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ABSTRACT

Formulating scalable probabilistic regression models with reliable uncertainty
estimates has been a long-standing challenge in machine learning research. Re-
cently, casting probabilistic regression as a multi-task learning problem in terms
of conditional latent variable (CLV) models such as the Neural Process (NP) has
shown promising results. In this paper, we focus on context aggregation, a central
component of such architectures, which fuses information from multiple context
data points. So far, this aggregation operation has been treated separately from the
inference of a latent representation of the target function in CLV models. Our key
contribution is to combine these steps into one holistic mechanism by phrasing
context aggregation as a Bayesian inference problem. The resulting Bayesian Ag-
gregation (BA) mechanism enables principled handling of task ambiguity, which is
key for efficiently processing context information. We demonstrate on a range of
challenging experiments that BA consistently improves upon the performance of
traditional mean aggregation while remaining computationally efficient and fully
compatible with existing NP-based models.

1 INTRODUCTION

Estimating statistical relationships between physical quantities from measured data is of central
importance in all branches of science and engineering and devising powerful regression models for this
purpose forms a major field of study in statistics and machine learning. When judging representative
power, neural networks (NNs) are arguably the most prominent member of the regression toolbox.
NNs cope well with large amounts of training data and are computationally efficient at test time. On
the downside, standard NN variants do not provide uncertainty estimates over their predictions and
tend to overfit on small datasets. Gaussian processes (GPs) may be viewed as complementary to NNs
as they provide reliable uncertainty estimates but their cubic (quadratic) scaling with the number of
context data points at training (test) time in their basic formulation affects the application on tasks
with large amounts of data or on high-dimensional problems.

Recently, a lot of interest in the scientific community is drawn to combinations of aspects of NNs and
GPs. Indeed, a prominent formulation of probabilistic regression is as a multi-task learning problem
formalized in terms of amortized inference in conditional latent variable (CLV) models, which results
in NN-based architectures which learn a distribution over target functions. Notable variants are given
by the Neural Process (NP) (Garnelo et al., 2018b) and the work of Gordon et al. (2019), which
presents a unifying view on a range of related approaches in the language of CLV models.

Inspired by this research, we study context aggregation, a central component of such models, and
propose a new, fully Bayesian, aggregation mechanism for CLV-based probabilistic regression models.
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To transform the information contained in the context data into a latent representation of the target
function, current approaches typically employ a mean aggregator and feed the output of this aggregator
into a NN to predict a distribution over global latent parameters of the function. Hence, aggregation
and latent parameter inference have so far been treated as separate parts of the learning pipeline.
Moreover, when using a mean aggregator, every context sample is assumed to carry the same amount
of information. Yet, in practice, different input locations have different task ambiguity and, therefore,
samples should be assigned different importance in the aggregation process. In contrast, our Bayesian
aggregation mechanism treats context aggregation and latent parameter inference as one holistic
mechanism, i.e., the aggregation directly yields the distribution over the latent parameters of the target
function. Indeed, we formulate context aggregation as Bayesian inference of latent parameters using
Gaussian conditioning in the latent space. Compared to existing methods, the resulting aggregator
improves the handling of task ambiguity, as it can assign different variance levels to the context
samples. This mechanism improves predictive performance, while it remains conceptually simple
and introduces only negligible computational overhead. Moreover, our Bayesian aggregator can also
be applied to deterministic model variants like the Conditional NP (CNP) (Garnelo et al., 2018a).

In summary, our contributions are (i) a novel Bayesian Aggregation (BA) mechanism for context
aggregation in NP-based models for probabilistic regression, (ii) its application to existing CLV
architectures as well as to deterministic variants like the CNP, and (iii) an exhaustive experimental
evaluation, demonstrating BA’s superiority over traditional mean aggregation.

2 RELATED WORK

Prominent approaches to probabilistic regression are Bayesian linear regression and its kernelized
counterpart, the Gaussian process (GP) (Rasmussen and Williams, 2005). The formal correspondence
of GPs with infinite-width Bayesian NNs (BNNs) has been established in Neal (1996) and Williams
(1996). A broad range of research aims to overcome the cubic scaling behaviour of GPs with
the number of context points, e.g., through sparse GP approximations (Smola and Bartlett, 2001;
Lawrence et al., 2002; Snelson and Ghahramani, 2005; Quiñonero-Candela and Rasmussen, 2005),
by deep kernel learning (Wilson et al., 2016), by approximating the posterior distribution of BNNs
(MacKay, 1992; Hinton and van Camp, 1993; Gal and Ghahramani, 2016; Louizos and Welling,
2017), or, by adaptive Bayesian linear regression, i.e., by performing inference over the last layer of a
NN which introduces sparsity through linear combinations of finitely many learned basis functions
(Lazaro-Gredilla and Figueiras-Vidal, 2010; Hinton and Salakhutdinov, 2008; Snoek et al., 2012;
Calandra et al., 2016). An in a sense complementary approach aims to increase the data-efficiency of
deep architectures by a fully Bayesian treatment of hierarchical latent variable models (“DeepGPs”)
(Damianou and Lawrence, 2013).

