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Abstract

Large Language Models (LLMs) are rapidly becoming commodity components of larger
software systems. This poses natural security and privacy problems: poisoned data retrieved
from one component can change the model’s behavior and compromise the entire system,
including coercing the model to spread confidential data to untrusted components. One
promising approach is to tackle this problem at the system level via dynamic information
flow (aka taint) tracking. Unfortunately, this approach of propagating the most restrictive
input label to the output is too conservative for applications where LLMs operate on inputs
retrieved from diverse sources.

In this paper, we propose a novel, more permissive approach to propagate information flow
labels through LLM queries. The key idea behind our approach is to propagate only the
labels of the samples that were influential in generating the model output and to eliminate
the labels of unnecessary inputs. We implement and investigate the effectiveness of two
variations of this approach, based on (i) prompt-based retrieval augmentation, and (ii) a k-
nearest-neighbors language model. We compare these with a baseline that uses introspection
to predict the output label. Our experimental results in an LLM agent setting show that the
permissive label propagator improves over the baseline in more than 85% of the cases, which
underscores the practicality of our approach.

1 Introduction

Large Language Models (LLMs) such as GPT-4 OpenAI (2023), Llama Touvron et al. (2023); Dubey et al.
(2024), Mistral Jiang et al. (2023), and PaLM Anil et al. (2023) are rapidly becoming commodity components
of larger software systems. The inputs to these LLMs often consist of data retrieved from a variety of sources,
including websites, productivity software, or tools Chase (2022), and their output is usually passed on to
other software components for further processing Xi et al. (2023).

This poses natural security and privacy problems: low integrity inputs (e.g., poisoned data) can change
the model’s behavior in unexpected ways and potentially affect the entire system Greshake et al. (2023).
Similarly, high confidentiality inputs (e.g., confidential documents) can be inadvertently leaked to an untrusted
downstream component Mireshghallah et al. (2023).

One possible approach to address this problem is to rely on the LLM itself for mitigation, for example
via introspection of the retrieved inputs or guardrails given in the meta-prompt. However, such defenses
can be circumvented with more advanced attacks Zou et al. (2023); Yuan et al. (2023); Li et al. (2023);
Shen et al. (2023), leading to the undesirable cat-and-mouse game that is common in system security.
A promising alternative is to tackle this problem at the system level via dynamic information-flow (aka
taint) tracking. Information-flow tracking is a standard technique for enforcing integrity and confidentiality
properties Clause et al. (2007); Buiras et al. (2014); Sabelfeld & Myers (2003), and has been used successfully
in many applications, including detecting cross-site-scripting vulnerabilities Vogt et al. (2007), privacy leaks
in mobile applications Enck et al. (2014) and recently to LLM-based systems Wutschitz et al. (2023); Wu
et al. (2024); Balunovic et al. (2024).
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Figure 1: Illustration of a label propagator (LP) for large language models (LLMs) with tool-calling capabilities.
The goal of the LP is to assign the most suitable label to the output of the LLM. In this instance, we
consider labels representing trusted and untrusted sources. A naïve LP assigns the most conservative label
to the output, which in this example is untrusted. The LP we design takes into account the influence of
each retrieved document and determines that the same output can be obtained by solely relying on trusted
documents.

In information-flow tracking, each piece of data is augmented with labels describing its integrity or confi-
dentiality. Labels are usually propagated conservatively: the output of an operation on data is labeled as
the most restrictive (i.e., most confidential or least trusted) label of its inputs. For example, the output
of a function that takes two arguments, one trusted and one untrusted, would be labeled as untrusted. A
challenge of applying such label propagation mechanisms to LLMs is that the output label would be the
upper bound of all inputs (i.e., the context) used for inference. With LLMs having the ability to retrieve
documents from different sources, this can quickly become unnecessarily restrictive, a phenomenon known in
the literature as label creep Sabelfeld & Myers (2003).

In this paper, we propose a novel approach to propagate more permissive information-flow labels in LLM-based
applications which we will refer to as an influence-based label propagator (LP). The key idea of our approach
is to propagate only the labels of the samples that were influential in generating the model’s output—and
drop the labels of the inputs that are not. Specifically, for a given context and fixed tolerance λ, we identify
all subcontexts for which the model achieves utility that is at most λ below the utility of the full context.
Within those subcontexts, we then select the one with the most permissive label. We prove that, under
idealizing assumptions, our algorithm identifies the most permissive label(s) possible. An example of our
approach is shown in Figure 1.

To ground our work in a relevant LLM system, we implement and evaluate two different realizations of our
label propagator: (i) a prompt-based system Lewis et al. (2020) where the retrieved documents are provided
within the prompt to an autoregressive LLM, and (ii) a kNN-LM architecture Khandelwal et al. (2020),
where the output distribution is computed as a mixture of the distribution of the model and the retrieved
documents.

We demonstrate the effectiveness of our proposed label propagator by evaluating it on three datasets: (i) a
synthetic dataset containing personal details for evaluating the label propagator’s ability to handle a large
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number of inputs, (ii) a news article dataset assessing whether the LP is able to handle long free-form natural
language, and (iii) a dataset consisting of LLM agent conversations as depicted in Figure 1 that mimics the
applications used with agent frameworks.

Summary of contributions

• We formulate the problem of security label propagation for retrieval-augmented LLMs and LLM
agents.

• We propose a permissive approach that propagates only the labels of influential inputs while
maintaining safety and never propagating an overly permissive label.

• We show that our permissive approach correctly identifies the exact labels in at least 75% of the
cases and improves the label in at least 50% of the cases on all datasets, thus mitigating the problem
of label creep.

• We show that influence-based label propagation can lead to more permissive labels without degrading
the quality of the LLM output.

2 Problem Setting and Goal

We consider a general inference scenario in which an LLM takes as input a textual prompt x and a set of
documents1 C, which we refer to as the context. We refer to any subset S ⊂ C as a subcontext. Given prompt
x and context C, we represent the LLM as a probability distribution pLM(y|x, C) over possible completions y.

This formulation is sufficiently general to represent many real-world applications of LLMs. For example, in
retrieval-augmented generation (RAG) Lewis et al. (2020); Guu et al. (2020), the context contains documents
retrieved from the knowledge-base. Alternatively, if an LLM uses plugins to retrieve external data (e.g., web
search, email retrieval, calendar query, etc.) Schick et al. (2023), the data returned by the plugins is part of
the context.

2.1 Information-Flow Labels

We assume that each document c ∈ C in the context is assigned a label from a set L of labels, which we model
as a label assignment function ℓ : C → L. Labels can be used for many purposes, including representing
access control information or information about the reliability of the source of the document.

