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Cross-Modal Meta Consensus for Heterogeneous Federated
Learning

Anonymous Authors
ABSTRACT
In the evolving landscape of federated learning (FL), the integra-
tion of multimodal data presents both unprecedented opportunities
and significant challenges. Existing work falls short of meeting the
growing demand for systems that can efficiently handle diverse
tasks and modalities in rapidly changing environments. We propose
a meta-learning strategy tailored for Multimodal Federated Learn-
ing (MFL) in a multitask setting, which harmonizes intra-modal
and inter-modal feature spaces through the Cross-Modal Meta Con-
sensus. This innovative approach enables seamless integration and
transfer of knowledge across different data types, enhancing task
personalization within modalities and facilitating effective cross-
modality knowledge sharing. Additionally, we introduce Gradient
Consistency-based Clustering for multimodal convergence, specif-
ically designed to resolve conflicts at meta-initialization points
arising from diverse modality distributions, supported by theoret-
ical guarantees. Our approach, evaluated as𝑀3𝐹𝑒𝑑 on five feder-
ated datasets, with at most four modalities and four downstream
tasks, demonstrates strong performance across diverse data distri-
butions, affirming its effectiveness in multimodal federated learning.
The code is available at https://anonymous.4open.science/r/M3Fed-
44DB.

CCS CONCEPTS
• Information systems→Multimedia information systems; •
Computing methodologies→ Cooperation and coordination.

KEYWORDS
Multimodal Federated Learning, Meta-learning

1 INTRODUCTION
The emergence of multimodal federated learning (MFL), a novel
paradigm allowing multiple parties to collaboratively train models
using clients’ multimodal data without compromising privacy, has
garnered considerable attention. MFL [6, 18, 37, 47] focuses on how
large-scale distributed clients can collaborate to train multimodal-
related models (such as multimodal fusion [34], cross-modal trans-
lation [58], multimodal knowledge bases [8], etc.) without sharing
data, where each client can collect multimodal data from various
types of sensors (such as images, videos, audio, text, time series
data, etc.). Intuitively, federated systems trained with multimodal
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Figure 1: Unimodal federated meta-learning vs. Multimodal
federated meta-learning. ✖: Different modalities have in-
consistent feature spaces. 𝑂◦: "The gradient optimization
directions exhibit disparities, where 𝑂◦

1 is non-conflicting,
while 𝑂◦

2 is conflicting."

data are expected to be more robust and insightful compared to
their single-modal counterparts.

There has been a growing body of work [10, 13, 51, 55] focus-
ing on the task of multimodal federated learning (MFL). Recently,
Yang et al. [49] propose the cross-modal federated human activity
recognition where each client has only one type of modality. They
disentangle the local model into modality-agnostic(shared across all
cilents) andmodality-specific block (sharedwith the samemodality).
To further address the challenges posed by modality gaps, task gaps,
domain shifts, and concept drifts among clients, Chen et al. [11, 12]
propose a dynamic and multi-view graph structure to aggregate
the different model block. This framework employs knowledge
disentanglement to facilitate optimal information sharing among
clients. It achieves this by transforming asymmetrical exchanges
into symmetrical ones based on semantic knowledge, thereby signif-
icantly enhancing communication through a meticulously designed
two-stage disentanglement process. Although the disentangle-
based methods relieve the modality gaps and data heterogeneity,
the process of disentangling models into modality-agnostic and
modality-specific parts or into smaller blocks for different subsets
of clients adds a layer of complexity in model architecture. This
complexity can lead to increased computational demands during
both the training and inference phases, possibly limiting the scala-
bility of the approach to large-scale federated networks. Therefore,
disentangle-based methods may not be as agile in adapting to
entirely new tasks or rapidly changing data environments.

Meta-learning [14, 21, 23] stands out as an intuitive approach
for Federated Learning since it is specifically designed to enable
models to learn new tasks quickly and efficiently with minimal data.
By facilitating rapid personalization and improving generalization,
meta-learning enhances the effectiveness and efficiency of learning
across decentralized datasets, aligning perfectly with the objectives
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of federated learning. Unfortunately, this study focuses on applica-
tions in the single modality domain [9, 17, 22, 26, 39, 44, 48] with
less consideration in practical settings of multi modal.

In the domain of multimodal federated learning, effectively align-
ing various modalities and tasks to enable meta-learning algorithms
to utilize cross-modal information presents significant challenges.
This process necessitates advanced methodologies to ensure that
the integration of knowledge across tasks and modalities positively
influences the learning mechanism. The key challenges include:
1○ As shown in Fig. 1a, existing federated learning approaches
primarily focus on finding a cross-task meta-model within a sin-
gle modality. This orientation neglects difficulties in facilitating
meta-knowledge sharing that spans both intra-modal and inter-
modal feature spaces among clients. Achieving meta-knowledge
sharing across feature spaces of diverse modal tasks necessitates
intricate transformation mechanisms that can reconcile the dif-
ferences between modalities, ensuring that the federated learning
process respects the unique characteristics of each modality while
leveraging their complementary strengths. 2○ The goal of meta FL
for single modality is to find an initial point shared between all
cilents which performs well after each user updates it with respect
to its own loss function, potentially by performing a few steps of
a gradient-based method. This endeavor becomes exponentially
more challenging within the realm of multimodal federated learn-
ing, where client data spans diverse modalities—text, images, and
audio—each characterized by unique feature spaces and statistical
properties. As shown in Fig. 1b, there arise challenges of gradient
conflicts when aggregating these multimodal clients models. The
diversity requires the global models that adapts to heterogerous
multimodal cilents, demanding advanced adaptation strategies.

