
Generalizable Domain Adaptation for
Sim-and-Real Policy Co-Training

Shuo Cheng1* Liqian Ma1* Zhenyang Chen1

Ajay Mandlekar2† Caelan Garrett2† Danfei Xu1

1 Georgia Institute of Technology 2 NVIDIA Corporation
* and † denote equal contribution
{shuocheng, mlq}@gatech.edu

Abstract

Behavior cloning has shown promise for robot manipulation, but real-world demon-
strations are costly to acquire at scale. While simulated data offers a scalable
alternative, particularly with advances in automated demonstration generation,
transferring policies to the real world is hampered by various simulation and real
domain gaps. In this work, we propose a unified sim-and-real co-training frame-
work for learning generalizable manipulation policies that primarily leverages
simulation and only requires a few real-world demonstrations. Central to our ap-
proach is learning a domain-invariant, task-relevant feature space. Our key insight
is that aligning the joint distributions of observations and their corresponding ac-
tions across domains provides a richer signal than aligning observations (marginals)
alone. We achieve this by embedding an Optimal Transport (OT)-inspired loss
within the co-training framework, and extend this to an Unbalanced OT framework
to handle the imbalance between abundant simulation data and limited real-world
examples. We validate our method on challenging manipulation tasks, showing it
can leverage abundant simulation data to achieve up to a 30% improvement in the
real-world success rate and even generalize to scenarios seen only in simulation.

1 Introduction

Behavior cloning [1] is a promising approach for acquiring robot manipulation skills directly in the
real world, due to its simplicity and effectiveness in mimicking expert demonstrations [2, 3]. However,
achieving robust and generalizable performance requires collecting large-scale datasets [4, 5] across
diverse environments, object configurations, and tasks. This data collection process is labor-intensive,
time-consuming, and costly, posing significant challenges to scalability in real-world applications.

Recently, with rapid advancements in physics simulators [6, 7], procedural scene generation [8, 9],
and motion synthesis techniques [10, 11], there has been growing interest in leveraging simulation
as an alternative source of training data. These simulation-based approaches enable scalable and
controllable data generation, allowing for diverse and abundant supervision at a fraction of the
real-world cost. However, transferring policies trained in simulation to the physical world remains
a non-trivial challenge due to sim-to-real gap—the discrepancies between the simulated and real-
world environments that a policy encounters during execution. These differences can manifest in
various forms, such as variations in visual appearance, sensor noise, and action dynamics [12, 13].
In particular, learning visuomotor control policies that remain robust under changing perceptual
conditions during real-world deployment continues to be an open area of research.

Common strategies to bridge this domain gap include domain randomization [12, 13] and data
augmentation [14, 15], though these often require careful tuning. Domain adaptation (DA) techniques

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Real-world Data

• Small number of demos
• Limited settings

Simulation Data

• Large number of demos
• Diverse settings

Densely covered by sim demos

Optimal 
Transport 
Alignment

Generalize to states seen only in sim

Real-world Deployment

Policy 
Co-Training

Sparsely covered by real demos

Shared Policy Latent Space

Figure 1: Sim-and-Real Co-Training with Optimal Transport. We use behavior cloning to train a
real-world policy from sparse real-world and dense simulation demos. Leveraging Optimal Transport
to align feature spaces, our method enables generalization to scenarios seen only in simulation.

aim to explicitly align distributions, either at pixel [16, 17] or feature levels [18, 19, 20]. However,
many feature-level methods align only marginal observation distributions (e.g., MMD [18, 19]), which
can be insufficient for fine-grained manipulation alignment as it may not preserve action-relevant
relationships across domains. More recently, sim-and-real co-training—simply training a single
policy on mixed data from both domains [21, 22]—has shown surprising effectiveness. We argue that
while beneficial for data diversity, such co-training approaches typically lack explicit constraints for
feature space alignment across domains, potentially hindering optimal transfer and generalization
because they don’t enforce a consistent mapping of task-relevant structures.

We present a unified sim-and-real co-training framework that explicitly learns a shared latent space
where observations from simulation and the real world are aligned and preserve action-relevant infor-
mation. Our key insight is that aligning the joint distributions of observations and their corresponding
actions or task-relevant states across domains provides a direct signal for learning transferable features.
Concretely, we leverage Optimal Transport (OT) [23] as an alignment objective to learn represen-
tations where the geometric relationships crucial for action prediction are consistent, irrespective
of whether the input comes from simulation or the real world. Further more, to robustly handle the
data imbalance in co-training with abundant simulation data and limited real-world data, we further
extend to an Unbalanced OT (UOT) formulation [24, 25] and develop a temporally-aware sampling
strategy to improve domain alignment learning in a mini-batch OT setting.

Our contributions are: (1) a sim-and-real co-training framework that learns a domain-invariant yet
task-salient latent space to improve real-world performance with abundant simulation data, (2) an
Unbalanced Optimal Transport framework and temporally-aware sampling strategy to mitigate data
imbalance and improve alignment quality in mini-batch OT training, (3) comprehensive experiments
using both image and point-cloud modalities, evaluating sim-to-sim and sim-to-real transfer across
diverse manipulation tasks, demonstrating up to a 30% average success rate improvement and
achieving generalization to real-world scenarios for which the training data only appears in simulation.

2 Related Work

Behavior Cloning for Robot Manipulation. Behavior cloning (BC) trains policies to map ob-
servations to actions by imitating expert demonstrations [2, 26, 27, 28], offering an effective path
to human-like manipulation skills. Generalization heavily depends on dataset diversity. While
some efforts focus on large-scale real-world data collection [5, 4] or more efficient collection tech-
niques [29, 30, 31], this remains costly and time-consuming. Physical simulators provide a low-cost
alternative, with automatic motion synthesis leveraging privileged information to generate large-
scale simulated demonstrations [10, 32, 33]. Our work combines abundant simulated data with few
real-world demonstrations to train robust BC policies.

Sim-to-real Transfer and Co-training. Policies trained solely in simulation often underperform
in the real world due to the sim-to-real gap—discrepancies in visual appearance and dynamics.
For quasi-static manipulation, the visual domain gap is typically the primary bottleneck. Domain
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randomization exposes policies to varied simulated visual conditions to build robustness to real-world
variability [13, 34, 35]. However, its success depends on how well randomized parameters cover true
real-world distributions, often requiring manual tuning. Domain adaptation (DA) explicitly aligns
source (simulation) and target (real) domains [36]. Pixel-level DA uses image translation to make
simulated images resemble real ones [16, 17, 37]. Feature-level DA, which is often more scalable
for end-to-end learning, focuses on learning domain-invariant representations [19, 20, 18, 38, 39].
Sim-and-real co-training, where a policy is jointly trained on mixed data [21, 22], offers a simple and
effective alternative. While co-training enhances generalization through data diversity, it typically
lacks explicit constraints to align learned feature spaces across domains. We build upon co-training
by incorporating feature-level domain adaptation via Optimal Transport to promote latent space
alignment, thereby improving real-world policy performance.

