learning in the vision-language domain (Yao et al.,
2022), we suggest fragment-level cross-view contrastive learning in what follows.

Fragment-level objective. We consider (M j
2D,i, M j

3D,i) as a fragment-level positive pair and consider
(M j

2D,i, Mm
3D,k) as fragment-level negative pairs for k ̸= i. To achieve this, we consider context-aware fragment

representations pj
i , to incorporate the neighboring context of the fragments.2 To be specific, we define the

j-th fragment representation pj
i of a molecule Mi via fragment-wise pooling as follows:

pj
i := 1

|V j
i |

∑
v∈V j

i

hv,i, (4)

where {hv,i}v∈V are the last-layer node representations of the whole molecular structure Mi obtained by a
GNN f , and V j

i is a set of nodes in the j-th fragment. Here, pj
i contains a global context of a molecule since

hv,i is obtained by message passing or interaction block. We then compute latent fragment representations
by a projector g, e.g., zj

2D,i = g2D(pj
2D,i). Using these representations, we define the average of fragment-wise

similarities si,i in molecule Mi and si,k between molecules Mi and Mk as follows:

si,i := 1
ni

ni∑
l=1

sim(zl
2D,i, zl

3D,i), and

s
2D (or 3D)
i,k := 1

ni

ni∑
l=1

max
1≤m≤nk

sim(zl
2D (or 3D),i, zm

3D (or 2D),k),

where ni, nk is the number of fragments of the molecule Mi, Mk, respectively. Finally, we formulate our
fragment-level cross-view contrastive objective as follows:

Lcross,frag := − 1
2n

n∑
i=1

(
log esi,i/τ

esi,i/τ +
∑

k ̸=i es2D
i,k

/τ
+ log esi,i/τ

esi,i/τ +
∑

k ̸=i es3D
i,k

/τ

)
. (5)

To sum up, our cross-view objective is as follows:

Lcross := 1
2
(
Lcross,mol + Lcross,frag

)
.

3.4 Torsional angle prediction between fragments

To further incorporate the 3D geometry into 2D-GNN f2D, we propose an additional pretext task, where
f2D learns to predict torsional angles around the fragmented bonds given fragments of 2D molecular graphs
{M j

2D,i}
ni
j=1. A torsional angle is defined by an atom quartet (s, u, v, t) which is a sequence of four atoms, each

pair connected by a covalent bond. As illustrated in Figure 1(c), the torsional angle is the angle between
the planes defined by (s, u, v) and (u, v, t), and it encodes important 3D local properties, e.g., energy surface
around the atoms (Smith, 2008). Thus, by predicting the torsional angle from any two arbitrary fragments
of a molecule M , where they are originally connected by the bond (u, v), the 2D-GNN f2D is expected to
learn the 3D contextual properties around the fragmented bond.

We now define the torsional angle prediction task for each fragmented bond: for a 2D molecule M2D,i and
a fragmented bond (u, v) ∈ E2D,i, we randomly select non-hydrogen atoms s and t adjacent to u and v,

2Contrary to the fragment representations proposed in Section 3.2, which does not incorporate neighboring context nearby
the fragments, we now consider context-aware fragment representations. These representations are obtained by fragment-wise
pooling after message passing (see Eq. (4)).
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Table 1: Test ROC-AUC score on the MoleculeNet downstream molecular property classification bench-
marks. We employ GIN (Xu et al., 2019) as the 2D-GNN architecture and pretrain with 50k molecules from
the GEOM dataset (Axelrod & Gomez-Bombarelli, 2022), following Liu et al. (2022b). We report mean and
standard deviation over 3 different seeds. We mark the best mean score and scores within one standard
deviation of the best mean score to be bold. We denote the scores obtained from Liu et al. (2022b) with (*).
Otherwise, we reproduce scores under the same setup. Scores obtained through fine-tuning of the officially
provided checkpoints are denoted by (†).3

Methods BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg.
- 65.4±2.4 74.9±0.8 61.6±1.2 58.0±2.4 58.8±5.5 71.0±2.5 75.3±0.5 72.6±4.9 67.2

Pretrained with 50k 2D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of MoleculeNet
AttrMask* (Hu et al., 2020a) 70.2±0.5 74.2±0.8 62.5±0.4 60.4±0.6 68.6±9.6 73.9±1.3 74.3±1.3 77.2±1.4 70.2
GPT-GNN* (Hu et al., 2020b) 64.5±1.1 75.3±0.5 62.2±0.1 57.5±4.2 57.8±3.1 76.1±2.3 75.1±0.2 77.6±0.5 68.3
Infomax* (Sun et al., 2019) 69.2±0.8 73.0±0.7 62.0±0.3 59.2±0.2 75.1±5.0 74.0±1.5 74.5±1.8 73.9±2.5 70.1
ContextPred* (Hu et al., 2020a) 71.2±0.9 73.3±0.5 62.8±0.3 59.3±1.4 73.7±4.0 72.5±2.2 75.8±1.1 78.6±1.4 70.9
GraphLoG* (Xu et al., 2021) 67.8±1.7 73.0±0.3 62.2±0.4 57.4±2.3 62.0±1.8 73.1±1.7 73.4±0.6 78.8±0.7 68.5
G-Contextual* (Rong et al., 2020a) 70.3±1.6 75.2±0.3 62.6±0.3 58.4±0.6 59.9±8.2 72.3±0.9 75.9±0.9 79.2±0.3 69.2
G-Motif* (Rong et al., 2020a) 66.4±3.4 73.2±0.8 62.6±0.5 60.6±1.1 77.8±2.0 73.3±2.0 73.8±1.4 73.4±4.0 70.1
GraphCL* (You et al., 2020) 67.5±3.3 75.0±0.3 62.8±0.2 60.1±1.3 78.9±4.2 77.1±1.0 75.0±0.4 68.7±7.8 70.1
JOAO* (You et al., 2021) 66.0±0.6 74.4±0.7 62.7±0.6 60.7±1.0 66.3±3.9 77.0±2.2 76.6±0.5 72.9±2.0 70.6
MGSSL (Zhang et al., 2021) 67.3±0.9 74.5±0.2 63.6±0.4 58.4±0.2 75.4±3.8 73.9±1.4 77.2±2.5 76.2±1.3 70.8
MolCLR (Wang et al., 2021) 67.6±0.6 74.4±1.3 62.9±0.2 58.7±1.1 57.9±3.0 70.8±2.8 75.4±1.2 74.6±3.5 67.8
D-SLA (Kim et al., 2022) 69.6±2.4 73.7±0.7 63.3±0.2 59.2±2.0 60.5±1.0 75.3±0.6 75.8±0.9 81.2±2.5 69.8
Mole-BERT (Xia et al., 2023) 69.8±1.7 74.9±0.5 63.7±0.6 58.5±0.6 80.5±2.4 72.5±2.4 75.9±1.2 78.4±1.6 71.8

