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ABSTRACT

We present a novel framework, InfinityGAN, for arbitrary-sized image generation.
The task is associated with several key challenges. First, scaling existing models
to an arbitrarily large image size is resource-constrained, in terms of both compu-
tation and availability of large-field-of-view training data. InfinityGAN trains and
infers in a seamless patch-by-patch manner with low computational resources.
Second, large images should be locally and globally consistent, avoid repetitive
patterns, and look realistic. To address these, InfinityGAN disentangles global ap-
pearances, local structures, and textures. With this formulation, we can generate
images with spatial size and level of details not attainable before. Experimen-
tal evaluation validates that InfinityGAN generates images with superior realism
compared to baselines and features parallelizable inference. Finally, we show
several applications unlocked by our approach, such as spatial style fusion, multi-
modal outpainting, and image inbetweening. All applications can be operated
with arbitrary input and output sizes.
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Figure 1: Synthesizing infinite-pixel images from finite-sized training data. A 1024×2048
image composed of 242 patches, independently synthesized by InfinityGAN with spatial fusion of
two styles. The generator is trained on 101×101 patches (e.g., marked in top-left) sampled from
197×197 real images. Note that training and inference (of any size) are performed on a single GTX
TITAN X GPU. Zoom-in for better experience.

1 INTRODUCTION

”To infinity and beyond!” – Buzz Lightyear

Generative models witness substantial improvements in resolution and level of details. Most im-
provements come at a price of increased training time (Gulrajani et al., 2017; Mescheder et al.,
2018), larger model size (Balaji et al., 2021), and stricter data requirements (Karras et al., 2018).
The most recent works synthesize images at 1024×1024 resolution featuring a high level of details

All codes, datasets, and trained models are publicly available. Project page: https://hubert0527.github.io/infinityGAN/
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and fidelity. However, models generating high resolution images usually still synthesize images of
limited field-of-view bounded by the training data. It is not straightforward to scale these models to
generate images of arbitrarily large field-of-view. Synthesizing infinite-pixel images is constrained
by the finite nature of resources. Finite computational resources (e.g., memory and training time) set
bounds for input receptive field and output size. A further limitation is that there exists no infinite-
pixel image dataset. Thus, to generate infinite-pixel images, a model should learn the implicit global
structure without direct supervision and under limited computational resources.

Repetitive texture synthesis methods (Efros & Leung, 1999; Xian et al., 2018) generalize to large
spatial sizes. Yet, such methods are not able to synthesize real-world images. Recent works, such
as SinGAN (Shaham et al., 2019) and InGAN (Shocher et al., 2019), learn an internal patch distri-
bution for image synthesis. Although these models can generate images with arbitrary shapes, in
Section 4.1, we show that they do not infer structural relationships well, and fail to construct plau-
sible holistic views with spatially extended latent space. A different approach, COCO-GAN (Lin
et al., 2019), learns a coordinate-conditioned patch distribution for image synthesis. As shown in
Figure 4, despite the ability to slightly extend images beyond the learned boundary, it fails to main-
tain the global coherence of the generated images when scaling to a 2× larger generation size.

How to generate infinite-pixel images? Humans are able to guess the whole scene given a partial
observation of it. In a similar fashion, we aim to build a generator that trains with image patches, and
inference images of unbounded arbitrary-large size. An example of a synthesized scene containing
globally-plausible structure and heterogeneous textures is shown in Figure 1.

We propose InfinityGAN, a method that trains on a finite-pixel dataset, while generating infinite-
pixel images at inference time. InfinityGAN consists of a neural implicit function, termed structure
synthesizer, and a padding-free StyleGAN2 generator, dubbed texture synthesizer. Given a global
appearance of an infinite-pixel image, the structure synthesizer samples a sub-region using coor-
dinates and synthesizes an intermediate local structural representations. The texture synthesizer
then seamlessly synthesizes the final image by parts after filling the fine local textures to the local
structural representations. InfinityGAN can infer a compelling global composition of a scene with
realistic local details. Trained on small patches, InfinityGAN achieves high-quality, seamless and
arbitrarily-sized outputs with low computational resources—a single TITAN X to train and test.

We conduct extensive experiments to validate the proposed method. Qualitatively, we present the
everlastingly long landscape images. Quantitatively, we evaluate InfinityGAN and related methods
using user study and a proposed ScaleInv FID metric. Furthermore, we demonstrate the efficiency
and efficacy of the proposed methods with several applications. First, we demonstrate the flexibility
and controllability of the proposed method by spatially fusing structures and textures from different
distributions within an image. Second, we show that our model is an effective deep image prior
for the image outpainting task with the image inversion technique and achieves multi-modal out-
painting of arbitrary length from arbitrarily-shaped inputs. Third, with the proposed model we can
divide-and-conquer the full image generation into independent patch generation and achieve 7.2×
of inference speed-up with parallel computing, which is critical for high-resolution image synthesis.

2 RELATED WORK

Latent generative models. Existing generative models are mostly designed to synthesize images
of fixed sizes. A few methods (Karras et al., 2018; 2020) have been recently developed to train latent
generative models on high-resolution images, up to 1024×1024 pixels. However, latent generative
models generate images from dense latent vectors that require synthesizing all structural contents at
once. Bounded by computational resources and limited by the learning framework and architecture,
these approaches synthesize images of certain sizes and are non-trivial to generalize to different
output size. In contrast, patch-based GANs trained on image patches (Lin et al., 2019; Shaham et al.,
2019; Shocher et al., 2019) are less constrained by the resource bottleneck with the synthesis-by-part
approach. However, (Shaham et al., 2019; Shocher et al., 2019) can only model and repeat internal
statistics of a single image, and (Lin et al., 2019) can barely extrapolate few patches beyond the
training size. ALIS (Skorokhodov et al., 2021) is a concurrent work that also explores synthesizing
infinite-pixel images. It recursively inbetweens latent variable pairs in the horizontal direction. We
further discuss the method in Appendix A.1. Finally, autoregressive models (Oord et al., 2016;
Razavi et al., 2019; Esser et al., 2021) can theoretically synthesize at arbitrary image sizes. Despite
(Razavi et al., 2019) and (Esser et al., 2021) showing unconditional images synthesis at 1024×1024
resolution, their application in infinite-pixel image synthesis has not yet been well-explored.
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Figure 2: Overview. The generator of InfinityGAN consists of two modules, a structure synthesizer
based on a neural implicit function, and a fully-convolutional texture synthesizer with all positional
information removed (see Figure 3). The two networks take four sets of inputs, a global latent
variable that defines the holistic appearance of the image, a local latent variable that represents
the local and structural variation, a continuous coordinate for learning the neural implicit structure
synthesizer, and a set of randomized noises to model fine-grained texture. InfinityGAN synthesizes
images of arbitrary size by learning spatially extensible representations.

Conditional generative models. Numerous tasks such as image super-resolution, semantic image
synthesis, and image extrapolation often showcase results over 1024×1024 pixels. These tasks
are less related to our setting, as most structural information is already provided in the conditional
inputs. We illustrate and compare the characteristics of these tasks against ours in Appendix B.
Image outpainting. Image outpainting (Abdal et al., 2020; Liu et al., 2021; Sabini & Rusak, 2018;
Yang et al., 2019) is related to image inpainting (Liu et al., 2018a; Yu et al., 2019) and shares similar
issues that the generator tends to copy-and-paraphrase the conditional input or create mottled textural
samples, leading to repetitive results especially when the outpainted region is large. InOut (Cheng
et al., 2021) proposes to outpaint image with GANs inversion and yield results with higher diversity.
We show that with InfinityGAN as the deep image prior along with InOut (Cheng et al., 2021), we
obtain the state-of-the-art outpainting results and avoids the need of sequential outpainting. Then,
we demonstrate applications in arbitrary-distant image inbetweening, which is at the intersection of
image inpainting (Liu et al., 2018a; Nazeri et al., 2019; Yu et al., 2019) and outpainting research.
Neural implicit representation. Neural implicit functions (Park et al., 2019; Mescheder et al.,
2019; Mildenhall et al., 2020) have been applied to model the structural information of 3D and con-
tinuous representations. Adopting neural implicit modeling, our query-by-coordinate synthesizer is
able to model structural information effectively. Some recent works (DeVries et al., 2021; Niemeyer
& Geiger, 2021; Chan et al., 2021) also attempt to integrate neural implicit function into generative
models, but aiming at 3D-structure modeling instead of extending the synthesis field-of-view.

