Contrastive Representations for Temporal Reasoning

Alicja Ziarko! 23 Michat Bortkiewicz* Michat Zawalski'> ¢
Benjamin Eysenbach® Piotr Mito§!3 1
University of Warsaw ’IDEAS NCBR SIMPAN
4Warsaw University of Technology Princeton University *NVIDIA
alicja.ziarko@uw.edu.pl

Abstract

In classical Al, perception relies on learning state-based representations, while
planning — temporal reasoning over action sequences — is typically achieved
through search. We study whether such reasoning can instead emerge from rep-
resentations that capture both perceptual and temporal structure. We show that
standard temporal contrastive learning, despite its popularity, often fails to capture
temporal structure due to its reliance on spurious features. To address this, we intro-
duce Contrastive Representations for Temporal Reasoning (CRTR), a method
that uses a negative sampling scheme to provably remove these spurious features
and facilitate temporal reasoning. CRTR achieves strong results on domains with
complex temporal structure, such as Sokoban and Rubik’s Cube. In particular, for
the Rubik’s Cube, CRTR learns representations that generalize across all initial
states and allow it to solve the puzzle using fewer search steps than BestFS —
though with longer solutions. To our knowledge, this is the first method that ef-
ficiently solves arbitrary Cube states using only learned representations, without
relying on an external search algorithm.

1 Introduction

Machine learning has achieved remarkable progress in vision [19], control [8], and language [23, 11].
Yet it still struggles with structured, combinatorial reasoning. Even simple tasks like planning in
puzzles or verifying symbolic constraints remain difficult for end-to-end systems [22, 14]. State-of-
the-art solvers rely on computationally expensive search methods such as A* or BestFS [10]. This
work asks: Can we learn representations that reduce or eliminate search in combinatorial reasoning?

We study whether temporal contrastive learn- CRTR
ing [17, 8] can enable efficient reasoning di- o sl
rectly in latent space. While contrastive learning i L)
has shown promise in control, its performance ~ _ + EEESEEl % l

in combinatorial domains is limited. We iden-
tify a key failure mode: embeddings overfit to

lnstanqe-sp601ﬁc context rather than temporal Figure 1: CRTR learns temporally structured repre-
dynamics. sentations. t-SNE visualization of Sokoban embeddings
learned by CRL (left) and CRTR (right). CRL clusters
within trajectories, missing global structure. CRTR orga-
nizes embeddings across trajectories and time (vertical
axis), capturing dynamics essential for planning.

We introduce Contrastive Representations for
Temporal Reasoning (CRTR), a simple, theo-
retically grounded contrastive method that uses
in-trajectory negatives. By distinguishing tem-
porally distant states within the same episode, CRTR avoids reliance on irrelevant context and instead
encodes meaningful temporal dynamics.

Our main contributions are:

Preprint.

1. We identify a critical failure mode of contrastive learning in domains with complex temporal
structure.

2. We propose Contrastive Representations for Temporal Reasoning (CRTR), a novel, theoretically
grounded method using in-trajectory negatives to learn temporally structured representations.

3. We show that CRTR outperforms prior methods on 4 of 5 combinatorial reasoning tasks, and
enables solving the Rubik’s Cube with fewer search steps than BestFS (though with longer
solutions).

2 Method

Failure of naive Contrastive Reinforcement Learning in combinatorial domains. A straight-
forward approach to learning representations ¢(s) is to employ contrastive reinforcement learning
(CRL) [8]. We applied this method in Sokoban — a puzzle game where an agent must push boxes to
target locations in a maze. Each problem instance is generated with a random wall pattern. Fig.
shows a t-SNE projection of representations learned by contrastive reinforcement learning on this task.
The representations from standard CRL primarily encode the layout of the walls and not the temporal
structure of the task. The reason representations use those features is that doing so minimizes the
contrastive objective. Each batch element typically comes from a different maze, so representations
that use the wall pattern to detect positive vs negative pairs achieve nearly perfect accuracy.

A mathematical explanation. The failure of temporal contrastive learning can be explained by the
presence of a context variable c. Each trajectory 7 = (s1, ..., s7) can be decomposed into a fixed
context ¢ (e.g., the wall and goal layout in Sokoban) and a temporal part (f1, ..., f7) that evolves
over time (e.g., player and box positions). For the sake of theoretial analysis, we assume that for
any ¢ < j, the future state s; is conditionally independent of c given s; (s; L ¢ | s;), which holds in
Sokoban.

Learning representations that ignore context: an idealized algorithm. Our method samples
negatives (z,x_) that share the same context, so context features cannot help distinguish pos-
itives from negatives and are excluded from the learned representations. Formally, we draw

¢ ~ P(C), positives (z,x4) ~ P(X, X, | ¢), and negatives a9~ P(X | ¢). The objective
; A 15N .

ismax; L(f) = E [N > j=1 ef(zj)zj+>+szllef(’”j’I§“)] a lower bound on I(X; X, | C) [I5].
Using the decomposition I(X ;X | C) = [(X4+; X) — I[(X4;C) (since Xy L C | X), we see

that the objective encourages maximizing temporal information I (X ; X ;) while minimizing context
information I (X ; C).

ef=imiy)

A practical method. While the idealized method is useful for analysis, it assumes that the context
is clearly separable from the observation, which is rarely the case. We propose a practical algorithm
that avoids this assumption. The method modifies contrastive sampling: instead of one positive per
trajectory, we sample multiple positives, so that some negatives in the batch come from the same
trajectory at different times. Implementing this idea in practice requires changing just a few lines of
code from prior temporal contrastive learning methods, as highlighted in Appendix I). Using data
sampled in this way guarantees that some negative training pairs in each batch come from the same
trajectory. We compare with potential alternative approaches in Appendix J. These within-trajectory
negatives differ systematically from positives and push the model to focus on temporal variations
rather than trajectory-wide constants. This method can be applied without any knowledge of the
context, even to problems without a constant context (e.g., the Rubik’s Cube).