Optimal Transport for Domain Adaptation. Optimal Transport (OT) offers a principled framework
for aligning distributions, widely adopted for domain adaptation [23, 40, 41, 42, 43, 44]. Traditional
OT methods compute a transport plan between source and target samples, then train a new model on
the transported source. Most relevant to us is DeepJDOT [45], which builds on JDOT [43] to align
joint distributions of features and (pseudo) labels for unsupervised domain adaptation, where target
labels are unavailable. Our work builds on these principles for sim-and-real co-training imitation.
Unlike unsupervised DA, we leverage available action or state labels from limited real-world demon-
strations as “soft” supervision to guide a more task-relevant alignment of joint observation-label
distributions across domains. To robustly handle the inherent data imbalance between abundant simu-
lation and scarce real data, we incorporate an Unbalanced OT (UOT) loss [24] into our co-training
framework and develop a temporally-aware sampling strategy to improve mini-batch UOT training.

3 Preliminaries and Problem Setting

Our method builds on the principle of Optimal Transport (OT) for aligning two empirical distributions.
Let U = {ui}ni=1 and V = {vj}mj=1 represent the data points drawn from a source domain and a
target domain, with corresponding empirical distributions p =

∑n
i=1 piδui and q =

∑m
j=1 qjδvj .

We define the ground cost matrix C = (Ci,j) ∈ Rn×m with Ci,j = c(ui, vj), where c(·, ·) is a cost
function, which is often defined as squared Euclidean distance. Optimal Transport (OT) seeks to find
an optimal plan Π that maps the distribution p to q that minimizes the displacement cost Wc(p,q):

Wc(p,q) = min
Π∈Rn×m

+

⟨Π, C⟩F , s.t. Π1m = p,Π⊤1n = q. (1)

3.1 Problem Setting: Sim-and-Real Policy Co-Training

We address the challenge of learning robust real-world robotic manipulation policies π. Our approach
minimizes the need for extensive real-world data collection by primarily leveraging abundant sim-
ulation data alongside a small set of real-world demonstrations. This is framed as a sim-and-real
co-training problem [22, 46], where a single policy is trained on data from both domains. Specifically,
we consider a source domain (simulation, denoted src) and a target domain (real-world, denoted
tgt). We model the domains as Partially Observable Markov Decision Processes (POMDPs) that
share an underlying, generally unobserved, state space S and an action space A. The policy receives
observations comprising high-dimensional visual input o ∈ O (e.g., RGB images, 3D point clouds)
generated by the emission function E : S 7→ O, together with low-dimensional proprioceptive
information x ∈ X (e.g., robot joint angles, end-effector pose).

Domain Gaps. The central challenge is the domain gap, particularly the visual observation gap. For
the same underlying robot and environment state s ∈ S, visual observations emitted in simulation,
osrc = Esrc(s), can differ significantly from those in the real world, otgt = Etgt(s). This discrepancy
arises from factors like variations in visual appearance (textures, lighting), sensor noise, and rendering
artifacts (e.g., differences between simulated ray casting and real-world light transport). As a result,
the marginal observation distributions differ between the domains, namely Psrc(osrc) ̸= Ptgt(otgt).
In contrast, actions a and proprioceptive states x are assumed to be largely consistent for a given
s due to consistent data generation strategies (discussed next) and accurate robot state estimation.
While differences in dynamics also contribute to the domain gaps, our focus on learning quasi-static
prehensile manipulation tasks from human-sourced demonstrations means that the dynamics gap is
typically less dominant than the observation gap.
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Figure 2: Method Overview. Our sim-and-real co-training framework learns a domain-invariant
latent space to improve real-world performance using abundant simulation demos and a small number
of real-world demos. It leverages an Unbalanced Optimal Transport loss and a temporal sampling
strategy to address data imbalance and improve alignment quality during mini-batch training.

Data Sources and Data Imbalance. In the source (simulation) domain, we leverage the ability
to automatically generate a large dataset of Nsrc trajectories, Dsrc = {(oisrc, xi

src, a
i
src)}

Nsrc
i=1 .

Specifically, we leverage an automated demonstration generation tool MimicGen [10], which utilizes
privileged information available in simulation to create a diverse set of experiences covering a broad
underlying state space, Ssrc. MimicGen populates synthetic demonstrations based on a handful of
human demonstrations, which ensures that the generated data is behaviorally consistent with human
demonstrations. We collect a limited number of Ntgt demonstrations, Dtgt = {(ojtgt, x

j
tgt, a

j
tgt)}

Ntgt

j=1

(where Nsrc ≫ Ntgt), typically through human teleoperation. These real-world demonstrations will
naturally cover a much smaller and potentially distinct subset of states, Stgt. This difference in data
coverage leads to the challenge of partial data overlap. While we assume there is a region of states
common to both Ssrc and Stgt where direct alignment is possible, a significant portion of Ssrc (our
rich simulated data) will not have corresponding real-world demonstrations in Stgt. Conversely, Stgt

might contain details specific to real world (e.g., demonstration behaviors). Effectively leveraging the
entirety of Dsrc for real-world performance, especially for states outside the direct sim-real overlap
in demonstrations, is the problem we address.

Objective: Generalizable Domain Adaptation. Our goal is to learn a single, generalizable policy
πθ(a|z, x) and an observation encoder fϕ : Osrc ∪ Otgt → Z . This encoder maps high-dimensional
visual observations o from both source and target domains to a shared latent space Z . The primary
objective is to achieve high policy performance in the target (real-world) domain, especially in
scenarios not explicitly covered by the limited real-world demonstrations Dtgt. This entails two
objectives. First, for states within the overlapping regions of Ssrc and Stgt, we aim to learn high-
quality embeddings z = fϕ(o) that are well-aligned across domains, such that fϕ(osrc) ≈ fϕ(otgt)
in corresponding states, facilitating effective policy learning. This is also the assumption of most
co-training methods [21, 22]. Second, for states covered in Ssrc but not in Stgt, the encoder fϕ must
produce embeddings fϕ(otgt) for novel target observations that are consistent with the embeddings
of their simulated counterparts fϕ(osrc). This requires the learned representations to capture domain-
invariant, task-relevant features, enabling policy to generalize to target (real-world) scenarios for
which training data is only present in the source (simulated) domain.

