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Abstract

Large language models frequently generate
unfaithful content that deviates from given
contexts, a phenomenon known as faithfulness
hallucination. Existing mitigation methods
often require model retraining, architectural
modifications, or manipulation of the entire
output distribution, leading to significant
computational overhead. In this paper, we
propose Context-Fidelity Boosting (CFB), a
lightweight decoding-time approach that en-
hances contextual alignment through strategic
logit adjustments. Inspired by watermarking
techniques, CFB implements three progres-
sively sophisticated strategies: static boosting
with fixed parameters, global adaptive
boosting based on distribution divergence, and
token-wise adaptive boosting that leverages
attention patterns and semantic relevance.
Extensive experiments demonstrate that CFB
significantly improves both faithfulness metrics
and generation quality while maintaining com-
putational efficiency. Notably, CFB provides
a practical solution for improving context
fidelity without requiring model retraining or
architectural changes. Our code is released
at  https://anonymous.4open.science/r/CFB-
C716.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various natural
language tasks. In numerous scenarios, the model
needs to follow the context provided by the user
to generate responses, such as in RAG, summa-
rization (Laban et al., 2024), question answering
(Chen et al., 2025), and role-playing (Huang et al.,
2024). When external knowledge conflicts with
the model’s internal knowledge parameters, the
generated content may become inconsistent with
the user’s instructions or contextual information
(Mallen et al., 2023; Liu et al., 2024c), resulting
in faithfulness hallucinations (Huang et al., 2023).
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Figure 1: Ilustration of context-faithful decoding: Tra-
ditional decoding relies on parametric knowledge (fa-
voring “Tokyo”), while our watermarking-inspired ap-
proach adjusts token probabilities to align with the given
context about “Paris 2024”.

This issue is particularly concerning in high-stakes
domains such as healthcare (Zhu et al., 2024), le-
gal (Cui et al., 2024), and financial services (Lee
et al., 2025), where accurate interpretation of medi-
cal records, legal documents, or financial reports is
crucial. In these scenarios, models must prioritize
faithfulness to the given context over their poten-
tially outdated or incorrect parametric knowledge.

Current approaches to addressing this challenge
broadly fall into three categories: (1) training-time
methods requiring expensive model fine-tuning or
architectural modifications (Hu et al., 2024), (2)
prompting techniques relying on careful engineer-
ing but offering limited reliability (Zhang et al.,
2024), and (3) decoding-time methods that mod-
ify the generation process (Shi et al., 2024; Wang
et al., 2024). While decoding-time approaches
show promise through their model-agnostic nature
and computational efficiency, existing methods of-
ten face a challenging trade-off between context
fidelity and output fluency, or require complex cali-
bration procedures.

In this work, we draw inspiration from recent
advances in text watermarking (Kirchenbauer et al.,
2024; Liu et al., 2024a; Liu and Bu, 2024), where
subtle modifications to token probabilities can ef-


https://anonymous.4open.science/r/CFB-C716
https://anonymous.4open.science/r/CFB-C716
https://anonymous.4open.science/r/CFB-C716

fectively guide model behavior without compro-
mising generation quality. As illustrated in Figure
1, similar to how watermarking techniques modify
logit distributions to embed signals, we propose to
adjust token probabilities to favor context-aligned
information. Just as watermarking uses green lists
to boost specific token probabilities, our approach
identifies and boosts context-relevant tokens while
maintaining the natural flow of language genera-
tion. This parallel between watermarking’s token
manipulation and context-faithful decoding pro-
vides an elegant framework for addressing the faith-
fulness challenge.

We introduce Context-Faithful Boosting (CFB),
a novel decoding-time approach that dynamically
adjusts token probabilities based on their contex-
tual relevance. CFB operates through three increas-
ingly sophisticated strategies: static boosting with
fixed parameters, global adaptive boosting based
on distribution divergence, and token-wise adaptive
boosting leveraging attention patterns and semantic
relevance. This mechanism enables flexible control
over the fidelity-fluency trade-off without requiring
model modifications or additional training. No-
tably, our method achieves this through lightweight
computation during decoding, making it practical
for real-world applications where trustworthiness
and reliability are paramount.

Our key contributions include:

* A lightweight, model-agnostic decoding frame-
work that significantly improves context fidelity
while preserving output quality, particularly cru-
cial for high-stakes applications.