Pretrained with 50k 2D and 3D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of MoleculeNet
3D-InfoMax (Stärk et al., 2022) 67.9±1.2 75.3±0.3 64.6±0.4 59.6±0.7 89.7±0.5 76.7±0.6 73.4±1.2 79.9±0.9 73.4
GraphMVP† (Liu et al., 2022b) 69.6±0.2 75.6±0.7 63.7±0.3 61.3±0.6 89.0±1.4 75.7±1.0 75.1±0.3 80.9±1.3 73.9
GraphMVP-G† (Liu et al., 2022b) 70.1±0.7 75.3±0.9 64.2±0.9 61.0±0.5 89.4±1.5 77.7±1.6 75.3±0.8 80.2±1.5 74.1
GraphMVP-C† (Liu et al., 2022b) 69.6±1.4 74.6±0.1 64.1±0.2 63.0±0.1 88.7±2.6 73.9±1.7 74.7±2.0 81.3±0.7 73.7
Holi-Mol (Ours) 71.4±0.4 75.2±0.7 65.1±0.8 61.0±0.6 95.2±1.0 77.6±1.0 76.3±0.4 82.3±1.6 75.5

respectively, and compute the torsional angle y of the quartet (s, u, v, t) on the molecule Mi. If T is a
collection of the tasks for all fragments, our loss function can be written as follows:

Ltor := 1
|T |

∑
(i,s,u,v,t,y)∈T

LCE(ŷi(s, u, v, t), y), (6)

where LCE is the cross-entropy loss, y is the binned label for the angle, and ŷi(s, u, v, t) :=
gtor([h2D,a,i]a∈{s,u,v,t}) is the prediction from the concatenation of node representations of atoms (s, u, v, t)
of the molecule M2D,i using a multi-layer perceptron (MLP) gtor(·).

3.5 Overall training objective

By aggregating the objectives proposed in Section 3.2, 3.3, and 3.4, we propose our total training loss function.
In summary, we consider a set of fragments as a positive view of a molecule while maximizing the consistency
of the outputs of 2D and 3D-GNNs both at the molecule-level and at the fragment-level. Additionally, we
incorporate 3D contextual information by predicting the torsional angles around the fragmented bonds. The
overall loss function is as follows:

LHoli-Mol := Lsingle + Lcross + Ltor. (7)

Note that τ in Eq. (1) and (5) is the only hyperparameter we introduced. We set τ = 0.1 following You
et al. (2020).

3GraphMVP (Liu et al., 2022b) pretrains with explicit hydrogens, but fine-tunes without explicit hydrogens. We report
fine-tuning results with explicit hydrogens from official checkpoints. Thus, our reported average value is slightly higher than
the original paper.
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Table 2: Test MAE score on the QM9 downstream quantum property regression benchmarks. For ours and
all baselines, we employ GIN (Xu et al., 2019) as the 2D-GNN architecture and pretrain with entire 310k
molecules from the GEOM dataset (Axelrod & Gomez-Bombarelli, 2022). We mark the best score bold.

Methods ZPVE ↓ µ ↓ α ↓ Cv ↓ LUMO ↓ HOMO ↓ εgap ↓ R2 ↓ U0 ↓ U298 ↓ H298 ↓ G298 ↓
- 43.7 0.059 0.400 0.144 80.5 89.4 171.0 3.27 62.9 61.8 57.0 48.1

Pretrained on 310k 2D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of QM9
3D-Infomax Stärk et al. (2022) 27.0 0.051 0.355 0.126 63.4 55.2 103.8 2.99 38.8 45.6 41.0 40.8
GraphMVP-G Liu et al. (2022b) 24.1 0.051 0.367 0.123 59.1 53.8 100.4 2.97 39.9 44.2 41.0 40.3
Holi-Mol (Ours) 24.0 0.049 0.353 0.121 57.1 51.8 97.1 2.90 39.2 42.9 40.3 40.0

Table 3: Test MAE score of semi-supervised learning on the QM9 downstream quantum property regression
benchmarks. We employ GIN (Xu et al., 2019) as the 2D-GNN architecture and pretrain with the 110k
QM9 training dataset. Then we fine-tune across different label fraction of the QM9 training dataset. We
mark the best score bold.

Methods ZPVE ↓ LUMO ↓ HOMO ↓ U0 ↓
Label Fraction (%) 20 50 100 20 50 100 20 50 100 20 50 100
- 111.0 87.1 43.7 236.0 140.6 80.5 233.6 128.1 89.4 165.5 82.8 62.9

Pretrained on 110k 2D and 3D molecular graphs of QM9 and fine-tuned on 2D molecular graphs of QM9
3D-Infomax Stärk et al. (2022) 87.2 42.8 24.4 215.0 98.4 57.9 181.0 102.4 57.7 148.2 75.0 42.1
GraphMVP-G Liu et al. (2022b) 85.4 42.8 24.4 214.3 99.7 59.7 177.3 100.0 56.9 145.7 74.5 42.2
Holi-Mol (Ours) 83.7 39.4 22.2 202.2 97.8 54.6 172.9 91.0 48.4 138.7 71.8 38.0

4 Experiments

In this section, we extensively compare Holi-Mol with the existing molecular graph representation learning
methods. We evaluate Holi-Mol and baselines on various downstream molecular property prediction tasks
after pretraining on (unlabeled) molecular dataset. For an extensive evaluation in various downstream setups,
we consider (1) transfer-learning, i.e., pre-training and fine-tuning distribution are different (Table 1 and 2),
and (2) semi-supervised learning, i.e., pre-training and fine-tuning distribution are the same (Table 3). We
further discuss the evaluation setups in Appendix O. Also, we perform an ablation study to investigate the
effect of each component of Holi-Mol for discriminating molecules.

4.1 Experimental setup

Baselines. We consider recently proposed multi-view molecular representation learning methods which
utilize both 2D and 3D molecular graphs in pretraining: 3D-Infomax (Stärk et al., 2022), GraphMVP, and
GraphMVP-{G,C} (Liu et al., 2022b). Following GraphMVP, we also compare with molecular representation
learning methods which pretrain solely with 2D molecular graphs, including the recently proposed MGSSL
(Zhang et al., 2021), MolCLR (Wang et al., 2021), and D-SLA (Kim et al., 2022). We provide more details
on baselines in Appendix B.

Datasets. For pretraining, we consider the GEOM (Axelrod & Gomez-Bombarelli, 2022) and the QM9
(Ramakrishnan et al., 2014) datasets, which consist of 2D and 3D paired molecular graphs. We consider (a)
transfer learning on the binary classification tasks from the MoleculeNet benchmark (Wu et al., 2018), and
(b) transfer learning and semi-supervised learning on the regression tasks using QM9 (Ramakrishnan et al.,
2014). Following Liu et al. (2022b), we use scaffold split (Chen et al., 2012) in MoleculeNet experiments
which splits the molecules based on their substructures. For QM9 experiments, we follow the setup of Liu
et al. (2021) which splits the dataset into 110,000 molecules for training, 10,000 molecules for validation,
and 10,831 molecules for test. Detailed explanation about datasets can be found in Appendix D.
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Table 4: Visualization of the molecules retrieved by MGSSL (Zhang et al., 2021), GraphMVP-G (Liu et al.,
2022b), and Holi-Mol (Ours). We report top-2 closest molecules from the Tox21 dataset with respect to the
query molecule in terms of cosine similarity in representation space. We utilize models pretrained with the
GEOM dataset (Axelrod & Gomez-Bombarelli, 2022). We mark BRICS fragments as dotted lines.