As is common practice Denning (1976); Myers & Liskov (1997); Sabelfeld & Myers (2003), we assume L forms
a lattice, i.e., it has a partial order ⊑ in which every pair of labels L1, L2 ∈ L has a least upper bound (aka
join) L1 ⊔L2 and a greatest lower bound (aka meet) L1 ⊓L2. With this, one can naturally define the label L
of a context C as L =

⊔
c∈C ℓ(c). In all cases, labels lower in the lattice are said to be more permissive, as

illustrated in the following examples:

Confidentiality. A canonical example of a security lattice is the set {Secret, General}, denoting high
and low confidentiality data, where General ⊑ Secret. The join of Secret and General is Secret (i.e., high
confidentiality), but General is the more permissive label.

Integrity. Similarly for integrity, the set {HiInt, LoInt} denotes high and low-integrity data such that
HiInt ⊑ LoInt. The join of LoInt and HiInt is LoInt (i.e., low integrity), but HiInt is the more permissive
label.

Separation of Duty. Another example is the lattice where labels are subsets of users and where assigning
label U to a particular action denotes that all users u ∈ U must authorize the action before it can take place.

1Without loss of generality, we use the term document to refer to an individual piece of textual data in the context. This
could be a document, webpage, email, a previous output of the LLM in a multi-turn interaction, etc. In this work, we consider
the context to be an unordered set.
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(LoInt, LastMonth)

(LoInt, LastWeek) (HiInt, LastMonth)

(LoInt, Today) (HiInt, LastWeek)

(HiInt, Today)

Figure 2: Illustration of a product lattice of labels for integrity {HiInt, LoInt} and time
{LastMonth, LastWeek, Today}. Each dimension is a sub-lattice with a total order ≤. The product lattice is
the Cartesian product of the two sub-lattices with a partial order ⊑.

In this case, the join and meet operations correspond to set union (least permissive) and set intersection
(most permissive), respectively.

Product lattices. Figure 2 shows an example of a product lattice for the case of two dimensions: reliability
(HiInt, LoInt) and timestamps (LastMonth, LastWeek, Today). The top of the lattice (LoInt, LastMonth)
represents the least reliable and least recent documents, while the bottom of the lattice (HiInt, Today)
represents the most reliable and most recent documents.

Obtaining labels Example scenarios where labels are readily available are corporate email servers,
which label emails from outside as “external”, productivity suites such as Google Workspace2 or Microsoft
SharePoint3, which implement document classification labels and RBAC, and corporate search engines, which
retrieve data from internal and external sources and label them accordingly. Tool-augmentation provides
another opportunity to integrate labels by labelling inputs and outputs in tool manifests, a one-off effort that
can be factored into the design of each tool.

Threat model We assume that input labels are given and correct. In the most general case an adversary
lives at some point in the information flow lattice and can tamper with documents or tools at or below that
level. For the integrity and confidentiality lattices, this means the adversary can poison data labeled as
untrusted and read data labeled as public. The adversary’s goal is to cause illicit flows, such as data from
low integrity labels (poisoned data) affecting output that has high integrity label, or input data labelled as
confidential affecting outputs labeled as public.

2.2 Goal: Permissive Label Propagation

Since the documents in the context of an LLM can influence the model’s output, the label L of the output
will depend on the labels of documents in the context. We refer to the process of determining L as label
propagation. A naïve approach to label propagation in LLMs is to assume that all documents in the context
impact the output, and hence to propagate the label L =

⊔
c∈C ℓ(c).

However, the LLM does not necessarily need all documents in the context to generate the output. In the
example in Figure 1, the LLM did not need the web search result from the untrusted website. Labeling
the output as untrusted would be overly pessimistic and possibly inhibit the system from using the output
further, e.g., as the input to another tool that requires trusted data.

2https://support.google.com/a/answer/9292382
3https://learn.microsoft.com/en-us/purview/sensitivity-labels-sharepoint-onedrive-files
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Our goal is to obtain a more permissive output label by propagating only the labels of the inputs that are
actually necessary for generating the output. However, since the lattice of labels only forms a partial order,
one challenge is that different subsets of the inputs are not always comparable. As a consequence, we cannot
hope to find a single optimal label. Instead, a label propagator should ideally find all minimal labels and
delegate the selection of one to the underlying application.

3 Permissive Label Propagation

Our core idea is to propagate only the labels of the documents in the context that were necessary for
generating the output. A naïve solution to this problem would be to iterate over all subsets of documents in
the context and determine whether they can be removed without significantly affecting the output. However,
the computational cost of this approach grows exponentially with the number of documents in the context.

We address this issue with the observation that it is sufficient to identify the labels that improve over the
full context’s label, and consider only their corresponding subcontexts. As the label lattices that occur in
practice are often small (e.g. secret vs public, trusted vs untrusted), this leads to a solution that is both
practical and optimal under a certain monotonicity assumption (mentioned in Eq. 3).

3.1 λ-similar Labels

Let C be a context with label L =
⊔

c∈C ℓ(c). For a label L′ that is at least as permissive as L (i.e.,
L′ ⊑ L), we define the L′-subcontext C|L′ of C as the set of all documents whose label is at or below L′, i.e.,
C|L′ = {c ∈ C | ℓ(c) ⊑ L′}. Clearly, C|L = C because all the documents in C satisfy ℓ(c) ⊑ L by definition.

Our goal is to find labels L′ ⊑ L such that the output of the language model changes only negligibly when
substituting C with C|L′ . We capture "negligible change" by introducing a hyperparameter λ and require that
the utility of the model’s output under the full context drops by at most λ when restricting to the subcontext.
Formally:
Definition 1 (λ-similar labels). Let x be a prompt, y a completion, and C a context with label L. For a
given utility metric U and hyperparameter λ ≥ 0, we consider another label L′ to be λ-similar to L if

U(pLM(y|x, C))− U(pLM(y|x, C|L′)) ≤ λ . (1)

Note that λ-similarity is not an equivalence relation because it is not symmetric or transitive.

Definition 1 leaves the choice of the utility function U and the language model pLM(y|x, C) unspecified, as
different applications require custom choices of these functions. In this paper, we focus on language modeling
where perplexity is a common way to measure utility Kaplan et al. (2020). Hence, for the remainder of this
paper, we compute utility as the negative perplexity:

U(pLM(y|x, C)) = −

 |y|∏
i=1

pLM(yi|x, C, y<i)

−1/|y|

. (2)

3.2 Computing λ-similar Labels

We describe our algorithm for identifying λ-similar labels and their contexts. As we observed before, it is
not necessary to iterate over all subsets of the context: it suffices to iterate over all labels below the full
context’s label and consider their corresponding subcontexts. Technically, we iterate over the powerset of
P({

⊔
c∈C′ ℓ(c) | C ′ ⊆ C}) of possible output labels and we compute the similarity of the corresponding

subcontexts to the full context. Note that the set of labels considered is based on documents in the context;
it is finite even when the full lattice of labels L is infinite (e.g. timestamps).