3 Experiments

Experimental setup. We evaluate on five combinatorial reasoning tasks: Sokoban [7], Rubik’s

Cube, N-Puzzle [12], Lights Out [2], and Digit Jumper [3]. Most of these are NP-hard [6, 4, 20] and
serve as standard RL benchmarks [1, 18, 25]. See Appendix A for full environment details.
Baselines include: standard CRL [21, 17, 8], a supervised value-based approach[5, 24]; Deep-

CubeA [1]; and a random network. We test with and without search. When we use search, all
methods, including DeepCubeA, use BestFS for planning. In the setting without search we plan

15-puzzle

Lights Out

Sokoban Digit Jumper
1.0 —

p 1.0 ==
0.8 /[jr’"*
0.4 |
) j'
. 0.0

0.0

Success Rate

0 1000 2000
Search Budget (Nodes)

0 2500 5000
Search Budget (Nodes)

0 2500 5000 0 2500 5000 200 400
Search Budget (Nodes) Search Budget (Nodes) Search Budget (Nodes)

—— CRTR CRL Supervised —— DeepCubeA Random

Figure 2: CRTR performs well in all the evaluated domains. Success rate as a function of search budget
across five domains. CRTR compared to baselines: CRL [8], Supervised [5] and DeepCubeA [1].
Results are averaged over 5 seeds; shaded regions indicate standard error.

by greedily selecting the neighbor with minimum predicted distance under known, deterministic
dynamics. All the methods avoid loops by only considering states that were not already processed.
Further evaluation details are provided in Appendix D. The hyperparameters for each method are
provided in Appendix

Context-free representations for combinatorial reasoning. We analyze learned representations
in Sokoban, where wall layouts provide clear context features. Fig. | compares CRTR with standard
temporal contrastive learning (CRL). Using t-SNE, we find that CRL clusters trajectories by static
context, encoding all states from a trajectory similarly, while CRTR aligns states by temporal progress,
indicating that it discards irrelevant context in favor of task-relevant structure.

Our second experiment studies whether the learned CRTR repre-
sentations are useful for decision making and how they compare
to supervised approaches [1, 5]. We use the representations
to construct a heuristic for search. As shown in Fig. 2, CRTR
consistently achieves among the highest success rates, strictly
the best in two of them. The strong performance relative to
CRL highlights the importance of removing context informa-
tion from learned representations. In Appendix E, we provide
additional, smaller-scale experiments showing that these im-
provements also hold when using a non-greedy solver. The
improvement in performance in comparison to supervised base-
lines suggests that CRTR’s advantage comes from representing
values as distances between learned representations rather than
as outputs of a monolithic neural network.

Sokoban Correlation

1.00 jﬁ——M—.——.——»—a———‘
=]
S
-‘(—u’ 0.75 —— CRTR
o) —— CRL
j=
S
© 0.50

0 30 60

Evaluation Epoch

Figure 3: Distances given by CRTR
representations reflect the temporal
structure well. Correlation (Spear-

man’s p) between the distance induced
by learned embeddings and actual dis-
tance across the training, CRTR com-
pared with CRL.

The t-SNE visualizations (Figure 1) suggests that CRL focuses
primarily on the static context, while CRTR focuses on the
temporal structure. Below, we present additional empirical
evidence supporting this interpretation.

We perform further analysis in Sokoban environments. Without negative pairs, the classification
task becomes nearly trivial: the model leverages context cues to achieve close to 100% accuracy
(Appendix E). Despite this, the learned representations exhibit low correlation with ground-truth
state-space distances (Figure 3), indicating that the model ignores temporal structure and instead
relies on static context. In contrast, CRTR prevents reliance on contextual shortcuts, resulting in
representations that better capture the underlying geometry of the environment (Figure 3). We provide
a similar analysis for Digit Jumper in Appendix E. We also demonstrate that using CRTR leads to
improved temporal structure in robotic domains (See Appendix F). In Appendix H we show that
CRTR results in representations that optimize conditional mutual information I(X, X |C'), while
CRL does not.

Is search necessary? Do good representations allow us to solve combinatorial problems without
search, or at least reduce the amount of search required to get high success rates? We study this
question by using the learned representations to perform greedy planning for up to 6000 search steps.

We present the results from this experiment in Figure 4, showing the fraction of problems solved
with fewer than a certain number of steps. We compare to the variant of CRTR used in Sec. 3. On 4
/ 5 tasks, CRTR solves nearly all problem instances. The key takeaway is thus: for most problems,

Rubik Lights Out Sokoban Digit Jumper 15-Puzzle

°

Success Rate
°
&

=4
)

15) 300 600C 10 200 400C 10 30 9 9 27 81 40 120 360
Solution Length Solution Length Solution Length Solution Length Solution Length
—— CRTR without Search —— CRTR with BestFS

Figure 4: CRTR solves most tasks without requiring any search. We plot the fraction of configurations
solved with a solution length of at most x, while limiting the number of nodes created to 6000.
Surprisingly, on the Rubik’s cube CRTR achieves a higher success rate without search, solving all
board configurations within the budget.

CRTR can find solutions without needing any search at all. Perhaps the most interesting result is the
Rubik’s cube, where we found that our representations can solve all problem instances in less than
6000 moves. Surprisingly, using search decreases the total fraction of Cube configurations that are
solved. However, avoiding search comes at a cost: the solutions found without search are typically
longer than those found with search.