4 Method

To learn a generalizable policy πθ with robust feature fϕ from imbalanced sim-and-real datasets
(|Dsrc| ≫ |Dtgt|), as outlined in Section 3, we propose a co-training framework that explicitly aligns
the latent representation through Optimal Transport (OT). Our core strategy is to leverage action
information to guide the alignment of learned visual latent features (z = fϕ(o)). This alignment
objective simultaneously encourages the encoder fϕ to discover domain-invariant representations
while preserving detailed information for action prediction. Specifically, we propose a formulation
based on OT to align joint observation-action distributions (Sec. 4.1). We further address the data
imbalance problem through Unbalanced Optimal Transport (UOT) (Sec. 4.2) and a temporally-aware
sampling strategy (Sec. 4.3), all integrated into a unified co-training framework (Sec. 4.4).
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4.1 Optimal Transport for Action-Aware Feature Alignment

While standard co-training methods [21, 22] offer implicit feature alignment, and marginal distribution
matching (e.g., Maximum Mean Discrepancy [18]) can overlook fine-grained correspondences, we
seek a more structured approach. To learn domain-invariant visual features z = fϕ(o) that are also
predictive of actions a ∈ A, we propose to align the joint distributions Psrc(fϕ(osrc), asrc) and
Ptgt(fϕ(otgt), atgt) using Optimal Transport. This encourages the encoder fϕ to learn representations
where the geometric relationships between (visual feature, action) pairs are preserved across domains.
By minimizing an OT-based loss, the encoder fϕ is trained to shape the embedding space Z such that
structures relevant to action prediction are consistent between simulation and the real world.

Formally, given source samples {(oisrc, aisrc)}
Nsrc
i=1 and target samples {(ojtgt, a

j
tgt)}

Ntgt

j=1 , we aim to
find an optimal transport plan Π∗ and an optimal encoder f∗

ϕ that minimize the transportation cost
between their joint distributions in the (z, a) space. Based on the general OT formulation in Eq. 1,
learning objective for the encoder fϕ, and implicitly the transport plan Π, can be expressed as finding
fϕ that minimizes the Wasserstein distance between Psrc(fϕ(osrc), asrc) and Ptgt(fϕ(otgt), atgt):
minfϕ WC (Psrc(fϕ(osrc), asrc), Ptgt(fϕ(otgt), atgt)). The ground cost c ideally combine distances
in both the learned visual latent space Z and the action space A, for instance:

Cϕ

(
(fϕ(o

i
src), a

i
src), (fϕ(o

j
tgt), a

j
tgt)

)
= α1 · dZ(fϕ(oisrc), fϕ(o

j
tgt)) + α2 · dA(aisrc, a

j
tgt). (2)

Minimizing this objective using an iterative algorithm like Sinkhorn [47] creates a bi-level optimiza-
tion. In the inner loop, for a fixed fϕ, an approximately optimal transport plan Π is computed. In
the outer loop, fϕ is updated to reduce the cost incurred by this plan. This process effectively trains
the encoder fϕ to produce embeddings z that make the source and target joint distributions (z, a)
less costly to align. A key advantage of OT is its ability to preserve geometric structures; by guiding
alignment with action similarity (via dA), we shape the embedding function fϕ to cluster visual
observations that lead to similar actions, irrespective of their domain of origin.

Practical Implementation: Proprioception as Guidance. While direct alignment of (z, a) is
principled, discrepancies in controller characteristics or action representations between simulation
and real-world teleoperation can make dA(asrc, atgt) an unreliable indicator of behavioral similarity.
As a robust practical compromise, we leverage proprioceptive information x ∈ X (e.g., end-effector
pose), which is more consistently represented across domains (Section 3.1) and highly correlated
with robot behavior. Thus, our implemented ground cost c replaces actions a with proprioceptive
states x, which is used in our UOT formulation (detailed in Section 4.2).

4.2 Unbalanced Optimal Transport for Robust Alignment

The standard OT formulation (Eq. 1) enforces strict marginal constraints, requiring all mass from
the source distribution to be transported to the target and vice-versa. This is problematic in our
sim-to-real setting primarily due to significant data imbalance (|Dsrc| ≫ |Dtgt|) and the partial
overlap between the state spaces covered by Dsrc and Dtgt (Section 3.1). Standard OT would either
distort the latent space by forcing many-to-few mappings or create spurious alignments between
non-corresponding states. To address these challenges, we employ Unbalanced Optimal Transport
(UOT) [25, 24]. UOT relaxes the hard marginal constraints of OT by introducing regularization terms
that penalize deviations, thereby allowing for partial mass transport. This enables UOT to selectively
align subsets of the distributions that are most similar according to the ground cost, while effectively
down-weighting or ignoring the transport for dissimilar or unmatched portions.

UOT Loss Formulation. Consider a mini-batch of Nbatch source samples {(oisrc, xi
src)}

Nbatch
i=1 and

Nbatch target samples {(ojtgt, x
j
tgt)}

Nbatch
j=1 . Let their empirical distributions in the joint (fϕ(o), x)

space be µ̂src and µ̂tgt. Our UOT loss, LUOT(fϕ), is based on the Kantorovich formulation with
entropic regularization and KL-divergence penalties for marginal relaxation:

LUOT(fϕ) = min
Π∈RNbatch×Nbatch

+

⟨Π, Ĉϕ⟩F + ϵ · Ω(Π) + τ · KL(Π1||p) + τ · KL(Π⊤1||q). (3)

Here, Ĉϕ is the Nbatch ×Nbatch ground cost matrix, where each element (Ĉϕ)ij is computed using
the joint ground cost described in Sec. 4.1. The term Π is the transport plan; ϵ > 0 is the entropic
regularization strength with Ω(Π) =

∑
i,j Πij log Πij being the entropy, facilitating efficient solution
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via algorithms like Sinkhorn-Knopp [47]; τ > 0 controls the penalty for deviating from the batch
marginals p and q (typically uniform); and KL(·||·) denotes the Kullback-Leibler divergence.

4.3 Temporally Aligned Sampling for Effective Mini-Batch Learning

The efficacy of mini-batch OT, including UOT, hinges on presenting the solver with comparable
source and target samples within each batch. For sequential robotic data, naive random sampling of
individual transitions from Dsrc and Dtgt may yield pairs from different stages of tasks, leading to
noisy transport plans and sub-optimal feature alignment by fϕ. Increasing the minibatch size may
lead to higher likelihood of sampling aligned pairs but requires more computational resources.