A parallel line of research studies probabilistic regression in the multi-task setting. Here, the goal
is to formulate models which are data-efficient on an unseen target task by training them on data
from a set of related source tasks. Bardenet et al. (2013); Yogatama and Mann (2014), and Golovin
et al. (2017) study multi-task formulations of GP-based models. More general approaches of this
kind employ the meta-learning framework (Schmidhuber, 1987; Thrun and Pratt, 1998; Vilalta and
Drissi, 2005), where a model’s training procedure is formulated in a way which incentivizes it to learn
how to solve unseen tasks rapidly with only a few context examples (“learning to learn”, “few-shot
learning” (Fei-Fei et al., 2006; Lake et al., 2011)). A range of such methods trains a meta-learner to
learn how to adjust the parameters of the learner’s model (Bengio et al., 1991; Schmidhuber, 1992),
an approach which has recently been applied to few-shot image classification (Ravi and Larochelle,
2017), or to learning data-efficient optimization algorithms (Hochreiter et al., 2001; Li and Malik,
2016; Andrychowicz et al., 2016; Chen et al., 2017; Perrone et al., 2018; Volpp et al., 2019). Other
branches of meta-learning research aim to learn similarity metrics to determine the relevance of
context samples for the target task (Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017; Sung
et al., 2017), or explore the application of memory-augmented neural networks for meta-learning
(Santoro et al., 2016). Finn et al. (2017) propose model-agnostic meta-learning (MAML), a general
framework for fast parameter adaptation in gradient-based learning methods.

A successful formulation of probabilistic regression as a few-shot learning problem in a multi-task
setting is enabled by recent advances in the area of probabilistic meta-learning methods which
allow a quantitative treatment of the uncertainty arising due to task ambiguity, a feature particularly

2



Published as a conference paper at ICLR 2021

relevant for few-shot learning problems. One line of work specifically studies probabilistic extensions
of MAML (Grant et al., 2018; Ravi and Larochelle, 2017; Rusu et al., 2018; Finn et al., 2018;
Kim et al., 2018). Further important approaches are based on amortized inference in multi-task
CLV models (Heskes, 2000; Bakker and Heskes, 2003; Kingma and Welling, 2013; Rezende et al.,
2014; Sohn et al., 2015), which forms the basis of the Neural Statistician proposed by Edwards and
Storkey (2017) and of the NP model family (Garnelo et al., 2018b; Kim et al., 2019; Louizos et al.,
2019). Gordon et al. (2019) present a unifying view on many of the aforementioned probabilistic
architectures. Building on the conditional NPs (CNPs) proposed by Garnelo et al. (2018a), a range of
NP-based architectures, such as Garnelo et al. (2018b) and Kim et al. (2019), consider combinations
of deterministic and CLV model architectures. Recently, Gordon et al. (2020) extended CNPs to
include translation equivariance in the input space, yielding state-of-the-art predictive performance.

In this paper, we also employ a formulation of probabilistic regression in terms of a multi-task
CLV model. However, while in previous work the context aggregation mechanism (Zaheer et al.,
2017; Wagstaff et al., 2019) was merely viewed as a necessity to consume context sets of variable
size, we take inspiration from Becker et al. (2019) and emphasize the fundamental connection of
latent parameter inference with context aggregation and, hence, base our model on a novel Bayesian
aggregation mechanism.

3 PRELIMINARIES

We present the standard multi-task CLV model which forms the basis for our discussion and present
traditional mean context aggregation (MA) and the variational inference (VI) likelihood approximation
as employed by the NP model family (Garnelo et al., 2018a; Kim et al., 2019), as well as an alternative
Monte Carlo (MC)-based approximation.