3 PROPOSED METHOD

3.1 OVERVIEW

An arbitrarily large image can be described globally and locally. Globally, images should be coher-
ent and hence global characteristics should be expressible by a compact holistic appearance (e.g., a
medieval landscape, ocean view panorama). Therefore, we adopt a fixed holistic appearance for
each infinite-pixel image to represent the high-level composition and content of the scene. Locally,
a close-up view of an image is defined by its local structure and texture. The structure represents
objects, shapes and their arrangement within a local region. Once the structure is defined, there
exist multiple feasible appearances or textures to render realistic scenes. At the same time, struc-
ture and texture should conform to the global holistic appearance to maintain the visual consistency
among the neighboring patches. Given these assumptions, we can generate an infinite-pixel image
by first sampling a global holistic appearance, then spatially extending local structures and textures
following the holistic appearance.

Accordingly, the InfinityGAN generator G consists of a structure synthesizer GS and a texture syn-
thesizer GT. GS is an implicit function that samples a sub-region with coordinates and creates local
structural features. GT is a fully convolutional StyleGAN2 (Karras et al., 2020) modeling textural
properties for local patches and rendering final image. Both modules follow a consistent holistic
appearance throughout the process. Figure 2 presents the overview of our framework.
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3.2 STRUCTURE SYNTHESIZER (GS)
Structure synthesizer is a neural implicit function driven by three sets of latent variables: A global
latent vector zg representing the holistic appearance of the infinite-pixel image (also called implicit
image since the whole image is never explicitly sampled), a local latent tensor zl expressing the
local structural variation of the image content, and a coordinate grid c specifying the location of the
patches to sample from the implicit image. The synthesis process is formulated as:

zS = GS(zg, zl, c), (1)
where zS denotes the structural latent variable that is later used as an input to the texture synthesizer.

We sample zg ∈ RDzg from a unit Gaussian distribution once and inject zg into every layer and pixel
in GS via feature modulation (Huang & Belongie, 2017; Karras et al., 2020). As local variations are
independent across the spatial dimension, we independently sample them from a unit Gaussian prior
for each spatial position of zl ∈ RH×W×Dzl , where H and W can be arbitrarily extended.

We then use coordinate grid c to specify the location of the target patches to be sampled. To be able
to conditionGS with coordinates infinitely far from the origin, we introduce a prior by exploiting the
nature of landscape images: (a) self-similarity for the horizontal direction, and (b) rapid saturation
(e.g., land, sky or ocean) for the vertical direction. To implement this, we use the positional encoding
for the horizontal axis similar to (Vaswani et al., 2017; Tancik et al., 2020; Sitzmann et al., 2020).
We use both sine and cosine functions to encode each coordinate for numerical stability. For the
vertical axis, to represent saturation, we apply the tanh function. Formally, given horizontal and
vertical indexes (ix, iy) of zl tensor, we encode them as c = (tanh(iy), cos(ix/T ), sin(ix/T )) ,
where T is the period of the sine function and c controls the location of the patch to generate.

To prevent the model from ignoring the variation of zl and generating repetitive content by following
the periodically repeating coordinates, we adopt a mode-seeking diversity loss (Mao et al., 2019; Lee
et al., 2020) between a pair of local latent variables zl1 and zl2 while sharing the same zg and c:

Ldiv = ‖zl1 − zl2‖1 / ‖GS(zg, zl1 , c)−GS(zg, zl2 , c)‖1 . (2)

Conventional neural implicit functions produce outputs for each input query independently, which
is a pixel in zl for InfinityGAN. Such a design causes training instabilities and slows convergence,
as we show in Figure 37. We therefore adopt the feature unfolding technique (Chen et al., 2021) to
enable GS to account for the information in a broader neighboring region of zl and c, introducing
a larger receptive field. For each layer in GS, before feeding forward to the next layer, we apply
a k × k feature unfolding transformation at each location (i, j) of the origin input f to obtain the
unfolded input f ′:

f ′(i,j) = Concat({f(i+ n, j +m)}n,m∈{−k/2,k/2}) , (3)
where Concat(·) concatenates the unfolded vectors in the channel dimension. In practice, as the grid-
shaped zl and c are sampled with equal spacing between consecutive pixels, the feature unfolding
can be efficiently implemented with CoordConv (Liu et al., 2018b).

3.3 TEXTURE SYNTHESIZER (GT)
Texture synthesizer aims to model various realizations of local texture given the local structure
zS generated by the structure synthesizer. In addition to the holistic appearance zg and the local
structural latent zS, texture synthesizer uses noise vectors zn to model the finest-grained textural
variations that are difficult to capture by other variables. The generation process can be written as:

pc = GT(zS, zg, zn) , (4)
where pc is a generated patch at location c (i.e., the c used in Eq 1 for generating zS).

We implement upon StyleGAN2 (Karras et al., 2020). First, we replace the fixed constant input with
the generated structure zS. Similar to StyleGAN2, randomized noises zn are added to all layers of
GT, representing the local variations of fine-grained textures. Then, a mapping layer projects zg to
a style vector, and the style is injected into all pixels in each layer via feature modulation. Finally,
we remove all zero-paddings from the generator, as shown in Figure 3(b).

Both zero-padding and GS can provide positional information to the generator, and we later show
that positional information is important for generator learning in Section 4.2. However, it is nec-
essary to remove all zero-paddings from GT for three major reasons. First, zero-padding has a
consistent pattern during training, due to the fixed training image size. Such a behavior misleads
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Figure 3: Padding-free generator. (Left) Conventional generators synthesize inconsistent pix-
els due to the zero-paddings. Note that the inconsistency region grows exponentially as the net-
work deepened. (Right) In contrast, our padding-free generator can synthesize consistent pixel
value regardless of the position in the model receptive field. Such a property facilitates spatially-
independently generating patches and forming into a seamless image with consistent feature values.

the generator to memorize the padding pattern, and becomes vulnerable to unseen padding patterns
while attempting to synthesize at a different image size. The third column of Figure 4 shows when
we extend the input latent variable of the StyleGAN2 generator multiple times, the center part of the
features does not receive expected coordinate information from the paddings, resulting in extensively
repetitive textures in the center area of the output image. Second, zero-paddings can only provide
positional information within a limited distance from the image border. However, while generating
infinite-pixel images, the image border is considered infinitely far from the generated patch. Finally,
as shown in Figure 3, the existence of paddings hampers GT from generating separate patches that
can be composed together. Therefore, we remove all paddings from GT, facilitating the synthesis-
by-parts of arbitrary-sized images. We refer to the proposed GT as a padding-free generator (PFG).

3.4 SPATIALLY INDEPENDENT GENERATION

InfinityGAN enables spatially independent generation thanks to two characteristics of the proposed
modules. First, GS, as a neural implicit function, naturally supports independent inference at each
spatial location. Second, GT, as a fully convolutional generator with all paddings removed, can
synthesize consistent pixel values at the same spatial location in the implicit image, regardless of
different querying coordinates, as shown in Figure 3(b). With these properties, we can independently
query and synthesize a patch from the implicit image, seamlessly combine multiple patches into an
arbitrarily large image, and maintain constant memory usage while synthesizing images of any size.

In practice, having a single center pixel in a zS slice that aligns to the center pixel of the corre-
sponding output image patch can facilitate zl and c indexing. We achieve the goal by shrinking
the StyleGAN2 blur kernel size from 4 to 3, causing the model to generate odd-sized features in all
layers, due to the convolutional transpose layers.

3.5 MODEL TRAINING

The discriminator D of InfinityGAN is similar to the one in the StyleGAN2 method. The detailed
architectures of G and D are presented in Appendix D. The two networks are trained with the non-
saturating logistic loss Ladv (Goodfellow et al., 2014), R1 regularization LR1 (Mescheder et al.,
2018) and path length regularization Lpath (Karras et al., 2020). Furthermore, to encourage the
generator to follow the conditional distribution in the vertical direction, we train G and D with an
auxiliary task (Odena et al., 2017) predicting the vertical position of the patch:

Lar = ‖ĉy − c̄y‖1 , (5)

where ĉy is the vertical coordinate predicted by D, and c̄y is either (for generated images) cy =
tanh(iy) or (for real images) the vertical position of the patch in the full image. We formulate Lar

as a regression task. The overall loss function for the InfinityGAN is:

min
D
Ladv + λarLar + λR1

LR1
,

min
G
− Ladv + λarLar + λdivLdiv + λpathLpath ,

(6)

where λ’s are the weights.
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Table 1: Quantitative evaluation on Flickr-Landscape. Despite we use a disadvantageous setting
for our InfinityGAN (discussed in Section 4.1), it still outperforms all baselines after extending the
size to 4× larger. Furthermore, the user study shows an over 90% preference favors our Infinity-
GAN results. The preference is marked as x% when x% of selections prefer the results from the
corresponding method over InfinityGAN. †The images are first resized to 128 before resizing to 197.