* A novel three-level boosting mechanism that au-
tomatically calibrates to different contexts and
tasks, ensuring reliable performance across di-
verse domains.

» Extensive empirical validation across multiple
model scales and diverse tasks, including sum-
marization and question answering that require
high context faithfulness.

2 Related Work
2.1 Faithfulness Hallucinations in LL.Ms

Despite their impressive capabilities, LLMs fre-
quently generate unfaithful content that deviates
from provided context or source documents (Hase
et al., 2024; Chuang et al., 2024; Ming et al., 2024).
Recent studies have identified two types of halluci-
nations: factuality hallucination (Yang et al., 2024)

manifests when LLLM outputs diverge from verifi-
able real-world facts (e.g., stating incorrect histor-
ical dates or attributing quotes to wrong authors),
while faithfulness hallucination (Wu et al., 2024;
Qiu et al., 2024) occurs when outputs contradict or
fabricate content from the given input context (e.g.,
including details in a summary that were never
present in the source document). This issue be-
comes particularly severe when models encounter
information that conflicts with their parametric
knowledge learned from training data, such as re-
cent events or domain-specific knowledge. Various
metrics have been proposed to measure faithfulness,
including semantic similarity scores, entailment-
based measures, and fact-checking frameworks
(Niu et al., 2024; Hong et al., 2024).

2.2 Existing Mitigation Methods

Prior research has explored diverse approaches to
mitigate hallucinations in LL.Ms, operating at dif-
ferent stages of the model pipeline (Huang et al.,
2023). Training-time methods focus on architec-
tural changes and objective refinements, such as en-
hanced attention mechanisms and knowledge graph
integration, though these often require substan-
tial computational resources and may face cross-
domain generalization challenges (Tonmoy et al.,
2024). Prompting techniques, including chain-
of-thought (Wei et al., 2023) reasoning and self-
consistency verification, offer model-agnostic solu-
tions but vary in effectiveness across different mod-
els and tasks (Hou et al., 2024). Decoding-time in-
terventions modify the generation process through
methods like constrained decoding, though they
often struggle to balance faithfulness with output
fluency (Gema et al., 2024). While each approach
presents unique advantages, they all face distinct
limitations that must be considered in practical ap-
plications, highlighting the ongoing challenge of
developing reliable and faithful LLMs.

2.3 Watermarking in LLLMs

Recent work on text watermarking has advanced
our understanding of how subtle probability modi-
fications can effectively control model outputs in
LLMs. These techniques have primarily focused on
partitioning the vocabulary into “green” and “red”
token lists, carefully adjusting logit distributions
to embed detectable statistical patterns while pre-
serving the overall quality of generated text (Liu
et al., 2024b). Key developments in this field have
included soft watermarking schemes that dynam-
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Figure 2: An overview of the proposed CFB method. Our method includes three strategies: static boosting with fixed
parameters (directly adjusting the model’s logits output), global adaptive boosting based on distribution divergence
(determining delta based on JSD divergence), and token-wise adaptive boosting leveraging attention patterns and

semantic relevance.

ically adjust token probabilities based on context
(Kirchenbauer et al., 2024), sophisticated methods
for maintaining generation quality while embed-
ding robust signals (Liu et al., 2024a), and theoret-
ical frameworks that analyze the critical trade-off
between watermark strength and text naturalness
(Golowich and Moitra, 2024). This controlled ma-
nipulation of token distributions suggests a promis-
ing direction for hallucination mitigation, as similar
probability adjustment techniques could be applied
to guide model outputs toward greater faithfulness
to source content while maintaining natural lan-
guage generation capabilities.

3 Methodology

We introduce Context-Fidelity Boosting (CFB), a
decoding-time approach that enhances language
models’ faithfulness to given contexts by adaptively
adjusting token probabilities during generation. In-
spired by watermarking techniques that success-
fully control model outputs through subtle probabil-
ity modifications, CFB implements a hierarchical
boosting framework that promotes the selection of
context-relevant tokens while maintaining natural
text generation, as illustrated in Figure 2.

3.1 Problem Formulation

Given a context passage C' and a query (), our
goal is to enhance the generation fidelity of the
model to the context during decoding by increas-
ing the probability of tokens that appear in C.

