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ABSTRACT

Recent strides in Pretrained Transformer-based language models have propelled
state-of-the-art performance in numerous NLP tasks. Yet, as these models grow
in size and deployment, their robustness under input perturbations becomes an
increasingly urgent question. Existing robustness methods often diverge between
small-parameter and large-scale models (LLMs), and they typically rely on labor-
intensive, sample-specific adversarial designs. In this paper, we propose a unified,
local (sample-level) robustness framework (SALMAN) that evaluates model sta-
bility without modifying internal parameters or resorting to complex perturbation
heuristics. Central to our approach is a novel Distance Mapping Distortion (DMD)
measure, which ranks each sample’s susceptibility by comparing input-to-output
distance mappings in a near-linear complexity manner. By demonstrating signif-
icant gains in attack efficiency and robust training, we position our framework as
a practical, model-agnostic tool for advancing the reliability of transformer-based
NLP systems.

1 INTRODUCTION

Recently, breakthroughs in pretrained Transformer-based language models have revolutionized the
field of Natural Language Processing (NLP). These models have enhanced performance across a
wide range of downstream NLP tasks, including text classification Sun et al. (2019), summariza-
tion El-Kassas et al. (2021), chatbot Achiam et al. (2023), and complex reasoning Wei et al. (2022).
Given the widespread adoption of language models, it is crucial to evaluate their robustness. The
robustness problems in the NLP community mostly focus on exploring the language model behavior
when the inputs are modified.

Ebrahimi et al. (2017) design character-level and word-level perturbations as adversarial examples to
attack NLP models. Jia & Liang (2017) explore the method to mislead the language model’s output
in the Q&A task by adding random sentences. Later, research such as that by Jin et al. (2020) and Li
et al. (2020) focused on designing adversarial samples that better preserve the original semantics.
Subsequently, some work began to analyze the robustness of language models in continuous space
and improve the generalization ability of NLP models and defense against word substitution attacks
through adversarial training in continuous space Zhu et al.; Li et al. (2021; 2023). Recently, the
growth of model parameter size and training data for language models has demonstrated that Large
Language Models (LLMs) exhibit increased robustness to trivial disturbances and handle common
disruptions more effectively Achiam et al. (2023); Zou et al. (2023). As a result, recent studies have
devised Jailbreak prompts specifically designed to attack LLMs, thereby evaluating and testing their
robustness Wang et al. (2023); Zhu et al. (2023b).

While significant progress has been made in the robust evaluation of pre-trained language models,
current robustness analyses still face several key challenges. First, the methods for evaluating ro-
bustness in large language models (e.g., LLaMA-series) and those in smaller models (e.g., BERT,
BART) differ substantially. In smaller models, word-level or token-level adversarial attacks often
suffice to expose vulnerabilities Li et al. (2018; 2020); Garg & Ramakrishnan (2020). However,
large language models can often interpret or adapt to these simple perturbations, necessitating more
carefully designed prompt-based strategies for effective robustness testing Zou et al. (2023); Paulus
et al. (2024). As a result, a unified robustness evaluation framework applicable to both large and
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small models is currently lacking. Second, irrespective of a model’s parameter size, designing ad-
versarial inputs or prompts remains a time-consuming and labor-intensive process, particularly for
large-scale NLP datasets. These challenges highlight the need for automated, scalable, and more
universal approaches to evaluate the robustness of diverse language models.

In this work, we propose a sample-centric robustness framework that addresses both challenges by:
1) Unifying Robustness Evaluation for All Model Scales. Specifically, our method computes a local
(per-sample) robustness measure, applicable to both smaller models (e.g., DistilBERT) and massive
LLMs (e.g., GPT-2, Llama) without requiring changes to their internal parameters or specialized ad-
versarial training. 2) Minimizing Labor-Intensive Perturbation Design. Instead of heavily relying on
constructing adversarial prompts, we quantify each input’s inherent vulnerability via a lightweight,
near-linear complexity approach. This ranking guides adversarial attacks or fine-tuning decisions,
drastically reducing manual effort compared to purely sample-by-sample adversarial generation.

At the core of our method is a novel, per-sample distance mapping distortion (DMD) metric that
compares distances in the input representation space against distances in the output representation
space. To facilitate these distance calculations efficiently, we first build a near-linear complex-
ity Probabilistic Graphical Model (PGM) that captures the manifold structure of the data, preserving
both local geometry and global structural properties without resorting to dense or iterative global op-
timizations. By assessing each instance individually, we gain a fine-grained view of where and how
a model fails to preserve distances across its representations—leading directly to broader insights
about the system’s behavior as a whole. Such per-sample analyses, in turn, form the building blocks
of understanding overall stability Zhang et al. (2019a). Rather than relying on aggregate statistics
alone, examining each sample’s distortion enables us to pinpoint particular modes of fragility. We
show how this ranking can: 1) Streamline NLP Attacks: Targeting non-robust samples first yields
more efficient and more effective adversarial attacks (Section 4.2). 2) Improve LLM robustness
through Fine-Tuning: Up-weighting non-robust data during fine-tuning preserves or even improves
generalization and yields internal representations closer to the pre-trained checkpoint (Section 4.3).
Furthermore, the same method applies to both smaller-scale models and large-scale LLMs, offering
a unified pathway for robustness analysis across diverse parameter regimes.

Overall, our contributions are:

• A unified robustness measure (SALMAN) that can be computed in nearly-linear time for
language models of varied sizes (from smaller transformers to LLMs), without requiring
specialized tasks, perturbed data, or parameter modifications.

• To our best knowledge, SALMAN is the first local (sample-level) robustness measurement
specifically tailored from small to large language models , enabling fine-grained analysis
of how individual inputs withstand minor or adversarial perturbations.

• Empirical demonstrations across both small (BERT, DistilBERT) and large models (GPT-
2, Llama) showing how this sample-level perspective leads to (i) more efficient and higher
success-rate adversarial attacks, and (ii) improved robust fine-tuning outcomes.

2 BACKGROUND

2.1 ROBUSTNESS IN NLP

The robustness of language models remains a pivotal area of research within the NLP community.
Several studies have explored the vulnerability of these models to modifications in the input text,
ranging from typos to word replacements Li et al. (2020); Jin et al. (2020); Sun et al. (2020). Wang
et al. (2021) further developed a multi-task benchmark to evaluate language model robustness. In the
realm of model probing, Tenney (2019) and Hewitt & Manning (2019) examined how syntactic and
semantic features are represented across different layers of BERT-like models. Voita et al. (2019)
and Abnar et al. (2019) employed similarity-based analysis methods to study the evolution of repre-
sentations in deep neural networks. Zhou & Srikumar (2021) and Neerudu et al. (2023) performed
a comprehensive analysis of how finetuning affects the representations in the language model using
a combination of probing and analytical techniques. With the increase in model parameters, LLMs
can distinguish between minor textual variations, underlining the need to explore their robustness to
input perturbations. Recent studies have focused on the impact of input prompts on LLM robust-
ness Shayegani et al. (2023). Wang et al. assessed the robustness of ChatGPT against adversarial
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and out-of-distribution samples. Zou et al. (2023) enhanced the efficiency of jailbreak attacks by
generating adversarial suffixes. DecodingTrust examined the robustness of LLMs using standard
datasets like AdvGLUE and AdvGLUE++ Wang et al. (2023). PromptRobust investigated the ro-
bustness of LLMs from the perspective of prompts, demonstrating that subtle changes in instructions
can lead to significant performance variations Zhu et al. (2023b).

2.2 PROBABILISTIC GRAPHICAL MODELS

Probabilistic Graphical Models (PGMs) represent conditional dependencies among variables in a
graph, enabling interpretability and efficient inference Koller (2009). Here, each sample (e.g., a
Transformer embedding) becomes a node, with edges capturing local/global interactions that ap-
proximate the data manifold Vu & Thai (2020); Feng (2021); Rubin-Delanchy (2020). Tightly
connected subgraphs indicate higher intrinsic similarity, while loosely connected regions suggest
divergence. Recently, SAGMAN Cheng et al. (2024) extends these PGM-based ideas to GNNs by
incorporating dimension reduction for domain-specific manifold structures.

3 THEORETICAL FOUNDATIONS OF SALMAN
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Figure 1: The overview of SALMAN Method.

In this section, we detail our overall pipeline (Figure 1), followed by the mathematical underpin-
nings of (1) Embedding Construction (Sec. 3.1), (2) Manifold Construction (Sec. 3.2), (3) Distance
Mapping Distortion (Sec. 3.3), and (4) Algorithm Complexity Analysis (Sec. 3.4).

3.1 EMBEDDING VECTOR CONSTRUCTION

A key challenge in analyzing transformer-based language models arises from the discrete nature of
token embeddings, which may not form well-behaved manifolds in the topological sense (Robinson
et al., 2024). In particular, the geometry of the token space is heavily fragmented: a small textual
perturbation (e.g., replacing a token with a synonym) can induce a disproportionately large jump
in token-level embedding indices. As a result, continuous manifold-based analyses, which rely on
smooth neighborhoods and gradual changes, become intractable when applied directly to discrete
tokens. Moreover, transformers often exhibit stochastic decoding (via temperature sampling, beam
search, etc.) Li et al. (2024), meaning identical input text can produce slightly different token out-
puts. Hence, relying purely on discrete token sequences introduces variability that disrupts stable
manifold construction.

Attention Based Embedding Representation. To address these issues, we aggregate each sam-
ple’s token embeddings into a single continuous vector, thereby avoiding the discontinuities of the
raw token space. Formally, given a natural language dataset of N samples, each data sample is tok-
enized into a sequence of embeddings {x1, . . . ,xN}. We then pass each xi through a Transformer-
based pre-trained language model to obtain its Multi-Head Self-Attention (MHSA) outputs, which
we denote as Ai = MHSA

(
xi

)
∈ RH×Ti×dmodel . H is the number of attention heads, Ti is

length of xi, and dmodel is the hidden dimension. Then, we average these per-head outputs along
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the head dimension: Ai = 1
H

∑H
h=1 Ai,h ∈ RTi×dmodel . Next, we compute an attention-based

weighting. Softmax is applied to attention matrices Ai over the Ti tokens to obtain αi ∈ RTi . Fi-
nally, we compute a single pooled vector vi ∈ Rdmodel for each sequence by a weighted sum of
the token embeddings: vi =

∑Ti

t=1 αi,t Ai,t. Collecting all vi for i = 1, . . . , N then yields a
new embedding matrix {v1, . . . ,vN}. We denote embedding matrix taken from the first layer of the
language model as zX and embedding matrix taken from the last layer of the language model as zY .