Method
Image Size FID ScaleInv FID Preference v.s. Ours Inference

MemoryFull Train Test 8× Train 1× 2× 4× 8× 4× 8×

SinGAN 128 128 1024 4.21 4.21 57.10 145.12 210.22 0.80% 1.60% O(size2)
COCO-GAN 128 32 1024 17.52 41.32 258.51 376.69 387.15 0% 0% O(1)
StyleGAN2+NCI 128 128 1024 4.19 4.19 18.31 79.83 189.65 9.20% 7.20% O(size2)
StyleGAN2+NCI (Patched) 128 64 1024 5.35 21.06 58.84 165.65 234.19 - - O(size2)
StyleGAN2+NCI+PFG 197† 101 1576 86.76 90.79 126.88 211.22 272.80 0.40% 1.20% O(1)

InfinityGAN (Ours)
(StyleGAN2+NCI+PFG+GS) 197† 101 1576 11.03 21.84 28.83 61.41 121.18 - - O(1)

COCO-GAN SinGAN StyleGAN+NCI StyleGAN+NCI+PFG InfinityGAN (ours)

128×128 128×128 128×128 197×197 197×197
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Figure 4: Qualitative comparison. We show that InfinityGAN can produce more favorable holistic
appearances against related methods while testing with an extended size 1024×1024. (NCI: Non-
Constant Input, PFG: Padding-Free Generator). More results are shown in Appendix E.

4 EXPERIMENTAL RESULTS

Datasets. We evaluate the ability of synthesizing at extended image sizes on the Flickr-Landscape
dataset consists of 450,000 high-quality landscape images, which are crawled from the Landscape
group on Flickr. For the image outpainting experiments, we evaluate with other baseline meth-
ods on scenery-related subsets from the Place365 (Zhou et al., 2017) (62,500 images) and Flickr-
Scenery (Cheng et al., 2021) (54,710 images) datasets. Note that the Flickr-Scenery here is different
from our Flickr-Landscape. For image outpainting task, we split the data into 80%, 10%, 10% for
training, validation, and test. All quantitative and qualitative evaluations are conducted on test set.

Hyperparameters. We use λar = 1, λdiv = 1, λR1 = 10, and λpath = 2 for all datasets. All models
are trained with 101×101 patches cropped from 197×197 real images. Since our InfinityGAN
synthesizes odd-sized images, we choose 101 that maintains a sufficient resolution that humans can
still recognize its content. On the other hand, 197 is the next output resolution if stacking another
upsampling layer to InfinityGAN, which also provides 101×101 patches a sufficient field-of-view.
We adopt the Adam (Kingma & Ba, 2015) optimizer with β1 = 0, β2 = 0.99 and a batch size 16
for 800,000 iterations. More details are presented in Appendix C.

Metrics. We first evaluate Fréchet Inception Distance (FID) (Heusel et al., 2017) at G training res-
olution. Then, without access to real images at larger sizes, we assume that the real landscape with
a larger FoV will share a certain level of self-similarity with its smaller FoV parts. We accordingly
propose a ScaleInv FID, which resizes larger images to the training data size with bilinear interpo-
lation, then computes FID. We denote N× ScaleInv FID when the metric is evaluated with images
N× larger than the training samples.

Evaluated Method. We perform the evaluation on Flickr-Landscape with the following algorithms:

− SinGAN. We train an individual SinGAN model for each image. The images at larger sizes
are generated by setting spatially enlarged input latent variables. Note that we do not compare
with the super-resolution setting from SinGAN since we focus on extending the learned structure
rather than super-resolve the high-frequency details.
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− COCO-GAN. Follow the “Beyond-Boundary Generation” protocol of COCO-GAN, we transfer
a trained COCO-GAN model to extended coordinates with a post-training procedure.

− StyleGAN2 (+NCI). We replace the constant input of the original StyleGAN2 with a zl of the
same shape, we call such a replacement as “non-constant input (NCI)”. This modification enables
StyleGAN2 to generate images at different output sizes with different zl sizes.

4.1 GENERATION AT EXTENDED SIZE.

Additional (unfair) protocols for fairness. We adopt two additional pre- and post-processing to
ensure that InfinityGAN does not take advantage of its different training resolution. To ensure Infin-
ityGAN is trained with the same amount of information as other methods, images are first bilinear
interpolated into 128×128 before resized into 197×197. Next, for all testing sizes in Table 4, In-
finityGAN generates at 1.54× (=197/128) larger size to ensure final output images share the same
FoV with others. In fact, these corrections make the setting disadvantageous for InfinityGAN, as
it is trained with patches of 50% FoV, generates 54% larger images for all settings, and requires to
composite multiple patches for its 1× ScaleInv FID.

Quantitative analysis. For all the FID metrics in Table 1, unfortunately, the numbers are not directly
comparable, since InfinityGAN is trained with patches with smaller FoV and at a different resolution.
Nevertheless, the trend in ScaleInv FID is informative. It reflects the fact that the global structures
generated from the baselines drift far away from the real landscape as the testing FoV enlarges.
Meanwhile, InfinityGAN maintains a more steady slope, and surpasses the strongest baseline after
4× ScaleInv FID. Showing that InfinityGAN indeed performs favorably better than all baselines as
the testing size increases.

Figure 5: LSUN bridge and tower.
InfinityGAN synthesize at 512×512
pixels. We provide more details and
samples in Appendix H.
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Figure 6: Diversity. InfinityGAN
synthesizes diverse samples at the
same coordinate with different local
latent and styles. More samples are
shown in Appendix I

Qualitative results. In Figure 4, we show that all base-
lines fall short of creating reasonable global structures with
spatially expanded input latent variables. COCO-GAN is
unable to transfer to new coordinates when the extrapolated
coordinates are too far away from the training distribution.
Both SinGAN and StyleGAN2 implicitly establish image
features based on position encoded by zero padding, as-
suming the training and testing position encoding should be
the same. However, when synthesizing at extended image
sizes, the inevitable change in the spatial size of the input
and the features leads to drastically different position en-
coding in all model layers. Despite the models can still syn-
thesize reasonable contents near the image border, where
the position encoding is still partially correct, they fail to
synthesize structurally sound content in the image center.
Such a result causes ScaleInv FID to rapidly surge as the ex-
tended generation size increases to 1024×1024. Note that
at the 16× setting, StyleGAN2 runs out of memory with a
batch size of 1 and does not generate any result. In com-
parison, InfinityGAN achieves reasonable global structures
with fine details. Note that the 1024×1024 image from
InfinityGAN is created by compositing 121 independently
synthesized patches. With the ability of generating con-
sistent pixel values (Section 3.4), the composition is guar-
anteed to be seamless. We provide more comparisons in
Appedix E, a larger set of generated samples in Appendix F,
results from models trained at a higher resolution in Ap-
pendix G, and a very-long synthesis result in Appendix J.

In Figure 5, we further conduct experiments on LSUN bridge and tower datasets, demonstrating
InfinityGAN is applicable on other datasets. However, since the two datasets are object centric with
a low view-angle variation in the vertical direction, InfinityGAN frequently fills the top and bottom
area with blank padding textures.

In Figure 6, we switch different zl and GT styles (i.e., zg projected with the mapping layer) while
sharing the same c. More samples can be found in Appendix I. The results show that the structure
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Figure 7: Spatial style fusion. We present a mechanism in fusing multiple styles together to increase
the interestingness and interactiveness of the generation results. The 512×4096 image fuses four
styles across 258 independently generated patches.
Table 2: Outpainting performance. The combi-
nation of In&Out (Cheng et al., 2021) and Infin-
ityGAN achieves state-of-the-art IS (higher bet-
ter) and FID (lower better) performance on image
outpainting task.

Method
Place365 Flickr-Scenery

FID � IS � FID � IS �

Boundless 35.02 6.15 61.98 6.98
NS-outpaint 50.68 4.70 61.16 4.76

In&Out 23.57 7.18 30.34 7.16
In&Out+ InfinityGAN 9.11 6.78 15.31 7.19

Table 3: Inference speed up with parallel
batching. Benefit from the spatial independent
generation nature, InfinityGAN achieves up to
7.20× inference speed up by with parallel batch-
ing at 8192×8192 pixels. The complete table can
be found in Appendix P.

Method Parallel
Batch Size # GPUs Inference Time

(second / image) Speed Up

StyleGAN2 N/A 1 OOM -

Ours
1 1 137.44 ×1.00

128 8 19.09 ×7.20

and texture are disentangled and modeled separately by GS and GT. The figure also shows that GS

can generate a diverse set of structures realized by different zl.

User study. We use two-alternative forced choice (2AFC) between InfinityGAN and other baselines
on the Flickr-Landscape dataset. A total of 50 participants with basic knowledge in computer vision
engage the study, and we conduct 30 queries for each participant. For each query, we show two
separate grids of 16 random samples from each of the comparing methods and ask the participant to
select “the one you think is more realistic and overall structurally plausible.” As presented in Table 1,
the user study shows an over 90% of preference favorable to InfinityGAN against all baselines.