In this paper, we propose a meta learning strategy for MFL under
multitask setting (𝑀3𝐹𝑒𝑑). For intricate transformation mecha-
nisms, we introduce the concept of a Cross-Modal Meta Consensus
Space, aiming to harmonize and integrate diverse modalities into a
unified representation, facilitating seamless knowledge sharing and
transfer across varied data types. Specifically, we propose a dual-
level optimization architecture: the personalized optimization is
dedicated to enabling task heterogeneity within the same modality,
while the global optimization incorporates a consensus operator for
facilitating the sharing of meta-knowledge across different modali-
ties. For adapting the meta-learning for FL of heterogerous
multimodal cilents, we propose a versatile Cross Modal Meta
Aggregation scheme. We upload the meta learner and consensus
operator to the server . We aggregate the meta learner based on
gradient consistency-based clustering, leveraging similarity in op-
timization directions for aggregation across multimodal clients.
This approach resolves gradient conflicts arising from distribution
disparities, thereby attaining a more adaptable meta-model. For
aggregating consensus operators, we employ a global consensus
collaboration matrix to evaluate operator relevance, thereby fa-
cilitating more effective interaction among heterogeneous modal
clients. Our contributions are summarized as follows.

1) We introduce a meta-learning strategy for multimodal fed-
erated learning that leverages the Cross-Modal Meta Consensus
Space to enhance within-modality task adaptation and streamline
cross-modality knowledge transfer.

2)We propose the gradient consistency for multimodal conver-
gence addressing conflicts at meta-initialization points arising from
varied modality distributions with theoretical guarantees.

3)We evaluate 𝑀3𝐹𝑒𝑑 on five federated datasets, with at most
four modalities and four downstream tasks. The empirical results
demonstrate the effectiveness of our method.

2 RELATEDWORK
2.1 Multi-Modal Federated Learning
Compared to unimodal federated learning [45, 46, 59], multimodal
federated learning (MFL) has received growing attention in recent
years due to its potential to cover a wider range of practical appli-
cation scenarios. In existing studies, two main configurations have
been explored: homogeneous multimodal federated learning, in
which each client has a complete modal dataset; and heterogeneous
multimodal federated learning, in which there is missing modal
data between clients, resulting in heterogeneity of modal distribu-
tions among different clients [29]. Considering that heterogeneous
multimodal federated learning is closer to real-world complexity,
this paper will focus on this configuration. In the research field
of heterogeneous MFL, current approaches [11, 13, 49, 55] mainly
adopt the strategy of submodule training, which facilitates knowl-
edge sharing among clients by aggregating submodules that contain
modal shared knowledge. For example, Yang et al.[49] propose a
modality collaborative activity recognition network, which can
collaboratively learn a global activity classifier shared across all
clients and a modality-dependent private activity classifier based
on modality-agnostic and modality-specific features respectively
with the guide of an adversarial modality discriminator. Chen et
al.[11] propose FedMSplit, which employs a dynamic graph struc-
ture to adaptively capture the relationships among different types
of clients and then achieve correlated model training. To further
address the challenges posed by modality gaps, Chen et al. [12]
transform asymmetrical exchanges into symmetrical ones based on
semantic knowledge, thereby significantly enhancing communica-
tion through a meticulously designed two-stage disentanglement
process.

However, current approaches based on model separation or
feature decoupling rely on complex model architectures contain-
ing multiple sub-modules designed for different data modalities,
which not only increases the difficulty of deployment on resource-
constrained devices, but also increases the communication and
computational burden during joint learning. By introducing meta-
learning, our approach enables a unified model to quickly recognize
and adapt deep features and modalities when encountering differ-
ent client data. This not only simplifies the model architecture and
reduces the reliance on large amounts of data, but also enhances
the model’s adaptability to local data, leading to more efficient and
flexible learning in heterogeneous MFL environments.

2.2 Federated Meta Learning
Federated meta learning [2, 35, 57] aims to train a model that is
quickly adapted to new tasks with little training data, where clients
serve as a variety of learning tasks. The seminal model-agnostic
meta-learning (MAML) framework [19] has been intensively ap-
plied to this learning scenario. Some work [7, 43] has begun to

2
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explore how to combine federated learning andmeta-learning, lever-
aging the advantages of meta-learning to address issues such as per-
sonalization [17, 22, 44, 48] and accelerated convergence [9, 26, 39]
in federated learning. For example, Jiang et al. [22] use a unified
perspective on federated meta-learning to compare MAML and the
first-order approximation approach. Fallah et al. [17] present Per-
FedAvg, which learns an initial shared model, enabling rapid adap-
tation and personalization for each client. FedMeta [50] is a two-
stage optimization with a controllable meta updating scheme after
model aggregation. A federated meta-learning technique called
MetaGater is proposed by Lin et al. [27]. It trains the channel gating
and backbone network simultaneously. By utilizing model simi-
larity across learning tasks on various nodes, MetaGater ensures
the effective capture of relevant filters for speedy adaptation to
new tasks, making it possible for resource-constrained applica-
tions to select subnets efficiently. Experimental findings validate
the efficacy of MetaGater. Yang et al. [48] propose G-FML, which
adaptively divides the clients into groups based on the similarity of
their data distribution, and the personalized models are obtained
with meta-learning within each group. While existing approaches
have made some progress in personalization and rapid adaptation,
these achievements havemainly focused on the domain of unimodal
federated learning, while meta-learning research in multimodal fed-
erated learning environments is still rarely addressed. This paper
proposes Cross-Modal Meta Consensus for Heterogeneous Feder-
ated Learning and provides an in-depth exploration of multimodal
federated meta-learning, aiming to fill this research gap.