Deterministic Hidden-State Embeddings. Though transformers can produce stochastic token
outputs, the internal hidden states remain largely deterministic if we freeze the model parameters and
inference procedure. For instance, by disabling dropout layers and using a fixed random seed, we
empirically found that zY becomes stable irrespective of minor token-level variations. Specifically,
we measured multiple zY across the same input and observed a significant similarity improvement
compared to token embeddings (As detailed in the Appendix A.1).

By aggregating discrete token embeddings into a single high-level embedding, we circumvent the
discontinuities of token-level spaces. We thereby ensure that (1) manifold analysis is tractable (since
zX , zY both lie in continuous Rd Mehta et al. (2019)), and (2) stochastic decoding does not cause
major geometric shifts in these embeddings. This design choice, while straightforward, underpins
all subsequent sections on manifold construction and robustness evaluation.

3.2 CONSTRUCTION OF MANIFOLDS VIA PGM

Understanding a language model’s local robustness involves assessing how small input perturbations
influence the model’s output representation. A common strategy is to interpret this input–output
mapping as a manifold, enabling geometric analyses of local stability (Rubin-Delanchy, 2020).
However, directly constructing and maintaining such a manifold on raw embeddings can be both
computationally and memory intensive. Recent work indicates that graph-based approaches can
capture low-dimensional manifolds within high-dimensional data (Rubin-Delanchy, 2020), espe-
cially when the graph is constructed to preserve meaningful distances. PGMs (or Markov Random
Fields) naturally encode these relationships in an undirected graphical structure, allowing for effi-
cient inference about node neighborhoods and global structure (Koller, 2009). Specifically, Feng
(2021) show that the graph structure learned by PGMs can approximate resistance distances, which
in turn correlate with Euclidean distances among data samples. Hence, a properly built PGM man-
ifold can reflect both local and global geometry—critical for analyzing small perturbations (local
stability) and broader connectivity (global structure).

Despite their theoretical appeal, existing PGM-based methods rely on iterative optimization or dense
computations (e.g., spectral factorization) that become prohibitive for large-scale graphs (Feng,
2021). When handling modern NLP datasets, where each sample might represent a document or
prompt, and node counts can soar into the hundreds of thousands, these bottlenecks make traditional
PGM approaches infeasible. To address scalability concerns, we propose a near-linear complexity
method for building the PGM manifold. Intuitively, we seek a graph Laplacian structure (or pre-
cision matrix) that captures the intrinsic geometry of the reduced embeddings (Sec. 3.1) without
incurring expensive global factorization steps. Previous work (Dong et al., 2019) shows that maxi-
mizing a penalized log-likelihood in the form of Equation. 1 yields a graph topology consistent with
the underlying data distribution while preserving essential distance or similarity properties.

PGM Objective. Let X ∈ R|V |×T be the embedding matrix derived from Sec. 3.1, where each row
corresponds to a sample. We aim to learn a precision matrix Θ that maximizes Dong et al. (2019):

max
Θ

F (Θ) = log det(Θ) − 1

k
Tr

(
X⊤ΘX

)
, (1)

subject to Θ = L + 1
σ2 I , where L is a valid Laplacian matrix and σ2 is a prior variance term.

Theorem 3.1 shows that maximizing F (Θ) can be achieved using a spectral sparsification approach,
which prunes edges with small distance ratios:

ρp,q =
deff(p, q)

ddat(p, q)
= wp,q

(
deff(p, q)

)
,

where deff(p, q) is the effective resistance distance (detailed in Appendix A.10) between nodes p
and q , ddat(p, q) = ∥Xp −Xq∥22 is the data distance, and wp,q = 1/ddat(p, q).
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Theorem 3.1. Maximizing the objective in Equation equation 1 can be done via an edge pruning
strategy equivalent to spectral sparsification of the initial (dense) graph. Edges with small ρp,q are
removed, preserving the essential spectral (and thus resistance) properties of the original graph.
The proof is available in Appendix A.2

Scalable Spectral Sparsification via Short-Cycle Decomposition. A naive implementation of the
above pruning requires frequent effective-resistance computations Spielman & Srivastava (2008),
which is costly for weighted graphs. Methods such as short-cycle decomposition Chu et al. (2020)
are effective for unweighted graphs but fail to retain accurate resistance distances when weights are
discarded. We therefore introduce a refined spectral sparsification routine that uses low-resistance-
diameter (LRD) decomposition to handle weighted edges without sacrificing the crucial resistance
distance information.
Theorem 3.2. Our LRD decomposition can compute the effective resistance of each edge and is
capable of sparsifying weighted graphs. The proof is available in Appendix A.3

From PGM to Manifold. With the pruned graph (and correspondingly updated Laplacian L),
solving Equation equation 1 yields a precision matrix Θ that encodes the desired topological rela-
tionships in X . This PGM thus underpins our low-dimensional manifold, accurately maintaining
resistance distances for subsequent stability analyses (detailed in Appendix A.9). In practice, we
initialize the graph with a k-nearest-neighbor construction and then apply our near-linear spectral
sparsification (as detailed in Section 3.4) to achieve scalability. The resulting manifold reflects both
local and global structures, enabling the DMD calculation.

3.3 DISTANCE MAPPING DISTORTION (DMD) CALCULATION

Having constructed the input and output manifolds (Section 3.2), we now introduce the DMD met-
ric Cheng et al. (2021) to quantify a model’s robustness at the sample level.
Definition 3.3 (Distance Mapping Distortion (DMD)). Let F be a function mapping an input mani-
fold GX = (V,EX) to an output manifold GY = (V,EY ), with dX(p, q) and dY (p, q) denoting the
distances between nodes p and q in GX and GY , respectively. The distance mapping distortion for
(p, q) through F is

γF (p, q) =
dY (p, q)

dX(p, q)
. (2)

Innovation Highlight: We show that not only is γF
max = maxp,q γ

F (p, q) informative for worst-
case local expansion, but also (γF

min)
−1 =

(
minp,q γ

F (p, q)
)−1

captures how the model might
“collapse” distant inputs into overly similar outputs. We prove in Theorem 3.4 (below) that large
(γF

min)
−1 implies another dimension of poor robustness—distinct from γF

max (Empirical results are
available in Appendix A.11). Hence, both extremes of the distortion spectrum are necessary for a
full local analysis.

Effective-resistance distance. (as detailed in Appendix A.10) To make γF computationally
tractable, we replace geodesic distances with effective-resistance (deff). deff(p, q) is always matched
or upper-bounded by dgeo(p, q) Chandra et al. (1996). Thus, deff is an efficient surrogate for dgeo,
especially when leveraging fast Laplacian solvers Koutis et al. (2010); Kyng & Sachdeva (2016).
We then define

γF =
deff
Y (p, q)

deff
X(p, q)

=
e⊤p,qL

+
Y ep,q

e⊤p,qL
+
X ep,q

, (3)

where LX and LY denote the Laplacians of GX and GY , respectively. Computing γF
max or γF

min
exactly via Equation equation 3 can still be expensive for large graphs, since it involves considering
all node pairs (p, q). To alleviate this, Cheng et al. (2021) proposed a spectral upper bound on γF

max,
termed the λmax

(
L+
Y LX

)
. Hence, a larger λmax(L

+
Y LX) suggests a larger distortion ratio and thus

poorer robustness. This is also the upper bound of the best Lipschitz constant under the manifold
setting Cheng et al. (2021). For γF

min lower bound calculation, we have:
Theorem 3.4. The minimum distance mapping distortion γF

min satisfies

γF
min ≥ 1

λmax

(
L+
X LY

) .
5
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The proof is available in Appendix A.4

SALMAN Score measures, for each sample, how strongly the model distorts input–output dis-
tances, penalizing both expansion (near neighbors blown apart) and collapse (far points mapped
too close), so larger scores indicate greater fragility. For each node (sample) p, we define
SALMANF (p):

1

|N (p)|
∑

q∈N (p)

(γF (p, q)3 + γF (p, q)−3), (4)

where NX(p) is the set of neighbors of p in GX and GY . A node with a larger SALMANF (p) is con-
sidered more fragile, since its local pairs (p, q) exhibit greater distortion in “expansion” (γF (p, q))
or “collapse” (1/γF (p, q)) senses. To connect expansions and collapses more explicitly, let {λi}ri=1

be the r largest eigenvalues of L+
Y LX with corresponding eigenvectors {vi}ri=1, and let {µi}ri=1

be the r largest eigenvalues of L+
XLY with corresponding eigenvectors {wi}ri=1. We define the

weighted eigensubspace matrices: Vr =
[
v1
√
λ1, . . . , vr

√
λr

]
, Wr =

[
w1

√
µ1, . . . , wr

√
µr

]
.

For each pair (p, q), one has:

Theorem 3.5.
∥∥W⊤

r ep,q
∥∥2
2
+

∥∥V ⊤
r ep,q

∥∥2
2
∝ γF (p, q)3 + γF (p, q)−3. The proof is available in

Appendix A.5

Sample Selection and Correction. Because SALMAN score is computed at the node or node-pair
level, we can readily identify “high-distortion” samples and correct them via data augmentation or
specialized re-training. This local approach complements global metrics, yielding a holistic robust-
ness analysis pipeline.

3.4 COMPLEXITY

Our framework has near-linear time complexity with respect to the graph size. Below, we briefly
outline the main steps and their costs. We first construct a k-NN graph from the data points (or
embeddings) in Rd. Using modern approximate nearest-neighbor algorithms (Malkov & Yashunin,
2018) with O(|V | log |V |). |V | denotes the number of nodes in the graph. Then, We apply a Low-
Resistance-Diameter (LRD) approach to sparsify the graph (Koutis et al., 2010; Cucuringu et al.,
2016). Let d be the average degree ( small in real-world graphs (Miao et al., 2019)) and m be the
dimension of a Krylov subspace. Then this step runs in O

(
|V | d m

)
, often simplified to O

(
|V | m

)
under the sparse regime. Evaluating the SALMAN scores for all edges or nodes can be done in
O(|E|) time. |E| denotes the number of edges in the graph. For sparse graphs with |E| ≈ d |V |,
this remains near-linear in |V |. Experimental results can be found in Appendix A.12.

4 EXPERIMENT RESULTS

We organize our experimental evaluation into three stages, each demonstrating how the robustness
ranking (derived from the proposed SALMAN measure) can guide practical NLP tasks. The lan-
guage models used for experiments range from BERT (136M), GPT-2 (1.5B) and the latest Llama3-
8B. Details regarding data, hyperparameters, and model architectures are deferred to Appendix A.6

As this is the first work to propose a per-sample NLP robustness ranking, we lack direct compar-
isons with methods pursuing identical objectives. However, to address the lack of baseline concern,
we compare SALMAN against: (1) Euclidean-distance-based ranking, which measures each sam-
ple’s magnitude of embeddings without local manifold distortion; and (2) Jacobian-based sensitivity
analysis. These baselines are simpler proxies for identifying “fragile” points. In Table 3, we show
that both struggle to distinguish robust vs. non-robust samples under the same spaCy perturbation.