To address this, we introduce a temporally aligned sampling strategy designed to construct mini-
batches with a higher density of meaningfully corresponding state-pairs. Our strategy leverages
trajectory-level similarity as a heuristic. We first quantify similarity between source trajectories
{ξksrc} ⊂ Dsrc and target trajectories {ξltgt} ⊂ Dtgt using Dynamic Time Warping (DTW) [48]
on their respective proprioceptive state sequences {xt}. The resulting normalized DTW distance,
d̄(ξksrc, ξ

l
tgt) = dDTW(ξksrc, ξ

l
tgt)/max(|ξksrc|, |ξltgt|), reflects overall behavioral similarity. To turn

these distances into sampling weights, we apply a softplus-based transformation: w(ξksrc, ξ
l
tgt) =

1/(1 + e10·(d̄(ξ
k
src,ξ

l
tgt)−0.01)). Mini-batch construction then proceeds by (1) sampling a pair of

trajectories (ξsrc, ξtgt) with probability biased towards pairs exhibiting high similarity (i.e., low
DTW distance) and (2) subsequently sampling individual transition tuples (osrc, xsrc, asrc) and
(otgt, xtgt, atgt) from this selected, behaviorally similar trajectory pair.

Fine-grained temporal alignment, such as sampling around DTW-matched time steps, can optionally
be employed here. We describe how the UOT loss (Eq. 3) is adapted with this new sampling procedure
in the appendix.

This two-stage process significantly increases the likelihood that source and target samples within a
mini-batch share similar proprioceptive states x. Consequently, the UOT optimization (Eq. 3) can
more effectively focus on aligning the visual latent features fϕ(osrc) and fϕ(otgt) for these relevant
state-pairs. We empirically verify the importance of this sampling strategy in appendix.

4.4 Joint Co-Training Framework

Putting all components together, our final approach is a joint co-training framework where the
visual feature encoder fϕ and the policy πθ(a|z, x) are optimized concurrently. The Unbalanced
Optimal Transport loss (LUOT) serves as a regularization term, guiding fϕ to learn domain-invariant
and action-relevant latent representations z = fϕ(o), while standard Behavior Cloning (BC) losses
drive the policy learning. The overall training objective L(fϕ, πθ) = LBC(fϕ, πθ) + λ · LUOT(fϕ)
combines these components, where LBC represents the combined behavior cloning losses calculated
over both source (Dsrc) and target (Dtgt) datasets using a standard imitation loss (e.g., MSE). The
hyper-parameter λ > 0 balances feature alignment with policy imitation. The LUOT(fϕ) term is
computed as defined in Equation 3, with mini-batches sampled with strategy described in Sec. 4.3.
The overall training process is detailed in the appendix.

5 Experiments

We aim to validate the following core hypotheses. H1: Our method effectively learns complex
manipulation tasks in both simulation and the real world. H2: Our method generalizes to target
domains only seen in simulation. H3: Our method is broadly applicable to multiple observation
modalities. H4: Scaling up simulation data coverage improves generalization performance.

5.1 Experiment Setups

To evaluate the effectiveness of our approach, we conduct comprehensive experiments in both sim-
to-sim and sim-to-real transfer scenarios on a suite of robotic tabletop manipulation tasks: Lift,
BoxInBin, Stack, Square, MugHang, and Drawer. These tasks are designed to test the system’s
ability to handle key challenges in robotic manipulation, including dense object interactions, long-
horizon reasoning, and high-precision control.
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Figure 3: Evaluation Task Suites. We evaluate our methods on 6 different tasks in the real world
(top) and simulation (bottom) to demonstrate the effectiveness of sim-to-real transfer.

Environment setup. For the real-world experiments, we deploy our method on a Franka Emika
Panda robotic arm, controlled at 20Hz using joint impedance control. Visual and point cloud
observations are captured using an Intel RealSense D435 depth camera. Our simulation environments
use the Robosuite [49] simulation framework. We calibrate the camera pose and camera intrinsics in
simulation to match those obtained from the real-world setup to reduce the domain gap.

Simulation data. For simulation experiments, we begin by collecting 10 human demonstrations per
task. Using MimicGen [10], we synthesize 200-1000 trajectories in the source domain, covering the
full range of initial states (denoted as Source). In the target domain, we divide the reset region into
two subregions: one is populated with 10 trajectories for training (denoted as Target), while the
other remains completely held out from training (denoted as Target-OOD). This held-out subregion
is used to evaluate each method’s generalization under Out-Of-Distribution (OOD) conditions.

Real data. For real-world experiments, we adopt a similar strategy by partitioning the reset re-
gion—aligned with the simulation setup into two subregions. Based on task complexity, we collect
10–25 human demonstrations within one subregion and generate 1000 simulated trajectories. To
evaluate generalization in OOD scenarios, we consider the following settings in the real world: Shape,
where the test object has not been seen during real data collection; Reset, where the initial object
pose falls outside the range covered by demonstrations; and Texture, where the object is wrapped in
a novel texture not present in any real-world training data. Detailed visualizations of each task and
reset configuration are included in the appendix.

Observation modality and domain gaps. We evaluate our approach using two observation modal-
ities: point clouds and RGB images. For point cloud observations, our method and the baselines
adapt 3D Diffusion Policy [28] with a PointNet encoder [50]. For RGB image observations, we use
Diffusion Policy [51] with a ResNet-18 encoder [52]. To evaluate the generalization capabilities of
different methods under visual domain shifts in simulation, we introduce several target domain vari-
ations: Viewpoint1-Point, Viewpoint3-Point, Perturbation-Point, Viewpoint-Image,
and Texture-Image. Descriptions of each domain shift are provided in the appendix.

Baselines. We compare our method against the following baselines: MMD—minimizes the distance
between the mean embeddings of source and target data [18]; Co-training—trains the model
using a mixed batch of source and target domain data, following the strategy proposed by [21, 22];
Source-only—trains the model exclusively on data from the source domain, which in sim-to-real
experiments corresponds to using only simulation data; Target-only—trains the model exclusively
on data from the target domain, which in sim-to-real experiments trains with only real world data.