This simple greedy approach — just picking the neighbor closest to the goal — starts to show hints of
algorithmic behavior. On Rubik’s Cube, for example, it learns something that looks like a rudimentary
form of block-building (See Fig. 5), a common strategy used by humans for solving the cube. This
block building strategy was not programmed or explicitly rewarded, but instead emerged from training
the representations on random data.

Ablation experiments. Appendix J presents additional ablation experiments. We find that (/) our
strategy for sampling data (Alg. 2) outperforms several alternatives, and (2) CRTR is robust to the
repetition_factor hyperparameter, with 2 being a good choice in all settings we have tested.

4 Conclusions

In our work, we introduced CRTR, an algorithm for learning high-quality representations in com-
binatorial reasoning tasks. Our analysis revealed a critical limitation of prior approaches: when
training demonstrations are separable, their learned representations become trivial and ineffective for
planning. CRTR addresses this by balancing global negatives, which capture overall task structure,
with local negatives, which enforce temporal consistency. Experimental results across five domains
highlight its effectiveness. Notably, the representations learned with CRTR can successfully guide
search even without explicit planning, suggesting a promising direction for future research. and broad
applicability. We share the code for reproducibility. '

'Our code is available at: https:/github.com/combinatorialreasoning/crer.

. - . — —o

Step 1 Step 16 Step 38 Step 66 Step 86
Fully scrambled. Assembled lower ~ Assembled 2x2x3 block Almost all pieces in Solved!
2x2x2 block. and aligned smaller correct configuration.

1x1x3 blocks.

Figure 5: CRTR without search exhibits a block-building-like behavior. Intermediate states from solving
a randomly scrambled cube, illustrating how the algorithm gradually builds partial structure. The
average solve is about 400 moves, and we see similar block building behavior across solves.

https://github.com/combinatorialreasoning/crcr

References

[1] Agostinelli, F., McAleer, S., Shmakov, A., and Baldi, P. (2019). Solving the rubik’s cube with deep
reinforcement learning and search. Natr. Mach. Intell., 1(8):356-363.

[2] Anderson, M. and Feil, T. (1998). Turning lights out with linear algebra. Mathematics magazine, 71(4):300—
303.

[3] Bagatella, M., Olsdk, M., Rolinek, M., and Martius, G. (2021). Planning from pixels in environments with
combinatorially hard search spaces. Advances in Neural Information Processing Systems, 34:24707-24718.

[4] Culberson, J. (1998). Sokoban is pspace-complete. In Proceedings of the International Conference on Fun
with Algorithms, pages 65-76, Elba, Italy. Carelton Scientific.

[5] Czechowski, K., Odrzygozdz, T., Zbysinski, M., Zawalski, M., Olejnik, K., Wu, Y., Kucinski, L., and Milos,
P. (2021). Subgoal search for complex reasoning tasks. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N.,
Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 624-638.

[6] Demaine, E. D., Eisenstat, S., and Rudoy, M. (2018). Solving the Rubik’s Cube Optimally is NP-complete.
In Niedermeier, R. and Vallée, B., editors, 35th Symposium on Theoretical Aspects of Computer Science
(STACS 2018), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1-24:13,
Dagstuhl, Germany. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

[7]1 Dor, D. and Zwick, U. (1999). Sokoban and other motion planning problems. Comput. Geom., 13(4):215-
228.

[8] Eysenbach, B., Zhang, T., Levine, S., and Salakhutdinov, R. R. (2022). Contrastive learning as goal-
conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:35603-35620.

[9] Fu,J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4RL: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219.

[10] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100-107.

[11] Jiang, A. Q., Ziarko, A., Piotrowski, B., Li, W., Jamnik, M., and Milos, P. (2024). Repurposing language
models into embedding models: Finding the compute-optimal recipe. In Globersons, A., Mackey, L.,
Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M., and Zhang, C., editors, Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurlPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

[12] Johnson, W. W. and Story, W. E. (1879). Notes on the 15 puzzle. American Journal of Mathematics,
2(4):397-404.

[13] Kraskov, A., Stogbauer, H., and Grassberger, P. (2004). Estimating mutual information. Physical review. E,
Statistical, nonlinear, and soft matter physics, 69:066138.

[14] Ma, K., Du, X., Wang, Y., Zhang, H., Wen, Z., Qu, X., Yang, J., Liu, J., Liu, M., Yue, X., et al. (2024).
Kor-bench: Benchmarking language models on knowledge-orthogonal reasoning tasks. arXiv preprint
arXiv:2410.06526.

[15] Ma, M. Q., Tsai, Y.-H. H., Liang, P. P,, Zhao, H., Zhang, K., Salakhutdinov, R., and Morency, L.-P. (2022).
Conditional contrastive learning for improving fairness in self-supervised learning.

[16] Nauman, M., Cygan, M., Sferrazza, C., Kumar, A., and Abbeel, P. (2025). Bigger, regularized, categorical:
High-capacity value functions are efficient multi-task learners. CoRR, abs/2505.23150.

[17] Oord, A. v.d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748.

[18] Racaniere, S., Weber, T., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., Badia, A. P., Vinyals, O.,
Heess, N., Li, Y., Pascanu, R., Battaglia, P. W., Hassabis, D., Silver, D., and Wierstra, D. (2017). Imagination-
augmented agents for deep reinforcement learning. In Guyon, L., von Luxburg, U., Bengio, S., Wallach, H. M.,
Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5690-5701.

[19] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., Krueger, G., and Sutskever, 1. (2021). Learning transferable visual models from natural language
supervision. International Conference on Machine Learning.

[20] Ratner, D. and Warmuth, M. K. (1986). Finding a shortest solution for the N x N extension of the 15-puzzle
is intractable. In Kehler, T., editor, Proceedings of the 5th National Conference on Artificial Intelligence.
Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science, pages 168—172. Morgan Kaufmann.