Algorithm 1 describes this idea in pseudocode. We represent the powerset of possible labels as a directed
acyclic graph (DAG) where nodes represent labels and edges represent the lattice order ⊑ (see Figure 2 for
an illustration). Starting from the root node L =

⊔
c∈C ℓ(c) that corresponds to the full context, we traverse
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Algorithm 1: λ-similar label search
parameter: language model pLM, threshold λ
input : context C, label L, prompt x, completion y.
output : Set Λ of labels λ-similar to L

1 Function minimal_labels(C, L, x, y):
2 Λ← ∅ for L′ ∈ children(L) do
3 S ← {c ∈ C | ℓ(c) ∈ L′}
4 if U(pLM(y|x, C))− U(pLM(y|x, S)) ≤ λ then
5 Λ← Λ∪ minimal_labels(C, L′, x, y)
6 end
7 end
8 if Λ ̸= ∅ then
9 return Λ

10 else
11 return {L}
12 end

the DAG depth-first to identify λ-similar labels. For each label L, the function minimal_labels() returns Λ,
the set of λ-similar labels at or below L (i.e., at least as permissive as L).

3.3 Correctness

The set of labels returned by Algorithm 1 is minimal in that elements are pairwise incomparable with respect
to the lattice order, i.e., no label is more restrictive than the other (and hence redundant). The algorithm
achieves this by recursing on each child with a more permissive but λ-similar label than the parent node, and
adding a node’s label only if there is no such child. If there is a total order over the labels (i.e., all elements
are pairwise comparable) then only a single label is returned (|Λ| = 1). Note that the labels do not need to
form a tree, so Algorithm 1 may visit a node multiple times. This can be avoided by keeping track of visited
nodes, which we forgo for simplicity of presentation.

Algorithm 1 improves over the naïve solution by iterating only over full L-subcontexts (and not over all
subsets). If a child label L′ is not λ-similar, we prune the search assuming that also none of the children of
L′ will be λ-similar. If the model’s utility is monotonous in the context, as in

C ⊆ C ′ ⇒ U(pLM(y|x, C)) ≤ U(pLM(y|x, C ′)) (3)

i.e., adding more documents to the context never decreases the utility, we can guarantee that Algorithm 1
identifies all minimal labels. Proposition 1 summarizes these guarantees.
Proposition 1. Algorithm 1 always terminates and returns a minimal set of λ-similar labels. If the utility
function is monotonous, then Algorithm 1 returns all minimal λ-similar labels.

As utility functions are not necessarily monotonous Shi et al. (2023), Algorithm 1 is a heuristic in practice.
In Section 5, we evaluate how closely it matches the statement in Proposition 1. Even finding sub-optimal
labels can improve over the baseline label propagator.

3.4 A System for Label Propagation

To integrate Algorithm 1 into existing model architectures and systems, we consider two architectures for
augmenting language models with retrieved information: prompt-based retrieval augmentation Lewis et al.
(2020); Guu et al. (2020) and kNN language models Khandelwal et al. (2020).

Prompt-based Augmentation Augmenting LLM prompts with retrieved documents has become a popular
approach to incorporate a non-parametric datastore into an LLM-based pipeline Lewis et al. (2020); Guu et al.
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(2020). For example, in a Retrieval Augmented Generation (RAG) setup Lewis et al. (2020), the documents
most relevant for a query are retrieved and added to the context in the prompt to an autoregressive language
model.

kNN Language Models In the kNN-LM architecture Khandelwal et al. (2020), the language model
produces an output distribution pLM(y, x) without taking into account the retrieved documents. A separate
distribution pkNN(y|x, C) is computed based on the retrieved documents only, using x as the criteria for
document selection. Finally, a mixture of both distributions (parameterized by a hyperparameter γ) produces
the final retrieval augmented output which is given by

p(y|x, C) = γpkNN(y|x, C) + (1− γ)pLM(y|x) . (4)

While pLM requires expensive LLM inference, the expression pkNN can be computed efficiently by pre-
computing a key-value store with a single forward pass over the datastore that is then queried at inference
time.

Label Propagation Wrapper Our approach can be integrated into both of the above architectures as a
wrapper around the existing system. We assume that every document c that can be retrieved has a label ℓ(c).
In practice, if this is not the case, unlabeled documents can be assigned the most restrictive label (i.e. the
top of the lattice). The process then proceeds as follows:

1. Given a prompt x, retrieve the context C and run the model as usual on (x, C) to obtain the original
completion y.

2. Compute the pessimistic label L of C, and run Algorithm 1 on (C, L, x, y) to obtain a set Λ of labels
that are λ-similar to L.

3. Choose an appropriate L′ ∈ Λ using application-dependant criteria and run the model again on
(x, C|L′) to obtain a new completion y′.

4. Return the new completion y′ and the new label L′.

Safety In practice, our algorithm is an AI-based heuristic that can make mistakes or be misled adversarially
(e.g., failing to identify an influential document, or over-estimating the influence of a document). However,
these mistakes do not affect the safety of the propagated labels. By rerunning the model on the new context
C|L′ (step 3) and returning only y′ (step 4), our approach guarantees that the returned completion depends
only on documents at or below L′. This safety property holds even in the case of adversarial input documents
(e.g., prompt injection) because it is enforced by the system, rather than the model.

3.5 Computational Cost

The label propagator wrapper based on prompt-based augmentation requires a number of LLM calls that in
the worst-case is exponential in the number of documents in the context. This occurs e.g., in a flat bounded
lattice where all labels between ⊥ and ⊤ are incomparable and when each subcontext has a different label.

However, the number of LLM queries is always bounded by the size of the lattice. When the lattice forms a
totally ordered set (e.g. two-element lattices distinguishing between trusted vs untrusted or confidential vs
public data), Algorithm 1 stops as soon as it finds a subcontext whose utility drops below a λ difference w.r.t.
the utility of the full context. For richer lattices describing more fine-grained security policies, Algorithm 1
visits a small subset of the lattice in typical queries, either because only a few labels are represented in the
context or because the utility drops below the tolerance λ. Therefore, computational costs are not a major
concern for several fundamental lattices. We discuss several optimizations in Section 6.3 that reduce the cost
of running the system.

To avoid worst-case costs, alternative algorithms or model architectures may be more suitable. For example,
the kNN-based architecture we consider in this paper only requires one additional LLM call per query
(pLM(y|x), in addition to the original query pLM(y|x, C)).
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Figure 3: Illustration of the lattice for the synthetic key-value dataset with 4 documents. If a query requires
multiple documents to produce the correct response, the corresponding label is the joint label of all the
documents.