5.2 Cross-Domain Generalization Results

Stack (V) Square (V) BoxInBin (V) Stack (T) Square (T) BoxInBin (T) Average
T T-O T T-O T T-O T T-O T T-O T T-O T T-O

S.-only 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T.-only 0.30 0.00 0.20 0.00 0.82 0.00 0.42 0.00 0.48 0.00 0.64 0.00 0.48 0.00
MMD 0.38 0.00 0.18 0.04 0.82 0.16 0.44 0.4 0.38 0.34 0.80 0.70 0.50 0.30
Co-train. 0.44 0.04 0.76 0.00 0.90 0.14 0.54 0.34 0.66 0.46 0.98 0.72 0.71 0.28
Ours 0.65 0.04 0.86 0.02 0.88 0.26 0.66 0.52 0.68 0.54 0.96 0.82 0.78 0.36
Table 1: Sim-to-Sim Success Rates for Image-Based Policies. V and T represent Viewpoint-Image
and Texture-Image domain shifts, respectively. T and T-O correspond to the target domain and
target domain with out-of-distribution (OOD) scenarios.
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Stack (R) Square (R) BoxInBin (T) Average
grasp full grasp full grasp full full

Source-only 0.0 0.0 0.0 0.0 0.0 0.0 0.00
Target-only 0.0 0.0 0.1 0.0 0.0 0.0 0.00
Co-training 0.0 0.0 0.3 0.0 0.4 0.3 0.10
Ours 0.4 0.4 0.5 0.1 0.7 0.7 0.40

Table 2: Real-World Image-Based Policy OOD Success Rates. R and T denote Reset OOD and
Texture OOD, respectively. The Average denotes the average full task success rates over all tasks.

BoxInBin (V3) BoxInBin (P) Lift (V1) Stack (V1) Square (V1) MugHang (V1) Average
T T-O T T-O T T-O T T-O T T-O T T-O T T-O

S.-only 0.08 0.10 0.52 0.60 0.32 0.40 0.52 0.64 0.10 0.08 0.12 0.10 0.28 0.32
T.-only 0.42 0.00 0.58 0.00 0.60 0.00 0.32 0.00 0.16 0.00 0.18 0.00 0.38 0.00
MMD 0.50 0.38 0.66 0.50 0.56 0.52 0.70 0.66 0.18 0.12 0.18 0.20 0.46 0.40
Co-train. 0.76 0.52 0.70 0.66 0.92 0.48 0.86 0.72 0.24 0.24 0.26 0.22 0.62 0.47
Ours 0.84 0.58 0.80 0.76 0.80 0.60 0.82 0.86 0.42 0.38 0.40 0.34 0.68 0.59

Table 3: Sim-to-sim Success Rates For Point Cloud-Based Policies. V1, V3, and P indicate domain
shifts due to Viewpoint1-Point, Viewpoint3-Point, and Perturbation-Point, respectively.
T and T-O denote the target domain and target domain under out-of-distribution (OOD) conditions.

We report results for policies using point cloud and image-based observations in both simulation and
real-world settings. For simulation, image based and point cloud based performance are shown in
Tables 1 and 3. For real-world experiments, in-distribution results are presented in Tables 7 and 8 in
Appendix, while out-of-distribution (OOD) performance is reported in Tables 2 and 4.

These results support the following key hypotheses:

Our method effectively learns complex manipulation tasks in both simulation and the real world
(H1). Experimental results show that our approach consistently matches or outperforms in terms of
success rates all baselines across source and target domains in both simulated and real-world settings.
On real-world tasks, our method achieves average success rates of 0.73 and 0.77 for image-based and
point cloud-based policies, respectively. The Target-only baseline performs well in distribution
but fails to generalize under domain shifts. The MMD baseline [18] offers limited improvement by
aligning global feature statistics, but its coarse alignment often disrupts task-relevant structure and
harms source-domain performance. In contrast, by using Unbalanced Optimal Transport, our method
performs selective, structure-aware alignment, avoiding spurious matches.

Our method generalizes to target domains only seen in simulation (H2). In Target-OOD sce-
narios, our method outperforms all baselines, underscoring the value of learning domain-invariant
representations (see Tab. 2 and Tab. 4). While Co-training baselines [21, 22] perform well when
the target-domain training data overlaps with the evaluation region, they struggle to generalize when
this overlap is absent. This limitation is especially evident under large domain shifts. For example, in
the real-world BoxInBin and Stack tasks with novel textures or reset poses, our method achieves
success rates of 0.7 and 0.4, respectively, using image-based observations—compared to just 0.3 and
0.0 for the Co-training baseline. These results highlight the shortcomings of relying purely on
supervised target-domain data without explicitly addressing domain shift.

Our method is broadly applicable to multiple observation modalities (H3). We observe consistent
performance gains across both image-based and point cloud inputs. In simulation, policies trained
with either modality outperform all baselines, demonstrating that our approach effectively learns
domain-invariant features that capture task-relevant information on multiple sensory modalities.

Simulation data provides a scalable and effective way to augment real-world training. Across
real-world tasks, both our method and the Co-training baseline benefit significantly from augment-
ing limited real-world demonstrations with simulated data. Policies trained with this augmented data
consistently outperform the Target-only baseline, especially in out-of-distribution (OOD) settings
where real-world coverage is sparse. This underscores the value of using low-cost simulation data to
fill in gaps in real-world datasets, enabling more scalable and generalizable behavior cloning.

Scaling up simulation data coverage improves real-world performance (H4). To analyze sim-
ulation data scaling, we consider the Stack task in the real world with point cloud observation.
We generated 100, 300, 500, and 1000 simulated trajectories, combined them with 25 real-world
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Stack (R) Square (R) BoxInBin (R) Lift (R) Lift (S) Lift (R+S) Average
grasp full grasp full grasp full reach full reach full reach full full

S.-only 0.6 0.3 0.1 0.1 0.3 0.2 0.8 0.8 0.6 0.6 0.9 0.9 0.48
T.-only 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.17
Co-train. 0.4 0.1 0.6 0.2 0.2 0.0 0.8 0.8 1.0 1.0 0.9 0.9 0.50
Ours 0.8 0.4 0.6 0.1 0.7 0.5 1.0 1.0 1.0 1.0 1.0 1.0 0.67

Table 4: Real World Point-Cloud-Based Policy OOD Success Rates. R and S denote Reset OOD
and Shape OOD, respectively. The Average denotes the average full task success rates over all tasks.

demonstrations, and trained both our method and the Co-training baseline. As shown in Fig. 4(b),
increasing the amount of simulation data significantly improves our method’s performance in target
domain regions that lack real-world coverage, highlighting the importance of learning a domain-
invariant latent space that enables the policy to generalize beyond observed distributions.

Our method learns shared latent space that aligns simulation and real data. To better under-
stand how the learned embeddings contribute to generalization, we visualize them using t-SNE [53],
as shown in Fig. 4(a). Blue and red correspond to features extracted from source and target do-
main observations, respectively. The left plot shows embeddings from the encoder trained with
the Co-training baseline, while the right plot shows embeddings from our method. The visual-
ization reveals that our approach leads to significantly better alignment between source and target
distributions, highlighting its ability to learn domain-invariant representations that facilitate robust
generalization. We also visualize the transport plan on a randomly sampled batch, along with the
corresponding image observations from the source and target domains. As shown in Fig. 10 in the
Appendix, the transport plan effectively aligns data points with similar states across domains.