[21] Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S., and Brain, G. (2018).
Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 1134-1141. IEEE.

[22] Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S., and Kambhampati, S. (2023). Planbench:
An extensible benchmark for evaluating large language models on planning and reasoning about change.
Advances in Neural Information Processing Systems, 36:38975-38987.

[23] Yin, Y., Wang, Z., Gu, Y., Huang, H., Chen, W., and Zhou, M. (2024). Relative preference optimization:
Enhancing Ilm alignment through contrasting responses across identical and diverse prompts. arXiv preprint
arXiv:2402.10958.

[24] Zawalski, M., Tyrolski, M., Czechowski, K., Odrzygozdz, T., Stachura, D., Piekos, P., Wu, Y., Kucinski,
L., and Milos, P. (2023). Fast and precise: Adjusting planning horizon with adaptive subgoal search. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

[25] Zawalski, M., Tyrolski, M., Czechowski, K., Odrzygozdz, T., Stachura, D., Piekos, P., Wu, Y., Lukasz
Kucinski, and Milos, P. (2024). Fast and precise: Adjusting planning horizon with adaptive subgoal search.

(a) N-Puzzle. (b) Lights Out. (c) Digit Jumper.

Figure 6: Environments: Our experiments used Sokoban (Fig. 1), the Rubik’s Cube (Fig. 5), and the
three environments shown above.

A Environments

Sokoban. Sokoban is a well-known puzzle game in which a player pushes boxes onto designated
goal positions within a confined grid. It is known to be hard from a computational complexity
perspective. Solving it requires reasoning over a vast number of possible move sequences, making it
a standard benchmark for both classical planning algorithms and modern deep learning approaches
[7]. Solving Sokoban requires balancing efficient search with long-term planning. In our experiments,
we use 12x12 boards with four boxes.

Rubik’s Cube. The Rubik’s Cube is a 3D combinatorial puzzle with over 4.3 x 10! possible
configurations, making it an ideal testbed for algorithms tackling massive search spaces. Solving
the Rubik’s Cube requires sophisticated reasoning and planning, as well as the ability to efficiently
navigate high-dimensional state spaces. Recent advances in using neural networks for solving
this puzzle, such as [1], highlight the potential of deep learning in handling such computationally
challenging tasks.

N-Puzzle. N-Puzzle is a sliding-tile puzzle with variants such as the 8-puzzle (3x3 grid), 15-puzzle
(4x4 grid), and 24-puzzle (5x5 grid). The objective is to rearrange tiles into a predefined order by
sliding them into an empty space. It serves as a classic benchmark for testing the planning and search
efficiency of algorithms. The problem’s difficulty increases with puzzle size, requiring effective
heuristics for solving larger instances.

Lights Out. Lights Out is a single-player game invented in 1995. It is a grid-based game in which
each cell (or light) can be either on or off. Pressing a cell flips its state and those of its immediate
neighbors (above, below, left, and right). Corner and edge lights have fewer neighbors and therefore
affect fewer lights. The goal is to press the lights in a strategic order to turn off all the lights on the
grid.

Digit Jumper. Digit Jumper is a grid-based game in which the objective is to get from the top-left
corner of the board to the bottom-right corner. At each point, the player can move n steps to the left,
right, up, or down, where n is determined by the number written on the current cell. Digit Jumper is
an example of an environment with a constant context, as is Sokoban.

B Best-First Search

Best-First Search (BestFS) greedily prioritizes Algorithm 1 Best-First Search [10]

node expansions with the highest heuristic esti- while has nodes to expand do

mates, aiming to follow paths that are likely to Take node N with the highest value
reach the goal. Although it does not guarantee Select children n; of N

optimality, BestFS offers a Simple and efficient Compute values v; for the children
strategy for navigating complex search spaces. Add (n;, v;) to the search tree

The high-level pseudocode for BestFS is pre- end while
sented in Algorithm 1.

Grid Search: Hidden Size vs Depth vs Repr Dim (600k training steps)

repr dim = 32 repr dim = 64 repr dim = 128
0.03 © | 0.21 0.17 0.14 © 0.18 0.18 0.15
= =
: 0.04 Qico BEUEE 0.16 0.09 i BRUPZ 0.17 0.13
o °
0.09 S 019 0.29 0.07 = 0.27 0.23 0.12
512 1024 2048 512 1024 2048 512 1024 2048

hidden size hidden size hidden size
Figure 7: Grid of network’s depth, representation dimension and hidden dimension. The success rate is

evaluated on cubes scrambled with 10 random moves.

Training Parameters Loss Parameters

§ 0.19 0.24 0.40 0.50
0.35 ot 0.28
Q~ 8 S ° 045 _,q_,')
NS 0.20 0.19 0308 = 5]
e [a S ~
) = -0.40 »
5 0258 @ %
S« S g 035 9
s 0.13 0.22 S £ 35
m = 0.20 3 o a
zZ° 0.28 0.23 0.30
© 0.15
¥ 0.08 019 023 025
N 0.10 0.25
1e-05 1le-04 3e-04 1e-03

Learning Rate

Figure 8: Learning rate and batch size grid for Rubik’s
Cube. The success rate is evaluated on cubes scrambled

0.0 1.0
Excluding the Diagonal

Figure 9: CRTR is the only effective normalization
strategy in Sokoban. Effect of using negatives in con-

trastive learning in Sokoban. We compare the setting
where the distance to positives is normalized by the
sum over all batch elements or only the in-batch nega-
tives. The success rate is evaluated on cubes scrambled
with 10 random moves after 400k training steps.

with 10 random moves after 700k training steps.

C Training Details

Code to reproduce all results is available in the anonymous repository referenced in the main text.
Below, we document the training procedures for the supervised baseline, contrastive baseline, and
CRTR.