Additionally, we analyze representative robust versus non-robust samples to confirm that SALMAN
reliably identifies vulnerable cases. Moreover, we compare our SALMAN measure against simpler
baselines—such as random ranking, a state-of-the-art attack run without our approach, and a state-
of-the-art robust training procedure without SALMAN—to assess whether our method provides
tangible gains. Our experiments show that SALMAN surpasses these heuristic baselines on diverse
perturbation benchmarks, offering strong evidence that SALMAN captures unique facets of sample-
level vulnerability.
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Table 1: Cosine similarities of robust and
non-robust samples for different models on
SST-2 and MNLI.

Dataset Model Robust/Non-robust
Cosine Similarity

SST-2

BERT-base-uncased 0.9911/0.8711
RoBERTa-base 0.9992/0.9895
DistilBERT-base-uncased 0.9955/0.9404
ALBERT-base-v2 0.9959/0.8279
GPT-2 0.9990 / 0.9153
LLaMA-7B-v2 0.9867 / 0.9160

MNLI

BERT-base-uncased 0.9902/0.9410
RoBERTa-base 0.9993/0.9926
DistilBERT-base-uncased 0.9971/0.9650
ALBERT-base-v2 0.9953/0.8709
GPT-2 0.9993 / 0.9904
LLaMA-7B-v2 0.9925 / 0.9842

Table 2: Robust and non-robust cosine similarities
under two different attack methods (spaCy & Tex-
tAttack).

Attack Model Dataset Robust/Non-robust
Cosine Sim.

spaCy

GPT-2 SST-2 0.9981/0.9772
GPT-2 MNLI 0.9995/0.9730
LLaMA-7B-v2 SST-2 0.9990/0.9751
LLaMA-7B-v2 MNLI 0.9825/0.9612

TextAttack

GPT-2 SST-2 0.9928/0.9413
GPT-2 MNLI 0.9945/0.9831
LLaMA-7B-v2 SST-2 0.9548/0.8941
LLaMA-7B-v2 MNLI 0.9663/0.9479

Table 3: Cosine similarity between original
vs. spaCy-perturbed samples on GPT-2, for
Euclidean-, Jacobian-, and SALMAN-based
rankings. We aim for robust sets to have
higher similarity and non-robust sets to have
lower similarity. SALMAN yields the largest
gap.

Method SST-2 / MNLI Gap

Euclidean R: 0.9953 / 0.9918 NR: 0.9986 / 0.9898 → 0.0033 / 0.0020
Jacobian R: 0.9964 / 0.9942 NR: 0.9965 / 0.9793 → 0.0001 / 0.0149
SALMAN R: 0.9981 / 0.9995 NR: 0.9772 / 0.9730 → 0.0209 / 0.0265

Table 4: BERTScore and KLD evaluations of
robust vs. non-robust subsets (GPT-2, SST-2).
Higher BERTScore indicates higher textual
similarity. KLD measures distribution shift
(lower is more stable).

KLD BERTScore

Precision Recall F1

Non-Robust 0.1923 0.9961 0.9970 0.9965
Robust 7.6175e-07 0.9992 0.9991 0.9992

4.1 SAMPLE ROBUSTNESS EVALUATION

To validate that our robustness ranking meaningfully distinguishes between stable and fragile sam-
ples, we subject both robust (1% samples with lowest SALMAN) and non-robust (1% samples with
highest SALMAN) samples to various NLP perturbations. These perturbations simulate natural ed-
its or noise while controlling for the extent of modification via Levenshtein distance Ding et al.
(2021). We thereby ensure that robust and non-robust subsets are perturbed equally in terms of edit
cost, allowing a fair comparison of downstream output changes.

Following standard practices in text perturbations Guo et al. (2021); Ni et al. (2024), we implement
three simple but widely used edits: deletion, insertion, and swap. Following previous works Le et al.
(2022); Gupta et al. (2023); Jia et al. (2023), we measure the resultant output embedding shift via
cosine similarity between the original and perturbed sentence embeddings, as seen in Table 1.

Beyond the three basic edits, we employ two state-of-the-art perturbation frameworks (spaCy Honni-
bal et al. (2020) and TextAttack Morris et al. (2020b)) to generate more sophisticated attacks. These
methods leverage advanced synonym replacement and gradient-informed edits to produce challeng-
ing textual perturbations. Due to the substantial computational overhead of these approaches, we
restrict them to two widely recognized LLMs—GPT-2 and LLaMA-7B-v2—thereby striking a bal-
ance between experimental rigor and resource feasibility. In Table 2, we apply each SOTA method
to both robust and non-robust subsets, measuring the resulting cosine similarities to assess suscepti-
bility to adversarial manipulations.

To further assess the difference between robust and non-robust samples, we incorporate two ad-
ditional metrics: KL-Divergence (KLD) and BERTScore Zhang et al. (2019b). Table 4 shows
that non-robust samples exhibit larger distribution shift (higher KLD) and lower textual similar-
ity (BERTScore) under perturbations, whereas robust samples remain highly similar. We provide
statistical reliability analysis in Appendix A.1.

By systematically perturbing both robust and non-robust samples, we confirm that non-robust sam-
ples consistently exhibit greater output variability under identical input changes. This aligns with
prior evidence that local text modifications can disproportionately affect certain data points Morris
et al. (2020a), and it underscores the value of distance mapping distortion in identifying vulnerabil-
ities at the sample level.
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4.2 SALMAN-GUIDED ATTACK

Jailbreak Attacks are an important way to assess the security and robustness of LLM Yi et al. (2024);
Chu et al. (2024). By strategically crafting prompts, it is possible to bypass the LLM’s inherent
safeguards and generate harmful content. Recently, numerous studies have focused on automati-
cally generating stealthy jailbreak attack prompts. However, these current methods are both labor-
intensive and computationally demanding. We propose using the SALMAN score to guide more
effective attacks.

Motivation: Find the Non-Robust Data Samples. We harness the robustness ranking to focus
adversarial efforts on the most susceptible samples. This strategy is akin to reducing query com-
plexity in black-box attacks or prioritizing the most “fragile” points. We structured the experiment
as follows: 1) we rank the dataset by descending SALMAN score (i.e., from least robust to most
robust). 2) We perform the existing attack method only on the top k% of non-robust samples. 3)
Then we randomly sample k% data and use the same method to attack LLM again as a comparison.

For our experiment, we take GCG Zou et al. (2023) and AutoDAN Liu et al. (2023) as the jailbreak
attack method and use the AdvBench Harmful Behaviors dataset Zou et al. (2023) to evaluate the
jailbreak attacks. This dataset has 520 data points (Dataset detail in Appendix A.6). After ranking
all the data using SALMAN, we selected the top 1% of unstable samples to launch attacks on LLMs,
supplemented by randomly sampling another 1% of the samples for the same purpose. Subsequently,
we evaluated the effectiveness of SALMAN by comparing changes in the Attack Success Rate
(ASR) and the number of attack attempts (Steps). We also justify extracting embeddings from the
language model’s first and final hidden layers, which capture complementary semantic information
(Empirical results are available in Appendix A.13.2).

(a) Attack success rate (ASR) and prefix generation
steps across different models and attack methods.

(b) Attacking efficiency: the comparison of the num-
ber of attacking attempts.

Figure 2: Comparison of adversarial attack performance (a) and efficiency (b) with and without
SALMAN-guided selection.
Figure 2 (a) shows that attacking these low-robustness samples first yields higher success rates and
reduced time-to-attack compared to random sampling baselines. We visualized attacking efficiency
in Figure 2 (b). The SALMAN-based ranking serves as an efficient “shortcut” for adversarial testing.
Then, we investigate SALMAN ranking by selecting different top-k percentages of the dataset. We
bin (10%) the entire dataset into deciles by SALMAN rank and apply the same attack methods to
each bin. As k increases, we include more (relatively) robust samples, resulting in lower overall ASR
and efficiency. We further assessed the SALMAN-Guided attack using proxy models to evaluate the
robustness of the proposed method. The experimental results are presented in Table 5. The re-
sults demonstrate that SALMAN-guided attacks retain high effectiveness across models, confirming
their transferability. We also conduct the SALMAN-guided attack experiment on the multilingual
Jailbreak dataset and we show the results in Appendix A.13.

4.3 SALMAN-GUIDED LLM FINE-TUNING

Fine-tuning LLMs sometimes leads to overfitting, losing key representations from pre-
training Howard & Ruder (2018); Neerudu et al. (2023). Prior work has attempted to measure
how much an LLM’s internal representations drift from the pre-trained checkpoint, using similar-
ity metrics such as CKA or STIR Neerudu et al. (2023). A large drift often indicates the model is
overfitting, thus sacrificing generalization and robustness in practice.
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Table 5: Proxy-based SALMAN ranking vs.
target LLM under GCG. We list the ASR on
the top-1% non-robust subsets identified by the
proxy model.

Proxy GPT-2 LLaMA2-7B LLaMA3-8B

GPT-2 60% 48% 40%
LLaMA2-7B 60% 56% 40%
LLaMA3-8B 60% 56% 48%

Table 6: Performance of ROSE fine-tuning
on SST-2, RTE, and QNLI tasks with
RoBERTaBASE. Each cell shows ROSE fine-
tuning / SALMAN-guided ROSE fine-tuning ac-
curacy. Bold is better.

Task GLUE AdvGLUE

SST-2 94.84 / 94.84 37.67 / 41.22
RTE 78.34 / 78.34 35.49 / 40.75
QNLI 92.19 / 92.81 44.19 / 48.02

Table 7: Model-level robustness score Neerudu
et al. (2023) of BERT and GPT-2 on CoLA
and SST-2 under various perturbations. Each
cell shows the Normal/SALMAN-guided fine-
tuning value. Better results are in bold.