Problem Statement. We frame probabilistic regression as a multi-task learning problem. Let
F denote a family of functions f` : Rdx → Rdy with some form of shared statistical structure.

z`

θ

xc`,n

yc`,n

xt`,m

yt`,m

N` M`

L

Figure 1: Multi-task CLV model with
task-specific global latent variables z` and
a task-independent variable θ describing
statistical structure shared between tasks.

We assume to have available data sets
D` ≡ {(x`,i, y`,i)}i of evaluations y`,i ≡ f`(x`,i) + ε

from a subset of functions (“tasks”) {f`}L`=1 ⊂ F with
additive Gaussian noise ε ∼ N

(
0, σ2

n

)
. From this data,

we aim to learn the posterior predictive distribution
p (y`|x`,Dc`) over a (set of) y`, given the corresponding
(set of) inputs x` as well as a context set Dc` ⊂ D`.

The Multi-Task CLV Model. We formalize the multi-
task learning problem in terms of a CLV model (Heskes,
2000; Gordon et al., 2019) as shown in Fig. 1. The model
employs task-specific global latent variables z` ∈ Rdz , as
well as a task-independent latent variable θ, capturing the
statistical structure shared between tasks. To learn θ, we
split the data into context sets Dc` ≡ {(xc`,n, yc`,n)}N`n=1

and target sets Dt` ≡ {(xt`,m, yt`,m)}M`
m=1 and maximize

the posterior predictive likelihood function
L∏
`=1

p
(
yt`,1:M`

∣∣xt`,1:M`
,Dc` , θ

)
=

L∏
`=1

∫
p (z` | Dc` , θ)

M∏̀
m=1

p
(
yt`,m

∣∣ z`, xt`,m, θ)dz` (1)

w.r.t. θ. In what follows, we omit task indices ` to avoid clutter.

Likelihood Approximation. Marginalizing over the task-specific latent variables z is intractable
for reasonably complex models, so one has to employ some form of approximation. The NP-family
of models (Garnelo et al., 2018b; Kim et al., 2019) uses an approximation of the form

log p
(
yt1:M

∣∣xt1:M ,Dc, θ
)
' Eqφ( z|Dc∪Dt)

[
M∑
m=1

log p
(
ytm
∣∣ z, xtm, θ)+ log

qφ (z| Dc)
qφ (z| Dc ∪ Dt)

]
.

(2)
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Being derived using a variational approach, this approximation utilizes an approximate posterior
distribution qφ (z| Dc) ≈ p (z| Dc, θ). Note, however, that it does not constitute a proper evidence
lower bound for the posterior predictive likelihood since the intractable latent posterior p (z| Dc, θ)
has been replaced by qφ (z| Dc) in the nominator of the rightmost term (Le et al., 2018). An
alternative approximation, employed for instance in Gordon et al. (2019), also replaces the intractable
latent posterior distribution by an approximate distribution qφ (z| Dc) ≈ p (z| Dc, θ) and uses a
Monte-Carlo (MC) approximation of the resulting integral based on K latent samples, i.e.,

log p
(
yt1:M

∣∣xt1:M ,Dc, θ
)
≈ − logK + log

K∑
k=1

M∏
m=1

p
(
ytm
∣∣ zk, xtm, θ) , zk ∼ qφ (z| Dc) . (3)

Note that both approaches employ approximations qφ (z| Dc) of the latent posterior distribution
p (z| Dc, θ) and, as indicated by the notation, amortize inference in the sense that one single set of
parameters φ is shared between all context data points. This enables efficient inference at test time,
as no per-data-point optimization loops are required. As is standard in the literature (Garnelo et al.,
2018b; Kim et al., 2019), we represent qφ (z| Dc) and p (ytm|z, xtm, θ) by NNs and refer to them
as the encoder (enc, parameters φ) and decoder (dec, parameters θ) networks, respectively. These
networks set the means and variances of factorized Gaussian distributions, i.e.,

qφ (z| Dc) = N
(
z|µz, diag

(
σ2
z

))
, µz = encµz,φ (Dc) , σ2

z = encσ2
z,φ

(Dc) , (4)

p
(
ytm
∣∣ z, xtm, θ) = N

(
ytm
∣∣µy, diag

(
σ2
y

))
, µy = decµy,θ

(
z, xtm

)
, σ2

y = decσ2
y,θ

(
z, xtm

)
. (5)