(a) t-SNE Visualization of Latent Space (b) OOD Success Rate Scaling

Figure 4: (a) Latent Space Visualization. Our OT alignment maps source domain samples (blue)
and target domain samples (red) nearby in the latent space, yielding a single, well-mixed cluster. This
overlap demonstrates that OT alignment effectively synchronizes cross-domain feature distributions,
improving sim-to-real transfer. (b) Out-Of-Distribution Performance. Scaling the number of
simulation demonstrations leads to significant OOD success rate gains.

6 Limitations and Conclusions

The main limitation of our work is that we only address sim-to-real visual observation gaps. Ad-
dressing action dynamics gaps remains future work. Because we use MimicGen [10] for automated
simulation demonstration generation, we inherit its limitations, namely, our method primarily applies
to tasks with prehensile and quasi-static interactions. We require a small number of real-world on-task
demonstrations that are aligned with the simulated demonstrations. Future work involves relaxing
this requirement, for example, by instead consuming unstructured real-world data, such as play data.

In conclusion, we presented a framework for effectively incorporating large datasets of simulation
demonstrations into real-world policy learning pipelines via feature-consistent co-training. We pro-
posed using Optimal Transport (OT) to align encoder features to be invariant to whether observations
are from simulation or the real world, improving the transferability of simulation data. Because we
have much more simulation data than real-world data, we incorporated an Unbalanced OT loss within
our training objective and devised a data sampling scheme that explicitly yields similar simulation
and real-world demonstration pairs. Finally, we demonstrated the improved learning performance
arising from the simulated demonstrations both in a sim-to-sim testbed as well as in real-world tasks.
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The supplementary material has the following contents:

• Task and Hardware Setups (Sec. B): Detailed descriptions of the hardware setups, dataset,
and task settings.

• Model and Training Details (Sec. C): Descriptions of the neural network architectures
used in our experiments and the corresponding training procedures.

• Ablation Study on Sampling Strategy (Sec. D): Evaluation and analysis of different
sampling strategies.

• Additional Results (Sec. F): In-distribution evaluation results for both image-based and
point cloud-based policies in the real world.

• Transport Plan Visualization (Sec. H): Visualizations of the optimal transport plan for
randomly sampled training batches.

• Visualization of Latent Space (Sec. I): Visual comparisons of the learned latent spaces
between our method and the Co-training baseline across additional tasks.

More video results and analysis can be found on our website: https://ot-sim2real.github.io/

B Task and Hardware Setups

To evaluate the effectiveness of our approach, we conduct comprehensive experiments on a suite
of robotic tabletop manipulation tasks, covering both sim-to-sim and sim-to-real transfer scenarios.
These tasks are designed to test the system’s ability to handle key challenges in robotic manipulation,
including dense object interactions, long-horizon reasoning, and high-precision control:

• Lift: Grasp the rim of a mug and lift it vertically;

• BoxInBin: Grasp a tall box and place it into a bin;

• Stack: Grasp a small cube and stack it on top of a longer cuboid;

• Square: Grasp the handle of a square-shaped object and insert it onto a peg;

• MugHang: Grasp the rim of a mug and hang it on a mug tree using the handle;

• Drawer: Open a drawer, grasp a coffee pod from the table, place it into the drawer, and
close the drawer.

B.1 Hardware Setups

The system setup is illustrated in Fig. 5. We use a Franka Emika Panda robot controlled via a
joint impedance controller [54] running at 20 Hz for policy execution. For data collection, the
robot is teleoperated using a Meta Quest 3 headset, with tracked Cartesian poses converted to
joint configurations through inverse kinematics. RGB image and depth are captured using an Intel
RealSense D435 depth camera.

B.2 Domain Shifts and Observation Gaps

We assess generalization under visual domain shifts in simulation through designing the following
target domain shifts:

• Viewpoint1-Point: The camera is rotated approximately 30◦ around the z-axis, resulting
in a side view in the target domain compared to a front-facing view in the source. Point
cloud observations are used.

• Viewpoint3-Point: The camera is rotated approximately 90◦ around the z-axis, introduc-
ing a more extreme viewpoint shift. Point cloud observations are used.

• Perturbation-Point: Random noise sampled uniformly from the range [−0.01, 0.01] is
added to each point in the point cloud to simulate sensor noise or domain shift.

16

https://ot-sim2real.github.io/


RealSense
D435

Franka
Robot

Meta
Quest 3

Figure 5: Hardware Setup. Our hardware platform uses a Franka Emika Panda robot, with an Intel
RealSense D435 camera for capturing image and depth, and a Meta Quest 3 headset for teleoperation.
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Source (Image)
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Source (Point Cloud)
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Perturbation-Point
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Real (Point cloud)

Figure 6: Observation Gap Across Domains. Top: image observations for the Stack task from
source, Viewpoint1-Image, Texture-Image, and real-world domains. Bottom: point cloud ob-
servations for the BoxInBin task from source, Viewpoint3-Point, Perturbation-Point, and
real-world domains. Point cloud color is for visualization only and not used as input to the policy.

• Viewpoint1-Image: A 20◦ camera rotation around the z-axis is applied. RGB image
observations are used.

• Texture-Image: The table texture in the target domain is modified. RGB image observa-
tions are used.

We illustrate the observation gap across all domains in Fig. 6. The first row displays image obser-
vations for the Stack task from the source domain, Viewpoint1-Image, Texture-Image, and the
real world. The second row shows point cloud observations for the BoxInBin task from the source
domain, Viewpoint3-Point, Perturbation-Point, and the real world. Point cloud color is for
visualization only and not used as input to the policy.

B.3 Task Datasets, Reset Ranges, and OOD Variants

We focus primarily on evaluating policy performance in regions covered exclusively by source-
domain demonstrations. To conduct controlled experiments, we define three distinct reset regions for
each task—Source, Target, and Target-OOD—as shown in Fig. 7. Specifically:
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Lift Stack BoxInBin MugHang Square Drawer
Number of real demos 10 25 20 15 25 25

Table 5: Number of Real-World Demonstrations. We collect 10–25 demonstrations per task,
varying with task difficulty.