3 MODIFICATIONS
3.1 Problem Formulation
We posit the existence of a trustworthy server and 𝐾 clients oper-
ating within the framework of federated learning. Clients maintain
a veil of secrecy between them, rigorously safeguarding personal
privacy data. Each client, denoted as 𝑖 , possesses an arbitrary-sized
private local modal dataset 𝐷𝑖 = {𝑋𝑖 , 𝑌𝑖 }, 𝑖 = 1, 2, ..., 𝐾 . In our in-
vestigation, we contemplate a heterogeneous federated learning
arrangement where each client harbors its own autonomous task
T alongside separate modal M data. These clients collaboratively,
through identification and knowledge integration, train a global
meta-learning model 𝐹 (·;𝜃 ) : R𝑛 → R𝑑 , where 𝜃 is the model pa-
rameters, 𝑛 and 𝑑 are the dimensions of the input data and extracted
features of the input data, respectively. Building uponmeta-learning
framework, each user initializes from the meta-model 𝐹 and sub-
sequently updates using the gradient descent of their own loss
function. Therefore, the overall optimization objective of federated
learning is as follows:

min
𝜃
𝐹 := 1

𝐾

𝐾∑︁
𝑖=1

𝐹𝑖 (𝜃 − 𝜂∇𝐹𝑖 (𝜃 )), (1)

where 𝜂 is the stepsize. The advantage of this formula lies in its
ability to preserve the advantages of federated learning (FL) while
also capturing the differences between users’ various tasks and
modalities. Users can utilize the solution to this new problem as
a starting point and perform slight updates based on their private
data.

In this work, we define the function 𝐹 in Eq.1 as a basic fea-
ture meta learner 𝑓𝜃 and the meta-consensus subspace projection
mechanism 𝐺,𝑇 , with detailed specifics to be elaborated in Section
3.2. By employing meta-learning within an Dual-level optimization
framework, local clients facilitate the transfer of shared knowl-
edge among modalities, thus constructing a cross-modal consensus
feature space. To enhance the adaptability of the meta-model for
aggregating heterogeneous modality models, the server selectively
aggregates based on the similarity of gradient optimization direc-
tions (Section 3.3). We conduct theoretical analysis of gradient
consistency-based clustering in Section 3.4.

3.2 Localized Training Via Dual-level
Optimization

Projection Metric. The collection of all 𝑡-dimensional linear sub-
spaces in a𝐷-dimensional spaceR𝐷 (0 < 𝑡 ≤ 𝐷) is referred to as the
Grassmann manifold G(𝑡, 𝐷), which represents smooth surfaces
embedded in high-dimensional Euclidean space. Previous research
[1, 24] has proposed that the distance between subspaces can be
computed using geodesic distance. Following the prior article [38],
we employ projection metric 𝜚2[20] as the similarity for subspace
distance, defined as follows:

𝜚2 (𝑉𝐴,𝑉𝐵) = 𝑡𝑟 [(𝑉𝐴 −𝑉𝐵)⊤ (𝑉𝐴 −𝑉𝐵)] = ∥𝑉𝐴 −𝑉𝐵 ∥2
𝐹 (2)

where ∥·∥𝐹 denotes the Frobenius norm; 𝑉𝐴,𝑉𝐵 are the orthogonal
projections of two subspaces 𝐴, 𝐵.

Inspired by the algorithm for subspace projection metric in Eq.2,
we can utilize this formula to measure the distinctiveness of feature
spaces. In our study, data from different clients exhibit disparities
in both modality and task. Consequently, there exists significant
inconsistency in the feature spaces extracted by the consensus
meta-model. To address this issue, we propose a trainable subspace
orthogonal projection operator. Through this operator, we are able
to transform the fundamentally disparate feature spaces into a
meta-consistent embedding space, thereby facilitating knowledge
transfer among clients.

Consensus Subspace Projection Mechanism. The hetero-
geneity in client sensor configurations implies disparities in both
modality and task within their data. This impedes the attainment
of a globally consistent feature space during federated training.
Traditional federated learning methods may suffer performance
degradation when handling diverse feature spaces, as they struggle
to extract complementary knowledge from other modality data.
To address this issue, we propose a Consensus Subspace Projec-
tion Mechanism designed at the client-side. This operator learns
how to project different base feature spaces onto specific consensus
subspaces, facilitating knowledge propagation.

As shown in Fig.2, in our approach, there are two types of learn-
able operators for achieving consensus subspace projection trans-
formation: personalized operator (𝑇 ) and shared consensus opera-
tor (𝐺). 𝑇 is designed for client-specific data to learn personalized
knowledge information, whereas 𝐺 is shared and employed for
inter-client knowledge transfer tasks. Specifically, samples 𝑥 from
the client’s private dataset 𝐷𝑖 is transformed into an 𝑛-dimensional
vector through a shared meta learner 𝑓𝜃 . Subsequently, personal-
ized operators 𝑇𝑖 project the features into a consensus subspace,
yielding 𝑇𝑖 · 𝑓𝜃 (𝑥). Ultimately, this process culminates in obtaining

3
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Figure 2: The network architecture of the proposed framework. Client side: Localized Training Via Dual-level Optimization.
Server-side: Cross Modal Meta Aggregation. 𝑓𝜃 is the meta learner, and 𝐺 is the shared consensus operator.

the final result within the personalized classifier𝜓𝑖 associated with
𝐷𝑖 .