Let P(yt|y<t, C, Q) denote the model’s generation
probability at timestep ¢. The key challenge is to
ensure the generated sequence maintains higher
probabilities for contextual tokens while preserv-
ing natural and fluent generation.

Traditional decoding methods treat all vocab-
ulary tokens equally, which may lead to context
neglect and hallucination. We propose to adjust the
logits of context tokens before computing genera-
tion probabilities:

- li(w) + f(1r),

if w appears in C
= )
t )

otherwise.

ey
Here, I;(w) is the original logit for token w in the
vocabulary, f(I;) is a boosting function based on
importance measure I, and I;(w) is the adjusted
logit corresponding to token w.

3.2 Context-Fidelity Boosting Framework
In this section, we propose three progressive levels

of boosting strategies for context tokens.

3.2.1 Static Boosting

The most straightforward approach adopts a fixed
boosting value § for all tokens that appear in the

context C': L) = &, )

where 0 is preset manually.

This strategy provides a baseline enhancement
of context token probabilities but lacks adaptivity
to different contexts and token importance.



Algorithm 1: Context-Fidelity Boosting via Logit Adjustment

Language Model M with vocabulary V', where each token in C' and @ is from V'

A1, A2: weights for attention and semantic similarity (A1 + A2 = 1)

Input: Context tokens C' = {c1, c2, ..., ¢n }, Query Q
Parameters: Base boost value ¢ for static mode

Omin, Omaz for adaptive modes
Output:

Generated sequence with boosted probabilities for tokens appearing in context C'

Phase 1: Logit Adjustment Function

1: function ComputeTokenWeights(C'):

2: o < GetAttentionScores(C')

3: s + ComputeSemanticSimilarity (C')

4: return \ia + A2s

5: function AdjustLogits(l;, C, mode):

6: l¢(w) < l¢(w) for all tokens w in model outputs
7: if mode is "static":

8: l¢(w) < lt(w) + 6 for w appearing in C'

9: else:

10: D+ JSD(M(C + Q),M(Q))

11: (S(D) < Omin + ((5maz — (5m~m) -D

12: if mode is "token-wise":

13: w(t) <— ComputeTokenWeights(C')

14: It (w) < L (w) + 8(D) - w(t) forw € C
15: else:

16: lt(w) < ly(w) + 6(D) forallw € C
17: return [;

Phase 2: Generation with Context-Boosted Probabilities

18: function Generate(C, Q):

19: input_ids < Tokenize(C + Q)

20: output_ids < input_ids

21: while not terminated do:

22: ly < M (output_ids)[—1]

23: l: + AdjustLogits(l¢, C, mode)

24: P* « Softmax(l;)

25: next_token < Sample(P™)

26: output_ids + [output_ids; next_token]
27: return Decode(output_ids)

> Cross-attention scores from decoder to C'
> Token-query semantic relevance
> Weighted combination

> Initialize adjusted logits

> Fixed boost for context tokens

> Adaptive modes
> Context-query relevance

> Get token-specific weights
> Token-specific boost

> Global adaptive boost

> Get original logits
> Boost context tokens

> Get valid probability distribution
> Sample from adjusted distribution

Table 1: Implementation details of the proposed Context-Fidelity Boosting (CFB) algorithm.

3.2.2 Global Adaptive Boosting

To dynamically adjust boosting strength based on
context-query relevance, we measure the distribu-
tion difference between context-aware and context-
free predictions:

D:JSD(PwHPwO)a 3)

where P, and P, denote the predicted distribu-
tions with and without context respectively, and
JSD is the Jensen-Shannon divergence (Menén-
dez et al., 1997). The global adaptive boosting
value is then computed as:

f(It) = 5(D) - 5min + <5max - 5mzn) : D7 (4)

where D is clipped to [0, 1], dpin and dpq, are
the minimum and maximum boosting values. This
allows stronger boosting when the context signifi-
cantly influences predictions.

3.2.3 Token-wise Adaptive Boosting

Further extending the adaptivity to token level, we
compute token-specific boost values considering
both attention patterns and semantic relevance:

f(Ir) = 6(D) - w(t). )

For each token w in the context, its importance
weight w(t) combines attention scores and seman-
tic similarity. Specifically, w(t) is calculated as:

w(t) = Ma(t) + Aas(t), (6)

where A1, Ao are weighting coefficients (A\; + Ao =
1). The attention score «(t) captures the token’s
dynamic importance during generation through the
model’s cross-attention weights from the final de-
coder layer. This helps identify which context to-
kens the model is actively focusing on while gen-
erating the current output. The semantic similarity



s(t) is computed using cosine similarity between
the token’s embedding and the averaged query em-
beddings. That is,

1
s(t) = cosine(hy, Ql Z hq), 7
q€Q

where h; and h, are the hidden representations of
the context token and query tokens respectively.