Training data. For Sokoban, we use trajectories provided by Czechowski et al. [5] and train on
a dataset of 10° trajectories. For 15-Puzzle, Rubik’s Cube, and Lights Out, we generate training
trajectories by applying a policy that performs n random actions, where n is set to 150, 21, and 49,
respectively. In the case of 15-Puzzle, we additionally remove single-step cycles from the dataset
to improve data efficiency. For Digit Jumper, we generate training data by sampling a random path
from the upper-left corner to the bottom-right corner on a standard 20 x 20 grid. All grid cells not
required for this path are filled by sampling uniformly from the set 1, ..., 6. The network for Digit
Jumper typically converges after a few hours of training, so we train until convergence is observed.
For Sokoban, Rubik’s Cube, Lights Out, and 15-Puzzle, we adopt an unlimited data setup and train all
models for two days. This results in the models performing approximately 8 x 10® gradient updates
for Rubik’s Cube, 7 x 108 for 15-Puzzle, and 9 x 10° for Lights Out.

Training hyperparameters. We use the Adam optimizer with a constant learning rate throughout
training. A learning rate of 0.0003 was found to perform well across all environments, with the
exception of Lights Out, where this setting led to unstable training. For this environment, we instead
use a reduced learning rate of 0.0001. In all environments, we use a batch size of 512. The choice of

Final Solved Rate (1M training steps)

Solved Rate

Figure 10: Success rate on Rubik’s Cube scrambled with 10 random moves, for models trained with different
contrastive losses. Models using the backward loss consistently achieve better performance than those using
the symmetric variant. Using the dot product without in-trajectory negatives performs similarly to the />
metric, while combining the dot product with in-trajectory negatives yields the highest success rate. In contrast,
combining in-trajectory negatives with symmetric loss results in a drop in performance, likely because, in CRTR,
such negatives are often closer to the correct solution in the state-space.

learning rate and batch size was guided by the performance of the contrastive baseline on Rubik’s
Cube. Specifically, we evaluated solve rates on cubes shuffled 10 times, as shown in Figure 8. We
also conducted grid searches to find the optimal training parameters (learning rate and batch size)
for the supervised baseline on Sokoban, Lights Out, and Rubik’s Cube . We use the same batch
size and learning rate across all methods and environments, with the exception of Lights Out, where
increasing the batch size and learning rate in the supervised baseline led to a higher success rate.

Network architecture. We adopt the network architecture proposed by Nauman et al. [16], using 8
layers with a hidden size of 512 and a representation dimension of 64. This configuration was found
to yield optimal performance for the contrastive baseline on Rubik’s Cube, as illustrated in Figure 7.
We observed that this architecture performs well in all environments except for two cases:

* In Sokoban, a convolutional architecture was required to achieve strong performance.
* In Lights Out, the convolutional network was necessary to ensure training stability.

Test set. For Sokoban, we construct a separate test set comprising 100 trajectories, which is used
to compute evaluation metrics such as accuracy, correlation, and t-SNE visualizations. For all other
environments, a separate test set is unnecessary, as we train for only a single epoch. In this setting,
evaluation is performed directly on unseen data sampled during training.

Contrastive loss. We use the backward version of the contrastive loss, which we found to consis-
tently outperform the symmetrized variant on Rubik’s Cube as shown in Figure 10. We also found
the backward version to work better on 15-Puzzle and slightly better in the remaining environments.

For Rubik’s Cube, we use the dot product as the similarity metric. Performance across different
metrics is presented in Figure 10. While the contrastive baseline performs comparably under the ¢
metric, CRTR achieves significantly better results with the dot product. Based on similar empirical
evaluations, we use the following metrics for other environments:

* Lights Out: ¢, distance,
* Digit Jumper and 15-Puzzle: dot product,

* Sokoban: squared /5 distance.

We set the temperature parameter in the contrastive loss to the square root of the representation
dimension.

Supervised baseline. The supervised baseline takes as input a pair of states and predicts the
distance between them by classifying into discrete bins, where the number of bins corresponds to the
maximum trajectory length observed in the dataset.

In all environments, the supervised baseline uses the same architecture as the contrastive baseline.

D Evaluation Details

We evaluate all networks on 1000 problem instances per environment. For Rubik’s Cube, each
instance is a cube scrambled using 1000 moves. For 15-Puzzle, Lights Out, and Digit Jumper,
evaluation boards are sampled randomly. For Sokoban, we follow the same instance generation
procedure as described by Czechowski et al. [5].

E Additional Experiments

A* solver. To verify that the improvements achieved by CRTR are not specific to greedy solvers, we
conducted an additional experiment using the A* search algorithm. A* employs a heuristic function
of the form heuristic + « - cost, where varying « allows trading off between the search budget required
to solve the problem and the average solution length. As shown in Table 1, for the Rubik’s Cube,
increasing « from 0 (equivalent to BestFS) to 500 consistently yields better performance for CRTR
compared to CRL. We therefore hypothesize that the improvement reported in Section 3 is not specific
to greedy solvers.

Table 1: CRTR effectiveness is not BestFS specific. A* search results on the Rubik’s Cube with a node budget
of 6000, varying « in the priority function. CRTR performs better than CRL for all values of «, achieving shorter
solution lengths and higher solved rates.

« 0 100 200 300 400
CRTR Avg. Solution Length 56.76 46.35 38.42 32.84 29.16
CRTR Success Rate 0.63 0.62 0.59 0.54 0.33
CRL Avg. Solution Length 6296 4988 4194 36.11 31.77
CRL Success Rate 0.54 0.50 0.44 0.40 0.30

No-search results. The no-search approach selects, at each step, the state that appears most likely
to lead toward the solution—based on the learned representation. If the representation were perfect,
this strategy would yield optimal solutions. In practice, however, suboptimal representations often
cause the agent to wander through latent states far from the goal before eventually converging. As
a result, the quality of the representation is reflected in the length of these trajectories: the better it
captures directionality in latent space, the shorter the resulting solutions.