Context Aggregation. The latent variable z is global in the sense that it depends on the whole
context set Dc. Therefore, some form of aggregation mechanism is required to enable the encoder
to consume context sets Dc of variable size. To represent a meaningful operation on sets, such an
aggregation mechanism has to be invariant to permutations of the context data points. Zaheer et al.
(2017) characterize possible aggregation mechanisms w.r.t. this permutation invariance condition,
resulting in the structure of traditional aggregation mechanisms depicted in Fig. 2(a). Each context
data tuple (xcn, y

c
n) is first mapped onto a latent observation rn = encr,φ (xcn, y

c
n) ∈ Rdr . Then,

a permutation-invariant operation is applied to the set {rn}Nn=1 to obtain an aggregated latent
observation r̄. One prominent choice, employed for instance in Garnelo et al. (2018a), Kim et al.
(2019), and Gordon et al. (2019), is to take the mean, i.e.,

r̄ =
1

N

N∑
n=1

rn. (6)

Subsequently, r̄ is mapped onto the parameters µz and σ2
z of the approximate posterior distribution

qφ (z| Dc) using additional encoder networks, i.e., µz = encµz,φ (r̄) and σ2
z = encσ2

z,φ
(r̄). Note

that three encoder networks are employed here: (i) encr,φ to map from the context pairs to rn, (ii)
encµz,φ to compute µz from the aggregated mean r̄ and (iii) encσ2

z,φ
to compute the variance σ2

z from
r̄. In what follows, we refer to this aggregation mechanism as mean aggregation (MA) and to the
networks encµz,φ and encσ2

z,φ
collectively as “r̄-to-z-networks”.

4 BAYESIAN CONTEXT AGGREGATION

We propose Bayesian Aggregation (BA), a novel context data aggregation technique for CLV models
which avoids the detour via an aggregated latent observation r̄ and directly treats the object of interest,
namely the latent variable z, as the aggregated quantity. This reflects a central observation for CLV
models with global latent variables: context data aggregation and hidden parameter inference are
fundamentally the same mechanism. Our key insight is to define a probabilistic observation model
p(r|z) for r which depends on z. Given a new latent observation rn = encr,φ(xcn, y

c
n), we can update

p(z) by computing the posterior p(z|rn) = p(rn|z)p(z)/p(rn). Hence, by formulating context data
aggregation as a Bayesian inference problem, we aggregate the information contained in Dc directly
into the statistical description of z based on first principles.

4.1 BAYESIAN CONTEXT AGGREGATION VIA GAUSSIAN CONDITIONING

BA can easily be implemented using a factorized Gaussian observation model of the form
p (rn| z) = N

(
rn| z, diag(σ2

rn)
)
, rn = encr,φ (xcn, y

c
n) , σ2

rn = encσ2
r ,φ

(xcn, y
c
n) . (7)
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(a) Traditional mean aggregation (MA).

zrn
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ycn

N

(b) Our Bayesian aggregation (BA).

Figure 2: Comparison of aggregation mechanisms in CLV models. Dashed lines correspond to learned
components of the posterior approximation qφ (z| Dc). BA avoids the detour via a mean-aggregated
latent observation r̄ and aggregates Dc directly in the statistical description of z. This allows to
incorporate a quantification of the information content of each context tuple (xcn, y

c
n) as well as of z

into the inference in a principled manner, while MA assigns the same weight to each context tuple.

Note that, in contrast to standard variational auto-encoders (VAEs) (Kingma and Welling, 2013), we
do not learn the mean and variance of a Gaussian distribution, but we learn the latent observation rn
(which can be considered as a sample of p(z)) together with the variance σ2

rn of this observation. This
architecture allows the application of Gaussian conditioning while this is difficult for VAEs. Indeed,
we impose a factorized Gaussian prior p0 (z) ≡ N

(
z|µz,0, diag

(
σ2
z,0

))
and arrive at a Gaussian

aggregation model which allows to derive the parameters of the posterior distribution qφ (z| Dc) in
closed form1 (cf. App. 7.1):

σ2
z =

[(
σ2
z,0

)	
+

N∑
n=1

(
σ2
rn

)	]	
, µz = µz,0 + σ2

z �
N∑
n=1

(rn − µz,0)�
(
σ2
rn

)
. (8)

Here 	, � and � denote element-wise inversion, product, and division, respectively. These equations
naturally lend themselves to efficient incremental updates as new context data (xcn, y

c
n) arrives by

using the current posterior parameters µz,old and σ2
z,old in place of the prior parameters, i.e.,

σ2
z,new =

[(
σ2
z,old

)	
+
(
σ2
rn

)	]	
, µz = µz,old + σ2

z,new � (rn − µz,old )�
(
σ2
rn

)
. (9)