4.2 ABLATION STUDY: THE POSITIONAL INFORMATION IN GENERATOR

As discussed in Section 3.3, we hypothesize that StyleGAN2 highly relies on the positional in-
formation from the zero-paddings. In Table 1 and Figure 4, we perform an ablation by removing
all paddings from StyleGAN2+NCI, yielding StyleGAN2+NCI+PFG that has no positional infor-
mation in the generator. The results show that StyleGAN2+NCI+PFG fails to generate reasonable
image structures, and significantly degrades in all FID settings. Then, with the proposed GS, the
positional information is properly provided from zS, and resumes the generator performance back
to a reasonable state.

4.3 APPLICATIONS

Spatial style fusion. Given a single global latent variable zg, the corresponding infinite-pixel image
is tied to a single modal of global structures and styles. To achieve greater image diversity and allow
the user to interactively generate images, we propose a spatial fusion mechanism that can spatially
combine two global latent variables with a smooth transition between them. First, we manually
define multiple style centers in the pixel space and then construct an initial fusion map by assigning
pixels to the nearest style center. The fusion map consists of one-hot vectors for each pixel, forming
a style assignment map. According to the style assignment map, we then propagate the styles in all
intermediate layers. Please refer to Appendix L for implementation details. Finally, with the fusion
maps annotated for every layer, we can apply the appropriate zg from each style center to each pixel
using feature modulation.Note that the whole procedure has a similar inference speed as the normal
synthesis. Figure 7 shows synthesized fusion samples.

Outpainting via GAN Inversion. We leverage the pipeline proposed in In&Out (Cheng et al.,
2021) to perform image outpainting with latent variable inversion. All loss functions follow the
ones proposed in In&Out. We first obtain inverted latent variables that generates an image similar
to the given real image via GAN inversion techniques, then outpaint the image by expanding zl and
zn with their unit Gaussian prior. See Appendix K for implementation details.

In Table 2, our model performs favorably against all baselines in image outpainting (Bound-
less (Teterwak et al., 2019), NS-outpaint (Yang et al., 2019), and In&Out (Cheng et al., 2021)).
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Boundless NS-outpaint

In&Out In&Out + InfinityGAN

Figure 8: Outpainting long-range area. Infin-
ityGAN synthesizes continuous and more plau-
sible outpainting results for arbitrarily large out-
painting areas. The real image annotated with red
box is 256×128 pixels.

Figure 9: Multi-modal outpainting. Infinity-
GAN can natively achieve multi-modal outpaint-
ing by sampling different local latents in the out-
painted region. The real image annotated with
red box is 256×128 pixels. We present more out-
painting samples in Appendix M.

Arbitrary-Length Cyclic Panorama Arbitrary-Length Inbetweening

Arbitrary-Length Inbetweening

Figure 10: Image inbetweening with inverted latents. The InfinityGAN can synthesize arbitrary-
length cyclic panorama and inbetweened images by inverting a real image at different position. The
top-row image size is 256×2080 pixels. We present more samples in Appendix N and Appendix O.

As shown in Figure 8, while dealing with a large outpainting area (e.g., panorama), all previous
outpainting methods adopt a sequential process that generates a fixed region at each step. This intro-
duces obvious concatenation seams, and tends to produce repetitive contents and black regions after
the multiple steps. In contrast, with InfinityGAN as the image prior in the pipeline of (Cheng et al.,
2021), we can directly outpaint arbitrary-size target region from inputs of arbitrary shape. More-
over, in Figure 9, we show that our outpainting pipeline natively supports multi-modal outpainting
by sampling different local latent codes in the outpainting area.

Image inbetweening with inverted latent variables. We show another adaptation of outpainting
with model inversion by setting two sets of inverted latent variables at two different spatial locations,
then perform spatial style fusion between the variables. Please refer to Appendix K for implemen-
tation details. As shown in Figure 10, we can naturally inbetween (Lu et al., 2021) the area between
two images with arbitrary distance. A cyclic panorama of arbitrary width can also be naturally
generated by setting the same image on two sides.

Parallel batching. The nature of spatial-independent generation enables parallel inference on a
single image. As shown in Table 3, by stacking a batch of patches together, InfinityGAN can sig-
nificantly speed up inference at testing up to 7.20 times. Note that this speed-up is critical for
high-resolution image synthesis with a large number of FLOPs.

5 CONCLUSIONS

In this work, we propose and tackle the problem of synthesizing infinite-pixel images, and demon-
strate several applications of InfinityGAN, including image outpainting and inbetweening.

Our future work will focus on improving InfinityGAN in several aspects. First, our Flickr-Landscape
dataset consists of images taken at different FoVs and distances to the scenes. When InfinityGAN
composes landscapes of different scales together, synthesized images may contain artifacts. Second,
similar to the FoV problem, some images intentionally include tree leaves on top of the image
as a part of the photography composition. These greenish textures cause InfinityGAN sometimes
synthesizing trees or related elements in the sky region. Third, there is still a slight decrease in
FID score in comparison to StyleGAN2. This may be related to the convergence problem in video
synthesis (Tian et al., 2021), in which the generator achieves inferior performance if a preceding
network (e.g., the motion module in video synthesis) is jointly trained with the image module.
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A COMPARISONS WITH CONCURRENT WORK

A.1 ALIS (SKOROKHODOV ET AL., 2021)

ALIS is a concurrent work that achieves a similar application in infinite-pixel generation by itera-
tively inbetween pairs of anchor patches. Here, we discuss some of the critical differences.

ALIS has limited ability in extending vertically. InfinityGAN achieves both vertical and hori-
zontal extension while maintaining a plausible holistic appearance. ALIS only presents horizontal
extension in the paper. Vertically connecting anchors on any dataset used in their paper will pro-
duce invalid structures (e.g., layered landscapes periodically stacking in the sky). Therefore, vertical
anchor connection is limited to certain datasets, such as pattern-like textures or satellite images.

Differences in the problem formulation. InfinityGAN directly models each infinite-pixel image
with a shared global latent variable using an implicit function. In contrast, ALIS learns to inbetween
two independent global latent variables. Furthermore, InfinityGAN can still achieve the inbetween-
ing setup similar to ALIS with spatial style fusion. However, applying ALIS to synthesize images
with a shared global context will lead to periodically repeating patches, as shown in Figure 13.

InfinityGAN allows free-form anchor placements without training. ALIS has to designate a
constant relative position between the anchors before training starts. It is also non-trivial for ALIS
to inbetween multiple anchors. Meanwhile, as shown in Figure 12, our training-free spatial style
fusion allows placing any number of anchors at any place. However, the flexibility also comes with
a trade-off, our spatial style fusion is not trained with adversarial learning, causing the synthesis
performance not compatible to the regularly synthesized images. Following the ALIS evaluation
protocol, we train our InfinityGAN on the ALIS LHQ dataset at 256×256 resolution, yielding an
FID 11.82 with regular synthesis and an∞-FID 19.22 with spatial style fusion. In contrast, ALIS
shows negligible performance gap between FID (10.48) and∞-FID (10.64). Such a result suggest
a flexibility-accuracy trade-off between InfinityGAN and ALIS.

ALIS generates blocky and high-frequency lattice artifacts. ALIS adopts the generation-by-parts
design from COCO-GAN. As shown in Figure 11, a critical consequence is creating the blocky
and lattice artifacts between patches, since the inter-patch continuity is unstably maintained with
adversarial learning. In contrast, InfinityGAN is an improved version of COCO-GAN that the inter-
patch continuity is guaranteed with implicit-function and padding-free generator design.

ALIS still suffers from content repetition. The content repetition problem is discussed in the
ALIS paper as a limitation. InfinityGAN addresses the issue with a local latent space and enforces
the contribution of the local variables with a diversity loss (2) between zl and zS. We demonstrate
that InfinityGAN does not have the content repetition problem in Figure 31.

Blocky Artifacts Discontinuity Lattice Artifacts
Figure 11: ALIS can suffer from blocky artifacts, inter-patch discontinuity and lattice artifacts.
We train ALIS with the official implementation at 1024×1024 resolution. We focus on the failure
cases caused by COCO-GAN-based generation-by-parts framework, which artificially enforces the
learned inter-patch continuity with adversarial learning.
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Figure 12: InfinityGAN with free-form anchor placements. The spatial style fusion of Infinity-
GAN can place any number of style centers (called anchors in ALIS) at any location. We show case
(top) a five-anchor example and (bottom) the corresponding regions covered by each style center.

Figure 13: ALIS cannot synthesis with a single holistic appearance. ALIS synthesizes repetitive
content if all anchors share the same latent vector.

A.2 MS-PIE (XU ET AL., 2021).

MS-PIE found the positional information is crucial for GANs training. The paper explores different
positional encoding schema, including sinusoidal coordinate encoding and padding removal. We
further discuss the relation and distinction between MS-PIE and InfinityGAN in these two modules.