Client-Side Meta-Knowledge Bi-level Optimization. Then
we present our client-side optimization problem. Given the client
data distribution {𝐷𝑖 }𝐾𝑖=1, our objective is to learn the base meta
learner 𝑓𝜃 and the shared consensus operator 𝐺 . This enables us to
address various client data distributions 𝐷𝑖 and discover specific
subspace projection personalized operator 𝑇𝑖 and tailored feature
space multi-class classifiers𝜓𝑖 through the following personalized
optimization learning process:

min
𝑇𝑖 ,𝜓𝑖

L𝑖 [𝜓𝑖 ,𝑇𝑖 · 𝑓𝜃 (𝐷𝑖 )] +
𝜆

2 𝜚
2 (𝑇𝑖 ,𝐺𝑖 ), (3)

where𝑇𝑖 and𝐺𝑖 are characterized by the property of being orthogo-
nal projections in an 𝑑 × 𝑛 matrix; L𝑖 is the empirical classification
risk (i.e., cross entropy loss function) for the 𝑖-client data distribu-
tion 𝐷𝑖 ;𝜓𝑖 is personality classifier.

And then, our approach relies on a dual-layer optimization meta-
learning method to learn shared meta learner 𝑓𝜃 and the shared
consensus operator (𝐺). This is contingent upon collaborative ef-
forts from all clients for global optimization, facilitating the process
of knowledge sharing. The overall global optimization objective in
federated learning is as follows:

min
𝜃,𝐺

1
𝐾

𝐾∑︁
𝑖=1

{L𝑖 [𝜓★𝑖 ,𝑇
★
𝑖 · 𝑓𝜃 (𝐷𝑖 )] +

𝜆

2 𝜚
2 (𝐺𝑖 ,𝑇★𝑖 )}, (4)

where𝜓★
𝑖
,𝑇★
𝑖

represent the parameters after personalized optimiza-
tion, and 𝐾 is the total number of clients.

The objective of the personalized optimization is to precisely
extract the optimal personalized subspace projection operator 𝑇
using shared consensus operators𝐺 , and to customize personalized
multi-class classifiers𝜓 based on the distribution of client’s private

data. Meanwhile, the global optimization aims to propagate the
shared knowledge of personalized operators and collaboratively
optimize the shared meta learner 𝑓𝜃 among clients.

3.3 Cross Modal Meta Aggregation
Gradient Consistency-based Clustering. Due to the heterogene-
ity of data, particularly in terms of modalities, tasks, and distribu-
tions, a singular federated global model struggles to adapt to the
model gradient update directions of each client effectively. Previous
research [52] highlights that gradient conflicts in meta-learning,
especially when dealing with disparate data distributions, impede
the model learning process. In such scenarios, the presence of het-
erogeneous modal data exacerbates gradient conflict issues, con-
sequently impacting training speed. To address this challenge, we
propose gradient consistency-based clustering strategy, optimizing
the diversity conflicts of different client update directions, thereby
significantly enhancing the efficiency of federated communication.

In each communication round, the server receives meta-learner
models transmitted by clients. By employing a central averaging
algorithm 𝜃 = 1

𝐾

∑𝐾
𝑖=1 𝜃𝑖 , the server calculates the spatial centroid

position 𝜃 of these model parameters, enabling the derivation of
gradient update directions for each client’s meta-learner. Then,
we employ the Pearson correlation [15] coefficient of directional
data as the measure of directional similarity. The calculation of the
similarity between the gradient update directions of models 𝑖 and 𝑗
is as follows:

𝜎𝑖 𝑗 =
(Θ𝑖 − Θ̄𝑖 ) · (Θ𝑗 − Θ̄𝑗 )√︁

(Θ𝑖 − Θ̄𝑖 )2 ×
√︃
(Θ𝑗 − Θ̄𝑗 )2

, 𝑠 .𝑡 .Θ̄(𝑖/𝑗 ) =
1
|Θ|

|Θ |∑︁
𝑧=1

Θ𝑧 , (5)

where Θ𝑖 represents the gradient change vector of client 𝑖 model
parameters 𝜃𝑖 relative to the spatial centroid 𝜃 .
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Eq.5 provides a measure of similarity, denoted as 𝜎 , for the client
model update directions. This formula essentially computes the co-
sine similarity between vectors. Due to the cosine similarity values
ranging from -1 to 1 (𝜎 ∈ [−1, 1]), although they can be utilized to
assess conflicts in gradient directions, they cannot directly serve
as indicators of collaboration for optimization directions. To de-
rive collaborative optimization relationships, we can employ the
following angular distance formula:

𝐴𝑖 𝑗 = 1 − (
𝑐𝑜𝑠−1 (𝜎𝑖 𝑗 )

𝜋
), 𝑠 .𝑡 .𝐴𝑖 𝑗 ∈ [0, 1] . (6)

Using angular distance 𝐴, we can perform spectral clustering
[41] to obtain clusters 𝜇. Finally, by applying basic average ag-
gregation to the meta-models within each cluster, we obtain a
gradient-consistent meta learner. Through this strategy, the shared
meta learner clustering is no longer heavily influenced by gradient
conflicts. Moreover, it preserves the collaborative nature among
clients in federated learning. Upon acquiring aggregated models
tailored to specific directions, clients can easily attain local optima
for personalized tasks with minimal updates to their own data, ulti-
mately enhancing communication efficiency in federated settings.
In Section 3.4, we conducted theoretical analysis and research on
this clustering strategy.