Query MGSSL (Zhang et al., 2021) GraphMVP-G (Liu et al., 2022b) Holi-Mol (Ours)

Architectures. We employ 5-layer graph isomorphism network (GIN) (Xu et al., 2019) as 2D-GNN f2D
and 6-layer SchNet (Schütt et al., 2017) as 3D-GNN f3D. The configuration is drawn from GraphMVP (Liu
et al., 2022b) for a fair comparison.

Hardwares. We use a single NVIDIA GeForce RTX 3090 GPU with 36 CPU cores (Intel(R) Core(TM)
i9-10980XE CPU @ 3.00GHz) for self-supervised pretraining, and a single NVIDIA GeForce RTX 2080 Ti
GPU with 40 CPU cores (Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz) for fine-tuning.

4.2 Main results

MoleculeNet classification task. As reported in Table 1, Holi-Mol achieves the best average test ROC-
AUC score when transferred to the MoleculeNet (Wu et al., 2018) downstream tasks after pretrained with 50k
molecules from the GEOM (Axelrod & Gomez-Bombarelli, 2022) dataset. For example, Holi-Mol outperforms
the recently proposed method for 2D molecular graph, Mole-BERT (Xia et al., 2023), in all downstream tasks.
Furthermore, Holi-Mol improves the best average ROC-AUC score baseline, GraphMVP-G (Liu et al., 2022b),
by 74.1 → 75.5, achieving the state-of-the-art performance on 7 out of 8 downstream tasks. We emphasize
that the improvement of Holi-Mol is consistent over the downstream tasks. For example, GraphMVP-C (Liu
et al., 2022b) achieves the best performance on Sider, while it fails to generalize on Tox21, resulting in even
lower ROC-AUC score compared to the model without pretraining. On the other hand, Holi-Mol shows the
best average performance with no such a failure case, i.e., Holi-Mol learns well-generalizable representations
over several downstream tasks. We provide further analysis in Appendix E and F.

QM9 regression task. Table 2 and 3 show the overall results of transfer learning and semi-supervised
learning on the QM9 (Ramakrishnan et al., 2014) regression benchmarks, respectively. For transfer learning
(Table 2), we pretrain with 310k molecules from the GEOM (Axelrod & Gomez-Bombarelli, 2022) dataset.
Holi-Mol outperforms the baselines, achieving the best performances on 11 out of 12 downstream tasks.
We emphasize that Holi-Mol outperforms the baselines when transferred to both MoleculeNet and QM9
downstream tasks. For semi-supervised learning (Table 3), Holi-Mol successfully improves the baselines over
all tasks and label fractions. In particular, Holi-Mol shows superior performance even in the fully supervised
learning scenario (i.e., 100% label fraction), e.g., 89.4 → 48.4 for HOMO. This implies that Holi-Mol indeed
finds “good initialization” of GNN and shows its wide applicability. More experimental results on the QM9
dataset can be found in Appendix G and N. We provide the regression results on PCQM4Mv2 in Appendix K.

Molecule retrieval. In Table 4, we further perform molecule retrieval task for qualitative analysis. Using
pretrained models by MGSSL (Zhang et al., 2021) and GraphMVP-G (Liu et al., 2022b), and Holi-Mol, we
visualize the molecules in the Tox 21 dataset, which have similar representations with the query molecule
based on the cosine similarity. We observe that the state-of-the-art method, GraphMVP-G, does not find
molecules with similar fragments to the query molecules. While MGSSL leverages local information of
molecules in its training scheme and partially finds local substructure (indicated by dotted lines in Table 4)
of molecules, Holi-Mol effectively retrieves molecules with common fragments and similar global structures of
the query molecules. We further provide a t-SNE plot regarding the obtained representations in Appendix J.
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Table 5: Average ROC-AUC score with different positive
view construction strategy across 8 downstream tasks in
MoleculeNet.
Positive view construction Fragmentation strategy Avg.
Nodedrop, Subgraph (You et al., 2020) - 73.4

A set of fragments (Ours)
Random bond deletion 73.5
Random non-ring bond deletion 74.0
BRICS decomposition (Ours) 75.5

Table 6: Effectiveness of each objective as mea-
sured on the average ROC-AUC score across 8
downstream tasks in MoleculeNet.

Cross-view interaction level
Pretraining data Molecule Fragment Torsion Avg.
Single-view (2D) - - - 72.4

Multi-view (2D&3D)
✓ - - 74.7
✓ ✓ - 75.1
✓ ✓ ✓ 75.5

4.3 Ablation study

Fragment-based positive view construction. In Table 5, we investigate how our positive view construc-
tion strategy is effective. We first compare our strategy with the alternative: using an augmented molecular
graph (i.e., random subgraph) as a positive view (You et al., 2020). We observe that deleting random bonds
for positive-view construction does not improve the performance (73.4 → 73.5), since important substruc-
tures of molecules (e.g., aromatic ring) can be easily broken by random deletion of bonds, which could lead
to significant change in chemical properties. Preventing such ring deformation increases overall performance
by 73.5 → 74.0. BRICS decomposition further incorporates chemical prior to obtain semantic-preserved
local information, boosting the performance by 74.0 → 75.5. The result implies that considering chemically
informative substructures is a key component of our framework. We provide detailed results in Appendix H.

Effectiveness of multi-view pretraining. In Table 6, we evaluate the impact of individual objectives on
our total loss LHoli-Mol. We observe that molecule-level cross-view contrastive learning (Lcross,mol; Eq. (3))
between 2D and 3D molecular views improves the overall performance by 72.4 → 74.7. Introducing fragment-
level cross-view contrastive learning (Lcross,frag; Eq. (5)) further boosts the performance by 74.7 → 75.1,
capturing fine-grained semantics of molecules. Torsional angle prediction (Ltor; Eq. (6)) further improves
the performance by 75.1 → 75.5 by directly injecting the 3D local information into 2D-GNN. These results
confirm that Holi-Mol effectively utilizes both 2D and 3D fragments for multi-view pretraining. Notably,
ours with only single-view (2D) learning outperforms Mole-BERT (Xia et al., 2023), which is the prior
state-of-the-art pretraining method on 2D molecular dataset. Detailed results can be found in Appendix I.

5 Related work

Multi-view molecular representation learning. Recent works have incorporated multiple views of a
molecule (e.g., 2D topology and 3D geometry) into molecular representation learning (MRL) frameworks
(Zhu et al., 2021a; Stärk et al., 2022; Liu et al., 2022b; Fang et al., 2022; Zhu et al., 2022; Luo et al., 2022).
In particular, training 2D-GNNs with multi-view MRL has gained much attention to alleviate the cost to
obtain 3D geometry of molecules (Stärk et al., 2022; Liu et al., 2022b). However, they focus on molecule-level
objectives, which could lack capturing the local semantics (Yao et al., 2022). In this work, we develop a
fragment-based multi-view MRL framework to incorporate local semantics.