BA employs two encoder networks, encr,φ and encσ2
r ,φ

, mapping context tuples to latent observations
and their variances, respectively. In contrast to MA, it does not require r̄-to-z-networks, because
the set {rn}Nn=1 is aggregated directly into the statistical description of z by means of Eq. (8),
cf. Fig. 2(b). Note that our factorization assumptions avoid the expensive matrix inversions that
typically occur in Gaussian conditioning and which are difficult to backpropagate. Using factorized
distributions renders BA cheap to evaluate with only marginal computational overhead in comparison
to MA. Furthermore, we can easily backpropagate through BA to compute gradients to optimize
the parameters of the encoder and decoder networks. As the latent space z is shaped by the encoder
network, the factorization assumptions are valid because the network will find a space where these
assumptions work well. Note further that BA represents a permutation-invariant operation on Dc.

Discussion. BA includes MA as a special case. Indeed, Eq. (8) reduces to the mean-aggregated
latent observation Eq. (6) if we impose a non-informative prior and uniform observation variances
σ2
rn ≡ 1.2 This observation sheds light on the benefits of a Bayesian treatment of aggregation.

MA assigns the same weight 1/N to each latent observation rn, independent of the amount of
information contained in the corresponding context data tuple (xcn, y

c
n), as well as independent of

the uncertainty about the current estimation of z. Bayesian aggregation remedies both of these
limitations: the influence of rn on the parameters µz,old and σ2

z,old describing the current aggregated
state is determined by the relative magnitude of the observation variance σ2

rn and the latent variance

1Note that an extended observation model of the form p (rn| z) = N
(
rn| z + µrn , diag(σ2

rn)
)
, with µrn

given by a third encoder output, does not lead to a more expressive aggregation mechanism. Indeed, the
resulting posterior variances would stay unchanged and the posterior mean would read µz = µz,0 + σ2

z �∑N
n=1 (rn − µrn − µz,0)�

(
σ2
rn

)
. Therefore, we would just subtract two distinct encoder outputs computed

from the same inputs, resulting in exactly the same expressivity, which is why we set µrn ≡ 0.
2As motivated above, we consider r̄ as the aggregated quantity of MA and the distribution over z, described

by µz and σ2
z , as the aggregated quantity of BA. Note that Eq. (8) does not necessarily generalize µz and σ2

z

after nonlinear r̄-to-z-networks.
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σ2
z,old, cf. Eq. (9). This emphasizes the central role of the learned observation variances σ2

rn : they
allow to quantify the amount of information contained in each latent observation rn. BA can therefore
handle task ambiguity more efficiently than MA, as the architecture can learn to assign little weight
(by predicting high observation variances σ2

rn) to context points (xcn, y
c
n) located in areas with high

task ambiguity, i.e., to points which could have been generated by many of the functions in F .
Conversely, in areas with little task ambiguity, i.e., if (xcn, y

c
n) contains a lot of information about the

underlying function, BA can induce a strong influence on the posterior latent distribution. In contrast,
MA has to find ways to propagate such information through the aggregation mechanism by encoding
it in the mean-aggregated latent observation r̄.

4.2 LIKELIHOOD APPROXIMATION WITH BAYESIAN CONTEXT AGGREGATION

We show that BA is versatile in the sense that it can replace traditional MA in various CLV-based NP
architectures as proposed, e.g., in Garnelo et al. (2018b) and Gordon et al. (2019), which employ
samples from the approximate latent posterior qφ (z| Dc) to approximate the likelihood (as discussed
in Sec. 3), as well as in deterministic variants like the CNP (Garnelo et al., 2018a).

Sampling-Based Likelihood Approximations. BA is naturally compatible with both the VI and
MC likelihood approximations for CLV models. Indeed, BA defines a Gaussian latent distribution
from which we can easily obtain samples z in order to evaluate Eq. (2) or Eq. (3) using the decoder
parametrization Eq. (5).