Sample documents from the synthetic dataset

[Doc A] The social security number and date of birth of person 1 is SSN00038242 and 26-10-1962.
[Doc B] The social security number of person 2 is SSN00092411.
[Doc C] The date of birth of person 2 is 18-08-1992.
[Doc D] The social security number and date of birth of person 2 is SSN00092411 and 18-08-1992.

Sample QA pair from the synthetic dataset

[Question] What are the social security numbers and date of birth of person 1, and person 2?
[Answer] The social security number and date of birth of person 1 is SSN00038242 and 26-10-1962, and
person 2 is SSN00092411 and 18-08-1992.
[Label] {ABC, AD}

Figure 4: Sample documents and QA pairs from the synthetic key-value dataset. The question refers to the
social security numbers and dates of birth of person 1 and 2. This information can be obtained by accessing
documents A, B, and C or A, and D, hence the resulting label of {ABC, AD}.

4 Evaluation Setup

As this is a novel problem setup, we first define a robust evaluation scheme that we use to evaluate our
approach and compare against an introspection baseline. Our goal is to understand the performance of our
label propagator in correctly identifying and propagating minimal labels.

4.1 Research Questions

The goal of the label propagator is to return all minimal λ-similar labels. As shown in Proposition 1, this is
achieved under monotonicity assumptions that are typically not satisfied in practice. Therefore, our evaluation
aims to quantify how closely the empirical results match this goal. Specifically, we aim to answer the following
research questions:

RQ1: How accurate is our label propagator in identifying the set of minimal labels?
RQ2: By how much does our label propagator improve over a naïve label propagator?
RQ3: How aligned is the regenerated output for the inferred label with the full-context output?

Research questions RQ1 and RQ2 focus on the performance of Algorithm 1 directly. Research question RQ3
focuses on the quality of the final output of the end-to-end system introduced in Section 3.4.
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Sample document from the news article dataset

[High Integrity] Apple cuts prices on lower-end iPads, releases red iPhones
Apple is cutting prices on two iPad models and introducing red iPhones, but the company held back on
updating its higher-end iPad Pro tablets.
A much-speculated 10.5-inch iPad Pro didn’t materialize, nor did new versions of existing sizes in the Pro
lineup, which is aimed at businesses and creative professionals. The new devices are mostly refreshes of
existing models. Apple unveiled them through press releases Tuesday rather than a staged event, as it typically
does for bigger product releases.

[Low Integrity] Apple cuts prices, on lower-end iPads, adds colors to the iPhone lineup
While the iPad Pro tablets didn’t get an update, the two lower-end iPad models got a $100 price cut today,
unveiled through a quiet press release rather than a large staged event. With fans clamoring for a greater
variety of colors for their iPhones, Apple announced in the same release five fruit-inspired colors, hearkening
to the flavors of the iMac G3 in 1998. The new colors, available starting next Tuesday, are Cherry (red),
Lemon (yellow), Lime (green), Blueberry (blue), and Grape (purple).

Sample QA pair from the news article dataset

[Question] What are the new fruit-inspired colors for the iPhone lineup mentioned in the article about Apple
cutting prices on lower-end iPads and adding colors to the iPhone lineup?
[Answer] The new fruit-inspired colors for the iPhone lineup mentioned in the article are Cherry (red),
Lemon (yellow), Lime (green), Blueberry (blue), and Grape (purple).
[Label] {LoInt}

[Question] What is the new color introduced for the iPhone according to the article about Apple cutting
prices on lower-end iPads and releasing red iPhones?
[Answer] According to the article, the new color introduced for the iPhone is red.
[Label] {HiInt}

Figure 5: Sample documents and QA pairs from the news article dataset. The first question can only be
answered with access to the LoInt document whereas the second question can be also answered with the
HiInt document.

4.2 Evaluation Metrics

We now describe the metrics that we use to answer the aforementioned research questions. Throughout, we
use Λ to denote the set of labels returned by Algorithm 1 and Λ⋆ as ground truth, i.e., the correct set of
minimal labels.

Exact match The exact match metric computes the average number of completely correct predictions over
all questions. That is, for each question we count 1 if Λ = Λ⋆ and 0 otherwise. Exact match gives a direct
answer to RQ1, but is very sensitive in that it equally penalizes any imprecision in the label propagator.

Precision and Recall For a more fine-grained evaluation, we compute precision and recall between Λ and
Λ⋆ for every question, i.e., |Λ ∩ Λ⋆| / |Λ| and |Λ ∩ Λ⋆| / |Λ⋆|, and average these over the entire dataset. Note
that precision and recall simultaneously reach their maximum of 1 if and only if Λ = Λ⋆, i.e., we have an
exact match.

Label improvement When the lattice forms a total order (i.e., any two labels are comparable), both
Λ⋆ and Λ become singleton sets. Therefore, in this case, instead of reporting precision and recall over set
outputs, we instead report label improvement and missed labels. We define label improvement as the number
of cases in which our system improves the output label, as a fraction of the total number of cases where label
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improvement is possible. Missed labels, on the other hand, is defined as the number of cases our system
misses a label from the context, as a fraction of the total number of cases where our system improves the
label. Note that in the case of more than two labels, these metrics only consider perfect improvement (i.e.,
the output label exactly matches the ground truth label).

Model output alignment The system for label propagation described in Section 3.4 regenerates the output
based on the inferred label. While the definition of λ-similarity guarantees that under the subcontext of the
inferred label the original output is almost as likely as in the full context, this does not necessarily guarantee
that the regenerated output has good utility w.r.t. to other metrics. To quantify potential deviations, we
measure the alignment of the different model outputs w.r.t. the target specified in the dataset i.e., y⋆ using
ROUGE-L Lin (2004) metric, which is based on the Longest Common Subsequence (LCS) Hunt & Szymanski
(1977) computation and has been commonly used to estimate translation quality in the past.

In particular, we report the average alignment of the full context output ROUGE-L(y, y⋆), and the average
alignment of the reduced context output after label propagation ROUGE-L(y′, y⋆). Furthermore, we report
the average difference of the alignment between the reduced context output and full context output i.e.,
ROUGE-L(y′, y⋆) - ROUGE-L(y, y⋆) in two different cases i.e., (i) when label improvement is possible, and
(ii) when label improvement is not possible. The difference in output alignment should be nearly zero when
label improvement is possible, and highly negative when such improvement is not possible.

4.3 Baseline

As a baseline for comparison, we use introspection in which the LLM itself is asked to determine which
documents in the context were influential. This is inspired by the recent successful application of language
models to generate relevant citations for their own outputs Taylor et al. (2022); Gao et al. (2023). Note that
the performance of the introspection technique depends significantly on the prompting technique used, and
hence, should be considered as a lower-bound Turpin et al. (2024).