Single-view molecular representation learning. One of the single-view (i.e., 2D topological or 3D
geometric graph) molecular representation learning techniques is predictive pretext tasks. For example,
those methods reconstruct the corrupted input as pre-defined pretext tasks (Hamilton et al., 2017; Rong
et al., 2020a; Hu et al., 2020a; Zhang et al., 2021; Zhou et al., 2022; Jiao et al., 2022; Zaidi et al., 2022).
Another large portion of technique is contrastive learning. For example, You et al. (2021) utilize augmentation
schemes to produce a positive view of molecular graphs, and Fang et al. (2021); Sun et al. (2021); Wang
et al. (2022) mitigate the effect of semantically similar molecules in the negative samples (Zhu et al., 2021b).

Recently, substructures of molecules has also been considered in molecular representation learning. For
example, You et al. (2020); Wang et al. (2021); Zhang et al. (2020) construct a positive view of a molecule as
its single substructure (i.e., subgraph) and Wang et al. (2022); Luong & Singh (2023) repels representations of
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fragments from intra- and inter- molecular substructures. Compared to these works, our framework considers
both global (molecule-level) and local features (substructure-level) of molecules in a unified framework.

6 Conclusion

We present Holi-Mol, a new multi-view molecular representation learning method to focus on both global
(molecule-wise) and local (fragment-wise) information of molecules. With this insight, we propose a con-
trastive objective to regard the set of fragments as a positive view of a given molecule. Moreover, we
introduce the fragment-based cross-view contrastive objective for 2D and 3D views of a molecule and the
torsional angle prediction task to exploit 3D local information. Extensive experiments show that Holi-Mol
outperforms prior methods in molecular property prediction tasks, thanks to our pretraining strategy guided
by both molecule itself and its fragments.

Broader Impact Statement

This work will facilitate research in molecular representation learning, which can speed up the processing
of many important downstream tasks such as predicting side-effect of drugs. However, malicious use of
well-learned molecular expressions poses a potential threat of creating hazardous substances, such as toxic
chemical substances or biological weapons. On the other hand, molecular representation is also essential for
creating defense mechanisms against harmful substances, so the careful use of our work, Holi-Mol, can lead
to more positive effects.

References
Eric V Anslyn and Dennis A Dougherty. Modern physical organic chemistry. University science books, 2006.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations for property
prediction and molecular generation. Scientific Data, 9(1):1–14, 2022.

Sanjivanjit K Bhal. Logp—making sense of the value. Advanced Chemistry Development: Toronto, ON,
Canada, pp. 1–4, 2007.

Alice Capecchi, Daniel Probst, and Jean-Louis Reymond. One molecular fingerprint to rule them all: drugs,
biomolecules, and the metabolome. Journal of cheminformatics, 12(1):1–15, 2020.

Lei Chen, Wei-Ming Zeng, Yu-Dong Cai, Kai-Yan Feng, and Kuo-Chen Chou. Predicting anatomical thera-
peutic chemical (atc) classification of drugs by integrating chemical-chemical interactions and similarities.
PloS one, 7(4):e35254, 2012.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020.

Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling and
using’drug-like’chemical fragment spaces. ChemMedChem: Chemistry Enabling Drug Discovery, 3(10):
1503–1507, 2008.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-
Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. Advances
in neural information processing systems, 28, 2015.

Ernesto Estrada, Luis Torres, Lissette Rodriguez, and Ivan Gutman. An atom-bond connectivity index:
modelling the enthalpy of formation of alkanes. 1998.

Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang, Hua Wu,
and Haifeng Wang. Geometry-enhanced molecular representation learning for property prediction. Nature
Machine Intelligence, 4(2):127–134, 2022.

11



Published in Transactions on Machine Learning Research (05/2024)

Yin Fang, Haihong Yang, Xiang Zhuang, Xin Shao, Xiaohui Fan, and Huajun Chen. Knowledge-aware
contrastive molecular graph learning. arXiv preprint arXiv:2103.13047, 2021.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning Representa-
tions, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative pre-
training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1857–1867, 2020b.

Rui Jiao, Jiaqi Han, Wenbing Huang, Yu Rong, and Yang Liu. Energy-motivated equivariant pretraining
for 3d molecular graphs. arXiv preprint arXiv:2207.08824, 2022.

Dongki Kim, Jinheon Baek, and Sung Ju Hwang. Graph self-supervised learning with accurate discrepancy
learning. arXiv preprint arXiv:2202.02989, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
In International Conference on Learning Representations, 2016.

Shengchao Liu, Hongyu Guo, and Jian Tang. Molecular geometry pretraining with se (3)-invariant denoising
distance matching. arXiv preprint arXiv:2206.13602, 2022a.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-training
molecular graph representation with 3d geometry. In International Conference on Learning Representa-
tions, 2022b.

Tairan Liu, Misagh Naderi, Chris Alvin, Supratik Mukhopadhyay, and Michal Brylinski. Break down in
order to build up: decomposing small molecules for fragment-based drug design with e molfrag. Journal
of chemical information and modeling, 57(4):627–631, 2017.

Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message passing for
3d graph networks. arXiv preprint arXiv:2102.05013, 2021.

Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. One trans-
former can understand both 2d & 3d molecular data. arXiv preprint arXiv:2210.01765, 2022.

Kha-Dinh Luong and Ambuj Singh. Fragment-based pretraining and finetuning on molecular graphs. arXiv
preprint arXiv:2310.03274, 2023.

Omar Mahmood, Elman Mansimov, Richard Bonneau, and Kyunghyun Cho. Masked graph modeling for
molecule generation. Nature communications, 12(1):1–12, 2021.

Harry L Morgan. The generation of a unique machine description for chemical structures-a technique devel-
oped at chemical abstracts service. Journal of chemical documentation, 5(2):107–113, 1965.

12



Published in Transactions on Machine Learning Research (05/2024)

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning, pp. 8748–8763. PMLR,
2021.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information and
modeling, 50(5):742–754, 2010.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang. Self-
supervised graph transformer on large-scale molecular data. Advances in Neural Information Processing
Systems, 33:12559–12571, 2020a.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. In International Conference on Learning Representations, 2020b.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko,
and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum
interactions. Advances in neural information processing systems, 30, 2017.

Myungwon Seo, Hyun Kil Shin, Yoochan Myung, Sungbo Hwang, and Kyoung Tai No. Development of
natural compound molecular fingerprint (nc-mfp) with the dictionary of natural products (dnp) for natural
product-based drug development. Journal of Cheminformatics, 12(1):1–17, 2020.

Janice G Smith. Organic chemistry. McGraw-Hill, 2008.

Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Günne-
mann, and Pietro Liò. 3d infomax improves gnns for molecular property prediction. In International
Conference on Machine Learning, pp. 20479–20502. PMLR, 2022.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. arXiv preprint
arXiv:1908.01000, 2019.

Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: data-driven molecular fingerprint
via knowledge-aware contrastive learning from molecular graph. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 3585–3594, 2021.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16, pp.
776–794. Springer, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molclr: Molecular contrastive
learning of representations via graph neural networks. arXiv preprint arXiv:2102.10056, 2021.

Yuyang Wang, Rishikesh Magar, Chen Liang, and Amir Barati Farimani. Improving molecular contrastive
learning via faulty negative mitigation and decomposed fragment contrast. Journal of Chemical Informa-
tion and Modeling, 2022.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl
Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical science,
9(2):513–530, 2018.

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z Li.
Mole-bert: Rethinking pre-training graph neural networks for molecules. 2023.