Bayesian Context Aggregation for Conditional Neural Processes. BA motivates a novel, alter-
native, method to approximate the posterior predictive likelihood Eq. (1), resulting in a deterministic
loss function which can be efficiently optimized for θ and φ in an end-to-end fashion. To this end, we
employ a Gaussian approximation of the posterior predictive likelihood of the form

p
(
yt1:M

∣∣xt1:M ,Dc, θ
)
≈ N

(
yt1:M

∣∣µy,Σy) . (10)

This is inspired by GPs which also define a Gaussian likelihood. Maximizing this expression yields
the optimal solution µy = µ̃y, Σy = Σ̃y, with µ̃y and Σ̃y being the first and second moments of
the true posterior predictive distribution. This is a well-known result known as moment matching,
a popular variant of deterministic approximate inference used, e.g., in Deisenroth and Rasmussen
(2011) and Becker et al. (2019). µ̃y and Σ̃y are functions of the moments µz and σ2

z of the latent
posterior p (z| Dc, θ) which motivates the following decoder parametrization:

µy = decµy,θ
(
µz, σ

2
z , x

t
m

)
, σ2

y = decσ2
y,θ

(
µz, σ

2
z , x

t
m

)
, Σy = diag

(
σ2
y

)
. (11)

Here, µz and σ2
z are given by the BA Eqs. (8). Note that we define the Gaussian approximation

to be factorized w.r.t. individual ytm, an assumption which simplifies the architecture but could be
dropped if a more expressive model was required. This decoder can be interpreted as a “moment
matching network”, computing the moments of y given the moments of z. Indeed, in contrast to
decoder networks of CLV-based NP architectures as defined in Eq. (5), it operates on the moments µz
and σ2

z of the latent distribution instead of on samples z which allows to evaluate this approximation
in a deterministic manner. In this sense, the resulting model is akin to the CNP which defines a
deterministic, conditional model with a decoder operating on the mean-aggregated latent observation
r̄. However, BA-based models trained in this deterministic manner still benefit from BA’s ability
to accurately quantify latent parameter uncertainty which yields significantly improved predictive
likelihoods. In what follows, we refer to this approximation scheme as direct parameter-based (PB)
likelihood optimization.

Discussion. The concrete choice of likelihood approximation or, equivalently, model architecture
depends mainly on the intended use-case. Sampling-based models are generally more expressive
as they can represent complex, i.e., structured, non-Gaussian, posterior predictive distributions.
Moreover, they yield true function samples while deterministic models only allow approximate
function samples through auto-regressive (AR) sampling schemes. Nevertheless, deterministic
models exhibit several computational advantages. They yield direct probabilistic predictions in a
single forward pass, while the predictions of sampling-based methods are only defined through
averages over multiple function samples and hence require multiple forward passes. Likewise,
evaluating the MC-based likelihood approximation Eq. (3) during training requires to draw multiple
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Table 1: Posterior predictive log-likelihood on functions drawn from GP priors with RBF, weakly
periodic, and Matern-5/2 kernels, averaged over context sets with N ∈ {0, 1, . . . , 64} points (table)
and in dependence of N (figure). BA consistently outperforms MA, independent of the likelihood
approximation, with MC being the most expressive choice. PB represents an efficient, deterministic
alternative, while the VI approximation tends to perform worst, in particular for small N .

PB/det. VI MC ANP
BA MA (CNP) BA MA (LP-NP) BA MA MA + Attention

RBF GP 1.37± 0.15 0.94± 0.04 1.40± 0.04 0.45± 0.12 1.62± 0.05 1.07± 0.05 0.98± 0.02
Weakly Periodic GP 1.13± 0.08 0.76± 0.02 0.89± 0.03 0.07± 0.14 1.30± 0.06 0.85± 0.04 1.02± 0.02
Matern-5/2 GP −0.50± 0.07 −0.68± 0.01 −0.79± 0.01 −1.09± 0.10 −0.33± 0.01 −0.90± 0.15 0.25± 0.02

0 25 50

N

−2

0

2

lo
g

p(
yt 1:

M
|xt 1:

M
,D

c )

RBF

0 25 50

N

−2

0

2
Weakly Periodic

0 25 50

N

−1.5

−1.0

−0.5

0.0

Matern 5/2

Aggregator
BA
MA
Loss
PB/det.
VI-inspired
MC

(K) latent samples z. While the VI likelihood approximation Eq. (2) can be optimized on a single
function sample per training step through stochastic gradient descent (Bishop, 2006), it has the
disadvantage that it requires to feed target sets Dt through the encoder which can impede the training
for small context sets Dc as discussed in detail in App. 7.2.