Source Domain

Target Domain (Sim, 
Texture-Image as 

an example)

Target Domain (Real)

No sim-to-sim 
experiments

Source reset range
(dense demos)

Target domain In-Distribution
(Target) reset range

(sparse demos)

Target domain Out-Of-Distribution 
(Target-OOD) reset range

(no demos)

Figure 7: Reset Ranges for Each Task. The first row illustrates the Source region, where dense
source-domain demonstrations are collected. The second row shows the Target and Target-OOD
reset ranges used in sim-to-sim transfer experiments. In this setting, the Target region is sparsely
covered by demonstrations, while the Target-OOD region contains no demonstrations and is used
exclusively for policy evaluation. The third row similarly presents the Target and Target-OOD
regions for sim-to-real transfer experiments.

• Source: A large region that is densely covered by demonstrations in the source domain. We
generate 1000 demonstrations using MimicGen [10] within the Source region.

• Target: A small subset of the Source region. This region is sparsely covered by demon-
strations in the target domain, and is therefore considered in-distribution during evaluation.
For sim-to-sim transfer, we collect 10 demonstrations within this region. For sim-to-real
transfer, the number of real-world demonstrations collected in the Target region is adjusted
based on task difficulty, as detailed in Tab. 5.

• Target-OOD: No demonstrations are collected in the Target-OOD region, which is used
solely for evaluation and treated as out-of-distribution (OOD).

For sim-to-real transfer experiments, in addition to the reset range OOD (denoted as Reset), we
consider two additional OOD variants. In the Texture variant, the object’s texture is modified to one
that is unseen in the real-world demonstrations. In the Shape variant, the object is replaced with a
novel shape not encountered in the real-world demonstrations. These variants are illustrated in Fig. 8.

Texture OOD Shape OOD Reset + Shape OOD

Target reset range Target-OOD reset range

Figure 8: Texture and Shape OOD in Sim-to-Real Experiments. Visualization of reset ranges
for the BoxInBin task under Texture OOD, and the Lift task under both Shape OOD and
Shape+Reset OOD conditions.
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C Model and Training Details

For point cloud-based experiments, we adopt the 3D Diffusion Policy architecture [28] with a PointNet
encoder [50]. The diffusion head receives features extracted from the point cloud observations along
with robot proprioceptive inputs (joint and gripper positions), and outputs 7-DOF target joint positions
and the gripper action. We project the depth map into the robot base frame to generate the scene
point cloud. For a pixel with coordinate (u, v) and depth d, the corresponding 3D location can be
recovered by:

pw = R ·K−1 · I + t

where I = (u ·d, v ·d, d), [R | t] denotes the camera pose obtained through hand-eye calibration [55],
and K denotes the camera intrinsic matrix. We crop the reconstructed scene point cloud using
a bounding box defined by x ∈ [−0.2, 0.1], y ∈ [−0.2, 0.2], and z ∈ [0.008, 0.588] to exclude
irrelevant background information. The cropped point cloud is then downsampled to 2048 points
using Farthest Point Sampling (FPS) [56].

For experiments with image-based policy, we adopt Diffusion Policy [27] with a ResNet-based [52]
visual encoder. The original images are captured by the camera at a resolution of 480× 640. During
preprocessing, the images are downsampled to 120×160, followed by random cropping to 108×144
during training and center cropping during testing. The policy takes stacked history images and robot
proprioceptive inputs (joint and gripper positions) as input, and outputs 7-DOF target joint positions
along with the gripper action.

Our overall training procedure is summarized in Algm. 1. We use a batch size of 256 for the behavior
cloning loss LBC, with a co-training ratio of 0.9 following Maddukuri et al. [22]. For the optimal
transport loss LOT, the batch size is set to 128, with a weighting coefficient λ = 0.1. We use
ϵ = 0.0005 and τ = 0.01 in our experiments.

Algorithm 1 Joint Policy Training with OT

Require: Source dataset Dsrc, Target dataset Dtgt

1: Initialize encoder fϕ, and policy πθ

2: Compute DTW distances for all trajectories pairs in Dsrc and Dtgt

3: for iteration t = 1 to T do
4: Sample a paired batch {(oisrc, xi

src, a
i
src, o

j
tgt, x

j
tgt, a

j
tgt)} with size N from Dsrc and Dtgt

using strategy described in Sec. 4.3
5: Compute features {zisrc} and {zjtgt} using encoder fϕ
6: Construct ground cost matrix Ĉϕ as described in Sec. 4.1
7: Compute optimal transport plan Π∗ = argminΠ∈RN×N

+
(⟨Π, Ĉϕ⟩F + ϵ · Ω(Π) + τ ·

KL(Π1||p) + τ · KL(Π⊤1||q)) via Sinkhorn-Knopp algorithm [47]
8: Compute OT loss LUOT(fϕ) = ⟨Π∗, Ĉϕ⟩F
9: Sample {(oisrc, xi

src, a
i
src)} from Dsrc and sample {(ojtgt, x

j
tgt, a

j
tgt)} from Dtgt

10: Compute BC loss LBC(fϕ, πθ)
11: Update fϕ and πθ with gradients of LBC(fϕ, πθ) + λ · LUOT(fϕ)
12: end for

D Ablation Study on Sampling Strategy

To assess the effectiveness of our sampling strategy, we compare the full method against a variant
(denoted as Ours w/o Sampler) that does not apply any trajectory-level sampling. In this baseline,
source and target data are randomly sampled across trajectories and time steps, with no coordination.
We also include an oracle variant (denoted as UOT-Oracle), which constructs perfectly paired
batches—each state is observed in both the source and target domains to ensure that batch data
originates from the same underlying states. We evaluate policy performance on the Stack task under
the Viewpoint1-Point variation, with results shown in Fig. 9.
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Figure 9: Sampling Strategies Comparison. Our proposed sampling strategy (Ours) improves policy
success rates on the Stack task with Viewpoint1-Point, outperforming Ours w/o Sampler, and
achieving performance comparable to the oracle-paired upper bound (UOT-Oracle).

Temporal-aware strategy improves pairing quality and downstream performance. The oracle
baseline demonstrates that, given perfectly aligned data, unbalanced OT loss significantly enhances
generalization by enabling the encoder to learn domain-invariant representations. In contrast, the
no-sampling variant (Ours w/o Sampler) exhibits poor generalization in the Target-OOD setting.
This degradation likely stems from the low probability of encountering aligned state pairs in mini-
batches—especially problematic in long-horizon tasks, where uncoordinated sampling rarely produces
temporally aligned data.