4.4 Models

We focus on the Llama-2 model family Touvron et al. (2023) including its 7B and 70B variants for evaluation.
We use instruction-tuned versions of Llama-2 to ensure accurate response generation unless mentioned
otherwise. For the kNN-LM implementation, we follow Khandelwal et al. (2020) and use the model’s
penultimate layer representation of the last token (conditioned on all preceding tokens in the document) as
the context representation for kNN search. Note that while we rely on Llama-2 model family Touvron et al.
(2023) for our experiments, our approach is also applicable to other open-source models, or even proprietary
models accessible only via API (though client-side optimizations will be harder to implement).

4.5 Datasets

Since the problem of label propagation for LLMs has not been previously studied, there are no off-the-shelf
datasets available for evaluation. We thus design three datasets to evaluate different aspects of our label
propagator. Each dataset consists of a set of documents and a set of corresponding question-answer pairs.
The documents and answers all have labels. The goal of the label propagator is to identify the subsets of
documents in a given context that are required for answering the question and have a label that is at least as
permissive as the naïve label propagator.

We use the target response in the dataset as the completion y for Algorithm 1, i.e., we do not rely on the
model for generating the output unless mentioned otherwise. This is motivated by the fact that the target
label computed in the dataset is only correct w.r.t. the target response. Therefore, an incorrect completion y
from the model would render the ground-truth label set Λ⋆ incorrect. We quantify the implications of this
decision in Section 5.3, where we compare the difference in performance between the dataset target and the
model-generated output.
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Synthetic key-value dataset We create a set of key-value pairs that contain hypothetical individuals’
IDs as keys, and their Social Security Numbers (SSNs) and dates of birth (DoB) as values. We randomly
split, distribute, and replicate the key-value pairs across multiple documents, and we attach a unique label
to each document. We design the questions such that obtaining the correct answer requires identifying the
different combinations of documents that contain all the necessary values. An example of the generated
documents and QA pairs is shown in Figure 4. In this example, the question can be answered with access to
documents A, B, and C or with access to documents A and D. Consequently, the label search should yield
{ABC = A ⊔B ⊔ C, AD = A ⊔D}.

Since each document has a unique label, it corresponds to a node at the bottom of the lattice (similar to
the example shown in Figure 3). Each set of documents (i.e., subset of the context) therefore corresponds
to a unique element in the lattice. The documents and question-answer pairs are designed such that the
question can be answered from different combinations of subsets in the context. Identifying all minimal labels
corresponds to identifying all these subsets.

We generated a total of 128 documents (i.e., 128 labels) and 64 question-answer pairs. To ensure computational
tractability, we set the context size to be 14 documents for each question. We ensure that all necessary
documents are included in the context, thus emulating the case of a retriever component with perfect recall
(all necessary documents are present) but lower precision (the context may contain irrelevant documents).
This dataset represents a challenge in terms of the complexity and size of the search space because the full
set of labels contains 214 elements for each question. Since there is only a partial order in this lattice, we use
the precision and recall metrics for evaluation.

News article dataset Starting from an existing fake news dataset Pérez-Rosas et al. (2018), we create
pairs of high and low-integrity news articles that discuss similar topics to each other. Contrary to the previous
dataset, we focus on a simpler lattice but more complex language in this case. Using GPT-4 OpenAI (2023),
we generated QA pairs based on these articles, where some of the answers depended only on the LoInt
document, others only on the HiInt document, and some on both documents. An example document pair and
QA pair is shown in Figure 5. The dataset in total contains 240 document pairs of corresponding LoInt and
HiInt documents, as well as 3465 QA pairs. Compared to a naïve label propagator, it is possible to improve
the label on 647 of these QA pairs. Since there is a total order in the lattice, we report label improvement
metrics for this dataset.

LLM agent dataset Motivated by the recent emergence of LLM agents Xi et al. (2023) and tool use in
LLMs Schick et al. (2023), we design an LLM agent dataset that focuses on tool use. Retrieval tools such
as web or email search typically return multiple results of varying integrity levels. For example, in the case
of web search, official documentation like docs.python.org might be deemed to be higher integrity than
community curated sources such as stackoverflow.com. Similarly, emails from verified senders may be
deemed to be higher integrity than those from unknown senders.

To demonstrate this, we create a small dataset of chat conversations between a user and an LLM-based
assistant. In each conversation, the LLM calls one of three retrieval tools: web search, email search, or
calendar search. Each piece of retrieved data carries a label L ∈ {HiInt, LoInt} indicating high or low integrity
respectively.

In the example shown in Figure 6, the web search retrieves two documents that both contain sufficient
information to answer the question. However, one of the documents carries a low-integrity label and would
therefore force the output to be LoInt. The goal of the label propagator is to identify the influence of the
high-integrity document and to assign HiInt to the output.

To cover a wider range of cases, we manually create 40 distinct chat conversations x that involve tool calls.
Some of these tools return a set of two documents C. We also generate a ground truth model output y⋆ and
label L⋆. In 20 of the cases, the final label can be improved i.e. L⋆ ⊏ ℓ(C) due to redundant or irrelevant
information within the retrieved LoInt documents. In the remaining 20 cases, the LoInt source is required to
produce the output and thus the output label cannot be improved i.e. L⋆ = ℓ(C). We additionally include
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An example from the Tool Calling LLM case study

User

How many people live in New York City?

Model

Tool: search_query
Relevant context: Need to perform a search query to find the latest population data of New York City
Args: { "query_str": "current population of New York City" }

Tool

Source Information Security Label
1. The population of New York City is approximately 8.4 million as of 2021. HiInt
2. New York City has a population of around 8 million. LoInt

Model

Tool: respond
Relevant context: Need to respond back to the user’s query
Args: { "text_str": "The current population of New York City is approximately 8.4 million." }

Figure 6: An example interaction from the tool calling LLM case study, where the user query triggers a web
search. The items returned by the tool have different labels. The aim of our label propagator is to identify
the label for the final model output. Since the high-integrity output is sufficient to answer the query in this
case, the label propagator can upgrade the label of the output to high integrity instead of the naive baseline
of propagating the low-integrity label.

two in-context examples that are specifically used to specify the output format for the model. Since there is
a total order in the lattice, we report label improvement metrics.

5 Results

5.1 Synthetic key-value dataset

In this case, we assume a perfect recall retriever (all relevant documents are present), albeit lower precision
(the rest of the documents out of the total limit of 14 are filled by adding irrelevant documents). For the
introspection baseline, we use one-shot in-context learning Wei et al. (2022) based on the first example in the
dataset and use the remaining 63 questions for evaluation. Table 1 summarizes our results.

The prompt-based propagator achieves an exact match accuracy of over 85% and precision and recall of over
90%. That is, in more than 85% of the cases, the label search can identify the correct influential subcontexts
out of a set of 16k possibilities without error. Furthermore, the prompt based label search significantly
outperforms both the kNN-LM-based label search as well as the introspection baseline.