5 EXPERIMENTS

We present experiments to compare the performances of BA and of MA in NP-based models. To pro-
vide a complete picture, we evaluate all combinations of likelihood approximations (PB/deterministic
Eq. (10), VI Eq. (2), MC Eq. (3)) and aggregation methods (BA Eq. (8), MA Eq. (6)), resulting in
six different model architectures, cf. Fig. 4 in App. 7.5.2. Two of these architectures correspond to
existing members of the NP family: MA + deterministic is equivalent to the CNP (Garnelo et al.,
2018a), and MA + VI corresponds to the Latent-Path NP (LP-NP) (Garnelo et al., 2018b), i.e., the
NP without a deterministic path. We further evaluate the Attentive Neural Process (ANP) (Kim et al.,
2019), which employs a hybrid approach, combining LP-NP with a cross-attention mechanism in
a parallel deterministic path3, as well as an NP-architecture using MA with a self-attentive (SA)
encoder network. Note that BA can also be used in hybrid models like ANP or in combination with
SA, an idea we leave for future research. In App. 7.4 we discuss NP-based regression in relation to
other methods for (scalable) probabilistic regression.

The performance of NP-based models depends heavily on the encoder and decoder network archi-
tectures as well as on the latent space dimensionality dz . To assess the influence of the aggregation
mechanism independently from all other confounding factors, we consistently optimize the encoder
and decoder network architectures, the latent-space dimensionality dz , as well as the learning rate of
the Adam optimizer (Kingma and Ba, 2015), independently for all model architectures and for all
experiments using the Optuna (Akiba et al., 2019) framework, cf. App. 7.5.3. If not stated differently,
we report performance in terms of the mean posterior predictive log-likelihood over 256 test tasks
with 256 data points each, conditioned on context sets containing N ∈ {0, 1, . . . , Nmax} data points
(cf. App. 7.5.4). For sampling-based methods (VI, MC, ANP), we report the joint log-likelihood over
the test sets using a Monte-Carlo approximation with 25 latent samples, cf. App. 7.5.4. We average
the resulting log-likelihood values over 10 training runs with different random seeds and report 95%
confidence intervals. We publish source code to reproduce the experimental results online.4

GP Samples. We evaluate the architectures on synthetic functions drawn from GP priors with
different kernels (RBF, weakly periodic, Matern-5/2), as proposed by Gordon et al. (2020),
cf. App. 7.5.1. We generate a new batch of functions for each training epoch. The results
(Tab. 1) show that BA consistently outperforms MA, independent of the model architecture. In-

3For ANP, we use original code from https://github.com/deepmind/neural-processes
4https://github.com/boschresearch/bayesian-context-aggregation
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Table 3: Posterior predictive log-likelihood on 1D and 3D quadratic functions with limited numbers
L of training tasks, averaged over context sets with N ∈ {0, 1, . . . , 20} data points. BA outperforms
MA by considerable margins in this regime of little training data.

PB/det. VI MC ANP
BA MA (CNP) BA MA (LP-NP) BA MA MA + Attention

Quadratic 1D, L = 64 1.42± 0.20 0.47± 0.25 1.48± 0.05 −0.32± 0.55 1.71± 0.23 1.27± 0.06 0.69± 0.08
Quadratic 3D, L = 128 −2.46± 0.12 −2.73± 0.10 −2.53± 0.07 −3.45± 0.12 −1.79± 0.07 −2.14± 0.05 −3.08± 0.02

BA+PB MA+det. BA+VI MA+VI BA+MC MA+MC ANP

Figure 3: Predictions on two instances (dashed lines) of the 1D quadratic function class, given N = 3
context data points (circles). We show mean and standard deviation predictions (solid line, shaded
area), and 10 function samples (AR samples for deterministic methods). Cf. also App. 7.6.

terestingly, despite employing a factorized Gaussian approximation, our deterministic PB approx-
imation performs at least on-par with the traditional VI approximation which tends to perform

Table 2: Relative evaluation runtimes and
#parameters of the optimized network ar-
chitectures on RBF GP. Also cf. Tab. 9.

PB/det. VI MC
BA MA (CNP) BA MA (LP-NP) BA MA

Runtime 1 1.4 18 25 32 27
#Parameters 72k 96k 63k 77k 122k 153k

particularly poorly for small context sets, reflecting the
intricacies discussed in Sec. 4.2. As expected, the MC
approximation yields the best results in terms of pre-
dictive performance, as it is more expressive than the
deterministic approaches and does not share the prob-
lems of the VI approach. As shown in Tab. 2 and Tab. 9,
App. 7.6, our proposed PB likelihood approximation is
much cheaper to evaluate compared to both sampling-based approaches which require multiple
forward passes per prediction. We further observe that BA tends to require smaller encoder and
decoder networks as it is more efficient at propagating context information to the latent state as
discussed in Sec. 4.1. The hybrid ANP approach is competitive only on the Matern-5/2 function class.
Yet, we refer the reader to Tab. 10, App. 7.6, demonstrating that the attention mechanism greatly
improves performance in terms of MSE.