Perturbation CoLA SST-2

BERT
Drop nouns 0.18 / 0.29 0.92 / 1.02
Drop verbs 0.05 / 0.22 0.95 / 1.03
Drop first 0.48 / 0.70 0.98 / 1.01
Drop last 0.34 / 0.72 1.00 / 1.00
Swap text 0.13 / 0.22 0.98 / 1.01
Add text 0.85 / 0.88 0.99 / 0.99
Change char 0.14 / 0.24 0.84 / 0.91
Bias 0.95 / 0.99 1.00 / 1.00

GPT-2
Drop nouns 0.10 / 0.47 0.93 / 1.00
Drop verbs 0.24 / 0.32 0.95 / 1.00
Drop first 0.75 / 0.91 0.97 / 1.01
Drop last 0.45 / 0.78 0.99 / 1.01
Swap text 0.16 / 0.45 0.98 / 1.00
Add text 0.92 / 0.96 0.99 / 1.01
Change char 0.29 / 0.36 0.86 / 1.02
Bias 0.96 / 1.14 1.01 / 0.99

Motivation: Focus on Non-Robust Data. Several studies show that focusing on non-robust sam-
ples during training can improve model robustness and generalizability (Cheng et al., 2021; Zhu
et al., 2023a). Inspired by these findings, we propose to down-weight robust samples and up-weight
non-robust samples (as determined by our SALMAN-based ranking) when fine-tuning an LLM. The
intuition is that easy/robust data rarely contributes to boosting generalizable features, whereas harder
(high DMD) data pushes the model to learn more discriminative patterns.

We follow the fine-tuning protocol described by Neerudu et al. (2023). By placing greater emphasis
on non-robust data (as detailed in Appendix A.8) , we hypothesize that the fine-tuned model retains
more generalizable features from its pre-training, avoiding over-specialization to easy examples.
We observe two key outcomes: 1) Comparable Performance, Closer to Pre-training: SALMAN-
guided LLMs achieve comparable or better accuracy vs. standard fine-tuning, yet exhibit higher
similarity to the pre-trained checkpoint. On GLUE tasks, we find up to 54% gains in CKA or
STIR, signifying less drift with better accuracy. Results appear in Appendix A.7 and highlight
key findings. 2) Enhanced Robustness Scores: Although our paper introduces a sample-centric
robustness measure for ranking individual samples without requiring explicit perturbations, we also
need to assess the entire model’s robustness after fine-tuning. To this end, we adopt the model-level
robustness score proposed by Neerudu et al. (2023), which measures how representations change
under various text perturbations across the full dataset. Measuring each model’s robustness scores
confirms that the SALMAN-guided LLM obtains higher robustness than a conventionally fine-tuned
model. As shown in Table 7, we attribute this improvement to the heightened focus on challenging
(non-robust) samples during training.

Combining with SOTA Robust Training. We further integrate our approach with ROSE (Jiang
et al., 2022), a selective fine-tuning framework that prunes “spurious” parameter updates to achieve
greater adversarial resilience. Specifically, we embed our SALMAN-based weighting (as detailed in
Appendix A.8) within ROSE’s parameter selection process. Experimental results in Table 6 reveal
that sample-level weighting and parameter-level selection are complementary strategies.

5 CONCLUSION

We introduced SALMAN, a novel measure to identify and rank the local robustness of transformer-
based language models. Our experiments across diverse benchmarks and large language models
reveal that SALMAN not only distinguishes robust from non-robust samples under both simple and
SOTA perturbations, but also effectively guides attacks and fine-tuning. Moreover, incorporating
SALMAN into the existing robust training framework yields even greater resilience against adver-
sarial perturbations. These results underscore the potential of leveraging sample-level robustness to
bolster both attack strategies and robust model adaptation.
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A APPENDIX

A.1 DETERMINISTIC HIDDEN-STATE EMBEDDINGS

Though modern transformers can produce stochastic outputs at the token level (e.g., due to beam
search, random sampling, or dropout), their internal hidden states can remain largely deterministic
under fixed conditions (Wolf, 2020). Below, we validate this claim by comparing token-level em-
beddings and pooled hidden-state embeddings across different decoding strategies. We then observe
what happens when we additionally fix the seed.

Token vs. Pooled Embeddings Under Varying Seeds. We feed the same input sequence through
various transformers (DistilBERT, BERT, RoBERTa, and Google-Electra), each time without en-
forcing a fixed random seed for decoding. We then collect:

• Token Embeddings. The final output embeddings for each token in the decoded sequence
(i.e., after language modeling head).

• Pooled MHSA Output Embeddings. Our approach aggregates multiple attention heads and
pools them into a single output vector per sequence, thereby abstracting away token-level
variations.

For each model, we compute the cosine similarity between embeddings arising from different de-
coding runs of the same input. Table 8 shows representative results for three datasets: SQuAD,
IMDB, and AG-News.

Table 8: Cosine Similarity of Embeddings Across Different Decoding Runs Without a Fixed Random
Seed. Higher is more stable.

Token Embeddings

Dataset DistilBERT BERT RoBERTa Google-Electra

SQuAD 0.9338 0.2302 0.9967 0.1859
IMDB 0.9685 0.4443 0.9977 0.5131
AG-News 0.9450 0.5967 0.9954 0.5771

Pooled MHSA Output Embeddings

Dataset DistilBERT BERT RoBERTa Google-Electra

SQuAD 1.00 1.00 1.00 1.00
IMDB 1.00 1.00 1.00 1.00
AG-News 0.99 0.99 0.99 0.99

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Even when seeds vary, token-level embeddings exhibit inconsistent cosine similarity across runs
(e.g., BERT scoring only 0.23 for SQuAD). By contrast, our pooled MHSA method maintains
consistently high similarity (0.99 or 1.00), indicating a more stable representation that does not fluc-
tuate with token-level decoding choices. This stability suggests that the representation potentially
captures a more consistent global semantic space Reimers (2019).

Fixed Seed + Pooled MHSA Finally, we fix the random seed (and disable dropout) for all runs
using our pooled MHSA approach, ensuring the only factor causing embedding changes is an ex-
plicit input perturbation (e.g., synonyms swapped). Under identical inputs and the same seed, the
pooled MHSA output embeddings always match exactly (cosine similarity = 1.00), regardless of
how tokens might be sampled. As summarized in Table 9, all entries become 1.00 when there is no
input perturbation.

Table 9: Cosine Similarity with Fixed Seed and Pooled MHSA. Identical inputs yield identical
embeddings (similarity = 1.00).

Seed-Fixed Pooled MHSA Output

Dataset DistilBERT BERT RoBERTa Google-Electra

SQuAD 1.00 1.00 1.00 1.00
IMDB 1.00 1.00 1.00 1.00
AG-News 1.00 1.00 1.00 1.00

Statistical Reliability Analysis We consistently fixed random seeds to minimize variability and
ensure reproducibility. To further quantify the statistical stability of SALMAN rankings, we con-
ducted multi-run experiments on the SST-2 dataset (over 69k samples, the largest dataset in our
study). The results reveal a very high degree of consistency, with a Top-20% overlapping rate of
99.0% ± 1.2%, underscoring the statistical reliability of the SALMAN ranking. Moreover, we re-
peated the top-1% non-robustness ranking five times and evaluated the subsets using AutoDAN
(under a time-limited setting). The attack success rates were 80%, 60%, 60%, 60%, and 60%, re-
spectively. These results provide additional empirical evidence that SALMAN rankings are not only
statistically stable but also practically reliable for guiding adversarial attacks.

A.2 PROOF FOR THEOREM 3.1

We now show that maximizing the objective

max
Θ

F (Θ) = log det(Θ) − 1

k
Tr

(
X⊤ΘX

)
, (5)

where Θ = L + 1
σ2 I , can be achieved by removing (or down-weighting) edges whose distance

ratio is small. In essence, these low-ratio edges contribute less to logdet(Θ) while incurring a larger
penalty in the trace term, so pruning them increases F (Θ).

1. Decomposing the Objective. Writing L =
∑

(p,q)∈E wp,q ep,q e
⊤
p,q, we split F (Θ) into two

terms:
F (Θ) = F1(Θ) − 1

k
F2(Θ), where

F1(Θ) = logdet(Θ), F2(Θ) = Tr
(
X⊤ΘX

)
.

Since Θ = L+ 1
σ2 I , each edge weight wp,q appears explicitly in L.

2. Gradient with Respect to an Edge Weight. To optimize F (Θ) w.r.t. a single edge weight
wp,q:

• Term F1(Θ): Let λi be the i-th eigenvalue of L, and vi its eigenvector. Then

∂

∂wp,q

(
logdet(Θ)

)
=

∂

∂wp,q

[
logdet

(
L+ 1

σ2 I
)]
.
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By standard matrix calculus, this derivative can be linked to the effective resistance distance
deff(p, q):

∂F1

∂wp,q
≈ deff(p, q),

where deff(p, q) encapsulates how strongly edge (p, q) influences logdet(Θ).
• Term F2(Θ):

F2(Θ) = Tr
(
X⊤ΘX

)
= Tr

(
X⊤(L+ 1

σ2 I)X
)
=

Tr(X⊤X)

σ2
+

∑
(p,q)∈E

wp,q

∥∥X⊤ep,q
∥∥2
2
.

Since
∥∥X⊤ep,q

∥∥2
2
= ∥Xp −Xq∥22 = ddat(p, q), we have

∂F2

∂wp,q
=

∥∥Xp −Xq

∥∥2
2
= ddat(p, q).

Furthermore, ddat(p, q) = 1
wp,q

, which implies

∂F2

∂wp,q
=

1

wp,q
.

Hence, the derivative of F (Θ) = F1 − 1
kF2 w.r.t. wp,q is

∂F

∂wp,q
= deff(p, q) − 1

k

1

wp,q
. (6)

3. Distance Ratio and Pruning Condition. Rewriting Equation equation 6:

deff(p, q) − 1

k

1

wp,q
= 0 ⇐⇒ deff(p, q) =

1

k

1

wp,q
.

Define the distance ratio for edge (p, q):

ρp,q =
deff(p, q)

ddat(p, q)
= wp,q

(
deff(p, q)

)
.

When deff(p, q) is relatively large compared to 1
wp,q

, we have ρp,q large, indicating an important
edge for logdet(Θ). Conversely, if ρp,q is small, the edge (p, q) contributes little to F1(Θ) but
increases F2(Θ), thereby reducing F (Θ).

4. Conclusion: Prune Low-Ratio Edges. Thus, maximizing equation 5 naturally leads to re-
moving or down-weighting edges whose ratio

ρp,q =
deff(p, q)

ddat(p, q)

is below a certain threshold. By pruning these edges, we preserve the essential spectral structure
needed to keep logdet(Θ) high (reflecting higher effective resistance) while mitigating the penalty
in Tr(X⊤ΘX) from edges that have large data distance but small effective resistance. In other
words, edges with large ρp,q stay, and edges with small ρp,q are pruned, thereby maximizing F (Θ)
and maintaining the key (Laplacian) properties of the original graph.