Global Consensus Collaboration Matrix. Different modali-
ties and tasks indeed exhibit diversity in the feature space, espe-
cially with significant disparities between feature spaces of different
modalities. Simply averaging shared consensus operators may re-
sult in inefficient transfer of spatial knowledge. To better learn
a consensus-concordant feature subspace, we propose a Global
Consensus Collaboration Matrix. Specifically, after computing the
following projection measure of Eq.2, we can obtain the collabora-
tive correlation between different shared consensus operators:

𝑆𝑖 𝑗 =
𝜌 𝑗 · 𝑒−𝜚

2 (𝐺𝑖 ,𝐺 𝑗 )∑𝐾
𝑧=1 𝜌𝑧 · 𝑒−𝜚

2 (𝐺𝑖 ,𝐺𝑧 )
, (7)

where 𝑒 is a constant, and 𝜌 𝑗 represents the proportion of data
quantity from client 𝑗 . The purpose of 𝜌 is to provide a reward or
penalty mechanism based on the comparison of quantities. Through
exponential settings, the distances between different feature sub-
spaces are closer, resulting in larger values for their collaborative
relationships.

Subsequently, the server can compute Eq.7 using operators shared
across multiple clients to obtain the global consensus collaboration
matrix 𝑆 ∈ R𝐾×𝐾 for feature-consistent space. For client 𝑖 , the
aggregation formula for collaboration based on subspace metrics is
represented as 𝐺𝑡+1

𝑖
=
∑𝐾
𝑗 𝑆𝑖 𝑗 ·𝐺𝑡𝑗 .

3.4 Analysis of Gradient Consistency Theory
In this section, we conduct theoretical analysis on the Gradient
Consistency-based Clustering strategy. Symbols used in section 3.4
are completely separate from the rest of the section.

The main optimization problem in distributed environments
stems from conflicting gradients, where the gradients of different
clients are shown to diverge through negative inner products, lead-
ing to decreased performance. In previous works, Cao et al. [5]
suggest weighting client gradients based on the closeness of their
angles for aggregation, potentially excluding those with significant

angular discrepancies, while Liu et al. [30] recommend cropping
out conflicting gradients to focus on similar gradient updates. We
propose the homo-modal gradient consistency aggregation strategy
to solve the conflicts caused by different modal distributions. We
tackle this issue from two angles:

First, clients of the same modality generate mutually reinforcing
gradient information during the training process. We describe this
process using the Gâteaux differentiable, and wemake the following
assumptions:
Assumption 1 : The client’s local loss function f(x) is approximately
strongly convex and smooth and bounded by a constant C.
Assumption 2 : 𝑓 (𝑥) is uniformly continuous. For any 𝑥1 and 𝑥2 in
its domain, 𝐿 > 0 such that |𝑓 (𝑥1) − 𝑓 (𝑥2) | ≤ 𝐿 |𝑥1 − 𝑥2 |.
Definition 1 (Gâteaux Differentiability) : 𝑓 (𝑥) be a matrix-
valued function, and 𝑥 represents the gradient matrix at a particular
point. If there exists a matrix 𝐺 such that for any direction 𝑉 , we
have:

lim
𝑡→0

𝑓 (𝑋 + 𝑡𝑉 ) − 𝑓 (𝑋 ) − ⟨𝐺,𝑉 ⟩
𝑡

= 0, (8)

then 𝑓 is said to be Gâteaux differentiable at 𝑥 , where 𝐺 contains
detailed information about the variation of the gradient update
direction at 𝑥 .

For 𝑓 (𝑥) Gâteaux differentiable at 𝑥0, we have gradient matrices
𝐺𝑖 ,𝐺 𝑗 , and𝐺𝑘 for clients 𝑖 , 𝑗 (samemodality), and𝑘 (differentmodal-
ity). We use the Frobenius norm to measure the differences between
these matrices:∥𝐺𝑖 − 𝐺 𝑗 ∥𝐹 =

√︃∑𝑚
𝑝=1

∑𝑛
𝑞=1 (𝐺𝑖 )𝑝𝑞 − (𝐺 𝑗 )2

𝑝𝑞 and

∥𝐺𝑖 − 𝐺𝑘 ∥𝐹 =
√︃∑𝑚

𝑝=1
∑𝑛
𝑞=1 (𝐺𝑖 )𝑝𝑞 − (𝐺𝑘 )2

𝑝𝑞 , then∥𝐺𝑖 − 𝐺 𝑗 ∥𝐹 ≤
∥𝐺𝑖 −𝐺𝑘 ∥𝐹 ,𝐺 (𝑖) = 𝐺 ( 𝑗) +𝑜 (𝑔), showing that the gradient updates
for clients with the same modality differ only by a higher-order
infinitesimal.

Second, we suggest that the similarity of gradients affects the
model aggregation effect. We can measure the similarity of client
gradients by projecting the client’s gradient onto the plane normal
to another client’s gradient[4]. The analysis is as follows:
Definition 2 : 𝜃𝑖 𝑗 belongs to [0, 𝜋]. If the gradient updates of client 𝑖
and client 𝑗 satisfy cos(𝜃𝑖 𝑗 ) < 0, their gradient updates are considered
conflicting.
Definition 3 (Convergence of Line Search Algorithms) : 𝜃𝑖 𝑗 be
the angle between the gradient update directions of any two clients.
If there exists a constant 𝛾 such that 𝜃𝑖 𝑗 < 𝜋

2 − 𝛾 , then the gradient
update directions of these two clients are considered to be aggregatable.