13



Published in Transactions on Machine Learning Research (05/2024)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-level represen-
tation learning with local and global structure. In International Conference on Machine Learning, pp.
11548–11558. PMLR, 2021.

Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, and Junchi Yan. Learning substructure invariance
for out-of-distribution molecular representations. In Advances in Neural Information Processing Systems,
2022.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin
Jiang, and Chunjing Xu. FILIP: Fine-grained interactive language-image pre-training. In International
Conference on Learning Representations, 2022.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in Neural Information Processing Systems, 33:5812–5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated. In
International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro Sanchez-
Gonzalez, Peter Battaglia, Razvan Pascanu, and Jonathan Godwin. Pre-training via denoising for molec-
ular property prediction. arXiv preprint arXiv:2206.00133, 2022.

Shichang Zhang, Ziniu Hu, Arjun Subramonian, and Yizhou Sun. Motif-driven contrastive learning of graph
representations. arXiv preprint arXiv:2012.12533, 2020.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-supervised
learning for molecular property prediction. Advances in Neural Information Processing Systems, 34, 2021.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang, and
Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework. 2022.

Jinhua Zhu, Yingce Xia, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu. Dual-view molecule
pre-training. arXiv preprint arXiv:2106.10234, 2021a.

Jinhua Zhu, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu.
Unified 2d and 3d pre-training of molecular representations. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2626–2636, 2022.

Yanqiao Zhu, Yichen Xu, Hejie Cui, Carl Yang, Qiang Liu, and Shu Wu. Structure-aware hard negative
mining for heterogeneous graph contrastive learning. arXiv preprint arXiv:2108.13886, 2021b.

14



Published in Transactions on Machine Learning Research (05/2024)

Supplementary Material
Appendix: Holistic Molecular Representation Leraning

via Multi-view Fragmentation

A Experimental details

Self-supervised pretraining details. We follow the training setup considered in GraphMVP (Liu et al.,
2022b): Specifically, we use a batch size of 256 and no weight decay. We use {Nodedrop, Attrmask, identity}
randomly, i.e., 1

3 probability for each fragment and the original 2D molecular graphs, and Gaussian noise
N (0, I) to each coordinate of 3D molecular graphs. When Nodedrop or Attrmask is used, we drop/mask the
portion of 0.1 vertices from the total vertices. For self-supervised pretraining, we train for 100 epochs using
Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 and no dropout. For transfer learning to
the QM9 (Ramakrishnan et al., 2014) dataset, we train with 310k entire unlabeled molecules from GEOM
for 50 epochs. For semi-supervised leraning for the QM9 dataset, we train with 110k training molecules
(without labels) from QM9 for 50 epochs. Our code is based on open-source codes of GraphMVP4.

For Holi-Mol trained only with single view objective and other reproduced 2D baselines, we exclude explicit
hydrogens in molecular graph, following the common frameworks of (You et al., 2020; 2021) for 2D molec-
ular graphs. For Holi-Mol, 3D-InfoMax, GraphMVP, GraphMVP-C, and GraphMVP-G we include explicit
hydrogens into molecular graph, following (Liu et al., 2022b) that utilizes the 3D coordinates of hydrogen
atoms provided in GEOM dataset (Axelrod & Gomez-Bombarelli, 2022). For torsional angle prediction task,
we use 2-layer MLP for gtor and we construct the quartet of atoms (s, u, v, t) for the fragmented bond (u, v)
so that s, t are non-hydrogen atoms, and the binning of y splits 0 to 2π into 18 uniform bins.

Evaluation on MoleculeNet downstream tasks. Following Liu et al. (2022b), we use scaffold split
(Chen et al., 2012) in MoleculeNet experiments which splits the molecules based on their substructures.
We use the split ratio train:validation:test = 80:10:10 for each downstream task dataset to evaluate the
performance. For the consistency of the input graphs in pretraining and fine-tuning, we exclude implicit
hydrogen atoms of molecules in fine-tuning dataset for single-view pretrained Holi-Mol and other reproduced
2D baselines and we include implicit hydrogen atoms of molecules in fine-tuning dataset for Holi-Mol, 3D-
InfoMax, GraphMVP, GraphMVP-C, and GraphMVP-G. Experimental detail follows GraphMVP (Liu et al.,
2022b); we fine-tune a pretrained 2D-GNN with an initialized linear layer for 100 epochs with Adam optimizer
and a learning rate of 0.001, and dropout probability of 0.5. Our results are calculated by the test ROC-
AUC score of the epoch with the best validation ROC-AUC score. Besides the ROC-AUC score of individual
downstream tasks, we also report the average ROC-AUC score across downstream datasets.

Evaluation on QM9 downstream tasks. Following (Liu et al., 2021), we split the molecules in the
QM9 (Ramakrishnan et al., 2014) dataset into 110,000 molecules for training, 10,000 molecules for validation,
and 10,831 molecules for test. Our result is calculated by the test MAE score of the epoch with the best
validation MAE score. We fine-tune a pretrained 2D-GNN with an initialized 2-layer multi layer perceptron
for 1,000 epochs with Adam optimizer and StepLR scheduler with decay ratio of 0.5, and initial learning
rate of 5e-4.

4https://github.com/chao1224/GraphMVP
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B Baselines details

We compare our method with an extensive list of baseline methods in the literature of graph representation
learning:

• No pretraining trains a model from scratch for downstream task.

• AttrMask (Hu et al., 2020a) learns representation by recovering the vertex features after masking
them.

• GPT-GNN (Hu et al., 2020b) uses the graph generation task as a pretext task.

• Infomax (Sun et al., 2019) maximizes mutual information between global representations (i.e., graph
representations) and local representations (i.e. path representation).

• ContextPred (Hu et al., 2020a) learns representation by predicting surrounding subgraph of specific
node edge.

• GraphLoG (Xu et al., 2021) discriminates graph and subgraph pairs from their opposing pairs
to preserve local similarity between various graphs, which leads to the embedding alignment of
correlated graphs.

• G-Contextual (Rong et al., 2020a) learns representations by randomly masking local subgraphs of
target nodes (or edges) and predicting these contextual properties from node embeddings.

• G-Motif (Rong et al., 2020a) predicts the occurrence of the semantic motifs extracted by using
chemical prior.

• GraphCL (You et al., 2020) is a generic graph contrastive learning method based on their graph-
agnostic augmentation schemes, which do not use any molecule-specific knowledge.

• JOAO (You et al., 2021) proposes min-max optimization processes to learn optimal data augmen-
tation strategies dynamically from a pre-fixed candidate set of augmentations.

• MGSSL (Zhang et al., 2021) introduces a generative self-supervised objective to reconstruct a motif-
tree.

• MolCLR (Wang et al., 2021) performs a contrastive learning with NT-Xent (Chen et al., 2020),
constructing positive views of a molecule by proposed molecule augmentation schemes.

• D-SLA (Kim et al., 2022) extracts graph representations by learning the exact discrepancy between
the original graph and the augmented graphs.

• Mole-BERT (Xia et al., 2023) utilizes VQ-VAE (Van Den Oord et al., 2017) to encode atoms as
meaningful discrete values and then perform masked atoms modeling and triplet masked contrastive
learning.