A.3 PROOF OF LRD DECOMPOSITION FOR EFFICIENT EDGE RESISTANCE COMPUTATION
AND WEIGHTED GRAPH SPARSIFICATION

In this section, we establish that the low-resistance-diameter (LRD) decomposition scheme can
efficiently approximate the effective resistance for each edge in a weighted graph and thus provide
an effective path toward spectral sparsification. Our argument proceeds in two stages:

1. Approximate Effective Resistance via Krylov Subspaces: We show how the iterative
procedure yields reliable estimates of deff(p, q) in near-linear time.

2. Bound Cycle Lengths under LRD Clustering: We explain how the multilevel contraction
and supernode formation ensure that edges with large resistance distances are effectively
sampled or retained, yielding a final sparsified graph that spectrally approximates the orig-
inal.
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Stage 1: Approximating Effective Resistances via Krylov Subspaces. The resistance distance
for an edge (p, q) in a graph G = (V,E) with Laplacian LG can be expressed as:

deff(p, q) =

N∑
i=2

(
u⊤
i ep,q

)2
u⊤
i LG ui

,

where u2, . . . , uN are the (nontrivial) eigenvectors of LG and ep,q = ep − eq . Directly computing
all eigenvalues/eigenvectors for large G is typically prohibitive. Instead, we replace these eigenvec-
tors with a small set of Krylov basis vectors x(1), x(2), . . . , x(m), which approximate the subspace
spanned by the top spectral components of LG. Specifically, each x(i) is drawn from

κm(A, c) = span{ c, A c, A2 c, . . . , Am−1 c },

where A is the adjacency matrix and c is a random vector. Orthogonalizing and normalizing these
m vectors ensures a concise basis in which to project ep,q .

Lemma A.1 (Krylov Approximation of Effective Resistance). Suppose x(1), . . . , x(m) are m or-
thonormal vectors approximating the dominant spectral subspace of LG (via a Krylov process).
Then for any edge (p, q) ∈ E,

deff(p, q) ≈
m∑
i=1

(
x(i)⊤ep,q

)2
x(i)⊤ LG x(i)

.

Choosing m = Õ(logN) and updating each level in near-linear time yields high-probability error
bounds comparable to exact spectral decompositions (Spielman & Srivastava, 2011; Koutis et al.,
2010).

Stage 2: LRD-based Short-Cycle Decomposition for Weighted Graphs. The second key step is
the multilevel contraction scheme that ensures edges with large effective resistance remain “visible”
at higher levels, while short cycles (or low-resistance edges) are contracted to form supernodes.
Specifically:

• At level δ, each edge (p, q) is either contracted (if d(δ)eff (p, q) is below the chosen thresh-

old) or retained (if d(δ)eff (p, q) is above the threshold). Contraction merges p and q into a
supernode ϑ, assigning it an accumulated weight ηϑ via:

ηϑ := η(p(δ)) + η(q(δ)) + d
(δ)
eff (p, q). (7)

• As edges are contracted, any cycles formed at level δ have length bounded by the effective-
resistance diameter. Consequently, short cycles in the weighted setting are handled sim-
ilarly to Chu et al. (2020)’s unweighted approach, except that we measure distances via
deff , not just hop counts.

• After finalizing the clusters (supernodes), the “inter-cluster” edges (those bridging different
clusters) are preserved or upweighted in the sparsified graph. These edges typically have
higher deff (p, q) and thus significantly impact spectral properties of LG.

Formally, let LH denote the Laplacian of the sparsified graph H returned by the LRD decomposition.
We say H is a (1± ε)-spectral-approximation of G if, for all x ∈ RN ,

(1− ε)x⊤LG x ≤ x⊤LH x ≤ (1 + ε)x⊤LG x.

Standard arguments from spectral sparsification (Spielman & Srivastava, 2011) show that any pro-
cedure ensuring accurate effective-resistance estimates can preserve the graph’s quadratic form up
to (1± ε) factors. The main difference in our approach is the use of low-resistance-diameter cycles
instead of purely unweighted short cycles.
Theorem A.2 (LRD for Weighted Graph Sparsification). Let G = (V,E) be a connected weighted
graph with N nodes and M edges, and let 0 < ε < 1 be a chosen approximation factor. Then,
by applying the LRD-based spectral sparsification algorithm with Krylov-based effective-resistance
estimates:
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1. We can approximate deff(p, q) for all edges (p, q) ∈ E in near-linear time (Lemma A.1).

2. We contract short cycles (below a chosen deff threshold) and preserve inter-cluster edges
with high deff (p, q), forming a sparsified graph H with Laplacian LH .

3. With high probability, H satisfies (1− ε)x⊤LGx ≤ x⊤LHx ≤ (1 + ε)x⊤LGx, ∀x ∈
RN .

Hence, H serves as a (1 ± ε)-spectral-approximation to G, yielding a low-complexity graph that
closely preserves the original graph’s spectral (and thus effective-resistance) structure.

Proof Sketch.

(1) Effective-resistance approximation. By Lemma A.1, each edge’s resistance can be estimated
via m = Õ(logN) Krylov vectors per level of the hierarchy. Summed over δ levels, the total cost
remains near-linear in N +M (plus polylogarithmic factors), similar to Koutis et al. (2010); Kyng
& Sachdeva (2016).

(2) Cycle decomposition. Following Chu et al. (2020), short cycles are identified and contracted; we
adapt the criteria to resistance distances in lieu of unweighted hop distances. The LRD threshold
ensures each supernode aggregates edges that have sufficiently low deff (p, q), while edges with
higher deff (p, q) remain across clusters and are re-inserted (or re-weighted) in the final sparsified
graph H .

(3) Spectral approximation. Standard spectral graph theory arguments Spielman & Srivastava (2011)
show that removing or down-weighting edges of low effective resistance induces little change in
x⊤LGx for all x. Conversely, preserving edges with large deff (p, q) is crucial for maintaining the
spectral signature of LG. The result is a (1± ε)-approximation for sufficiently small ε.

Thus, LRD-based cycle decomposition extends short-cycle approaches to weighted graphs by an-
choring cycle lengths in resistance metrics. This achieves the final (1 ± ε) spectral-approximation
for G in near-linear time.

A.4 PROOF FOR THE RELATIONSHIP BETWEEN γF
min AND λmax(L

+
X LY )

Definition A.3 (Minimum Distance Mapping Distortion). Analogous to the definition of γF
max, we

define

γF
min = min

p, q∈V
p ̸=q

dY (p, q)

dX(p, q)
= min

p, q∈V
p ̸=q

e⊤p,qL
+
Y ep,q

e⊤p,qL
+
X ep,q

,

where L+
X and L+

Y are the Moore–Penrose pseudoinverses of the Laplacian matrices LX and LY ,
respectively. This quantity reflects the smallest ratio of output distance to input distance, charac-
terizing how close points in the output manifold might originate from distant points in the input
manifold.

Proof. Recall that

γF
min = min

p, q∈V
p ̸=q

e⊤p,qL
+
Y ep,q

e⊤p,qL
+
X ep,q

.

If we define v = ep,q and restrict v such that v⊤1 = 0 (1 being the all-ones vector, ensuring we stay
within the subspace on which the Laplacian pseudoinverses are invertible), then

γF
min ≥ min

∥v∦=0

v⊤1=0

v⊤L+
Y v

v⊤L+
X v

.

By the (min-)max version of the generalized Courant-Fischer theorem (applied to positive semidef-
inite matrices on the subspace orthogonal to 1), we have

min
∥v∦=0

v⊤1=0

v⊤L+
Y v

v⊤L+
X v

= λmin

(
L+
Y LX

)
.
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However, because L+
Y LX is invertible on that same subspace, one also obtains the relationship

λmin

(
L+
Y LX

)
=

1

λmax

( (
L+
Y LX

)−1) .
Next, it can be shown that(

L+
Y LX

)−1
= L+

X LY (on the subspace v⊤1 = 0),
which gives

λmin

(
L+
Y LX

)
=

1

λmax

(
L+
X LY

) .
Combining these steps, we conclude

γF
min ≥ λmin

(
L+
Y LX

)
=

1

λmax

(
L+
X LY

) .
This completes the proof.

A.5 SALMAN SCORE AND CORRESPONDING PROOFS

Specifically, we first compute the weighted eigensubspace matrix Vr ∈ RN×r for spectral embed-
ding on GX with N nodes:

Vr
def
=

[
v1
√
λ1, ..., vr

√
λr

]
, (8)

where λ1, λ2, ..., λr represent the first r largest eigenvalues of L+
Y LX and v1, v2, ..., vr are the corre-

sponding eigenvectors. Let u1, u2, ..., uN denote the N eigenvectors of LXL+
Y , respectively, while

their corresponding eigenvalues are shared. In addition, eigenvectors ui can be constructed to sat-
isfy:

u⊤
i L

+
Xuj =

{
1, i = j
0, i ̸= j.

(9)

⇒ u⊤
i L

+
Y uj =

{
λi, i = j
0, i ̸= j.

(10)

Therefore, the following equations hold:
L+
Y ui = λiL

+
Xui ↔ L+

Y LX

(
L+
Y ui

)
= λi

(
L+
Y ui

)
LXvi = λiLY vi ↔ L+

Y LXvi = λivi
(11)

which leads to the following equation
vi = βiL

+
Y ui

⇒ u⊤
j vi =

{
βiλi, i = j
0, i ̸= j.

(12)

where βi denotes a scaling coefficient. Without loss of generality, ep,q can be expressed as a linear
combination of ui for i = 1, ..., N as follows:

ep,q =

N∑
i=1

αiui. (13)

Then γF (p, q) can be rewritten as follows:

γF (p, q) =
dY (p, q)

dX(p, q)
=

e⊤p,qL
+
Y ep,q

e⊤p,qL
+
Xep,q

=
(
∑N

i=1 αiui)
⊤L+

Y (
∑N

i=1 αiui)

(
∑N

i=1 αiui)⊤L
+
X(

∑N
i=1 αiui)

=

∑N
i=1

∑N
j=1 αiαju

⊤
i L

+
Y uj∑N

i=1

∑N
j=1 αiαju⊤

i L
+
Xuj

=

∑N
i=1 α

2
iu

⊤
i L

+
Y ui∑N

i=1 α
2
iu

⊤
i L

+
Xui

=

∑N
i=1 α

2
iλi∑N

i=1 α
2
i

.