By combining these two measures, our method
captures both local dependencies (through atten-
tion) and global topical relevance (through seman-
tic similarity).

3.3 Implementation Details

Table 1 presents the complete implementation of
CFB. The framework maintains efficiency by com-
puting importance scores in parallel and caching
token weights when possible. For practical deploy-
ment, our empirical validation suggests optimal
parameter settings of ,,,;,, = 1.0 and 0,14, = 10.0
for the adaptive boosting range. The importance
weighting coefficients are set to \; = 0.6 and
A2 = 0.4, which effectively balances the prioritiza-
tion of local attention patterns while maintaining
global semantic relevance. The computational over-
head primarily stems from importance estimation,
which scales linearly with context length, while
the actual boosting operations introduce negligible
additional cost to the standard generation process.

4 Experiments
4.1 Experiment Setup

Models We evaluate our method on several state-
of-the-art LLMs including Llama2-13B-chat-hf,
Llama3-8B-Instruct, and Mixtral-7B-Instruct.

Datasets We consider two types of tasks.

¢ Summarization: We use CNN-DM (See et al.,
2017) and XSum (Narayan et al., 2018) datasets
to evaluate the model’s ability to generate faith-
ful summaries. For these tasks, we measure
ROUGE-L (Lin, 2004) for summary quality, fac-
tKB (Feng et al., 2023) for knowledge consis-
tency, and BERT-P (Zhang et al., 2020) for se-
mantic preservation.

* Question Answering: We use NQ-SWAP (Long-
pre et al., 2021) and NQ-Synth (Wang et al.,
2024) to evaluate the model’s ability to lever-
age context information. NQ-SWAP contains
synthetic knowledge conflicts, while NQ-Synth
consists of examples where context aligns with

the model’s parametric knowledge. For these
tasks, we report accuracy scores.

Baselines We compare our method against sev-
eral strong baselines: Context-aware Decoding
(CAD) (Shi et al., 2024), which uses a fixed hyper-
parameter to control adjustment of output proba-
bilities; Adaptive Context-Aware Decoding (ADA-
CAD) (Wang et al., 2024), which dynamically in-
fers adjustment based on Jensen-Shannon diver-
gence; and Contextual Information-Entropy Con-
straint Decoding (COIECD) (Yuan et al., 2024),
which employs distinct strategies for conflicting
and non-conflicting tokens. For consistent com-
parison, we use top-p sampling across all methods
under a zero-shot setting, with hyperparameters
following their original papers.

4.2 Results

Overall Performance Our experimental results
demonstrate that Context-Fidelity Boosting meth-
ods consistently outperform or remain competi-
tive with strong baselines across different models
and tasks. Notably, our methods show particular
strength in maintaining factual consistency while
preserving semantic quality.

Summarization Performance For summariza-
tion tasks, as shown in Table 2, our methods demon-
strate significant improvements across different
metrics. On CNN-DM, our methods achieve su-
perior ROUGE-L scores across all models, with
improvements up to 4.15 points on Llama3-8B.
The Global Adaptive CFB variant particularly ex-
cels, achieving the best ROUGE-L scores for both
Llama2-13B (37.52) and Llama3-8B (36.78). For
factual consistency, measured by factKB, our meth-
ods demonstrate strong performance, with Static
CFB achieving the highest score of 96.35 on
Llama2-13B. BERT-P scores remain consistently
high across our methods, indicating strong seman-
tic preservation, with the Static CFB variant achiev-
ing the best BERT-P score of 91.17 on Llama2-
13B. On XSum, our Token-wise Adaptive CFB
shows strong performance in ROUGE-L scores,
while Global Adaptive CFB maintains better fac-
tual consistency, suggesting different variants may
be optimal for different summarization scenarios.