• 3D-InfoMax (Stärk et al., 2022) proposes to consider 2D topological molecule graph and 3D geometric
molecule graph from the same molecule as a positive view of each other.

• GraphMVP, GraphMVP-G, and GraphMVP-C (Liu et al., 2022b) regard 2D and 3D molecular
graphs as a positive pair, and propose feature reconstruction of each view as a generative task.
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C Graph neural networks

Graph Isomorphism Network (GIN). We provide a detailed description of architecture of graph iso-
morphism network (GIN) (Xu et al., 2019), which we mainly consider as the feature extractor f2D(·) in this
paper. Particularly, GIN learns representation h(ℓ)

v by:

h(ℓ)
v = MLP(ℓ)(h(ℓ−1)

v +
∑

u∈N (v)

(
h(ℓ−1)

u + e(ℓ−1)
uv

))
, (8)

where e(ℓ−1)
uv is the embedding corresponding to the attribute of edge {u, v} ∈ E .

SchNet. We consider SchNet (Schütt et al., 2017), which is a strong 3D graph neural network under
fair comparison (Liu et al., 2022b) as our f3D(·) in this paper. Particularly, SchNet learns representation
h(ℓ)

v = MLP(ℓ) by:

h(ℓ)
v = MLP(ℓ)(∑

u∈V

(
Φ(h(ℓ−1)

u , rv, ru)
))

, (9)

where Φ is the continuous-filter convolution layer and rv is the 3D position of the vertex v.
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D Downstream dataset details

We perform transfer-learning on 8 benchmark binary classification datasets from MoleculeNet (Wu et al.,
2018). More information on downstream tasks is described in Table 7.

• BBBP contains data on whether the compound is permeable to the blood-brain barrier.

• Tox21 measures the toxicity of a compound and was used in the 2014 Tox21 Data Challenge.

• ToxCast includes multiple toxicity annotations of compounds collected after performing high-
throughput screening tests.

• Sider refers to side effect resources, i.e., data on the marketed drugs and their side effects.

• Clintox is a dataset of comparison results between drugs approved through the FDA and drugs
removed because of toxicity during clinical trials.

• MUV is a validation dataset of virtual screening technology. Specifically, it is subsampled in the
PubChem BioAssay using refined nearest neighborhood analysis.

• HIV consists of data about capability to prevent HIV replication.

• Bace is collected dataset of compounds that could prevent (BACE-1).

Table 7: MoleculeNet downstream classification dataset statistics

Dataset BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace
Number of molecules 2,039 7,831 8,575 1,427 1,478 93,087 41,127 1,513
Number of tasks 1 12 617 27 2 17 1 1
Avg. Node 24.06 18.57 18.78 33.64 26.15 24.23 25.51 34.08
Avg. Degree 51.90 38.58 38.52 70.71 55.76 52.55 54.93 73.71

We also perform transfer-learning on 12 benchmark regression tasks from QM9 (Ramakrishnan et al., 2014).
More information on downstream tasks is described in Table 8.

Table 8: QM9 downstream regression tasks

Task Summary Unit
ZPVE Zero point vibrational energy meV

µ Dipole moment D
α Isotropic polarizability a0

3

Cv Heat capacity at 298.15K cal/mol · K
LUMO Lowest unoccupied molecular orbital energy meV
HOMO Highest occupied molecular orbital energy meV

εgap Gap between HOMO and LUMO meV
R2 Electronic spatial extent a0

2

U0 Internal energy at 0K meV
U298 Internal energy at 0K meV
H298 Enthalpy at 0K meV
G298 Gibbs energy at 0K meV
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E Detailed analysis of results on MoleculeNet

Table 9: Statistics of training and test samples of MoleculeNet dataset under scaffold split (Chen et al.,
2012). The number of atoms are calculated in consideration of hydrogen atoms.

Average # of atoms BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace
Train 43.6 33.0 33.0 57.8 49.6 42.6 45.3 63.5
Test 52.1 49.8 52.3 102.0 43.0 44.8 45.5 67.9

Table 10: Relative ROC-AUC improvement to GraphMVP-G (the best performing baseline). We compare
the results on the full test set (in Table 1) and the subset of the test set which contains the molecules with
less atoms than the average number of atoms in training molecules.

Improvement of Holi-Mol from GraphMVP-G BBBP Bace MUV HIV
Full test molecules 1.3 1.0 -0.1 1.0
Test molecules with less atoms than # Avg. atoms in training set 2.3 1.1 2.9 1.5

In Table 1, the improvement of Holi-Mol is most dramatic on the Clintox dataset. We observe that Clintox
is unique in that it has a higher average number of atoms in the training set compared to the test set (see
Table 9). Furthermore, we observe that the performance gap between Holi-Mol and GraphMVP-G (the
strongest baseline) tends to widen as the number of atoms in test molecules decreases. To illustrate this
point, Table 10 compares the performance gap when evaluated on the full test set and on the molecules
in the test set with fewer atoms than the average in the training set (we consider the downstream tasks
with |Avg. # of atoms in the training set molecules - Avg. # of atoms in the test set molecules| < 10, due
to the stability of evaluation). Holi-Mol’s enhanced performance on smaller molecules can be explained by
its capacity to learn fine-grained molecular features through fragmentation.

F Complexity analysis

Table 11: Analysis of the training time of each method. We compare the most competitive baselines in
Table 1. The training time is calculated based on the same setup of Table 1 with a single NVIDIA GeForce
RTX 3090 GPU.

MGSSL Mole-BERT 3D-Infomax GraphMVP-G Holi-Mol (Ours)
Training time (hours) 17.5 0.7 0.9 4.5 1.9
Test ROC-AUC score 70.8 71.8 73.4 74.1 75.5

In Table 11, we provide the running time analysis of each method and the corresponding test ROC-AUC score
on the MoleculeNet benchmark. We observe that MGSSL (Zhang et al., 2021) requires extensive training
cost because of the auto-regressive predictive pretext task. GraphMVP-G (Liu et al., 2022b) utilizes several
3D conformer structures, leading to higher training complexity. Overall, our Holi-Mol significantly improves
the prior best-performing baseline, GraphMVP-G (Liu et al., 2022b), in the test ROC-AUC score (74.1 →
75.5; higher is better) with less training time (4.5 → 1.9; lower is better).

19



Published in Transactions on Machine Learning Research (05/2024)

G Detailed results on semi-supervised learning
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Figure 2: Comparison of test MAE score of semi-supervised learning with different fraction of labeled
samples on QM9 downstream quantum property regression benchmarks. We pretrain GIN (Xu et al., 2019)
as the 2D-GNN architecture with 110k molecules from QM9 pretraining dataset.

Table 12: Comparison of test MAE score of semi-supervised learning on the QM9 downstream quantum
property regression benchmarks. We pretrain GIN (Xu et al., 2019) as the 2D-GNN architecture with 110k
QM9 training set and fine-tune on 10% subset of QM9 training set. We mark the best score bold.