(14)
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If the edge (p, q) is dominantly aligned with a single dominant generalized eigenvector uk where
1 ≤ k ≤ r, it implies ∀i ̸= k, αi ≈ 0 and thus ep,q ≈ αkuk. Then:

γF (p, q) ≈ λk. (15)

With
∥∥V ⊤

r ep,q
∥∥2
2
, We have:

∥V ⊤
r ep,q∥22 =

r∑
i=1

λi(v
⊤
i ep,q)

2

=

r∑
i=1

λi

 N∑
j=1

αjβiu
⊤
j L

+
Y ui

2

=

r∑
i=1

α2
iβ

2
i λ

3
i

≈ α2
kβ

2
kλ

3
k ∝

(
γF (p, q)

)3

(16)

Consider L+
X LY whose eigenvalues we denote by µ1, . . . , µN with corresponding eigenvectors

w1, . . . , wN . we then compute the weighted eigensubspace matrix Wr ∈ RN×r for spectral embed-
ding on GY with N nodes:

Wr
def
= [w1

√
µ1, ..., wr

√
µr] , (17)

Because L+
X LY has eigenvalues µi = 1/λi, and its eigenvectors wi correspond in a reciprocal way,

one obtains a parallel statement. In particular:

• If ep,q aligns chiefly with the eigenvector wk of L+
X LY having eigenvalue µk = 1/λk,

• Then γF (p, q) ≈ λk as before.

A similar calculation to the Equation 16 proof now yields∥∥W⊤
r ep,q

∥∥2
2

=

r∑
i=1

µi

(
w⊤

i ep,q
)2 ≈ const × (µk)

3 = const ×
(

1
λk

)3

.

Since λk ≈ γF (p, q), we conclude ∥∥W⊤
r ep,q

∥∥2
2
∝ γF (p, q)−3.

Hence,
∥∥W⊤

r ep,q
∥∥2
2
+
∥∥V ⊤

r ep,q
∥∥2
2
∝ γF (p, q)3 + γF (p, q)−3.

A.6 EXPERIMENTAL SETUP

In this section, we provide details on the datasets, model configurations, training/finetuning proto-
cols, and evaluation metrics used throughout our experiments. By clarifying each step, we ensure
that our methodology is both transparent and reproducible.

Dataset. We evaluate on benchmark datasets such as SST-2, MNLI, RTE, QNLI, QQP, and
COLA to cover diverse classification objectives (sentiment analysis, natural language inference,
and question classification). Each dataset is split into training, validation, and test sets following
standard protocols (e.g., the GLUE benchmark (Wang, 2018)). We tokenize inputs using the default
subword tokenizer for each model (e.g., BERT’s WordPiece or RoBERTa’s Byte-Pair Encoding),
lowercasing as necessary. For SALMAN-Guided Attack experiment, we use AdvBench Harmful
Behaviors dataset. JailBreak does not involve a training process, thus we did not split the dataset.
We directly ranked the entire dataset of 520 data points.

Language Model. We evaluate on several benchmark language models such as BERT-base-
uncased Devlin (2018), RoBERTa-base Liu (2019), DistilBERT-base-uncased Sanh (2019),
ALBERT-base-v2 Lan (2019), GPT-2 Radford et al. (2019), and LLaMA-7B-v2 Touvron et al.
(2023).
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Table 10: Summary of hyperparameters (k is for kNN graph construction and SPF is for our low-
rresistance-diameter decomposition) used in our method for each (model, attack) configuration. DIS
refers to random selection of deletion, insertion, or swap.

Model Attack k SPF

SST-2

BERT-base-uncased DIS 30 2
RoBERTa-base DIS 30 2
DistilBERT-base-uncased DIS 30 2
ALBERT-base-v2 DIS 30 2
GPT-2 DIS 10 2
LLaMA-7B-v2 DIS 10 2
GPT-2 spaCy 20 2
LLaMA-7B-v2 spaCy 30 3
GPT-2 TextAttack 10 2
LLaMA-7B-v2 TextAttack 10 2

MNLI

BERT-base-uncased DIS 30 2
RoBERTa-base DIS 30 2
DistilBERT-base-uncased DIS 30 2
ALBERT-base-v2 DIS 30 2
GPT-2 DIS 50 2
LLaMA-7B-v2 DIS 10 2
GPT-2 spaCy 70 3
LLaMA-7B-v2 spaCy 70 2
GPT-2 TextAttack 20 3
LLaMA-7B-v2 TextAttack 10 2

Hyperparameter settings. We obtain Distance Mapping Distortion scores for each sample by
comparing input and output manifold distances (e.g., from zX to zY ). Summary of hyperparameters
during DMD calculation is in Table 10. To gauge how much finetuned models deviate from their
pretrained checkpoints, we reference layer-wise similarity metrics such as CKA and STIR (Neerudu
et al., 2023).

k-NN Ablation on SST-2 (GPT-2). We also evaluate the sensitivity of SALMAN to the choice of
k in k-NN graph construction. Specifically, we vary k ∈ {15, 20, 30} for GPT-2 on SST-2 and
compare the Kullback–Leibler Divergence (KLD) and BERTScore (Precision, Recall, F1) for non-
robust (NR) vs. robust (R) samples. As shown in Table 11, increasing k does not drastically alter the
distinction between robust and non-robust data; the non-robust subsets consistently exhibit higher
KLD and slightly lower BERTScores, while robust subsets remain more stable under perturbations.
This indicates that SALMAN is relatively insensitive to moderate changes in k.

Table 11: Effect of varying k in k-NN on robustness and similarity metrics (GPT-2, SST-2).

k (kNN) KLD (NR) KLD (R) Precision (NR) Recall (NR) F1 (NR) Precision (R) Recall (R) F1 (R)

15 0.1110 0.0000 0.9972 0.9978 0.9975 0.9990 0.9988 0.9989
20 0.0988 0.0003 0.9973 0.9978 0.9976 0.9993 0.9992 0.9992
30 0.1923 0.0000 0.9962 0.9970 0.9966 0.9992 0.9992 0.9992

A.7 LAYER-WISE STIR AND CKA RESULTS

In addition to the layer-wise comparison between normal and guided fine-tuning shown in Table 12
(CoLA dataset), we replicate the same analysis for the SST-2 and RTE tasks under GPT-2. Follow-
ing the exact protocol of Section 4.3 and Neerudu et al. (2023), we assign higher training weights to
non-robust data (determined by our DMD ranking) and lower weights to robust data. As before, we
measure:

• Validation Accuracy on the downstream task,
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Table 12: Layer-wise STIR and CKA for GPT-2 on CoLA. Each cell shows the “Normal fine-tuning
/ SALMAN-guided fine-tuning”, rounded to four decimal places. Normal fine-tuning validation
accuracy is 0.7468, SALMAN-guided fine-tuning validation accuracy is 0.7709. m1 is the pre-
trained model and m2 is the fine-tuned model. Better results are in bold.

Layer STIR(m2m1) STIR(m1m2) CKA

0 0.9623 / 0.9623 0.9623 / 0.9623 1.0000 / 1.0000
1 0.9070 / 0.9073 0.9065 / 0.9053 0.9987 / 0.9987
2 0.9688 / 0.9691 0.9690 / 0.9711 0.9936 / 0.9931
3 0.9848 / 0.9904 0.9678 / 0.9551 0.9856 / 0.9748
4 0.9853 / 0.9934 0.9690 / 0.9775 0.9836 / 0.9837
5 0.9904 / 0.9928 0.9750 / 0.9752 0.9906 / 0.9909
6 0.9897 / 0.9924 0.9697 / 0.9767 0.9920 / 0.9945
7 0.9895 / 0.9927 0.9724 / 0.9833 0.9931 / 0.9909
8 0.9860 / 0.9914 0.9680 / 0.9854 0.9923 / 0.9936
9 0.9825 / 0.9872 0.9666 / 0.9770 0.9905 / 0.9907
10 0.9776 / 0.9833 0.9647 / 0.9762 0.9917 / 0.9928
11 0.9730 / 0.9784 0.9628 / 0.9678 0.9893 / 0.9904
12 0.4691 / 0.7233 0.6819 / 0.7924 0.5612 / 0.7251

• STIR (Similar Token Identity Representation) metrics (m2m1, m1m2) capturing how
similar layer i in the fine-tuned model m2 is to layer j in the pre-trained model m1,

• CKA measuring layer-wise alignment between m1 and m2 embeddings.

SST-2 Results. Table 14 shows GPT-2’s layer-wise STIR and CKA under normal vs. guided fine-
tuning on SST-2. Both approaches yield similar final accuracy (0.9231 vs. 0.9232), yet the guided
variant consistently achieves higher STIR/CKA scores in later layers. In particular, layer 12 sees a
substantial jump in STIR(m2m1) from 0.0533 to 0.0867 and CKA from 0.1459 to 0.2039, indicating
closer alignment to the pre-trained checkpoint.

RTE Results. In Table 13, we compare normal vs. guided fine-tuning for GPT-2 on the RTE dataset.
While both runs converge similarly in accuracy (not shown here to save space), the guided approach
again shows improved STIR and CKA alignment with the pre-trained checkpoint. For instance,
layer 12 sees an increase from 0.2858 to 0.3393 in STIR(m2m1) and from 0.3458 to 0.3476 in CKA.

Table 13: Layer-wise STIR and CKA for GPT-2 on RTE under Normal vs. Guided fine-tuning. Each
cell shows “Normal Fine-tuning / SALMAN-guided Fine-tuning”, rounded to four decimal places.
Better results in bold.

Layer STIR(m2m1) STIR(m1m2) CKA

0 0.9913 / 0.9913 0.9914 / 0.9914 1.0000 / 1.0000
1 0.9786 / 0.9791 0.9776 / 0.9779 0.9986 / 0.9977
2 0.9859 / 0.9857 0.9859 / 0.9852 0.9976 / 0.9990
3 0.9903 / 0.9920 0.9917 / 0.9918 0.9951 / 0.9987
4 0.9897 / 0.9902 0.9897 / 0.9900 0.9885 / 0.9963
5 0.9898 / 0.9908 0.9891 / 0.9916 0.9894 / 0.9981
6 0.9865 / 0.9872 0.9869 / 0.9886 0.9908 / 0.9923
7 0.9821 / 0.9829 0.9806 / 0.9839 0.9746 / 0.9801
8 0.9758 / 0.9781 0.9709 / 0.9761 0.9407 / 0.9500
9 0.9708 / 0.9724 0.9607 / 0.9696 0.9288 / 0.9492
10 0.9564 / 0.9601 0.9359 / 0.9507 0.9028 / 0.9347
11 0.9333 / 0.9331 0.9152 / 0.9265 0.9223 / 0.9390
12 0.2858 / 0.3393 0.6131 / 0.6203 0.3458 / 0.3476

Discussion. Similar to our observations on COLA (Table 12), placing higher emphasis on non-
robust data (i.e., higher DMD samples) preserves downstream performance while bringing the fine-
tuned layers closer to the original pre-trained representations. These improvements in STIR and
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Table 14: Layer-wise STIR and CKA for GPT-2 on SST-2 under Normal vs. Guided fine-tuning.
Each cell shows “Normal Fine-tuning / Guided Fine-tuning”, rounded to four decimal places. Acc
is the validation accuracy of each method. For STIR, (m2m1) compares the fine-tuned model m2 to
the pre-trained model m1, and (m1m2) is the reverse; CKA measures embedding similarity. Better
results are in bold.