Extensible coordinate encoding. The “expand” configuration of MS-PIE allows coordinate value
extrapolation in the spatial dimension. However, its training sticks to a fixed coordinate matrix for
each synthesis scale, and the framework aligns the real images to the fixed coordinate matrix with
bilinear interpolation 1 during training. Such a design causes the synthesized content to attach to the
coordinate matrix, thus inevitably creates repetitive content when the coordinate value periodically
repeats as the matrix expanding. In Figure 14, we train a no-padding StyleGAN2 model with MS-
PIE-expand setting (i.e., config (k) in Table 5 of MS-PIE paper) on our Flickr-Landscape dataset.
The model is trained at scales 256, 384 and 512, then test at scale 1408.

1The corresponding official implementation: https://github.com/open-mmlab/mmgeneration/blob/
95f962e54815b8f72c015c134cd597e9eff3de36/mmgen/models/gans/mspie_stylegan2.py#L115.
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Figure 14: MS-PIE creates repetitive content in the expand setting. We train the no-padding
StyleGAN2 with MS-PIE at 256, 384 and 512 scales, then synthesize at 1408 scale.

Distinctions between no-padding and padding-free generator. The no-padding generator (NPG)
in MS-PIE is conceptually related to our padding-free generator (PFG), but fundamentally different
while considering how the information of border pixels in the feature space is processed. NPG grad-
ually loses the information from border pixels after each convolution, since the border pixels are less
visited than the other pixels (consider a 3×3 convolutional kernel, most pixels will be scanned for
9 times, while edge pixels will be only scanned for 4 times, and corner pixels only 1 time). Further
note that the information loss worsens exponentially as the network stacking more convolutional
layers. In contrast, our PFG pads feature values from the neighbor context before the no-padding
convolution is applied. The information loss caused by the no-padding convolution is a natural way
to discard the information that is spatially too far away from and less related to the current context.

B CONCEPTUAL COMPARISONS AMONG DIFFERENT TASKS

Training-Data

Distribution

Task

Further

Extended

Resolution

Input

Condition

(a) Super Resolution
(b) Texture Synthesis

(includes SinGAN)

None

(c) Image Extrapolation (d) COCO-GAN

None

(e) InfinityGAN

None

(Only few steps)

Figure 15: (a) Super Resolution: The final outputs inherit the coarse structure from and share the
same field-of-view with the original input condition. (b) Texture Synthesis: Due to coordinate en-
coding, objects are generated near image the border, and the center of the image is filled with repet-
itive textures. (c) Image Extrapolation: Current extrapolation models tend to copy-and-paraphrase
the conditional input or create mottled textural samples, leading to repetitive results especially when
the outpainted region is large. (d) COCO-GAN: COCO-GAN can only synthesize samples slightly
larger than its training distribution. (e) InfinityGAN: Ours InfinityGAN can synthesize a more
favorable global structure at arbitrary resolutions without an input condition.

C IMPLEMENTATION DETAILS OF COORDINATES

We first derive the receptive field size R of an L-layer GS after adding the 7×7 feature unfolding to
all layers. Assume that the size of zS (i.e., output of GS, and input of GT) is M . The value of R can
be derived asM +(2×3)×L, where 3 is the half-size of the feature unfolding area. In practice, with
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an architecture shown in Figure 18 with training patch size 101×101, we have M = 11, L = 4, and
R = 35.

Horizontal direction. In order to avoid the generator discovering and exploiting any property of the
periodic coordinate, we use a period T much larger than R. Meanwhile, the period should be short
enough to avoid the differences between consecutive coordinates vanish to almost zero. In practice,
we use T = 4×R for both of the cosine and sine coordinates.

Vertical direction. We utilize the property of the tanh function that its slope rapidly saturates to
nearly zero and its value range is bounded by [−1, 1]. Such a property is aligned to the property
of real-world scenery—the structural interactions among landscape objects are mostly concentrated
around the horizon and rapidly saturates to a single modal (i.e., sky, ground, or water) in the vertical
direction.

There are two hyperparameters while constructing the tanh coordinates: (i) a pair of cutoff points,
and (ii) the sampling period of zl in the spatial dimension.

• Cutoff points (ccut) are a pair of values that, during training, we only sample the coor-
dinates between the value pair. Such a hyperparameter is required since we are unable to
sample all coordinates from an infinitely large coordinate system within the finite training
steps. In practice, we set the cutoff points at ±0.995 of tanh-projected coordinate. Note
that the underlying effect of using different cutoff point values is not well-investigated, we
do not observe obvious changes with slightly different values.

• Sampling period (dl) defines the distance between two spatially consecutive values of zl
are sampled within a training sample. Such a value relates to the grain of the representation
that the generator overall models. It is equivalent to the occupation ratio of zl between
the cutoff points. Thus we can alternatively define a hyperparameter V that defines the
occupation ratio of zl by R

R+V . Then, the sampling period can be derived with dl =

2× ccut × 1
R+V . In practice, we use V = 10, resulting in dl = 0.13̄.

C.1 MORE DISCUSSIONS ON THE CHOICE OF COORDINATE SYSTEM

In this paper, we mainly tackle the scenery image datasets, such as landscape, LSUN bridge and
LSUN tower. The coordinate prior we introduced in Section 3.2 is specifically designed for such
types of data, which has self-similarity in the horizontal direction and rapid mode-saturation in the
vertical direction. However, we want to emphasize that the choice of coordinate system is a hyper-
parameter depending on the dataset. For instance, in Figure 16, we show that InfinityGAN can also
work on satellite image dataset (Isola et al., 2017), which is more frequently used in texture synthe-
sis task. A more natural choice of coordinate system in such a setting is using periodic coordinates
in both horizontal and vertical directions. Nevertheless, in Figure 17 we observe that InfinityGAN
can still produce visually plausible and globally sound appearances with using saturating (i.e., tanh)
coordinates in the vertical direction and periodic coordinates in the horizontal direction.

In Table 4, we identify three categories of coordinate systems, but these options may not have
covered all possibilities. One may need to be aware of the characteristics of the data and the intended
outcome before selecting the appropriate coordinate system.

Dataset Type Object-centric Texture Scenery
Example ImageNet, CelebA Texture, satellite images Landscape
Spatial Distribution
of Content N/A Spatially agnostic (Vertical) Spatially varying

(Horizontal) Spatially agnostic
Horizontal Coordinate Constant Periodic (e.g., sin/cos) Periodic (e.g., sin/cos)
Vertical Coordinate Constant Periodic (e.g., sin/cos) Saturate (e.g., tanh)

Table 4: Possible coordinate designs for different types of dataset. The choice of coordinate
system for InfinityGAN is a dataset-dependent hyperparameter.
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Real Images Generated (1x) Generated (2x) Generated (4x)

Figure 16: Qualitative results on satellite image dataset. InfinityGAN trained on satellite image
dataset with cyclic coordinates on both vertical and horizontal directions.

Real Images Generated (1x) Generated (2x) Generated (4x)

Figure 17: Qualitative results on satellite image dataset. InfinityGAN trained on satellite im-
age dataset with saturating coordinates (i.e., tanh) on vertical direction and cyclic coordinates on
horizontal direction.
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D INFINITYGAN ARCHITECTURE
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Figure 18: A high-level overview of InfinityGAN model architecture.
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Figure 19: The low-level design of each module within InfinityGAN.
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E MORE COMPARISON WITH BASELINES

SinGAN StyleGAN2 + NCI StyleGAN2 + NCI + FCG InfinityGAN (ours)

Figure 20: More qualitative comparisons. We show more samples on Flickr-Landscape at
1024×1024 pixels.
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F MORE INFINITYGAN QUALITATIVE RESULTS

Figure 21: More qualitative results. We provide more images synthesized at 1024×1024 pixels
with our InfinityGAN trained on Flickr-Landscape. All images are synthesized with the same model
presented in the paper, which is trained with 101×101 patches cropped from 197×197 resolution
real images. All images share the same coordinate and present a high structural diversity. Note that
the images are down-sampled 2× to reduce file size.
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Figure 22: More qualitative results. We provide more images synthesized at 1024×1024 resolution
with our InfinityGAN trained on Flickr-Landscape. All images are synthesized with the same model
presented in the paper, which is trained with 101×101 resolution patches cropped from 197×197
resolution real images. All images share the same coordinate and present a high structural diversity.
Note that the images are down-sampled 2× to reduce file size.