Table 1 also compares the exact match accuracy for two different model sizes 7B and 70B parameters.
The model size does not strongly correlate with the performance of the prompt based label propagator.
Consequently, this enables the use of significantly smaller models for effective label propagation on the outputs
of larger models.
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Model Label Prediction Method Exact Match Precision Recall

Llama-2-Chat (7B)
Prompt-based 85.94% 92.34 ± 23.27 % 93.75 ± 22.10 %

kNN-LM 53.12% 64.58 ± 45.79 % 65.10 ± 45.33 %
Introspection 1.59% 3.25 ± 17.53 % 3.97 ± 18.48 %

Llama-2-Chat (70B)
Prompt-based 85.94% 94.17 ± 21.84 % 92.06 ± 23.45 %

kNN-LM 57.81% 69.53 ± 45.60 % 64.45 ± 44.74 %
Introspection 12.70% 15.07 ± 34.94 % 15.87 ± 35.44 %

Table 1: Results on the synthetic key-value dataset assuming a perfect recall retriever, which always retrieves
the relevant items while also retrieving some irrelevant ones, with person ID as the key, and person SSN
and DoB as values. kNN-LM prediction uses γ = 0.5. We report the mean and one standard deviation for
macro-averaged precision and recall.
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Figure 7: Hyperparameter grid search on perplexity tolerance λ for the 7B and 70B models on the synthetic
key-value dataset. See Figure 9 for the full grid search over both Shapley threshold and perplexity tolerance.

On the other hand, introspection performance improves significantly with the model scale. This result is
consistent with the improved in-context learning ability observed in larger models Wei et al. (2022). Therefore,
only the largest and most powerful models can be effectively used for introspection.

Sensitivity of hyperparameters The perplexity tolerance λ measures the acceptable loss in model utility
when removing a subset of documents. The choice of λ allows to trade-off model utility and the restrictiveness
of the inferred label.

We illustrate the role of the perplexity tolerance λ on the resulting change in the exact match performance
for our prompt based label propagator in Figure 7. The figure indicates that the model performance is very
sensitive to the choice of perplexity tolerance i.e., either very high or very low values significantly hamper
model performance. Furthermore, the optimal hyperparameters are consistent across model scales. However,
larger models, being better at language modeling, outperform their smaller counterparts at lower values of λ.

Although the influence-based label propagator performs very well on its own, we have found that pruning
irrelevant labels can elevate the performance further. This is particularly the case for large lattices with
a partial order. We introduce a Shapley-value-based heuristic pruning technique in Appendix A that can
marginally improve the performance from an exact match accuracy of 81% to 86%. The results reported in
Table 1 include this Shapley-value-based heuristic.
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Retriever Type Model Exact Match Label Improvement Missed Labels

Perfect Retriever Llama-2-Chat (7B) 74.69% 56.72% 22.73%
Llama-2-Chat (70B) 73.45% 39.26% 18.59%

Realistic Retriever Llama-2-Chat (7B) 63.78% 49.77% 30.30%
Llama-2-Chat (70B) 64.50% 39.88% 26.08%

Table 2: Results on the news article dataset with prompt-based label search. The perfect retriever row
assumes that the retriever always retrieves the relevant items while also retrieving some irrelevant ones
randomly. The realistic retriever uses a cosine similarity-based nearest-neighbour search and may not retrieve
all relevant items, thereby reducing the label improvement metric of even a perfect label search.

5.2 News article dataset

Moving towards a more realistic setup, we include an additional retriever component for the news article
dataset that first retrieves relevant articles (either low or high integrity) from the dataset before response
generation. In order to correctly understand the impact of the retriever, we compare a perfect retriever that
is able to retrieve all relevant documents (similar to the synthetic key-value dataset) with a realistic retriever
using cosine similarity in the embedding space computed by BGE-Large-EN Xiao et al. (2023b).

Table 2 summarizes the results of the label propagator on the news article dataset. For this dataset, the
label propagator achieves slightly worse performance on all metrics in comparison to the synthetic key-value
dataset due to the lower quality of the dataset (automated generation of QA pairs by GPT-4 OpenAI (2023)).
Furthermore, we see a reduction in the exact match accuracy of about 10% when using a realistic retriever in
contrast to a perfect retriever. This is due to the retriever sometimes failing to retrieve the relevant pieces of
information, ultimately leading to a mismatch with the ground-truth label.

Due to the presence of total order on the labels, we report label improvement and missed labels for this
dataset. Even when a perfect retriever is used, a naïve label propagator would be overly conservative in 647
out of 3465 examples where label improvement is possible. In contrast, our influence-based label propagator is
able to assign the correct label in ∼ 57% of these cases. On the other hand, our label propagator suggested a
more permissive label but missed a label from the ground-truth in ∼ 23% of the cases. However, as explained
in Section 3.4, the safety property still holds in these cases because the system regenerates the output using
only the articles with the more permissive label (although this means that the regenerated output may differ
from the original output, as we quantify in the next section).

Sensitivity of hyperparameters We highlight the sensitivity to changes in the perplexity threshold λ on
the news article dataset in Figure 8. Similar to the synthetic key-value dataset, we see similarities across
the two model scales, and a higher tolerance of the larger model to lower values of λ. However, we see a
significant rise in optimal perplexity tolerance in contrast to the synthetic dataset due to the higher difficulty
of the responses.

5.3 LLM agent dataset

In the LLM agent dataset, we take a step further by also computing the misalignment introduced by
regenerating the output conditioned on the updated context (when label improvement is possible). The
results are presented in Table 3. We fix a threshold of λ = 0.2 for this experiment. We use the base model
without instruction tuning in this case due to the use of a custom chat format.

First, we focus on the 20 cases where label improvement is possible i.e., L⋆ ⊏ ℓ(C). We find that the label
propagator improves the label in at least 17 of these cases.

In at most 2 of the cases, the LP is overly optimistic and returns a more permissive label L′ than the ground
truth label L⋆. Again, the safety property still holds in these cases because the system regenerates the output
using the reduced context C|L′ . This regeneration step introduces the possibility that the new output y′

differs significantly compared to the output y from the full context.
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Figure 8: Hyperparameter grid search on perplexity tolerance λ for the 7B and 70B models on the news
article dataset with a perfect retriever. See Figure 10 for the full grid search over both Shapley threshold and
perplexity tolerance.