Validation Accuracy: Normal = 0.9231, SALMAN-guided = 0.9232

Layer STIR(m2m1) STIR(m1m2) CKA

0 0.9913 / 0.9913 0.9912 / 0.9912 1.0000 / 1.0000
1 0.9763 / 0.9771 0.9784 / 0.9787 0.9963 / 0.9974
2 0.9784 / 0.9789 0.9762 / 0.9767 0.9971 / 0.9973
3 0.9703 / 0.9713 0.9366 / 0.9414 0.9460 / 0.9469
4 0.9661 / 0.9715 0.9549 / 0.9608 0.9773 / 0.9800
5 0.9736 / 0.9757 0.9469 / 0.9589 0.9705 / 0.9738
6 0.9649 / 0.9704 0.9343 / 0.9450 0.9568 / 0.9604
7 0.9618 / 0.9672 0.9389 / 0.9476 0.9642 / 0.9675
8 0.9663 / 0.9703 0.9514 / 0.9598 0.9800 / 0.9825
9 0.9435 / 0.9553 0.9473 / 0.9545 0.9717 / 0.9787
10 0.9230 / 0.9504 0.9486 / 0.9573 0.9599 / 0.9774
11 0.8567 / 0.9208 0.9328 / 0.9426 0.9166 / 0.9562
12 0.0533 / 0.0867 0.7504 / 0.7755 0.1459 / 0.2039

CKA suggest reduced representational drift, consistent with the intuition that focusing on “hard”
samples forces the model to retain more generalizable features from pre-training (Cheng et al., 2021;
Zhu et al., 2023a).

Overall, these extended results on SST-2 and RTE corroborate our main findings: robustness-guided
fine-tuning effectively balances task performance with better alignment to the pre-trained checkpoint
across multiple datasets.

A.8 WEIGHTED FINE-TUNING AND INTEGRATION WITH ROSE

Motivation: Focus on Non-Robust Data. As discussed in Section 4.3, prior studies have shown
that directing more attention to non-robust (“hard”) samples during training can improve model
generalizability and resilience (Cheng et al., 2021; Zhu et al., 2023a). Our approach identifies these
difficult samples via the SALMAN-based ranking and then assigns higher training weights to them,
while simultaneously down-weighting samples that appear robust. We follow the finetuning pro-
tocol of Neerudu et al. (2023), hypothesizing that emphasizing harder samples preserves more of
the pre-trained model’s versatility. This reduces the risk of overfitting to “easy” data and yields
representations closer to the original checkpoint (see STIR/CKA results in Appendix A.7).

A.8.1 WEIGHTING SCHEMES FOR GUIDED FINE-TUNING

Linear Schedule. We sort all training samples in descending order of their DMD values (highest
DMD = most non-robust), then map each sample to a weight w ∈ [0, 1] proportional to its position
in this ranking. Concretely, if the highest-DMD sample is indexed as rank 0, it receives weight
≈ 1.0, whereas the lowest-DMD sample (rank n−1) receives weight near 0.0. Intermediate samples
smoothly interpolate between these extremes.

Combining with SOTA Robust Training (ROSE). We further integrate our DMD-based weight-
ing into ROSE: Robust Selective Fine-tuning (Jiang et al., 2022), which filters out spurious pa-
rameter updates by comparing dropout-induced distributions at each iteration:

L
(t)
KL = DKL(Pt ∥ P ′

t ) + DKL(P
′
t ∥ Pt).

ROSE removes parameter changes that inflate LKL excessively, thus improving adversarial re-
silience.

Per-sample Weight w(x) for Joint Optimization Alternatively, we employ a logistic transition-
based function partitioned into intervals:
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• Top-25% Non-Robust (i.e., highest DMD) can receive a larger weight (e.g., 2.0),

• Middle-Range samples gradually decrease from 1.0 to 0.0 in stepwise logistic transitions,

• Bottom-5% Most Robust eventually gets weight 0.0 (or near-zero).

This piecewise approach allows a finer distinction between very hard, moderately challenging, and
trivially easy samples.

Joint Optimization. We incorporate our per-sample weight w(x) into ROSE’s fine-tuning loss.
Specifically, if the original ROSE objective is

LROSE(θt) = Ex∼D
[
Ltask(x, θt) + λL

(t)
KL

]
,

then our combined objective is

LROSE+Guided(θt) = Ex∼D

[
w(x) · Ltask(x, θt) + λL

(t)
KL

]
.

Hence, the model is “selective” not only at the parameter level (via LKL) but also at the sample
level (via DMD-based weighting).

A.9 FROM PGM TO MANIFOLD: VALIDATING ON GRAPH BENCHMARKS

Although our primary interest is applying the PGM-based manifold to NLP data (where nodes rep-
resent text embeddings), we first validate how well our spectral sparsification and resistance distance
preservation works on standard graph benchmarks, namely Cora, Citeseer, and PolBlogs. These
datasets are widely used in the GNN literature and offer:

• Well-defined adjacency: Each graph provides a clear baseline for measuring changes in
effective resistance.

• Known benchmarks for graph-based algorithms: This allows direct comparison of spec-
tral or manifold-like approaches without the additional complexity of NLP text embedding.

In other words, while our ultimate goal is to build a manifold for robustness analysis in transformer-
based language models, these classic graph datasets serve as an intermediary check to confirm that
the PGM manifold indeed preserves resistance distances in large-scale graphs.

Why Graph Benchmarks Instead of NLP Data?

• Ground-Truth Adjacency: For cora/citeseer/polblogs, the adjacency matrix is explicitly
available, enabling a direct before/after comparison of edge sparsity and distance corre-
lation. In contrast, NLP data initially lacks a clear “graph,” so we must approximate edges
(e.g., via k-NN). Verifying the correctness of our approach on well-studied graph datasets
ensures that the spectral sparsification steps properly preserve distances.

• Easier Resistance Verification: By default, each node in these graph benchmarks is associ-
ated with a known set of neighbors. We can compute full-pairwise effective resistance or
measure Pearson, Spearman, and MSE between original and sparsified graphs (Table 15).
This level of straightforward measurement is less trivial in NLP tasks, where adjacency
depends on embedding similarity.

Experiment Setup.

1. Compute original resistance distances for each pair of nodes in the unsparsified graph.

2. Apply our SPF (Spectral Pruning via effective-resistance) procedure at various param-
eters (e.g., param ∈ {2, 3, 4}), generating a pruned graph that discards edges with smaller
distance ratios.

3. Quantify distance preservation via Pearson correlation, Spearman correlation, MSE, and
relative error (RelErr) between the original and the pruned graph’s resistance distances.

4. Measure final edge count as a fraction of the original adjacency size.
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Table 15: SPF results on three datasets (Cora, Citeseer, Polblogs). For each dataset, we vary the
SPF parameter in {2, 3, 4}, then measure how well the transformed adjacency preserves the original
resistance distances (Pearson / Spearman correlation, MSE, relative error). “Edges%” indicates the
proportion of edges retained relative to the original graph.

Dataset SPF Pearson Spearman MSE RelErr Edges%
cora 2 0.9029 0.8899 0.58045 0.3511 80.29%
cora 3 0.8602 0.8495 1.01185 0.5178 74.51%
cora 4 0.8113 0.7988 1.76080 0.7074 70.21%

citeseer 2 0.9475 0.9475 0.89848 0.2463 80.48%
citeseer 3 0.9220 0.9190 1.67925 0.3658 75.71%
citeseer 4 0.9074 0.9014 2.46463 0.4674 72.25%

polblogs 2 0.9565 0.9693 0.02916 0.3209 67.58%
polblogs 3 0.9090 0.9356 0.07819 0.6778 53.19%
polblogs 4 0.8323 0.8696 0.20026 1.4342 37.03%

Results and Analysis. Table 15 summarizes the outcomes on Cora, Citeseer, and PolBlogs. For
each dataset:

• Pearson & Spearman correlation remain high (> 0.80) even when we prune roughly
20-40% of the edges, confirming that the principal global and local distance structures
remain intact.

• MSE and RelErr naturally increase with more aggressive pruning, yet remain within ac-
ceptable ranges for many use-cases (e.g., GNN training, manifold-based clustering).

• Sparsification Rate (Edges%) indicates that by increasing the SPF parameter, we can
achieve increasingly compact graphs without catastrophically degrading the resistance-
distance correlation.

In short, these results validate that our spectral-pruning approach effectively maintains key manifold
properties (represented by resistance distances) across standard graph benchmarks. By extension,
we expect similar fidelity in large-scale NLP tasks once we construct an initial k-NN or adjacency
graph from text embeddings.

Having verified the correctness of our PGM manifold construction on well-known graph datasets,
we now apply the same principles (near-linear spectral sparsification plus Laplacian-based Θ con-
struction) to build manifolds for high-dimensional text embeddings. This ensures that the subse-
quent distance analyses in our transformer robustness framework rely on an accurate and scalable
manifold, preserving essential local and global distances just as effectively as in these classic graph
scenarios.

A.10 EFFECTIVE RESISTANCE DISTANCE

Motivation and Intuition. In graph-based methods, the effective resistance distance (also called
resistance distance in electrical-network parlance) provides a powerful metric for understanding
the relationship between pairs of nodes. Unlike simple shortest-path lengths, effective resistance
captures both local and global connectivity: if two nodes are connected by many parallel paths, they
have lower effective resistance than nodes primarily joined by a single, bottleneck path (Spielman
& Teng, 2011).

Electrical Network Interpretation. One way to grasp effective resistance is to imagine placing a
1-Ohm resistor on each edge of the graph and then viewing the entire graph as an electrical circuit:

• Inject 1 amp of current into node u and extract it from node v.
• Let φ(x) be the resulting electrical potential at any node x in the network.
• The effective resistance distance Reff(u, v) is then the voltage difference between u and v,

i.e., φ(u)− φ(v), required to sustain that 1-amp current.
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Thus, if there are many alternative routes (parallel edges) from u to v, the network offers “lower
resistance” between them, indicating u and v are closely tied in the graph’s connectivity structure
(Chandra et al., 1989; Ellens et al., 2011).