23



Published as a conference paper at ICLR 2022

Figure 23: More qualitative results. We provide more images synthesized at 1024×1024 resolution
with our InfinityGAN trained on Flickr-Landscape. All images are synthesized with the same model
presented in the paper, which is trained with 101×101 resolution patches cropped from 197×197
resolution real images. All images share the same coordinate and present a high structural diversity.
Note that the images are down-sampled 2× to reduce file size.
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G INFINITYGAN RESULTS AT A HIGHER RESOLUTION

Figure 24: InfinityGAN samples training at a higher resolution. We synthesize 4096×4096
pixel images using InfinityGAN trained on Flickr-Landscape at 397×397 pixels patches cropped
from 773×773 full images. The top and bottom rows are zoom-in view of the image. Note that the
figure is 2× down-sampled to reduce file size.
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Figure 25: InfinityGAN samples training at a higher resolution. We synthesize 4096×4096
pixel images using InfinityGAN trained on Flickr-Landscape at 397×397 pixels patches cropped
from 773×773 full images. The top and bottom rows are zoom-in view of the image. Note that the
figure is 4× down-sampled to reduce file size.
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Figure 26: InfinityGAN samples training at a higher resolution. We synthesize 4096×4096
pixel images using InfinityGAN trained on Flickr-Landscape at 397×397 pixels patches cropped
from 773×773 full images. The top and bottom rows are zoom-in view of the image. Note that the
figure is 4× down-sampled to reduce file size.
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Figure 27: InfinityGAN samples training at a higher resolution. We synthesize 4096×4096
pixel images using InfinityGAN trained on Flickr-Landscape at 397×397 pixels patches cropped
from 773×773 full images. The top and bottom rows are zoom-in view of the image. Note that the
figure is 4× down-sampled to reduce file size.
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H MORE RESULTS ON OTHER DATASETS

Training Size
(101×101) Test Size (512×512)

Figure 28: LSUN bridge category. InfinityGAN synthesis results at 512×512 pixels on LSUN
bridge category. The model is trained with 101×101 pixels patches cropped from 197×197 resolu-
tion real images.
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Training Size
(101×101) Test Size (512×512)

Figure 29: LSUN tower category. InfinityGAN synthesis results at 512×512 pixels on LSUN tower
category. The model is trained with 101×101 pixels patches cropped from 197×197 resolution real
images.
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I MORE DIVERSITY VISUALIZATION
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Figure 30: Generation diversity. We show that structure synthesizer and texture synthesizer sepa-
rately models structure and texture by changing either the local latent or style while all other vari-
ables are fixed. The results also show that InfinityGAN can synthesize a diverse set of landscape
structures at the same coordinate. All samples are synthesized at 389×389 pixels with InfinityGAN
trained at 101×101.
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J OUR BEST ATTEMPT IN INCLUDING AN EVERLASTING IMAGE
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Figure 31: We provide a 256×9984 pixels sample synthesized with InfinityGAN. The sample shows
that (a) our InfinityGAN can generalize to arbitrarily-large sizes, and (b) the synthesized contents
do not self-repeat while using the sample global latent variable zg.

K IMPLEMENTATION DETAILS OF IMAGE OUTPAINTING AND
INBETWEENING VIA INVERSION

Our pipeline is similar to that of InOut (Cheng et al., 2021). With a given image x, the objective of
GAN-model inversion is to recover a set of generator-parameter-dependent input latent variables z∗
that can synthesize a resulting image x∗ that is similar to x. There exist multiple different imple-
mentations to recover z∗, we adopt the gradient-descent-based method, which optimizes z∗ as a set
of learnable parameters with carefully designed objective functions. In the context of InfinityGAN,
we optimize four groups of variables: zg, zl, style (zT) and zn. In particular, we uses theW+ space
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formulation (Abdal et al., 2020; Wulff & Torralba, 2020) for zT, named z+T , where each layer in GT

has its own set of zTi and each of the zT
i is optimized separately.

Objective functions. We first introduce two image-distance losses to the inversion objectives:

Lpix = ‖x− x∗‖2 ,
Lpercept = LPIPS(x∗, x) ,

(7)

which LPIPS is the learned perceptual distance proposed by Zhang et al. (Zhang et al., 2018).

We utilize the Gaussianized latent space technique proposed by Wulff and Torralba (Wulff &
Torralba, 2020), which uses a LeakyReLU of slope 5 to discount the last activation function (a
LeakyReLU with a slope 0.2) in the StyleGAN2 mapping layer, and recovers Gaussian-like marginal
distribution of z+T . With the Gaussian distribution prior, we can use the empirical mean µ+

T and
covariance matrix Σ+

T (computed by sampling 10,000 z+T via zg) to recover an estimated z+T distri-
bution. With the empirical statistics, (Wulff & Torralba, 2020) proposes to compute Mahalanobis
distance:

dM (z, µ,Σ) = (z − µ)T Σ−1 (z+T − µ). (8)

Then, we construct a prior loss Lprior (Wulff & Torralba, 2020) that regularizes the zg, zl and z+T
with Mahalanobis distance:

Lprior = λαdM (zg, 0, I) + λβdM (zl, 0, I) + λγdM (z+T , µ
+
T ,Σ

+
T ) , (9)

which λα, λβ and λγ are weight factors. For the cases of zg and zl with zero means and unit
variances, the prior loss degenerates to an l2 loss.

Following StyleGAN2, we adopt a noise regularization loss Lnreg and noise renormalization. The
full objective function of the inversion is:

Linv = λpixLpix + λperceptLpercept + Lprior + λnregLnreg , (10)

where λs are the weighting factor of each loss terms.

Hyperparameters. For all tasks and datasets, we set λpix = 10, λpercept = 10, λnreg = 1,000,
λα = 10, λβ = 10, and λγ = 0.01. We use Adam (Kingma & Ba, 2015) optimizer with a learning
annealing (Karras et al., 2020) from 0.1 to 0 for 1000 iterations. We use a batch size of 1 to avoid
batch samples interfere with each other. Despite we observe batched inversion can sometimes yield
superior results, it is not a conventional setting for real-world applications that batched inputs are
mostly unavailable, it also significantly increases the stochasticity while reproducing the results.

Outpainting and inbetweening with inverted latent variables. With the inverted latent variables,
we perform image outpainting by spatially extend the z∗l with its unit Gaussian prior, while using z∗g
and z+T

∗
everywhere. For image inbetweening, z∗l is also extended with its unit Gaussian prior, while

z∗g and z+T
∗

are fused with spatial style fusion. Notice that we do not optimize c in our pipeline, since
inverting c is non-trivial and requires additional regularization losses. This introduces a limitation
that the spatial position of the images is fixed after the inversion, the users have to perform the
inversion optimization again if they want to assign z∗l to a different location.

Another limitation is that, despite the use of the prior loss, some dimensions of the inverted latents
tend to drift far away from the normal distribution. In combination with the use of theW+ space of
zT, the inverted latents are of high-instability, sometimes introduce checkerboard-like artifacts, and
frequently mix multiple irrelevant contexts together. We develop an interactive tool (released along
with the code release) that allows users interactively and regionally resampling the undesired local
latent variables zl in the outpainting area. Such a limitation is highly related to the generalization of
the inverted latents, we put it as an important future working direction.
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L IMPLEMENTATION DETAILS OF SPATIAL STYLE FUSION
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Figure 32: Illustration of fusion map creation procedure and spatial fusion generation. With
a toy architecture example shown in (a) and a style fusion map in the pixel space (bottom of (b)),
we can reversely create spatially aligned fusion maps in all intermediate layers by padding or in-
terpolating the fusion map in the previous layer. Spatial style fusion in (c) uses the fusion maps to
synthesize images with a natural style transition in the pixel space.

To achieve spatial style fusion in the existing InfinityGAN pipeline, we introduce two additional
procedures: “style fusion map creation” and “fused modulation-demodulation”. The former creates
per-layer style fusion maps that specify the geometry of the style fusion area. The latter one is a
modified version of feature modulation-demodulation that processes the volumetric styles created
from the style fusion map.

Style fusion map creation. Given N style centers designated by the user, in the pixel space, the
target of style fusion map creation is to construct a set of style fusion maps for each layer of bothGS

and GT. The fusion map is a spatially-shaped (i.e., batch×N×H×W ) tensor with N channels that
specifies the weight of the style for each spatial location, which the weights sums up to one across
the N dimension for each spatial position.

We first construct an initial fusion map in the pixel space by finding the spatially nearest style center,
then assign a one-hot label for each spatial position in the initial fusion map. Since the spatial
style fusion happens in all layers in the generator, we therefore reversely propagate the fusion map
from the output of the generator to its input, we call such a procedure fusion map calibration. We
show an illustration of fusion map calibration in Figure 32(b). The fusion map calibration starts
from the image space and sequentially backward-constructs the fusion maps for all generator layers.
For each pair (output-side and input-side) of the fusion maps in a network layer, we match the
spatial dimension of the fusion map pair by padding or interpolating the output fusion map into
a spatially aligned input fusion map. For different types of intermediate layers, the underlying
implementation of the fusion map calibration can be slightly different, but a shared principle is to
maintain a consistent geometrical position of the style fusion center throughout the generator.