Table 2 reports the average solution lengths for the no-search approach on Rubik’s Cube and 15-
Puzzle. The results suggest that the representations learned by CRTR are better suited to this approach
than those learned by the contrastive baseline, and they significantly outperform those derived from
the supervised method. This supports the conclusion that CRTR provides a more reliable notion of
direction in latent space. Notably, the average solution lengths for both CRTR and CRL are shorter
than the length of training trajectories in 15-Puzzle (150), indicating evidence of trajectory stitching.

We furthermore present the distributions of solution lengths for all the methods in Figure
Accuracy in Sokoban training. During the training of CRL on the Sokoban environment, a perfect

accuracy is acquired almost immediately, due to the method relying on the context, as demostrated in
Figure

10

Rubik Lights Out Sokoban Digit Jumper 15-Puzzle

———

Success Rate
o
o

7

o
IS

300 600 10 200 4001 10 90

15 30
Solution Length Solution Length Solution Length

9 27 81 40 120 360
Solution Length ~ Solution Length

—— CRTR without Search =~ —— CRL without Search = —— Supervised without Search
----- CRTR with BestFS ----- CRL with BestFS ----- Supervised with BestFS

Figure 11: CRTR produces shorter solutions without explicit search in comparison to baselines. Search
can help reduce solution length further. Fraction of boards solved with a solution length of at most =,
comparing CRTR to baselines. Figure 4 in the main text presents analogous results, but only CRTR,
for clarity.

Table 2: Average solution length of the baselines and CRTR on Rubik’s Cube and 15-Puzzle without using
search. Supervised baseline fails to solve Rubik’s Cube without search.

Problem CRTR Contrastive Supervised

Baseline Baseline
Rubik’s Cube 448.7 1830.3 NaN
15-puzzle 82.4 119.5 1054.3

Digit Jumper analysis. Digit-Jumper is an example of another constant context (defined in Sec. 2)
environment, as is Sokoban. It is therefore another environment in which CRL fails rather spectacu-
larly and therefore, we observe a similar effect to that seen in Sokoban when comparing CRTR to
standard CRL. As shown in Figure 12, CRL rapidly achieves 100% training accuracy. However, de-
spite this perfect accuracy, the resulting representations exhibit poor correlation with actual temporal
structure (Figure 13). This is consistent with the t-SNE visualization (Figure 15): as with Sokoban,
CRL collapses each trajectory into a single point in the representation space, discarding temporal
information. In contrast, CRTR preserves a clear temporal structure within the latent space (see
Figure 15). For non-constant context environments, the difference in representation quality is also
visible in success rates, accuracy and correlation, it is however much less pronounced.

F Generalization to Temporal Reasoning in Non-Combinatorial Domains

To investigate whether CRTR also identifies temporal 1o Temporal Structure in D4RL
features in non-combinatorial domains, we apply it to a

dataset of robotic manipulation trajectories (the Adroit Fos

dataset from D4RL [9]). Those tasks require using a g i,
high-dimensional robotic hand to perform fine motor ac- § 06 %//
tivities, and are designed to test fine motor control and 2 7/
long-horizon planning. We quantify representation quality g 4 //
by measuring the predicted distance from each state in & /
a trajectory to the final state in a trajectory. Specifically, f‘:; //
we look at the rank correlation between the time step and She %
predicted distance, with a correlation of 1 indicating that 7

the learned representations are highly predictive of the
temporal distance from each state to the final state.

We look at the correlation through training for CRTR and
CRL (Fig. 16). CRTR results in a higher correlation (more
than 0.9 in comparison to 0.5 — 0.8 depending on the en- - . .

. .. L. - structure in robotics environments. Com-
vironment), as well as v151b.1y b'ette'r training stability — for parison of Spearman’s rank correlation met-
standard CRL, the correlation is visibly unstable through . for CR2 (solid) and CRL (dashed) for

D4RL offline datasets.

Figure 16: CRTR improves temporal

11

Digit Jumper Accuracy

<
©

——CRTR
—— CRL

Accuracy
o
'S

o
o

0 200
Train Epoch

400

Figure 12: In Digit Jumper, CRL
quickly acquires near-perfect ac-
curacy, however this is due to re-
lying only on superficial features
— the board layout. Accuracy of

Digit Jumper Correlation

<08
i
S
® ——CRTR
(O] —-—
£04 CRL
]
O
0.0
0 5 10
Evaluation Epoch
Figure 13: In Digit Jumper,

CRTR improves temporal struc-
ture in robotics environments.
Comparison of Spearman’s rank cor-
relation metric for CR? (solid) and
CRL (dashed) for D4RL offline

Sokoban Accuracy

e
©

>
o
To.6
5 ——CRTR
S ——CRL
0 30000 60000
Train Epoch
Figure 14: In Sokoban, CRL

quickly acquires near-perfect ac-
curacy, however this is due to re-
lying only on superficial features,
such as walls. Accuracy of clas-
sifying whether two states form a

classifying whether two states form
a positive pair across the training,
CRTR compared with CRL.

positive pair across training: CRTR
compared with CRL. The accuracy
saturates at a value smaller than 1
for CRTR, as a result of containing
in-trajectory negatives.

datasets.