E Hyperparameter Sensitivity Analysis

We conduct an ablation study to evaluate the sensitivity of our method to key hyperparameters,
including the entropy regularization coefficient (ϵ), the KL divergence penalty term (τ ), and the
window size used in temporally aligned sampling. In each experiment, we vary a single hyperpa-
rameter while keeping the others fixed, train the policy, and assess its performance via rollouts. We
report results for the BoxInBin task under the Viewpoint-Image setting and the Lift task under
the Texture-Image setting, as shown in Table 6. The results indicate that our method is robust
to hyperparameter variations within reasonable ranges. Specifically, performance remains stable
when ϵ and τ are set between 0.001 and 0.1, and when the window size is varied between 5 and 20.
Our method consistently outperforms the co-training baseline in OOD scenarios, where the baseline
achieves a success rate of 0.14 on BoxInBin and 0.6 on Lift. These findings suggest that, although
our approach introduces additional components, it does not require extensive tuning and offers clear
advantages in terms of generalization.

F Additional Real-world Evaluation Results

We conduct extensive real-world evaluations to validate the effectiveness of our approach. Sim-to-real
transfer results for in-distribution scenarios are reported in Tab.7 and Tab.8 for image-based and point
cloud-based policies, respectively. Results for out-of-distribution (OOD) scenarios are presented in
the main paper.

Experimental results show that our approach consistently outperforms all baselines in real-world
in-distribution settings. Our method achieves average success rates of 0.73 and 0.77 for image-based
and point cloud-based policies, respectively, demonstrating its effectiveness in learning complex
real-world manipulation tasks.

G Performance with Scarce Target Domain Data

To assess the effectiveness of our method under limited target domain data, we compare it against
several baselines in the low-data regime for the BoxInBin task with the Viewpoint3-Point setting.
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ϵ

0.0001 0.001 0.005 0.01 0.04 1
T 0.90 0.94 0.92 0.88 0.90 0.88
T-O 0.18 0.16 0.26 0.22 0.18 0.20

τ

0.0001 0.001 0.005 0.02 0.04 1
T 0.88 0.96 0.94 0.94 0.92 0.94
T-O 0.28 0.26 0.20 0.28 0.22 0.22

winsize

1 5 10 20 40 120
T 0.82 0.92 0.86 0.90 0.94 0.84
T-O 0.20 0.22 0.22 0.24 0.16 0.14

(a) BoxInBin

ϵ

0.0001 0.001 0.01 0.04 0.1 1
T 0.84 0.88 0.80 0.76 0.78 0.76
T-O 0.60 0.74 0.62 0.66 0.68 0.54

τ

0.0001 0.005 0.02 0.04 0.1 1
T 0.78 0.70 0.76 0.76 0.78 0.74
T-O 0.56 0.67 0.64 0.66 0.62 0.66

winsize

1 5 10 20 40 120
T 0.86 0.80 0.70 0.78 0.74 0.82
T-O 0.66 0.60 0.67 0.58 0.56 0.60

(b) Lift

Table 6: Hyperparameter Sensitivity. In each series of experiments, we vary a single hyperparameter
while keeping the others fixed, train the policy, and assess its success rates via rollouts. T and T-O
denote the target domain and the target domain under OOD conditions.

Stack Square BoxInBin Average
grasp full grasp full grasp full full

Source-only 0.1 0.0 0.0 0.0 0.0 0.0 0.00
Target-only 0.7 0.7 0.8 0.0 0.7 0.7 0.47
Co-training 0.8 0.7 0.8 0.1 0.9 0.8 0.53
Ours 0.9 0.9 0.9 0.4 0.9 0.9 0.73

Table 7: Real World Image-Based Policy In-Distribution Success Rates. The Average denotes the
average full task success rates over all tasks.

Stack Square BoxInBin Lift MugHang Drawer Average
grasp full grasp full grasp full reach full grasp full open grasp place full full

S.-only 0.3 0.0 0.1 0.1 0.4 0.3 0.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.15
T.-only 0.7 0.4 0.6 0.1 0.9 0.8 1.0 1.0 0.8 0.8 0.9 0.5 0.5 0.5 0.60
Co-train. 0.7 0.7 1.0 0.5 0.8 0.8 0.8 0.8 1.0 0.8 1.0 0.7 0.7 0.4 0.67
Ours 0.8 0.8 1.0 0.4 0.9 0.9 1.0 1.0 1.0 0.8 1.0 0.7 0.7 0.7 0.77

Table 8: Real World Point-Cloud-Based Policy In-Distribution Success Rates. The Average
denotes the average full task success rates over all tasks.

1 Demo 5 Demo
Target Target-OOD Target Target-OOD

Ours 0.56 0.28 0.70 0.32
Co-training 0.46 0.00 0.38 0.22
MMD 0.42 0.16 0.34 0.22
Target-only 0.00 0.00 0.46 0.00

Table 9: Performance with Limited Target Domain Data. We report success rates for various
methods on the BoxInBin task with the Viewpoint3-Point setting, under scenarios where data
from the target domain is extremely limited.

As shown in Tab. 9, our approach consistently outperforms the baselines, highlighting its robustness
even with extremely limited supervision.
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(a) sim-to-sim (b) sim-to-real

Figure 10: Transport Plan Visualization. We visualize the transport plan for a randomly sampled
batch during training the image-based policy, alongside corresponding observations from both
domains. The left figure shows a sim-to-sim experiment, while the right shows a sim-to-real
experiment. The visualization reveals that the transport plan effectively aligns similar states across
domains, as indicated by high transport probabilities.

H Transport Plan Visualization

To understand how optimal transport facilitates domain-invariant feature learning and enhances
cross-domain generalization, we visualize the transport plan for a randomly sampled batch during
training the image-based policy, along with corresponding observations from both domains (see
Fig. 10). The left plot shows results from the sim-to-sim transfer experiment, while the right plot
depicts the sim-to-real setting. The results show that the transport plan effectively aligns similar states
across domains, encouraging domain-invariant representations.

I Visualization of Latent Space

(a) t-SNE Visualization for BoxInBin Task (b) t-SNE Visualization for Square Task

Figure 11: Latent Space Visualization. Latent space comparison between the Co-training
baseline and our method. In our approach, source-domain points (blue) and target-domain points
(red) form a well-mixed cluster, illustrating how OT alignment harmonizes cross-domain feature
distributions and enhances transferability and generalization.

Beyond the feature visualization for the Stack task with the Viewpoint1-Point target domain,
we also present additional t-SNE [53] visualizations in Fig. 11 for the BoxInBin task with the
Perturbation-Point target domain, and the Square task with the Viewpoint1-Point target
domain. We compare the latent spaces produced by the Co-training baseline and our method. In
our approach, source-domain points (blue) and target-domain points (red) form a well-mixed cluster,
highlighting how OT alignment harmonizes cross-domain feature distributions and improves both
transferability and generalization.
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