In practice, such a binary map creates a sharp style transition that produces visible straight lines
dividing the style regions. Accordingly, we apply a mean filter that smooths the style transition
border. While different kernel sizes for the mean filter only alter the range of style transition and the
visual smoothness, we use a kernel size of 127 in our experiments as it empirically produces good
visual results.

Fused modulation-demodulation. After constructing the per-layer style fusion map, we can use
the fusion maps to create volumetric styles (i.e., batch×D×H×W ) by weighted-sum the styles by
the importance weights (D-channel dimension) in each spatial position. The volumetric styles are
applied to each layer of the generator. As the feature modulation-demodulation strategy used in both
StyleGAN2 and InfinityGAN is a pixel-wise operator, we can easily adapt it to volumetric styles.
We demonstrate a possible implementation2 of the fused modulation-demodulation in Figure 33.

2The forward function is based on the implementation from https://github.com/rosinality/
stylegan2-pytorch.
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1 import torch
2 import torch.nn.functional as F
3
4 def forward(self, feature, style):
5 """
6 feature: Feature with shape (B, C1, H, W)
7 style : Single style with shape (B, C2)
8 """
9 batch, in_c, in_h, in_w = feature.shape

10
11
12 # Hyperparameters
13 k = self.kernel_size # Conv kernel size
14 out_c = self.out_c # Expected output channel
15 rmpad = k // 2 # Zero-padding removal
16
17 # Weight scaling (StyleGAN2)
18 # Shape:
19 # (1, ) * (out_c, in_c, k, k)
20 # => (out_c, in_c, k, k)
21 weight = self.scale * self.weight
22
23 # Weight modulation (StyleGAN2)
24 style = self.modulation(style)
25 style = style.view(batch, 1, in_c, 1, 1)
26 # Shape:
27 # (1, out_c, in_c, k, k) * (batch, 1, in_c, 1, 1)
28 # => (batch, out_c, in_c, k, k)
29 weight = weight.unsqueeze(0) * style
30
31
32
33
34
35 # Weight demodulation (StyleGAN2)
36 demod = torch.rsqrt(
37 weight.pow(2).sum([2,3,4]))
38 weight *= demod.view(batch, out_c, 1, 1, 1)
39
40
41
42
43
44
45
46
47
48
49
50 # Convolution
51 feature = feature.view(1, batch*in_h, in_h, in_w)
52 if self.upsample:
53 weight = weight.view(batch, out_c, in_c, k, k)
54 weight = weight.transpose(1, 2).reshape(
55 batch*in_c, out_c, k, k)
56 out = F.conv_transpose2d(
57 feature, weight,
58 padding=0, stride=2, groups=batch)
59
60 # Clipping zero padding (ConvT special case)
61 out = out[:, :, rmpad:-rmpad, rmpad:-rmpad]
62
63
64
65
66
67
68
69
70 out = self.blur(out) # StyleGAN2 Gaussian blur
71 else:
72 weight = weight.view(batch*out_c, in_c, k, k)
73 out = F.conv2d(
74 feature, weight, padding=0, groups=batch)
75
76 # Recover batch-channel shape due to grouping
77 _, _, out_h, out_w = out.shape
78 out = out.view(batch, out_c, out_h, out_w)
79
80 return out

import torch 1
import torch.nn.functional as F 2

3
def fused_forward(self, feature, style): 4

""" 5
feature: Feature with shape (B, C1, H, W) 6
style : Fusion style with shape (B, C2, H, W) 7
""" 8
batch, in_c, in_h, in_w = feature.shape 9
st_c = style.shape[1] 10

11
# Hyperparameters 12
k = self.kernel_size # Conv kernel size 13
out_c = self.out_c # Expected output channel 14
rmpad = k // 2 # Zero-padding removal 15

16
# Weight scaling (StyleGAN2) 17
# Shape: 18
# (1, ) * (out_c, in_c, k, k) 19
# => (out_c, in_c, k, k) 20
weight = self.scale * self.weight 21

22
# Weight modulation (Casted) 23
# The following two forms are equivalent: 24
# - conv(in=feature, w=weight*style*demod) 25
# - conv(in=feature*style, w=weight) * demod 26
# StyleGAN2 uses the former one for speed. 27
style = \ 28

style.permute(0, 2, 3, 1).reshape(-1, st_c) 29
style = self.modulation(style) 30
style = style.view(batch, in_h, in_w, in_c) 31
style = style.permute(0, 3, 1, 2) 32
feature = (style * feature) # (B, C, H, W) 33

34
# Weight demodulation (Approximated) 35
# Feature demodulation use patch statistics. 36
# The approximation here is similar to a 37
# mean of statistics from all styles. 38
demod = torch.zeros(batch, out_c, in_h, in_w) 39
for i in range(in_h): 40

for j in range(in_w): 41
style_v = style[:, :, i, j] \ 42

.view(batch, 1, in_c, 1, 1) 43
style_v = weight.unsqueeze(0) * style_v 44
# style_v shape: (B, out_ch, in_ch, k, k) 45
demod[:, :, i, j] = \ 46

torch.rsqrt( 47
style_v.pow(2).sum([2,3,4])) 48

49
# Convolution 50
# (All feature uses same weight, no need to group) 51
if self.upsample: 52

weight = weight.view(out_c, in_c, k, k) 53
weight = weight.transpose(0, 1).contiguous() 54
out = F.conv_transpose2d( 55

feature, weight, 56
padding=0, stride=2, groups=1) 57

58
59

# Clipping zero padding (ConvT special case) 60
out = out[:, :, rmpad:-rmpad, rmpad:-rmpad] 61

62
# Late demodulation (match output shape) 63
demod = F.interpolate( 64

demod, 65
size=(out.shape[-2], out.shape[-1]), 66
mode="bilinear", align_corners=True) 67

out = out * demod 68
69

out = self.blur(out) # StyleGAN2 Gaussian blur 70
else: 71

out = F.conv2d( 72
feature, weight, padding=0, groups=1) 73

demod = demod[:, :, rmpad:-rmpad, rmpad:-rmpad] 74
out = out * demod 75

76
out = out.contiguous() 77

78
79

return out 80

Figure 33: Implementation of spatial style fusion. We present (left) the original StyleGAN2
forward function, and (right) a corresponding implementation for the spatial style fusion. We align
the related code blocks on the left and right.
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M MORE QUALITATIVE RESULTS OF OUTPAINTING VIA INVERSION

Figure 34: More outpainting via model inversion. We present more outpainting results from
InfinityGAN on Flickr-Scenery. We invert the latent variables from 256×128 pixels real images
(marked with red box), then outpaint 256×640 area (5× real image size).
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N MORE QUALITATIVE RESULTS OF INBETWEENING VIA INVERSION

Figure 35: More image inbetweening with model inversion. By inverting the latent variables
that reconstruct the two real images on two sides (marked with red box), InfinityGAN can natu-
rally inbetween the two images arbitrarily distant away. We synthesize the 256×1280 images using
InfinityGAN trained on Flickr-Scenery at 101×101 pixels.
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O MORE QUALITATIVE RESULTS OF CYCLIC PANORAMIC INBETWEENING
VIA INVERSION

Figure 36: More cyclic panorama synthesized with model inversion. By setting the same real
image on two sides (marked with red box) and inverting the latent variables that reconstruct the
real image, InfinityGAN can naturally synthesize horizontally cyclic panoramic images with image
inbetweening. We synthesize the 256×1280 images using InfinityGAN trained on Flickr-Scenery at
101×101 pixels.
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P EXPERIMENTAL DETAILS OF THE SPEED BENCHMARK WITH PARALLEL
BATCHING

We perform all the experiments on a workstation with Intel Xeon CPU (E5-2650 2.20GHz) and 8
GTX 2080Ti GPUs. We implement our framework with Pytorch 1.6, and execute in an environment
with Nvidia driver version 440.44, cuDNN version 4.6.5, and Cuda version 10.2.89.

We report the summation of pure GPU execution time and data scatter-collection time introduced by
data parallelism. The model synthesizes a single image for each trial. We first warm up the GPUs
with 10 proceeding trials without recording their statistics, then compute the mean and variance over
100 trials. The numbers are reported in Table 5.

Table 5: Inference speed up with parallel batching. Benefit from the spatial independent gener-
ation nature, InfinityGAN achieves up to 7.20× inference speed up by with parallel batching. We
conduct all experiments at a batch size of 1, and OOM indicates out-of-memory. Note that the GPU
time here accounts for pure GPU execution time and (if applicable) data-parallel scatter-aggregation
time.