Methods ZPVE ↓ µ ↓ α ↓ Cv ↓ LUMO ↓ HOMO ↓ εgap ↓ R2 ↓ U0 ↓ U298 ↓ H298 ↓ G298 ↓
- 173.1 0.339 2.67 0.882 415.5 340.7 680.8 20.6 278.0 301.3 299.9 274.1
Mole-BERT Xia et al. (2023) 163.6 0.330 2.65 0.877 402.2 329.0 671.2 20.2 266.6 287.1 285.3 250.9

Pretrained on 110k 2D and 3D molecular graphs of QM9 and fine-tuned on 10% 2D molecular graphs of QM9
3D-Infomax Stärk et al. (2022) 166.7 0.325 2.59 0.878 395.3 332.7 672.7 20.4 257.5 284.1 283.9 249.4
GraphMVP-G Liu et al. (2022b) 152.6 0.324 2.58 0.872 388.3 325.8 662.7 19.9 255.4 281.4 271.7 245.3
Holi-Mol (Ours) 151.5 0.322 2.51 0.869 381.0 321.2 650.5 19.8 252.9 279.4 269.1 243.6

Table 13: Comparison of test MAE score on QM9 downstream quantum property regression benchmarks
when additional 3D geometric is available in fine-tuning. We utilize GIN (Xu et al., 2019) and SchNet Schütt
et al. (2017) for 2D and 3D encoder, respectively. We mark the best score bold.

Methods ZPVE ↓ LUMO ↓ HOMO ↓ U0 ↓
- 1.67 26.8 32.9 14.5
GraphMVP-G Liu et al. (2022b) 1.65 26.1 32.8 14.3
GeoSSL-DDM Liu et al. (2022a) 1.63 25.8 32.0 14.1
3D-EMGP Jiao et al. (2022) 1.63 25.9 31.9 14.0
Holi-Mol (Ours) 1.61 25.8 31.6 13.9

In this section, we provided detailed results for semi-supervisd learning on the QM9 (Ramakrishnan et al.,
2014) dataset. Figure 2 shows the test MAE score across different label fractions after pretrained with
the QM9 training dataset. We choose 4 downstream tasks which yields the highest performance gap after
pretraining compared to non-pretraining (we exclude εgap := |HOMO − LUMO| since we already include
HOMO and LUMO). As visualized, Holi-Mol consistently outperforms the considered baselines. Table 12
shows the results for all 12 downstream tasks of QM9 when fine-tuned with 10% of training data. For all
downstream tasks, Holi-Mol achieves the best performance.

Although our primary focus is to pretrain 2D-GNN (Stärk et al., 2022; Liu et al., 2022b), we explore the
possibility of Holi-Mol in the scenario when 3D information is additionally available in the fine-tuning phase.
We follow the same experimental setup as detailed in Table 2 (i.e., pretraining on QM9 and using SchNet as
the 3D GNN). We test 4 downstream tasks (ZPVE, LUMO, HOMO, and U0) in the QM9 dataset following
the setup in Table 3 and Figure 2. We additionally compare with recent 3D geometric pretraining baselines,
3D-EMGP (Jiao et al., 2022) and GeoSSL-DDM (Liu et al., 2022a). For Holi-Mol and GraphMVP-G, we
consider fine-tuning 2D and 3D encoders jointly. Here, we note that one of the benefits of Holi-Mol compared
to geometric pretraining baselines (with only 3D encoder) is that we can utilize both 2D and 3D encoders. In
Table 13, we observe that Holi-Mol still shows reasonable performance when 3D information is additioanlly
available in fine-tuning dataset.
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H Ablation on fragment-based positive view construction of Holi-Mol

Table 14: Comparison of positive view construction strategies for multi-view molecular contrastive learning
framework. We report the test ROC-AUC score on the MoleculeNet downstream property classification
benchmarks. We pretrain GIN (Xu et al., 2019) as the 2D-GNN architecture with 50k molecules from the
GEOM dataset (Axelrod & Gomez-Bombarelli, 2022), following Liu et al. (2022b). We report mean and
standard deviation over 3 different seeds. We bold the best average score.

Positive view construction Fragmentation strategy BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg.
Nodedrop, Subgraph - 69.3±1.4 75.0±0.4 63.7±0.4 60.4±1.4 88.3±0.6 76.2±1.9 76.2±1.5 78.3±0.4 73.4

A set of fragments (Ours)
Random bond deletion 69.3±1.0 73.8±0.9 63.9±0.5 59.9±1.2 91.4±2.3 76.8±0.7 74.6±3.1 78.3±2.5 73.5
Random non-ring bond deletion 69.5±0.9 73.7±0.2 64.0±0.1 60.5±0.5 93.2±1.5 77.3±2.5 75.2±0.9 78.8±0.4 74.0
BRICS decomposition (Ours) 71.4±0.4 75.2±0.7 65.1±0.8 61.0±0.6 95.2±1.0 77.6±1.0 76.3±0.4 82.3±1.6 75.5

In Table 14, we provide a full result of Table 5 in Section 4.3. We conduct an ablation study on regarding
the set of fragments as a positive view of a molecule. Again, we emphasize that the result implies that
considering chemically informative structures is a key component of Holi-Mol.

I Component ablation of Holi-Mol

Table 15: Ablation of components for multi-view molecular contrastive learning framework. We report
the test ROC-AUC score on the MoleculeNet downstream property classification benchmarks. We pretrain
GIN (Xu et al., 2019) as the 2D-GNN architecture with 50k molecules from the GEOM dataset (Axelrod
& Gomez-Bombarelli, 2022), following Liu et al. (2022b). We report mean and standard deviation over 3
different seeds. We mark the best mean score to be bold.

Pretraining data Multi-view interaction BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg.Molecule-level Fragment-level Torsion-level
Single-view (2D) - - - 71.0±0.3 75.3±0.8 62.8±0.4 60.3±1.1 79.1±2.2 74.1±0.5 75.9±1.2 80.7±1.3 72.4

Multi-view (2D & 3D)
✓ - - 68.2±0.6 75.6±1.5 64.6±0.2 60.8±0.8 94.9±0.8 77.7±1.2 76.3±0.5 79.5±0.3 74.7
✓ ✓ - 71.0±0.8 75.3±0.9 64.4±0.3 61.6±2.6 95.1±1.5 76.4±1.6 76.2±0.7 80.9±2.6 75.1
✓ ✓ ✓ 71.4±0.4 75.2±0.7 65.1±0.8 61.0±0.6 95.2±1.0 77.6±1.0 76.3±0.4 82.3±1.6 75.5

In Table 15, we provide a full result of Table 6 in Section 4.3. We validate that each components of Holi-Mol
has an individual effect in improving the performance of multi-view pretraining.

Figure 3: Training curves of each component: (1) Single-view objective Lsingle, (2) Cross-view objective
Lcross, and (3) Torsion objective Ltor.

In Figure 3, we report the training curves of our objectives. Our training objectives carefully designed to
learn crucial but non-overlapping features of unlabeled molecules, e.g., fragment/molecule-level or 2D/3D
view. As a result, the individual losses consistently decrease during training.
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J Case study

Figure 4: t-SNE plot of the representations obtained by GraphMVP-G (left) and Holi-Mol (right).