Question Answering Performance In QA tasks,
as shown in Table 3, we observe distinct patterns
across different models and datasets. On NQ-
Synth, our Static and Global Adaptive CFB vari-
ants achieve remarkable performance, reaching



Model Method CNN-DM XSum
ROUGE-L factKB BERT-P ROUGE-L factKB BERT-P
CAD (Shi et al., 2024) 33.19 96.37 91.42 16.57 39.22 89.93
ADACAD (Wang et al., 2024) 25.71 89.38 87.56 14.46 29.19 86.42
. COIECD (Yuan et al., 2024) 22.65 78.92 86.13 11.93 27.09 84.27
Mistral-7B
Static CFB (ours) 34.44 95.40 91.17 14.66 56.12 90.90
Global Adaptive CFB (ours) 34.16 94.71 91.05 15.32 50.90 90.94
Token-wise Adaptive CFB (ours) 34.51 95.77 90.86 16.18 41.24 90.42
CAD (Shi et al., 2024) 35.63 95.27 91.08 13.96 26.91 88.86
ADACAD (Wang et al., 2024) 24.10 93.45 86.84 10.74 38.83 83.68
COIECD (Yuan et al., 2024) 19.37 83.90 84.58 9.49 9.51 84.16
Llama2-13B
Static CFB (ours) 37.39 96.35 91.17 13.77 54.38 89.53
Global Adaptive CFB (ours) 37.52 96.26 91.16 14.62 55.02 89.49
Token-wise Adaptive CFB (ours) 37.38 95.99 90.10 15.25 37.91 89.57
CAD (Shi et al., 2024) 29.09 84.48 90.98 12.92 45.77 87.05
ADACAD (Wang et al., 2024) 21.80 93.11 85.41 8.69 42.81 82.07
COIECD (Yuan et al., 2024) 19.11 84.47 84.63 10.59 51.90 83.80
Llama3-8B
Static CFB (ours) 36.24 92.61 91.06 12.63 63.88 89.88
Global Adaptive CFB (ours) 36.78 93.31 91.11 12.25 67.78 89.32
Token-wise Adaptive CFB (ours) 36.21 90.57 90.47 13.23 55.29 88.45

Table 2: Results on summarization tasks. We report ROUGE-L, factKB and BERT-P scores for CNN-DM and
XSum datasets. Best results for each model are shown in bold.

QA Accuracy

Model Method
NQ-Synth NQ-SWAP
CAD 48.25 57.82
ADACAD 67.46 74.00
Mistral-7B COIECD 48.46 3.19
Static (ours) 85.84 36.06
Global (ours) 83.60 59.67
Token-wise (ours) 78.60 39.67
CAD 47.80 45.56
ADACAD 39.70 74.21
Llama2-13B COIECD 20.60 1.58
Static (ours) 73.39 55.69
Global (ours) 70.50 26.03
Token-wise (ours) 71.10 11.13
CAD 66.80 58.49
ADACAD 48.40 86.40
Llama3-8B COIECD 32.10 6.33
Static (ours) 93.10 34.98
Global (ours) 93.10 3491
Token-wise (ours) 90.40 34.73

Table 3: Results on question answering tasks. We report
accuracy (%) on NQ-SWAP and NQ-Synth datasets.
Best results for each model are shown in bold.

93.10% accuracy with Llama3-8B, significantly
outperforming baselines. For NQ-SWAP, ADA-
CAD shows stronger performance, particularly
with Llama3-8B (86.40%). However, our Global
Adaptive CFB achieves the best performance on
Mistral-7B (59.67%), suggesting model-specific
effectiveness. The performance gap between our
methods and baselines varies across models, indi-
cating that the effectiveness of context boosting

may be model-dependent.

Model-Specific Analysis Different models show
varying responsiveness to our methods. Mistral-
7B shows balanced performance across tasks, with
our Token-wise Adaptive CFB achieving the best
ROUGE-L scores on CNN-DM (34.51). Llama2-
13B demonstrates particularly strong performance
with our methods on CNN-DM, suggesting bet-
ter compatibility with longer-form summarization.
Llama3-8B shows impressive gains on NQ-Synth
with our methods, indicating strong potential for
factual question answering. These results suggest
that the effectiveness of CFB methods may be in-
fluenced by the underlying model architecture and
pre-training approach.

4.3 Human Evaluation

To assess the qualitative aspects of our method, we
conduct human evaluation through both expert an-
notations and LLM-based analysis. We randomly
sample 100 examples each from CNN-DM and NQ-
SWAP datasets, comparing outputs from baseline
CAD, ADACAD and our CFB method.