Method Generation
Paradigm

Parallel
Batch Size # GPUs

GPU Time @ Inference Size (sec/image) Speed Up MFLOPs

1024×1024 2048×2048 4096×4096 8192×8192 8192×8192 1024×1024

StyleGAN2 One-Shot - 1 0.60± 0.01 OOM OOM OOM - 6,642

InfinityGAN
(Ours)

One-Shot - 1 0.67± 0.01 OOM OOM OOM - 6,815

Spatially
Independent
Generation

1

1

1.24± 0.15 7.96± 0.17 34.35± 1.69 137.44± 1.85 ×1.00

17,901

2 1.58± 0.09 5.31± 0.13 24.13± 0.42 95.77± 1.63 ×1.44
4 1.35± 0.01 5.20± 0.02 20.93± 0.04 82.52± 0.08 ×1.67
8 1.28± 0.01 5.14± 0.02 19.63± 0.02 78.41± 0.17 ×1.75
16 1.23± 0.01 5.01± 0.01 19.11± 0.02 76.41± 0.02 ×1.80

32 2 0.96± 0.01 3.90± 0.02 14.84± 0.06 59.33± 0.15 ×2.32
64 4 0.56± 0.01 2.25± 0.05 8.64± 0.11 35.20± 0.39 ×3.90
128 8 0.32± 0.05 1.30± 0.05 4.82± 0.06 19.09± 0.16 ×7.20

Q ABLATION: FEATURE UNFOLDING

Figure 37: We plot the FID curve for a training episode of our complete InfinityGAN (red curve)
and InfinityGAN without feature unfolding (blue curve). We observe the FID saturates at early stage
if without feature unfolding.
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R LIMITATIONS

Here we discuss some empirical limitations of InfinityGAN.

Patch-training leads to performance degradation. In order to construct a better conditional dis-
tribution in the vertical direction with an auxiliary loss Lar, InfinityGAN trains the generator with
patches instead of full images. However, training with patches reduces the training field-of-view,
thus leading to an inferior performance at the same field-of-view compared to a model trained with
full images. Designing unsupervised mechanisms in learning Lar without patch-cropping can im-
prove InfinityGAN performance.

Long-range coherence. InfinityGAN assumes local coherence following a shared holistic appear-
ance can achieve visually plausible synthesis. However, certain physical relationships still require
long-range dependency, such as we can observe two suns in the top-left image in Figure 23, and
twilight should only happen near the horizon in Figure 25. Despite InfinityGAN can independently
sample pixels arbitrarily distant away, it remains unclear how to construct unsupervised losses for
such conditions, as we only have finite-pixel images in training data.

Strip-shaped artifacts. We observe InfinityGAN creates a unique type of artifact that forms a
strip-shaped structure sweeping through the sky or ground for a long distance, such as the clouds
in the bottom-two image in Figure 23. We hypothesize the root cause of such an artifact is that the
model attends too much to the strong structural characteristics of the horizon line and accidentally
shares the representation with other less related contexts. We anticipate improving the modulation
or coordinate encoding mechanisms may help suppress such behavior.

S IMPLEMENTATION ILLUSTRATION OF SCALEINV FID

1 import torch.nn.functional as F
2

3 def eval_scaleinv_fid(real_imgs, fake_imgs, scale):
4 # real_imgs: tensor of real images, shape (B, C, H, W).
5 # fake_imgs: tensor of fake images, shape (B, C, H, W).
6 # scale: the scale of the current ScaleInv FID.
7 fake_images = F.interpolate(
8 fake_images,
9 scale_factor=1/scale,

10 mode="bilinear",
11 align_corners=True)
12

13 # The regular FID evaluation
14 return eval_fid(real_images, fake_images)
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T MORE COMPARISONS WITH TEXTURE SYNTHESIS METHOD

As we discussed in Section 1 that texture synthesis models are not directly applicable to real-world
image synthesis. In Figure 38, we demonstrate such a problem by running TileGAN (Frühstück
et al., 2019) on our Flickr-Landscape dataset. The results show that the random texture synthesis
cannot produce plausible global structures. It is important to note that the images are shown in Tile-
GAN and other texture synthesis papers (Bergmann et al., 2017; Jetchev et al., 2018) with plausible
global structure, such as the satellite map of Jurassic Park and the paintings in TileGAN, are all
conditioned on an image that gives the blueprint of the global structure.

Implementation details of TileGAN experiment. We use the officially released TileGAN pipeline
to synthesize the results with randomly sampled latent variables. We follow the instructions and train
a PGGAN model at 256×256 resolution, then test the model to synthesize at 512×512, 1024×1024,
and 2048×2048 pixels. Note that we discovered that TileGAN alters the PGGAN architecture from
residual-based ToRGB branch 3 to single ToRGB projection 4. Such a modification is not described
in the TileGAN paper, but can be found by diagnosing the model checkpoints released by the authors.
The modification leads to significant visual-quality degradation. However, even without the visual-
quality degradation, the lack of structural clues makes TileGAN impossible to infer a coherent global
structure while synthesizing at larger image sizes.

Generated (1x) Generated (2x) Generated (8x)Generated (4x)

Figure 38: Qualitative results of TileGAN on Flickr-Landscape dataset. The results show that
random texture synthesis models are not directly applicable to real-world image synthesis.

U MORE COMPARISONS WITH SINGAN-BASED MODELS

We conduct additional experiments on ConSinGAN (Hinz et al., 2021), a concurrent work that
proposes several improvements upon SinGAN. We use the officially released codes and hyperpa-
rameters to train the ConSinGAN models. ConSinGAN has two types of training modes, generation
and retargeting. The author mentions the “retargeting” mode is more suitable for extending synthe-
sis size in their GitHub release. As shown in Figure 39, similar to SinGAN, ConSinGAN does not
have specialized mechanisms to deal with different positional information while tested at a different
synthesis size. Therefore, neither of the training modes can produce a plausible global view while
tested at extended synthesis sizes.

3Codes: https://github.com/afruehstueck/tileGAN/blob/0460e228b1109528a0fefc6569b970c2934a649d/networks.py#L274-
L294.

4Codes: https://github.com/afruehstueck/tileGAN/blob/0460e228b1109528a0fefc6569b970c2934a649d/networks.py#L370-
L375.

41

https://github.com/afruehstueck/tileGAN/blob/0460e228b1109528a0fefc6569b970c2934a649d/networks.py#L274-L294
https://github.com/afruehstueck/tileGAN/blob/0460e228b1109528a0fefc6569b970c2934a649d/networks.py#L274-L294
https://github.com/afruehstueck/tileGAN/blob/0460e228b1109528a0fefc6569b970c2934a649d/networks.py#L370-L375
https://github.com/afruehstueck/tileGAN/blob/0460e228b1109528a0fefc6569b970c2934a649d/networks.py#L370-L375


Published as a conference paper at ICLR 2022

Generated (1x)

Generated (2x)

Generated (8x)

Generated (4x)

Generated (1x)

Generated (2x)

Generated (8x)

Generated (4x)

Figure 39: Qualitative results of ConSinGAN on Flickr-Landscape dataset. We run ConSinGAN
under two different configurations released by the authors, (top) generation and (bottom) retarget.
The results show that ConSinGAN inherits similar behaviors from SinGAN and fails to produce
images with plausible global structure while synthesizing at larger image sizes.
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V ABLATION: MODE-SEEKING DIVERSITY LOSS (Ldiv)

(a) InfinityGAN (b) InfinityGAN w/o Diversity Loss

Figure 40: Ablation on the mode-seeking diversity loss. We show that the mode-seeking diversity
loss discourages the model from synthesizing similar appearance at the same coordinate. Both Infin-
ityGAN models are trained on Flickr-Landscape data with 197×197 full-image size and 101×101
patch size, then synthesize at 101×101 pixels at testing. In this figure, all images share the same
coordinate grid, and each row shares the same global latent variable. Therefore, only the local latent
variables are varying in each row. In Figure (a), regular InfinityGAN shows high diversity in each
row, and no obvious structure-coordinate relation is presented. In contrast, in Figure (b), a consistent
high-level layout is shared among each row, while the differences between samples are mostly local
variations. In particular, the third, sixth, and seventh rows share a similar layout, which is a sign
that the model learns a correspondence between the image structure and the coordinates. However,
it is difficult to quantify such a problem since the repetition is not an exact repetition of content but
a structural/semantical level similarity.

W ABLATION: AUXILIARY LOSS (Lar)

Figure 41: Ablation on the auxiliary loss. We show that InfinityGAN with auxiliary loss (or-
ange curve) can provide slight improvement compared to the variant without the auxiliary loss (pink
curve). However, such a performance difference is not very significant. We believe the additional
supervision in the vertical position should provide important clues in helping the model learn the
spatial-varying distribution in the vertical direction. Our approach in modeling such information
with two MLP-layers (see Figure 18) may be too naive. Future studies on improving the model-
ing performance with better loss functions or architecture may improve the overall performance of
InfinityGAN further.

43