After projecting the gradient update𝑔𝑖 of client 𝑖 and the gradient
update 𝑔 𝑗 of client 𝑗 to the normal plane, the cosine similarity is
computed according to Eq. (9), and if it satisfies Definition 3, the
two similar gradient updates are considered to be similarly oriented
can be aggregated .

cos𝜃𝑖 𝑗 =
|𝑔𝑖 | |𝑔 𝑗 |
𝑔⊤
𝑖
𝑔 𝑗

≥ cos
(𝜋

2 − 𝛾
)
= − sin𝛾 (9)

According to Yu et al. [52], the aggregation based on the same
gradient update direction can resolve gradient conflicts, allowing
progress towards the objective function in a faster direction, and
enhancing the consistency of the model update direction.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MM’24, October 28 - November 1, 2024, Melbourne, Australia. Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Statistics of Federated Datasets for Simulation.

Dataset Clients Modality Feature Size Classes Total Instance

AffectNet 20 Image 1408 7 283.9K
Seed 6 EEG 310 5 29.1K
UCF-101 8 Video 2048 101 13.3K
Epic-Kitchens 10 Audio 1024 97 34.0K
MEAD 20 Video 2048 8 217.6K

4 EXPERIMENT
4.1 Datasets and Baseline.
DataSets. We select five integration datasets with varying modal-
ities and task disparities to build our simulation environment,
thereby augmenting the comprehensiveness and diversity of our
experimental setup. Datasets AffectNet [33], Seed-V [31], and
MEAD [42] represent different categories of sentiment recognition,
while datasets Epic-Kitchens [16] and UCF-101 [40] correspond
to action recognition in the first-person and third-person perspec-
tives, respectively. For all the above five public datasets, we ran-
domly split local instances on each client into the training and test
sets with a ratio of 0.8 : 0.2. Additional details are available in the
supplementary materials.

Multitask Setting. For five datasets, they encompass four dif-
ferent data modalities and are utilized for conducting four distinct
task experiments: 7-class image emotion recognition, 5-class EEG
emotion recognition, 101-class third-person video action recognition,
97-class first-person audio action recognition, and 8-class video emo-
tion recognition. To be noted, the difference of label space within
the same task also contributes to the data heterogeneity. In our
experiments, unless otherwise specified, we conduct experiments
on all five datasets simultaneously, and report the average results
of all clients on the same dataset. Additional information regarding
the datasets is presented in Tab.1.

Evaluation Metrics. Following established federated methods,
we employ accuracy as the evaluation metric. To be more specific,
we compute the accuracy for each client individually and then
average the results across different clients for the same dataset.
We repeat the training and testing process 5 times, reporting the
average accuracy and standard deviation for each dataset.

Baseline. We compare our model with multiple state-of-the-
art FL algorithms: (1)Local: clients separately train their models
without any FL collaboration. (2)FedAvg[32]: The clients are parti-
tioned into several mutually exclusive groups, ensuring the sharing
of identical modal-task data within each group. (3)Cross-FedAvg,
in addition to FedAvg, incentivizes federated collaboration among
diverse modal task datasets, facilitating the exploration of a shared
representation. (4)Meta-HAR[25]: This method uses meta-learning
algorithm MAML to learn an embedding network for the feder-
ated Human activity recognition task. (5)MaT-FL[3] is an intu-
itive clustering-based training baseline to tackle the significant
data and task heterogeneities. Each client determines aggregation
weights by dynamically inferring its "proximity" to other agents.
(6)MCARN[49] is a modality-collaborative activity recognition
network by collaboratively embedding instances on different lo-
cal clients into a modality-agnostic feature space and producing
modality-specific features that cannot be shared across clients with

different modalities. (7)FedMSplit[11] is an AlignPFL method as-
suming latent space alignment, leveraging multimodal split net-
works to arbitrarily encourages the information sharing between
different groups.

4.2 Implementation details.
The overall framework of𝑀3𝐹𝑒𝑑 is implemented with Pytorch[36].
For the compared existing methods, we use the publicly released
code. Our model and baselines are all trained with SGD optimizer,
where the weight decay is set to 1e-5 and the momentum is set to
0.9. In the dual-layer update optimization of client-side local meta-
learning models, the learning rate for personalized optimization is
set to 0.01, while for global optimization, it is set to 0.001. Across
five datasets, the batch size 𝐵 is configured to 64, the local iterations
𝐸 are set to 4, and the communication rounds𝐶 are set to 300. In our
approach, the sharedmeta-model consists of a four-layer perceptron
with ReLU activation function, where the output dimensionality
of data features is set to 512. For the subspace projection operator,
a matrix of dimensions 512x384 is utilized to transform features
into a 384-dimensional low-rank space. The balancing weight 𝜆
in Eq.3 and Eq.4 is set to 0.6. The hyperparameter for the number
of aggregation clusters based on gradient consistency is set to 4.
For the Local baseline, the local epoch count is set to 1000 due
to the absence of global communication rounds. Unless explicitly
specified, other hyper-parameters of the compared baselines are
tuned within the range provided by the authors and the best results
are reported.

4.3 Comparison and Analysis
Comparison with State-of-the-Art Methods. Tab.2 shows the
experiment results of average test accuracy across five datasets con-
ducted simultaneously at client-side. Overall, our proposed method
outperforms baseline approaches on all datasets, indicating the
effectiveness of our framework in mitigating gradient conflicts
during the aggregation of disparate modalities and thereby facil-
itating meta-knowledge sharing across different feature spaces.
For instance, on the MEAD dataset, our𝑀3𝐹𝑒𝑑 demonstrates per-
formance improvements of 1.66% and 2.42% compared to FedM-
Split under heterogeneous data distribution parameters of 1 and
0.4, respectively. It is noteworthy that our method exhibits com-
petitive results against FedMSplit on the Epic-Kitchens dataset,
which is attributed to the dataset’s long-tailed distribution, posing
challenges in federated collaboration for meta-knowledge sharing.
Across all five datasets, our method outperforms meta-learning-
based federated learning method, Meta-HAR. Specifically, on the
MEAD dataset, our𝑀3𝐹𝑒𝑑 achieves performance enhancements of
6.81% and 7.63% under different heterogeneous distribution condi-
tions. These findings underscore the effectiveness of our Gradient
Consistency-based Clustering strategy in mitigating gradient con-
flicts among diverse modality models, thereby addressing the issue
of modality imbalance among clients.