The global properties, i.e., labels, of a molecule are closely associated with its meaningful local substructures,
i.e., fragments. For example, the ratio of 1-labeled molecules in the BACE (0-1 labeled) dataset is 45%.
However, the ratio drops to 29% for samples with cyclohexyl group, and the ratio goes up to 60% for samples
with fluoro-benzyl group. These variations can be attributed to the hydrophobicity of the cyclohexyl group
and the aromaticity or hydrophilicity of the fluoro-benzyl group. However, the current state-of-the-art meth-
ods, e.g., GraphMVP-G, do not take into account the relationship between the local and global information
of molecules. Thus, our method aims to capture such a relationship in molecular representation learning. For
empirical support, in Figure 4, we provide t-SNE of the molecular representations containing the discussed
semantic-determining groups (cyclohexyl and fluoro-benzyl) in the GEOM pre-training dataset. Holi-mol
shows superior discriminability for such groups, which supports the overall improvements in downstream
tasks in Table 1,2, and 3. This validates the efficacy of our novel approach, which captures the interaction
between a molecule and its constituent fragments within a unified framework.

K Results on PCQM4Mv2

Table 16: Results on the PCQM4Mv2 dataset.

Methods - 3D-Infomax GraphMVP-G Holi-Mol (Ours)
Validation MAE 0.1703 0.1692 0.1693 0.1688

In Table 16, we verify the effectiveness of our method in the PCQM4Mv2 dataset. Specifically, we fine-
tune the pre-trained models of each baseline with a small fraction of the training data, i.e., 10%, to follow
the conventional evaluation setup of molecular representation learning where the labeled data is fewer than
unlabeled data. Our method achieves superior performance in terms of validation MAE.
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L Comparison with fingerprints

Table 17: Comparison with fingerprint representation (Morgan, 1965) on MoleculeNet.
Representations BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg.
Morgan fingerprints (Morgan, 1965) 67.5±1.5 70.4±0.6 56.7±0.1 57.7±0.5 75.4±2.1 66.4±0.2 66.1±0.2 76.4±1.2 67.1
Ours 71.4±0.4 75.2±0.7 65.1±0.8 61.0±0.6 95.2±1.0 77.6±1.0 76.3±0.4 82.3±1.6 75.5

In Table 17, we compare the representations obtained from our method with the commonly used Morgan
fingerprints (Morgan, 1965) of molecules and fragments, where the attention pooling is used to aggregate
the fingerprints of fragments. The results show that our learned ri and rj

i consistently outperform the
fingerprints, which verifies the effectiveness our learned representations.

M Ananlysis on fine-tuning

Figure 5: Plot of the cross-view objective Lcross and the MAE objecive in fine-tuning. Note that the
objective function in fine-tuning is the MAE objective to the target label (not the cross-view objective).

In Figure 5, we provide an analysis on fine-tuning. We pre-train with a half of the QM9 dataset and then
fine-tune exclusively on the 2D view of another half of the QM9 dataset (which has target labels). In the fine-
tuning phase, the MAE improves while the contrastive loss between the 2D and 3D views increases, which
is natural since we do not impose the contrastive objective in fine-tuning (rather we apply the supervised
objective to learn the labels). In other words, our pre-training scheme learns a “good initialization” of a
GNN using both 2D and 3D views and then we additionally inject the target-specific 2D information of
molecules using the learned GNN via fine-tuning.

N Variance of QM9 experiment

Table 18: Standard deviation of the experiment in Table 2. The results are based on 3 seeds.

Methods ZPVE ↓ LUMO ↓ HOMO ↓ U0 ↓
- 43.7 80.5 89.4 62.9
3D-Infomax Stärk et al. (2022) 27.0 63.4 55.2 38.8
GraphMVP-G Liu et al. (2022b) 24.1 59.1 53.8 39.9
Holi-Mol (Ours) 24.0±0.1 57.2±0.3 51.8±0.3 39.0±1.3
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O Discussion on evaluation setup

Table 19: Test MAE score on the QM9 downstream quantum property regression benchmarks. We mark
the best score bold. The contents are the same as Table 2.

Methods ZPVE ↓ µ ↓ α ↓ Cv ↓ LUMO ↓ HOMO ↓ εgap ↓ R2 ↓ U0 ↓ U298 ↓ H298 ↓ G298 ↓
- 43.7 0.059 0.400 0.144 80.5 89.4 171.0 3.27 62.9 61.8 57.0 48.1

Pretrained on 310k 2D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of QM9
3D-Infomax Stärk et al. (2022) 27.0 0.051 0.355 0.126 63.4 55.2 103.8 2.99 38.8 45.6 41.0 40.8
GraphMVP-G Liu et al. (2022b) 24.1 0.051 0.367 0.123 59.1 53.8 100.4 2.97 39.9 44.2 41.0 40.3
Holi-Mol (Ours) 24.0 0.049 0.353 0.121 57.1 51.8 97.1 2.90 39.2 42.9 40.3 40.0

Table 20: Test ROC-AUC score on the MoleculeNet molecular property classification benchmarks. We
report mean and standard deviation over 3 different seeds. We mark the best mean score to be bold.

Methods BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg.
- 65.4±2.4 74.9±0.8 61.6±1.2 58.0±2.4 58.8±5.5 71.0±2.5 75.3±0.5 72.6±4.9 67.2

Pretrained with 310k 2D and 3D molecular graphs of GEOM and fine-tuned on 2D molecular graphs of MoleculeNet
3D-InfoMax (Stärk et al., 2022) 68.8±0.2 75.0±1.5 64.4±0.4 61.7±0.2 89.7±1.3 76.9±0.8 75.3±0.5 79.8±0.6 73.9
GraphMVP-G† (Liu et al., 2022b) 69.8±0.8 75.5±0.1 64.1±0.2 61.1±0.7 90.1±0.9 77.6±0.5 75.7±0.5 80.3±0.7 74.3
Holi-Mol (Ours) 71.2±0.8 75.7±0.3 64.9±0.4 61.7±0.2 95.3±0.2 77.6±1.4 76.5±0.4 82.4±0.5 75.7

In Table 1, 2, and 3, we choose different pre-training setups to consider various practical scenarios. We first
remark that the molecule space is very large. Thus, the fine-tuning distribution may often be quite different
from the pre-training distribution. Therefore, we divide the evaluation setup into two cases based on the
pre-training and fine-tuning distributions.

• In Table 1 and 2, we assume the pre-training and fine-tuning distributions are different. Specifically,
we pre-train on the GEOM dataset and then fine-tune on the MoleculeNet (Table 1) and QM9
(Table 2), respectively.

• In Table 3, we assume the pre-training and fine-tuning distributions are the same. Specifically, we
use the QM9 dataset for both pre-training and fine-tuning.

We also note that we use 50k molecules from the GEOM dataset in Table 1 for a fair comparison with
existing works reported in Liu et al. (2022b). However, we find that there is no specific reason not to use
the full GEOM dataset (310k molecules) for pre-training. Thus, in the evaluation on QM9 (Table 2), we use
the entire 310k molecules of the GEOM dataset for pre-training the models.

Nevertheless, it is possible to pre-train a single model for all the downstream tasks. We further report the
results on the downstream tasks using a single pre-trained model. Specifically, we use the pre-trained model
based on the 310k molecules from the GEOM dataset (which is the setup of Table 2) for each method.
Table 19 and 20 show that the single pre-trained model also outperforms the baselines on the downstream
tasks (MoleculeNet and QM9).
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