Model Label Prediction Method Utility Target Label Improvement Missed Labels

Llama-2 (7B)
Prompt-based Model generated y 85.0% 5.56%
Introspection - 45.0% 0.0%
Prompt-based Ground truth y⋆ 100.0% 0.0%

Llama-2 (70B)
Prompt-based Model generated y 95.0% 9.53%
Introspection - 80.0% 11.11%
Prompt-based Ground truth y⋆ 100.0% 0.0%

Table 3: Results on the LLM agent dataset. The utility target column indicates which output y we are
using to compute our target utility U(pLM(y|x, C)) in equation 1. In practice and in the absence of ground
truth, the utility target is the model-generated output y, but we also compare with the ground truth y⋆ to
understand the maximum possible utility assuming a perfect LLM. The difference in the numbers between the
cases indicates that all the errors in the case of model-generated output are artifacts of the model generating
a suboptimal response which causes incorrect propagation of labels.

To quantify this, we measure the alignment between y and y⋆ as well as y′ and y⋆ using the ROUGE-L
F-score (see Table 4). We obtain a ROUGE-L F-score of at least 0.85, suggesting that conditioning on the
reduced context leads to a similar model response. We see a negligible difference in alignment between the full
context output and the reduced context output when label improvement is possible, but observe a significant
drop when such an upgrade is not possible.

In a robust retrieval augmentation setup, adding additional documents to the context should not negatively
influence the model’s ability to answer a query since the model is free to ignore irrelevant inputs Shi et al.
(2023). Thus, we expect that the ground truth completion y⋆ is always similar to the completion given the
full context y. However, in almost all label propagation errors we observe, we find that the model is not able
to answer the query with the full context. When controlling the model generation by using the ground truth
target in the dataset instead of using the model-generated output, we see that our label propagator achieves
perfect precision and recall.

Since the lattice is particularly simple in this case, we observe strong performance from the introspection
baseline in contrast to the more complex lattice in the synthetic key-value dataset. Furthermore, similar to
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Model ROUGE-L(y, y⋆) ROUGE-L(y′, y⋆) ROUGE-L(y′, y⋆)− ROUGE-L(y, y⋆)
Improvement possible Not possible

Llama-2 (7B) 0.77 0.85 0.0051 -0.34
Llama-2 (70B) 0.82 0.90 0.025 -0.31

Table 4: Model output alignment with the dataset ground truth computed using ROUGE-L F-score on the
LLM agent dataset. Utility computation is only applicable to the prompt-based label propagator. ROUGE-
L(y, y⋆) refers to the alignment of the full context output (no regeneration required), while ROUGE-L(y′, y⋆)
represents the alignment of the regenerated response after label improvement. Interestingly, we see that the
regenerated response is more aligned with the ground truth response suggesting that in some cases label
propagation can improve utility. ROUGE-L(y′, y⋆)− ROUGE-L(y, y⋆) compares the difference in alignment
between the full context and the subcontext of the inferred label. When label improvement is possible, the
difference in alignment is close to nil indicating that the regenerated response y′ is highly aligned with the
ground truth response y⋆. Otherwise, the difference in alignment is highly negative, indicating a significant
drop in model alignment with y⋆.

the previous datasets, we see significant improvement in the introspection performance with increasing model
scale, highlighting that introspection might be particularly well-suited for larger models.

6 Analysis and Discussion

In this section, we highlight the main findings of our work and discuss the implications of our results when
used in a real-world setting.

RQ1. We find that our prompt-based label propagator can find the exact set of minimal labels in 86% of the
cases, for a large lattice of 16k possible labels.

RQ2. We evaluate the label propagator on a smaller lattice with a total order, allowing us to compare labels
directly and quantify the label improvement. In this case, our label propagator improves the label in 56% of
the cases for the news article dataset and 85% of the cases for the LLM agent dataset.

RQ3. We showcase the label propagator in a real-world use case in a tool calling LLM agent setup where the
propagated label is used to determine whether a sensitive tool call is allowed. We find that the prompt-based
label propagator is able to improve the label in more than 85% of the cases while the output of the LLM
agent remains the same as measured by the difference between the reduced context output alignment and the
full context output alignment.

Comparison to baselines The introspection-based label propagator achieves a noticeable improvement in
performance when using a 70B parameter model compared to a 7B model. Furthermore, despite its simplicity
and computational convenience, the introspection-based label propagator constitutes a strong baseline when
considering simple lattices. We find a similar performance of the prompt-based label propagator for both
model sizes suggesting that our approach could be implemented on smaller models, saving computational
resources.

6.1 Use-cases

Algorithm 1 identifies sub-contexts with labels that are more permissive than that of the full context. However,
whenever the desired output label L can be determined up-front, it is possible to skip the search over λ-similar
sub-contexts and restrict the retrieval component to documents at or below L.

Our approach reveals its true benefits when the use of the generated content is not yet determined after the
initial retrieval step. In such cases, having a too-restrictive label comes at the cost of limiting future uses of
the generated output. For example, semantic caches Bang (2023) can be extended to store answers along with
a sensitivity label, where more permissive labels facilitate broader reuse of the generated content. Likewise,
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Emails are often forwarded beyond their initial set of recipients, which is facilitated by using permissive
labels.

Our approach naturally allows users to endorse information. Let’s consider a setup as illustrated in Figure 1.
Initially, there might only be an untrusted source answering the initial query. The LP system would correctly
output an untrusted label to the potentially dangerous command. However, after a trusted authority (e.g., a
university department IT admin) confirms the suggestion in the untrusted source, the LP recognizes that
both sources are similarly influential and assigns a trusted label to the output. Therefore, by quoting or
repeating untrusted information a trusted source can endorse information.

6.2 Limitations

Our label propagator is able to improve on the baseline label by more than 50% and 85% in two realistic
datasets. However, this improvement comes with the cost of an increased number of LLM calls (discussed in
Section 3.5).

In the presence of an adversary, our label propagator assigns the lowest integrity label by design in order to
avoid any harmful side effects such as cross-prompt injection Liu et al. (2023). However, this can potentially
lead to a degradation of service attack as the adversary can add unreliable distracting information that makes
it impossible for the system to improve the label, reducing the downstream utility of the model output.

6.3 Extensions

Other applications Our main focus has been on predicting the least conservative label while ensuring
that utility is not compromised beyond a certain threshold λ (Definition 1). However, our proposal is flexible
enough to accommodate various use cases. For instance, it can be reversed to determine the utility for a
specific target label. Alternatively, a more complex use case would be to make the system dynamic with
respect to λ, which means the system is able to compromise more utility to achieve a better or less conservative
label.

Efficiency improvements to Algorithm 1 Section 3.5 discusses the computational cost incurred to
execute our label propagator in Algorithm 1. Despite an increase in the number of LLM calls for label
propagation, the cost incurred per call can be drastically reduced utilizing common inference optimizations
implemented in model serving backends Zheng et al. (2023); Kwon et al. (2023). For instance, compute-bound
prompt processing in Transformers can be amortized across calls sharing a common prompt prefix by reusing
a KV cache. For a totally ordered lattice, appending retrieved documents at the end of the prompt sorted
by their labels will result in no additional prompt processing costs in subsequent LLM calls because their
prompts are obtained by peeling off documents at the end of the prompt.