Impact of Data Heterogeneity. To further evaluate the effec-
tiveness of our model in alleviating cross-data distribution hetero-
geneity, we conduct experiments involving two different No-IID dis-
tributions (𝑎 = 1 or 0.4). We adopted the data partitioning method
used in previous Federated Learning (FL) articles [28, 53, 54, 56],
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Table 2: Comparative analysis of average test accuracy (%) results across five datasets against state-of-the-art methods. Here are
the experimental results of two different data heterogeneity settings (𝑎 = 1 or 0.4). When the parameter 𝑎 is smaller, the data
partitioning becomes more heterogeneous.

Method
Affectnet Seed-V UCF-101 Epic-Kitchens MEAD

𝑎 = 1 𝑎 = 0.4 𝑎 = 1 𝑎 = 0.4 𝑎 = 1 𝑎 = 0.4 𝑎 = 1 𝑎 = 0.4 𝑎 = 1 𝑎 = 0.4

Local 53.26±1.21 51.82±1.32 72.57±2.41 71.53±2.19 67.58±2.52 63.37±1.91 39.67±1.73 35.89±2.85 72.51±3.51 70.34±2.62
FedAvg 57.47±0.94 56.24±0.82 78.97±2.16 76.58±2.38 70.38±2.39 68.72±2.73 44.25±2.59 42.68±1.75 81.74±2.28 80.45±3.63

Cross-FedAvg 56.43±1.54 53.73±1.37 75.63±3.46 71.51±4.29 68.57±4.38 66.97±3.94 43.38±3.91 41.84±3.27 77.63±3.41 73.78±4.57
Meta-HAR 61.43±1.65 60.17±1.61 79.87±2.63 77.82±2.27 73.79±2.48 72.15±2.67 46.25±2.71 41.35±1.21 88.61±2.16 86.53±1.82
MaT-FL 59.62±1.25 58.45±1.92 80.62±2.51 78.46±1.96 72.72±2.11 70.19±3.27 47.32±1.79 43.59±1.41 87.62±1.33 86.31±1.57
MCARN 61.71±1.62 61.31±1.31 81.13±1.67 79.62±2.56 74.79±2.73 72.46±2.78 49.54±0.96 45.68±1.26 91.72±1.10 90.13±1.23
FedMSplit 62.54±1.26 60.73±1.49 81.52±2.52 80.47±1.79 75.16±1.88 71.45±2.79 50.18±1.46 46.53±1.83 93.76±1.54 91.74±1.19
Ours 64.21±0.96 62.32±1.35 84.34±1.56 81.62±2.28 76.30±1.61 73.62±2.46 50.82±0.98 47.63±1.62 95.42±0.86 94.16±1.27

Table 3: Test Accuracy (%) on three datasets with increasing
client counts. The number of clients is shown within paren-
theses following the dataset name.

Method Seed-V(18) UCF-101(24) MEAD(60)

Local 64.78 61.64 71.42
FedAvg 73.43 65.46 78.63
Cross-FedAvg 70.56 64.26 73.39
Meta-HAR 75.26 71.35 84.51
MaT-FL 76.92 70.22 85.62
MCARN 79.38 72.94 87.37
FedMSplit 78.29 73.29 88.42
Ours 81.57 74.36 91.84

which involves partitioning data using Dirichlet parameters 𝑎. Tab.2
shows that in the more heterogeneous partitioning results, our
𝑀3𝐹𝑒𝑑 consistently outperforms existing methods, exhibiting sig-
nificant disparities across various modalities of all datasets. For
instance, on the UCF-101 dataset, our 𝑀3𝐹𝑒𝑑 achieves a perfor-
mance improvement of 2.37% compared to FedMSplit.

Impact of Client number. As shown in Tab.3, we are conduct-
ing testing researchwith a greater number (×3) of client participants
across three datasets. An increased number of client participants
will lead to a significant decrease in the volume of training data
per client. As expected, our proposed method achieves the best
performance across all settings, which further validates that our
method can be applied in most practical settings. As the number
of clients increases, the performance of all methods decreases and
shows some oscillation. However, the performance decrease ob-
served in our approach is minimal. This highlights𝑀3𝐹𝑒𝑑’s ability
to facilitate shared meta-knowledge learning more effectively under
conditions with a greater number of client participants, thereby
enhancing the performance of specific tasks for each client.

Number of Communication Rounds. Fig.3 shows the average
test accuracy of clients with different number of communication
rounds. With a small number of rounds (e.g, less than 90 on the
MEAD), our model has similar performance as the baselines, e.g,
FedAvg, Cross-FedAvg, and MaT-FL. Due to the proposed low-rank

(a) MEAD Dataset. (b) UCF-101 Dataset.

Figure 3: Effect of the number of global rounds. (a): The dis-
play of average accuracy results for the dataset MEAD at
𝑎 = 1. (b): The display of average accuracy results for the
dataset UCF-101 at 𝑎 = 1.

subspace projection scheme with distinct distribution characteris-
tics, 𝑀3𝐹𝑒𝑑 consistently outperforms other baselines in terms of
accuracy after undergoing more rounds of training.