Evaluation Protocol Three expert annotators in-
dependently rated each output on three dimensions:
faithfulness (accuracy and factual consistency), flu-
ency (grammatical correctness and natural flow),
and informativeness (completeness and relevance),
each on a 1-5 scale.



Human Ratings LLM Evaluation

Method Faith. Flu. Info. Consist. Hall. Contra.
CAD 382 415 3.76 0.83 1.24 0.12
ADACAD 403 421 389 0.87 0.95 0.09
Full CFB (Ours) 431  4.18 4.12 091 0.67 0.05

Table 4: Human and LLM-based evaluation results.
Faith. is short for faithfulness, Flu. is short for flu-
ency, Info. is short for fnformativeness, Consist. is short
for consistency, Hall. is short for average hallucinations
per output, and Contra. is short for contradiction rate.
Human ratings are on a 1-5 scale.

LLM-based Analysis We additionally employ
GPT-40 as an automated evaluator, analyzing 500
samples using a structured evaluation template.
The results show significant improvements in fac-
tual consistency (91% vs 83% baseline) and re-
duced hallucination rates (0.67 vs 1.24 average
instances per output).

Qualitative Analysis Our CFB method demon-
strates particular strengths in several key areas.
First, it excels at maintaining numerical accuracy
and temporal information, with a 43% reduction
in numerical inconsistencies compared to baseline
approaches. Second, the preservation of proper
names and specific details shows marked improve-
ment, with named entity retention increasing by
28%. Finally, we observe a substantial reduction in
unsupported generalizations, dropping from 0.89
to 0.34 instances per output.

However, CFB shows minimal improvement in
scenarios requiring complex reasoning or multi-
hop inference. These cases often involve implicit
logical connections or require synthesizing infor-
mation across distant parts of the source text. This
limitation suggests potential areas for future work
in enhancing the model’s reasoning capabilities
while maintaining factual consistency.

As shown in Table 4, our method achieves the
highest scores across most metrics, with particu-
larly strong performance in faithfulness (4.31/5.0)
and informativeness (4.12/5.0). While fluency
scores remain comparable across methods, the sig-
nificant reductions in hallucination (0.67 average
instances) and contradiction rates (5%) demon-
strate the effectiveness of our constrained factual
boosting approach.

4.4 Ablation Studies

We conduct ablation studies to analyze the contri-
bution of different components in our method using
Llama3-8B on the CNN-DM dataset. As shown

Method Variant ROUGE-L factKB BERT-P
Full CFB 36.21 90.57 90.47
- w/o Distribution JSD 3491 84.70 81.44
- w/o Attention Score 33.60 82.01 83.92
- w/o Semantic Sim 35.16 84.92 80.33

Table 5: Ablation study on Llama3-8B on CNN-DM
showing the impact of key components.

in Table 5, the full model achieves the best perfor-
mance across all metrics. Removing the Distribu-
tion JSD component results in significant degrada-
tion across all metrics, with ROUGE-L dropping to
34.91 and factKB to 84.70, highlighting the impor-
tance of dynamic contrast adjustment. The atten-
tion score component proves crucial, as its removal
leads to the largest performance drop, demonstrat-
ing its vital role in contextual information selection.
While removing semantic similarity maintains rea-
sonable ROUGE-L, it significantly impacts seman-
tic preservation.

4.5 Case Studies

Case 1: High Knowledge Conflict As shown in
Table 6, when presented with conflicting informa-
tion about the Great Wall’s length (21,196 vs 8,850
kilometers), greedy decoding and COIECD default
to the common knowledge length of 8,850 kilome-
ters, ignoring the 2012 survey data. While CAD
acknowledges the new measurement, our method
provides the most complete response by presenting
both figures and their relationship, demonstrating
superior conflict resolution.

Case 2: Complementary Knowledge For ques-
tions where context adds to model knowledge
(like survey dates and measurement methods), our
method effectively combines both sources while
maintaining coherence. Unlike other methods that
might favor one knowledge source, our approach
integrates both the historical context and new find-
ings.

Case 3: Low Knowledge Conflict In cases with
minimal conflict, such as basic facts about the
Great Wall, our method appropriately reduces the
context boost, behaving similarly to standard de-
coding. This adaptive adjustment contrasts with
CAD’s fixed adjustment strategy, preventing poten-
tial over-correction in low-conflict scenarios.