15 1o 5 o 5 10 15 1o 5 o H 10

Figure 15: CRTR makes representations reflect the structure of the combinatorial task. t-SNE visualization
of representations learned by CRTR (left) and CRL (right) for Digit Jumper. Colors correspond to trajectories.
CRL representations (right) cluster within trajectories, making them useless for planning.

training and in some cases even becomes smaller as the training progresses. This result is a little
surprising, and it is not fully clear why does the improvement happen. We hypothesize that this is
because the initial position of the robot differs between trajectories and serves as a sort of slowly
changing context, similarly to the Rubik’s Cube case. We conclude that using CRTR results in a
better temporal structure in the representation space for non-combinatorial problems.

G Correlation as a Measure of Representation Quality

To assess whether Spearman rank correlation is a reliable indicator of representation quality, we
performed a grid of 96 short runs for each of three environments: Sokoban (12x12), Sokoban (16x16),
and the Rubik’s Cube. We varied four factors: network depth (8, 6, 4, 2), network width (1024, 16),
representation dimension (64, 32, 16, 8), and the distance metric used in the contrastive loss (dot
product, J2, 13).

Across all environments, the final Spearman correlation (computed with a budget of 1000 nodes)
showed a strong relationship with the final success rate: 0.89 for 12x12 Sokoban, 0.80 for 16x16
Sokoban, and 0.90 for the Rubik’s Cube. These results support the conclusion that Spearman rank
correlation is a good measure of representation quality.

H Mutual Information Analysis

To estimate the conditional mutual information, we use , which implements the
method proposed in [13] that uses k-nearest neighbours for entropy estimation. We conduct the
analysis using trajectories collected from the Sokoban or Digit Jumper environment, utilizing all

12

https://github.com/gregversteeg/NPEET

CMI I(X; X*|C) vs k CMI I(X; X*|C) vs k
e e
4.5 48 /‘/-_—-

P =

O O

- -

[«) Q

] ——CRTR]

E ——CRL £

45 -*5 3.2

K15 K —— CRTR

—— CRL
0 4 8 0 4 8
k (number of neighbors) k (number of neighbors)

Figure 17: CRTR optimizes the conditional mutual information while CRL does not, confirming out
theoretical results 2. Conditional mutual information estimated in Sokoban (left) and Digit Jumper (right) for
representations learned by CRTR and CRL, for different values of nearest neighbors used for estimation.

Algorithm 2 CRTR performs temporal contrastive learning, but samples negatives in a different way
so that representations discard task-irrelevant context, boosting performance (See Fig. 2).

dataset.shape == [num_traj, traj_len, obs_dim]

t0 = np.random.choice(dataset.shape[1], batch_size)

tl = t0 + np.random.geometric(l - discount, batch_size)

traj_id = np.random.choice(dataset.shape[0], batch_size)

1 new line of code for CRTR (our approach):

traj_id = np.repeat(traj_id[:batch_size // repetition_factor],
repetition_factor, axis=0)

batch = (dataset[traj_id, tO0], dataset[traj_id, t1])

further batch processing, the same for CRL and CRITR

transitions within these trajectories (> 45k transitions for Sokoban and > 20k for Digit Jumper).
The variables used in the experiment are defined as follows:

* X: Current state embeddings, standardized using z-score normalization (mean 0, standard
deviation 1) across the dataset. These embeddings are then projected onto a 3-dimensional
subspace using Principal Component Analysis (PCA).

» X: Next state embeddings corresponding to transitions from X . The same standardization
parameters and PCA transformation applied to X are used for X to ensure consistency.

» (C: Trajectory identifiers (traj_id) encoded as 2-dimensional vectors sampled from a
standard bivariate Gaussian distribution (i.e., N'(0, I3)).

To mitigate the effects of the curse of dimensionality and ensure reliable performance of k-nearest
neighbor (kNN)-based estimators, we reduce all high-dimensional representations to low-dimensional
spaces (3D for state embeddings, 2D for trajectory identifiers). The conditional mutual information
for CRTR and contrastive baseline is reported in Figure

I Sampling Algorithm

Implementing our sampling algorithm requires changing just a few lines of code from prior temporal
contrastive learning methods, as highlighted in Algorithm 2). The repetition factor governs the
proportion of such negatives, thereby providing a controllable mechanism to interpolate between the
standard and proposed objectives. Using data sampled in this way guarantees that some negative
training pairs in each batch come from the same trajectory. We compare with potential alternative
approaches in Appendix J.

J Ablations

13

Repetition Factor Impact

o

-

© 0.6

a4

[7)]
Repetition factor. Our method introduces a single ad-)
ditional hyperparameter: the repetition factor R. This gos3 e e 3000
parameter controls the proportion of in-trajectory nega- {3 o Sokoban (hadyet 30001
tives and is critical for achieving strong performance. As 0.0 —+— 15-Puzzle (budget 200)
shown in Figure 18, the impact of increasing R varies by 1 4 16
environment. For Sokoban, higher values of R lead to Repetition Factor

only a slight decline in performance. In contrast, in many Figure 18: A repetition factor of 2 con-
other environments, excessive repetition can significantly sistently improves the performance. In-
degrade results. While R = 2 is not always optimal, it creasing the repetition factor for Sokoban,
consistently improves performance across all environmen-Breadealnd Bdbaknd Gebeescageativelyng

default choice.
In Figure 19, we present detailed results showing how varying the repetition factor influences the
success rate.

Sokoban 15-puzzle Rubik

gt
f=F

) =
T 0.6 0-8 0.50
R~ —— Factor: 1 —+— Factor: 1
% —+— Factor: 2 —+— Factor: 2 —+— Factor: 1
(] —— Factor: 4 0.4 —+— Factor: 4 —— Factor: 2
8 0.3 —+— Factor: 8 : —+— Factor: 8 0.25 —— Factor: 4
=] Factor: 16 Factor: 16 —=— Factor: 8
wn Factor: 32 Factor: 32 Factor: 16
—— Factor: 64 0.0 —+— Factor: 64 0.00 & Factor: 32
0 2000 4000 6000 0 800 1600 2400 0 2000 4000 6000
Budget Budget Budget

Figure 19: Influence of the repetition factor depends on the environment type. Increasing the repetition
factor for Sokoban, N-Puzzle, and Rubik’s Cube, respectively.