Mathematical Formulation via Laplacian Pseudoinverse. Let G = (V,E) be an undirected,
connected graph with n = |V | nodes. Denote its Laplacian matrix by LG = D −W , where D is
the diagonal degree matrix and W is the adjacency (or edge-weight) matrix. Since LG is positive
semidefinite and has rank n−1 for a connected graph, it admits a Moore-Penrose pseudoinverse L+

G
(Mohar, 2004; Spielman & Teng, 2011). For nodes p and q:

Reff(p, q) = (ep − eq)
⊤ L+

G (ep − eq),

where ep is the standard basis vector (all zeros except a 1 in the p-th coordinate). Intuitively, L+
G

encodes global connectivity, so Reff(p, q) measures “how difficult it is to flow current” from p to q
across G (Babić et al., 2002).

Example: Line Graph vs. Square Graph. To illustrate how the effective resistance distance can
differ substantially from the naive (hop-count) distance, consider:

• Line Graph with 3 Nodes {1, 2, 3} and unit-weight edges (1, 2) and (2, 3). The hop
distance from node 1 to node 3 is 2. When modeled as a resistor network, each edge
contributes 1 ohm in series; thus, the effective resistance between node 1 and node 3 is

Reff(1, 3) = 1 + 1 = 2.

• Square Graph with 4 Nodes {1, 2, 3, 4} and edges (1, 2), (2, 3), (3, 4), (4, 1), each of
unit weight. The naive (hop) distance from node 1 to node 3 is 2 (e.g., via 1 → 2 → 3 or
1 → 4 → 3). However, in the resistor-network view, there are two distinct 2-edge paths
running in parallel between node 1 and node 3:

1→2→3 and 1→4→3.

Each path alone would have resistance 1 + 1 = 2. Because they are in parallel, the total
effective resistance is

Reff(1, 3) =
(1
2
+

1

2

)−1

= 1.

Figure 3: Line vs. Square Graph Examples. (Left) The line graph with nodes {1, 2, 3}. (Right)
The square graph with nodes {1, 2, 3, 4}. Although both have a hop distance of 2 between node 1
and node 3, the effective resistance differs significantly: it is Reff(1, 3) = 2 in the line graph (two
edges in series), versus Reff(1, 3) = 1 in the square graph (two parallel 2-edge paths).

These simple examples illustrate that the effective resistance distance may diverge from the naive,
purely local distance. For node pairs in a graph with parallel paths, the effective resistance is often
smaller than the hop count would suggest. By contrast, if all paths between two nodes lie strictly
in series (as in a line graph), the effective resistance grows as a sum of edge resistances. Such
distinctions are at the heart of why resistance-based metrics can better capture global connectivity
and structural nuances in graph-based manifold analysis.
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Relevance to Robustness and Graph Learning. The notion of effective resistance has become
increasingly relevant for:

• Spectral Graph Sparsification: Low- and high-resistance edges are treated differently;
small-resistance edges indicate redundancy, enabling fast approximation algorithms (Spiel-
man & Srivastava, 2011; Spielman & Teng, 2011).

• Commute/Random Walk Times: Reff(p, q) also relates to the expected commute time of
a random walk between p and q (Chandra et al., 1989), linking local connectivity to global
diffusion properties.

• Manifold Preserving Embeddings: By preserving effective resistance distances, one can
maintain both local neighborhoods and global circuit-like structure in a final embedding or
graph model (Ellens et al., 2011; Feng, 2021).

In short, effective resistance unifies local and global connectivity aspects, making it ideal for mea-
suring how perturbations might propagate through a network—and by extension, how to keep the
manifold structure stable in large-scale data (e.g., NLP embeddings).

A.11 EMPIRICAL EVIDENCE OF (γF
min)

−1 CAPTURING “COLLAPSES”

In Section 3.3, we highlighted how a large (γF
min)

−1 indicates another dimension of fragility: distant
inputs becoming overly close in the output space. Below, we provide empirical results on multiple
model–task combinations, measuring:

• Cosine Similarity (Cos) between original vs. perturbed embeddings,
• KL Divergence (KLD) between output distributions,
• for both non-robust vs. robust samples, under A: γF

max or B: γF
max + (γF

min)
−1 setting.

A significant gap in Cos or KLD between robust and non-robust samples suggests the model am-
plifies small differences in the non-robust subset (or “collapses” large differences). Conversely, if
robust samples remain stable, it aligns with a lower distortion (or higher γF

min).

Table 16: Comparisons of Cosine Similarity (Cos) and KL Divergence (KLD) across non-robust vs.
robust subsets, under A: γF

max or B: γF
max + (γF

min)
−1 setting. Selected samples are attacked by

spaCy. Each row shows: (1) model+dataset, (2)(3) Non-robust Cos, (4)(5) Robust Cos, (6)(7) Non-
robust KLD, (8)(9) Robust KLD. Higher Cos / lower KLD typically indicates more stable behavior.
Better results are in bold.

Model + Task Non-rob Cos Rob Cos Non-rob KLD Rob KLD

A B A B A B A B

BERT, RTE 0.9194 0.9091 0.9282 0.9407 0.00794 0.00884 0.00709 0.00605
BERT, SST-2 0.9368 0.9358 0.9968 0.9969 0.00631 0.00647 0.00033 0.00032
GPT-2, RTE 0.9755 0.9662 0.9844 0.9917 0.01992 0.01992 1.14e-13 9.44e-14
GPT-2, SST-2 0.9730 0.9634 0.9989 0.9988 0.12331 0.15453 2.21e-06 4.38e-07
LLaMA-7Bv2, RTE 0.9511 0.9438 0.9537 0.9582 0.6998 0.7733 0.6764 0.4797
LLaMA-7Bv2, SST-2 0.9490 0.9491 0.9777 0.9779 0.53032 0.52974 0.21646 0.17981

Observations.

Empirically, when we combine both γF
max and (γF

min)
−1 (e.g., by ranking samples via γF

max +
(γF

min)
−1), we obtain a more accurate partition of robust vs. non-robust data than using γF

max alone.
Specifically:

• Robust subset selected by
[
γF
max + (γF

min)
−1

]
displays higher cosine similarity and lower

KLD relative to a purely γF
max-based choice,

• Non-robust subset exhibits lower cosine similarity and higher KLD, indicating stronger
local instability.
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This confirms that jointly considering expansions (γF
max) and collapses ((γF

min)
−1) provides a more

fine-grained characterization of model robustness—reinforcing the notion that both extremes of the
distortion spectrum matter for local manifold analysis.

A.12 SCALABILITY AND EFFICIENCY

Table 17 reports total wall-clock time (in seconds) for embedding the dataset, constructing the man-
ifold graph, and computing DMD on standard hardware. Notably, even the largest GLUE tasks
remain tractable. For instance, MNLI (393k samples) takes ≈ 6060 seconds (∼ 1.7 hours), which
is a one-time cost. Smaller tasks like QNLI (105k) finish in ∼ 12 minutes. These results underscore
that SALMAN is viable for mainstream NLP benchmarks. For extremely large datasets, approxi-
mate or distributed strategies can be employed for further scalability.

Table 17: SALMAN runtime across different GLUE tasks. Approx. sample counts and total runtime
on typical hardware.

Dataset #Samples Runtime (sec)
SST-2 ∼ 67k 642.4
RTE ∼ 2.5k 12.0
QNLI ∼ 105k 736.3
MNLI ∼ 393k 6060.2

Thus, while SALMAN does require a modest upfront cost to build the manifold and compute dis-
tortions, the resulting robustness ranking can be reused for downstream tasks (e.g., adversarial eval-
uation, fine-tuning). This amortizes the cost and keeps the approach practical for modern NLP
pipelines.

A.13 MORE ATTACK EXPERIMENT RESULTS

Figure 4 (left) shows that ASR is highest for the first decile (most non-robust) and consistently
decreases as samples become more robust in higher deciles. This confirms that SALMAN ranking
provides a reliable gradient for identifying vulnerable data points.

Figure 4: (Left) Attack Success Rate (ASR) across deciles of non-robustness. (Right) Average
number of AutoDAN steps needed for successful attack on robust vs. non-robust subsets. Non-
robust samples require fewer steps, highlighting their vulnerability.

A.13.1 MEASURING ATTACK STEPS

We further follow GCG Zou et al. (2023) and AutoDAN Liu et al. (2023) to measure the average
number of attack steps required. By default, GCG uses a fixed 250 steps for each trial, but we
adapt the AutoDAN approach to run up to 100 steps. Figure 4 (right) shows that non-robust samples
require significantly fewer steps for successful attack, whereas robust samples demand more queries
to break. This corroborates our SALMAN-based ranking.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A.13.2 SALMAN SCORE FROM DIFFERENT LAYERS

To empirically examine the sensitivity of SALMAN scores to layer selection, we conducted addi-
tional experiments using embeddings from intermediate layers on the attacking task. Specifically,
we evaluated two configurations:

• Setup 1: Raw input embeddings as the input manifold and embeddings from the 16th-layer
MHSA as the output manifold.

• Setup 2: Embeddings from the 16th-layer MHSA as the input manifold and embeddings
from the final layer as the output manifold.

For both setups, we ranked the top 1% most non-robust samples and evaluated their robustness
under adversarial attacks using the AutoDAN framework. The results show that Setup 1 achieved
an attack success rate of 20% (1 successful attack out of 32 attempts), while Setup 2 yielded a
comparable 20% (1 successful attack out of 40 attempts). In contrast, our original design, which
utilized embeddings from the initial and final layers, achieved substantially higher attack success
rates with fewer attempts. These findings indicate that intermediate-layer embeddings provide less
effective robustness ranking, thereby validating the soundness of our original methodological choice.

A.13.3 PROXY-BASED SALMAN RANKING

One may wonder if SALMAN must be computed on the exact same model we later attack. We
investigate using GPT-2, LLaMA2-7B, or LLaMA3-8B embeddings as a “proxy” for SALMAN
ranking, then testing the transferability of the attack to the target LLM. Table 5 shows that the Attack
Success Rate (ASR) remains quite similar across each proxy’s ranking, suggesting that SALMAN
is fairly robust to model variations.

A.13.4 ATTACK ON MULTILINGUAL

The last attack experiment investigates the multilingual setting. We conducted evaluations on the
Chinese subset of the MultiJail dataset, which contains 316 samples Deng et al.. Using embeddings
from LLaMA-8B, SALMAN was applied to rank samples by robustness, and adversarial attacks
were subsequently carried out on GPT-4o. Without ranking, the overall attack success rate across
the full dataset was 18.4%. In contrast, focusing on the top 10% most non-robust samples identified
by SALMAN yielded a substantially higher success rate of 37.5% (12 out of 32). These findings
highlight the initial effectiveness of SALMAN in multilingual contexts and underscore its potential
applicability for broader cross-lingual adversarial evaluation.
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