4.4 Ablation Studies
Here, we present the results for several variants of our model to
demonstrate the effectiveness of the primarymodules in our𝑀3𝐹𝑒𝑑 .
To evaluate the performance of the Gradient Consistency-based
Clustering module (GCBC), we employ the FedAvg averaging aggre-
gation strategy to replace this module for assessment. Furthermore,
to validate the effectiveness of addressing the inconsistency in fea-
ture space across different data distributions and the Consensus
Subspace Projection Mechanism, we design two elimination studies:
eliminating the Global Consensus Collaboration Matrix (GCCM)
and eliminating the Consensus Subspace Projection Mechanism
(CSPM) by clients.

As shown in Tab.4, the variant model without CSPM performs
the worst, suggesting that the transformation through feature low-
rank subspace projection facilitates more effective meta-knowledge
transfer among clients. This further underscores the role of Con-
sensus Subspace Projection Mechanism in alleviating the disparity
issues in feature spaces across different modalities. However, the re-
moval of the Gradient Consistency-based Clustering strategy signif-
icantly deteriorates model performance, indicating the aggregated
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Table 4: Ablation study of ours method on five datasets.

Ablation Affectnet Seed-V UCF-101 EPIC-Kit MEAD

𝜔/𝑜 GCBC 60.42 79.67 73.28 47.65 89.84
𝜔/𝑜 GCCM 63.53 82.49 74.28 49.19 91.72
𝜔/𝑜 CSPM 59.94 80.17 71.87 45.83 87.68

Ours 64.21 84.34 76.30 50.82 95.42

(a) The Balance Weight 𝜆. (b) The aggregated clusters 𝜇

Figure 4: Effect of the number of hyperparameters. (a): The
results on the Seed-V dataset regarding the different balance
weights 𝜆 in Eq.3 and 4. (b): The results on the Seed-V dataset
regarding the aggregated clusters 𝜇.

impact of gradient conflicts in meta-models trained on different
modalities. Thus, our aggregation strategy effectively mitigates
the challenge of gradient direction conflicts in federated learning.
The performance decline is observed when removing the GCCM
demonstrates the effectiveness of the proposed Global Consensus
Collaboration Matrix aggregation module.

4.5 Parametric Analysis
Analysis of 𝜆. In our proposed method, the most critical hyper-
parameter is the balancing weight 𝜆 in the local loss function.
Fig.4(a) illustrates the impact of this hyper-parameter on the per-
formance of the Seed-V dataset. As shown, when 𝜆 is set to 0.6,
our𝑀3𝐹𝑒𝑑 achieves optimal performance. However, as the hyper-
parameter 𝜆 approaches 0, the performance sharply declines, indi-
cating the crucial importance of subspace projection mechanism for
facilitating meta-knowledge sharing among different modal data.
Conversely, when using larger values of 𝜆, a decrease in perfor-
mance is observed. This is because an excessive reliance on shared
space projection may adversely affect the discriminative ability of
individual client classifiers.

Analysis of Cluster Number 𝜇. In the Gradient Consistency-
based Clustering module, there exists a hyper-parameter that de-
termines the number of clusters 𝜇 for aggregation. As illustrated
in Fig.4(b), we conduct experiments on the Seed-V dataset to in-
vestigate the impact of this hyper-parameter on performance. In
our experiments, when 𝜇 is set to 4, the performance reaches its
optimal level. This precisely demonstrates that the aggregation
of Gradient Consistency-based Clustering can effectively alleviate
the gradient conflict issue in meta-models. However, when 𝜇 takes

(a) MEAD. (b) UCF-101.

Figure 5: Effect of the number of local epochs. (a) and (b)
respectively represent the average test results on the MEAD
and UCF-101 datasets.

Table 5: Average one training run time (s) for clients.

Time Meta-HAR MCARN FedMSplit Ours

Seed-V 3.6s 3.8s 5.2s 3.4s
Epic-Kitchens 6.6s 7.1s 8.5s 6.7s

other values, the overall performance decreases due to the problem
of aggregation of model gradients conflicting among clients.

Number of Local Epochs 𝐸. Fig.5 shows the effect of the num-
ber of local updating epochs on theMEAD and the UCF-101 datasets.
In our research, we have observed that when the number of local up-
dates reaches 4, our 𝑀3𝐹𝑒𝑑 achieves optimal performance, similar
to other major baselines. As the number of local updates increases,
the meta-model for collaborative training among clients becomes
more challenging to achieve globally consistent shared cross-modal
meta-models. Conversely, when the number of local updates is
small, it leads to slower training speeds, thus failing to achieve
optimal accuracy within fewer communication rounds.

Analysis of Local Train Time. Tab.5 shows the average train
time per epoch on NVIDIA RTX 3090 and Intel(R) Xeon(R) CPU
E5-2620. Our 𝑀3𝐹𝑒𝑑 outperforms disentangle-based multimodal
federated learning on both datasets in terms of time performance.
This is because our approach introduces only the optimization
computation of the projection operator, thereby reducing the com-
putational load.

5 CONCLUSION
In this paper, we propose𝑀3𝐹𝑒𝑑 , a meta-learning strategy frame-
work tailored for multi-modal federated learning in a multi-task
environment.We introduce a dual-layer meta-learning optimization
strategy into multi-modal federated learning to address inter-client
modality discrepancies and foster collaboration. To tackle the is-
sue of inconsistent feature spaces across different modalities, we
introduce the concept of meta-consensus space to enhance knowl-
edge transfer both within and across modalities. By employing
the Gradient Consistency-based Clustering strategy, we address
the challenge of federated aggregation caused by disparate data
distributions among different modalities. In future work, we will
further explore multimodal federated learning in the presence of
missing modality data.
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