We can also optimize the decoding phase of an LLM call by keeping a running calculation of the cumulative
likelihood of the tokens decoded and stop decoding when the utility drops below a difference λ of the utility
of the full context.

Advanced influence estimation The label propagation mechanism developed in Section 3 is based
on estimating the influence of context elements on the model’s predictions. There are several alternatives
techniques, such as Shapley value estimation, that can be used as drop-in replacements. See Brophy et al.
(2023) for an overview of influence estimation techniques and Nguyen & Wong (2023); Cohen-Wang et al.
(2024) for examples of their application to LLM contexts.

Another approach is to leverage the attention weights for influence estimation. Phenomena such as attention
sinks (Xiao et al., 2023a) or lost-in-the-middle (Liu et al., 2024) makes identification based on simple attention
scores difficult.
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7 Related Work

Information-flow analysis Information-flow analysis and the use of flow labels has a long-standing history,
see e.g., Denning (1976), with an early survey of language-based approaches Sabelfeld & Myers (2003). The
operations considered in many program analysis frameworks (e.g. Volpano et al. (1996); Sabelfeld & Myers
(2003)) have well-defined semantics, and the rules for propagating the flow labels of each operator can be
hard-coded. The situation is different when using ML models such as Transformers: due to their attention
mechanism and autoregressive decoding, their output is tainted by all inputs. Moreover, their behavior is
only implicitly defined as the solution of a loss-minimization problem. In our approach, we propagate labels
through ML components under the constraint that the model’s loss does not increase.

The literature distinguishes between static and dynamic approaches to information flow control Sabelfeld &
Myers (2003); Buiras et al. (2014); Mardziel et al. (2011). The key difference is that dynamic approaches
track the flow during program execution, whereas static approaches reason collectively about all possible
executions without actually executing the program. Our approach relies on analyzing one specific context
and is hence fundamentally dynamic.

Secure multi-execution (SME) Devriese & Piessens (2010); Rafnsson & Sabelfeld (2016) is an approach to
dynamic information-flow analysis where programs are executed once per security level. The idea is that an
execution that produces output for level L receives data only from levels L′ ⊑ L; and dummy values from
levels L′′ ⊑ L. Programs that are multi-executed are secure by design, and correct if the original program
was secure. Our approach is related to SME in that we also call the LLM once per security level, and we
propagate the most permissive label for which the original output is still "correct", in the sense that the drop
in utility is bounded by λ.

Information-flow analysis in AI applications Several emerging approaches rely on information-flow
tracking to obtain deterministic security guarantees for LLM-based applications, even if the underlying
models are vulnerable to attacks: Wutschitz et al. Wutschitz et al. (2023) study how to leverage existing
metadata in datastores used for retrieval augmentation to enforce confidentiality guarantees at inference
time. Wu et al. Wu et al. (2024) propose a system that uses information-flow tracking to prevent LLM-based
applications from being compromised by untrusted information. Balunovic et al. (2024) develop a monitor
and policy language that can check execution traces of LLM applications for violations of different safety and
information-flow properties. In contrast to these approaches, our work aims to dynamically identify labels
of information that is propagated through LLM calls, which can be used to increase the permissiveness of
system-level information-flow tracking.

Related to the introspection baseline, Mireshghallah et al. Mireshghallah et al. (2024) and Ghalebikesabi et
al. Ghalebikesabi et al. (2024) use Contextual Integrity theory to explore how well LLMs can be relied upon
to discern which information is appropriate to use in a given context. Finally, Wallace et al. Wallace et al.
(2024) train LLMs to distinguish between instructions in their context totally ordered in a hierarchy, teaching
them to prioritize higher-privileged instructions over instructions that appear lower in the hierarchy.

8 Conclusion

We presented a permissive approach to propagating information-flow labels of documents retrieved in RAG
systems. The key idea is to propagate only the labels of those documents that are actually used for generating
the model’s output. We show that our approach is practical in terms of performance and infers more
permissive labels than an introspection baseline. Unlike commonly used introspection-based methods, our
approach can satisfy a hard safety guarantee.

9 Open Science

We will open-source our prototype implementation and the datasets used for its evaluation.
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10 Ethics Considerations

We use a public dataset of fake and real news articles Pérez-Rosas et al. (2018) as well as fully synthetic
datasets for our evaluations. For instance, the synthetic key-value dataset contains entirely generated Social
Security Numbers (SSNs) and dates of birth (DoB). Therefore, no private information from any individual is
collected or used. Similarly, the LLM agent dataset is entirely synthetic and generated by us, ensuring that
no real user interactions were recorded.

Additionally, we present a label propagation technique that can positively impact users of LLMs by providing
hard safety guarantees, enhancing their reliability and security.
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Figure 9: Hyperparameter grid search on Shapley threshold and perplexity tolerance for the 7B (left) and
70B (right) models on the synthetic key-value dataset.
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Figure 10: Hyperparameter grid search on Shapley threshold and perplexity tolerance for the 7B (left) and
70B (right) model on the news article dataset with a perfect retriever (first row) and realistic retriever (second
row).

A Improving performance on fine-grained lattices

Algorithm 1 relies only on λ to produce the minimal set of labels. However, in the cases where documents
share similarities and provide important information regarding the model output such as the format (which
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is the case for our synthetic key-value dataset 4.5), the overall contribution of irrelevant documents goes up.
Therefore, additional irrelevant documents are introduced in the predicted label set due to being λ-similar.

In order to cover these cases when dealing with a complex lattice and a large number of relations, we propose
a simple heuristic based on Shapley values that have been commonly used in the past Shapley (1953); Nguyen
& Wong (2023). In particular, we compute the Shapley value for each of the different labels in the lattice and
filter out any label combinations where labels below a particular threshold are present.

The Shapley value defines the marginal contribution of any label L by computing the average difference in
outcomes when a particular label is present and absent. We compute the label Shapley value via perplexity,
which is computed as the average drop in perplexity when a particular label is included. This provides a
notion of the importance of each label. This now introduces an additional hyperparameter i.e., the Shapley
value threshold.

We visualize the results for the 2D grid search by considering both perplexity tolerance λ as well as Shapley
threshold on the synthetic key-value dataset in Figure 9, and the news article dataset in Figure 10.

The results indicate that on simpler lattices such as in the case of news articles, we see almost no impact due
to the Shapley value threshold. On the other hand, for complex lattices, such as in the case of our synthetic
key-value dataset, we observe 6% absolute improvement in the exact-match accuracy, highlighting the utility
of this heuristic in such cases.
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