5 Discussion
5.1 Impact of Model Scale

Our experiments across different model scales (7B,
8B, and 13B parameters) reveal interesting pat-



Component Content

Context The Great Wall of China’s actual length was determined in 2012 to be (13,171 miles),
much longer than the previously believed kilometers. This finding came after a detailed archaeological
survey using advanced mapping techniques, which also revealed that the wall contained sections from more
diverse historical periods than originally thought...

Question What is the actual length of the Great Wall of China according to the 2012 survey, and how does it compare
to previous estimates?

Gold Answer According to the 2012 survey, the Great Wall is 21,196 kilometers long, which is much longer than the
previous estimate of 8,850 kilometers.

Greedy The Great Wall of China is approximately 8,850 kilometers long.

CAD The 2012 survey found the Great Wall to be 21,196 kilometers, longer than previous estimates.

COIECD The Great Wall is about 13,171 miles (8,850 kilometers) long based on traditional measurements.

CFB (Ours) According to the 2012 survey, the Great Wall is 21,196 kilometers long, much longer than the previously
believed 8,850 kilometers.

Table 6: Qualitative comparison showing how different methods handle knowledge conflicts.

Dataset: ngsyn llama3.gb

Fos

(a) CNN-DM

(b) NQ-Synth

Figure 3: Impact of boost values (§) on fact scores and ROUGE metrics using Llama3-8B. We show the average
fact score (top-left), ROUGE-1 (top-right), ROUGE-2 (bottom-left), and ROUGE-L (bottom-right) scores.

terns in knowledge integration capabilities. While
Llama2-13B shows superior performance on CNN-
DM summarization with higher ROUGE-L scores
(37.52 vs 34.51 for Mistral-7B), this advantage
does not consistently translate to other tasks. For
instance, Llama3-8B achieves the highest accuracy
on NQ-Synth (93.10%) despite its smaller size,
while Mistral-7B demonstrates competitive perfor-
mance on XSum factuality metrics. This suggests
that raw model size may be less crucial than archi-
tectural differences and pre-training approaches for
context-faithful generation. Notably, the benefits
of our adaptive boosting approach remain relatively
consistent across all three model scales, indicating
its robustness across different model architectures
and sizes.

5.2 Impact of Boost Values

Analysis across different datasets reveals distinct
patterns in how boost values (&) affect model per-
formance. As illustrated in Figure 3, for CNN-
DM, the average fact score shows sharp initial im-
provement, peaking at § = 4 before experienc-

ing significant fluctuations and an overall decline.
Its ROUGE metrics similarly peak at lower ¢§ val-
ues (2-4) but show consistent degradation there-
after. In contrast, NQ-Synth exhibits more stable
behavior, with fact scores steadily increasing until
& = 6 before plateauing. Its ROUGE metrics show
consistent improvement up to 6 = 6 and main-
tain relatively stable performance afterward. These
patterns suggest that while moderate boost values
(0 = 4—6) generally optimize performance, dataset
characteristics significantly influence the stability
and effectiveness of the boosting mechanism.

6 Conclusion

We present Context-Fidelity Boosting, a decod-
ing framework that enhances factual consistency
in language model outputs. Our experiments
demonstrate significant reductions in hallucinations
while maintaining generation quality across sum-
marization and question-answering tasks. Future
work could explore integration with other decoding
strategies to more complex reasoning tasks.



Limitations

While Context-Fidelity Boosting demonstrates
promising results, several limitations warrant dis-
cussion. Despite being more efficient than training-
time approaches, CFB introduces additional com-
putational overhead during decoding due to its dis-
tribution divergence calculations and token-wise
importance scoring mechanisms. A fundamen-
tal limitation is that CFB requires direct access
to model internals, specifically attention patterns
and logit distributions, making it inapplicable to
black-box API models like GPT-4. Although our
adaptive mechanisms reduce the burden of manual
tuning, several hyperparameters still require careful
calibration, including the bounds of the boosting
factor and the relative weights between semantic
similarity and attention scores, with optimal values
varying across different model architectures. These
limitations point to important future research di-
rections: reducing computational overhead, devel-
oping methods compatible with black-box models,
and designing more robust hyperparameter selec-
tion strategies.
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