Negatives. We explored alternative methods for incorporating in-trajectory negatives into the
contrastive loss. The first approach mimics the standard addition of hard negatives: given a batch
B = (i, iy)icf1..B}» We sample additional negatives (2;—);c{1..5}» and compute the loss as

_ l o exp (f (v, wiy))
£=p2 b >z exP(f (i, xj4)) + exp(f (@i, i)

We considered three strategies for selecting in-trajectory negatives: sampling a state uniformly at
random, choosing the first state, or choosing the last state of the trajectory. For Rubik’s Cube, instead
of choosing the last state—which is identical for all trajectories—we sample a random state farther

from the solution to serve as a negative.

As shown in Figures 20 and 21, training with this approach did not yield strong performance. We
hypothesized that the large prediction error introduced by the in-trajectory negatives (x;_) caused

10 Shuffles 15 Shuffles 20 Shuffles
Q Q Q
e] o o
g 0.75- & 0.24- g 0.12
a 0.50—2 & 016- @ 0081
8. 8 8 I %
O 0257 O 0.08 3 004 § /
=) 1 =] =]
U2 oo W LIS . @ .00 - . . 9 .00 .
O@Y‘Ogs\)\e:\ 6?1) {0;)\\6% &f\ o®® O‘ESY\C?A\)\Q% 60 {%\\e &&0@ 066 CXS’Q\ \\es 60{’0 \ 60&0 0%

%\?$26\i96\§?$e5\¢@6\ %\‘ y \\(be et e \\ e 1&
@0“:&%&%@3\2\0{{%\\ Sty $°?§‘—"’\\&‘°\o &?‘\%&*‘6\ \@?&o* \x %\"”
ST SRR JoR ‘3“ e

Figure 20: In Rubik’s Cube, CRTR outperforms all negative sampling strategies, when the number of
scrambles increases. Comparison of different methods for introducing in-trajectory negatives in the Rubik’s
Cube environment, with an increasing number of cube scrambles. While normalized negatives perform similarly
to CRTR for a small number of scrambles, their performance deteriorates as the number of scrambles increases.

14

Solved Rate per Run (after 400k training steps)

e
w
S

Solved Rate

Figure 21: We compare various methods for introducing in-trajectory negatives in the Sokoban environment
and find that only CRTR yields effective results.

excessively large gradients, destabilizing training. To mitigate this, we applied a normalization
scheme: ensuring that the vector [f(x1,21—) --- f(zp,2zp_)] has the same Frobenius norm as
the B x B matrix

flxy,z4) fle,2ey) o0 f(z,2B4)

fpay) fepeas) .. [(@pasy)

This normalization enabled achieving comparable performance to CRTR on Rubik’s Cube scrambled
10 times (Figure 20). However, CRTR still outperforms all negative sampling strategies on cubes
scrambled 15 and 20 times.

For Sokoban, the only approach that consistently improved performance is CRTR, as demonstrated in
Figure 21. We hypothesize that this is because removing contextual information is more challenging
in Sokoban than in Rubik’s Cube. In the latter, the context is more local and changes gradually
over time, making it softer, while the context in Sokoban is constant throughout a trajectory. This is
discussed in detail in Section 2.

While at first glance, repeating trajectories in a batch may seem equivalent to sampling in-trajectory
hard negatives, the two approaches are different. In standard contrastive learning (as in CRL), an
anchor z pulls its positive z closer and pushes negatives (e.g., ¥4) away. However, negatives like
14 are simultaneously pulled by their own anchors (e.g.,), which limits how far they are pushed
by x. In contrast, when using in-trajectory negatives without anchoring them (e.g., = pushes z_
away, but z_ has no anchor), these states can drift arbitrarily far in representation space. This is
problematic, especially since in-trajectory negatives are harder (closer in structure), which results in
stronger gradient updates. Our proposed method, CRTR, addresses this by anchoring all in-trajectory
negatives. This keeps trajectories coherent and prevents such drift.

K Computational Resources

All training experiments were conducted using NVIDIA A100 GPUs and took between 5 and 48
hours each. The solving runs ranged from 10 minutes to 10 hours. In total, the project required
approximately 30,000 GPU hours to complete.

L. Things We Tried That Did Not Work

* Using separate encoders for future and present states did not improve performance.
* Adding extra layers to encode the action led to lower success rates.

» Using only in-trajectory negatives degraded performance.

15

Modifying how current states are sampled in CRL (e.g., deviating from uniform sampling)
did not yield improvements.

Using A* solver with our representations could be greatly improved. Because distances in
the latent space are only monotonically correlated—not linearly correlated—with actual
distances, a modification to A* that would account for these discrepancies could bring huge
gains.

Distances between Rubik’s Cube states, measured by the number of actions, almost always
satisfy the triangle inequality with equality. Consequently, this metric cannot be faithfully
embedded in Euclidean space, where equality in the triangle inequality occurs only for
collinear points.

Since Rubik’s Cube actions are not commutative, a faithful Cayley graph structure could
only emerge in a Euclidean space where vector addition is noncommutative—which would
require a highly non-standard space.

16

	Introduction
	Method
	Experiments
	Conclusions
	Environments
	Best-First Search
	Training Details
	Evaluation Details
	Additional Experiments
	Generalization to Temporal Reasoning in Non-Combinatorial Domains
	Correlation as a Measure of Representation Quality
	Mutual Information Analysis
	Sampling Algorithm
	Ablations
	Computational Resources
	Things We Tried That Did Not Work