Quadratic Functions. We further seek to study the performance of BA with very limited amounts
of training data. To this end, we consider two quadratic function classes, each parametrized by three
real parameters from which we generate limited numbers L of training tasks. The first function class is
defined on a one-dimensional domain, i.e., x ∈ R, and we choose L = 64, while the second function
class, as proposed by Perrone et al. (2018), is defined on x ∈ R3 with L = 128, cf. App. 7.5.1.
As shown in Tab. 3, BA again consistently outperforms MA, often by considerably large margins,
underlining the efficiency of our Bayesian approach to aggregation in the regime of little training data.
On the 1D task, all likelihood approximations perform approximately on-par in combination with
BA, while MC outperforms both on the more complex 3D task. Fig. 3 compares prediction qualities.

Dynamics of a Furuta Pendulum. We study BA on a realistic dataset given by the simulated
dynamics of a rotary inverted pendulum, better known as the Furuta pendulum (Furuta et al., 1992),
which is a highly non-linear dynamical system, consisting of an actuated arm rotating in the horizontal
plane with an attached pendulum rotating freely in the vertical plane, parametrized
by two masses, three lengths, and two damping constants. The regression task is
defined as the one-step-ahead prediction of the four-dimensional system state with
a step-size of ∆t = 0.1 s, as detailed in App. 7.5.1. The results (Tab. 4) show that
BA improves predictive performance also on complex, non-synthetic regression
tasks with higher-dimensional input- and output spaces. Further, they are consistent
with our previous findings regarding the likelihood approximations, with MC being strongest in terms
of predictive likelihood, followed by our efficient deterministic alternative PB.

2D Image Completion. We consider a 2D image completion experiment where the inputs x are
pixel locations in images showing handwritten digits, and we regress onto the corresponding pixel
intensities y, cf. App. 7.6. Interestingly, we found that architectures without deterministic paths were
not able to solve this task reliably which is why we only report results for deterministic models.
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Table 4: Posterior predictive log-likelihood on the dynamics of a Furuta pendulum, averaged over
context sets with N ∈ {0, 1, . . . , 20} state transitions. BA performs favorably on this real-world task.

PB/det. VI MC ANP
BA MA (CNP) BA MA (LP-NP) BA MA MA + Attention

Furuta Dynamics 7.50± 0.27 7.06± 0.12 7.32± 0.18 5.57± 0.21 8.25± 0.33 7.55± 0.24 4.74± 0.16

Table 6: Comparison of the posterior predictive log-likelihood of our BA with traditional MA,
combined with a self-attention (SA) mechanism in the encoder (BA does not use an SA mechanism),
using the PB and MC likelihood approximations. We provide results for Laplace SA (L-SA), dot-
product SA (DP-SA), and mulihead SA (MH-SA) and repeat the results for BA and MA without SA
(“no SA”). While L-SA and DP-SA do not increase predictive performance compared to MA without
SA, MH-SA results in significant improvements. Nevertheless, vanilla BA still performs better or at
least on-par, while being computationally more efficient.

BA + PB MA + PB BA + MC MA + MC
no SA no SA L-SA DP-SA MH-SA no SA no SA L-SA DP-SA MH-SA

RBF GP 1.37± 0.15 0.94± 0.04 0.74± 0.06 0.89± 0.04 1.46± 0.14 1.62± 0.05 1.07± 0.05 0.93± 0.05 0.98± 0.03 1.44± 0.09
Weakly Periodic GP 1.13± 0.08 0.76± 0.02 0.59± 0.02 0.71± 0.02 1.13± 0.15 1.30± 0.06 0.85± 0.04 0.77± 0.03 0.82± 0.03 1.29± 0.04
Matern-5/2 GP −0.50± 0.07 −0.68± 0.01 −1.03± 0.01 −0.76± 0.01 −0.64± 0.01 −0.33± 0.01 −0.90± 0.15 −0.80± 0.02 −0.86± 0.01 −0.59± 0.03
Quadratic 1D, L = 64 1.42± 0.20 0.47± 0.25 0.15± 0.32 0.47± 0.24 1.49± 0.11 1.71± 0.23 1.27± 0.06 1.19± 0.09 1.32± 0.14 1.66± 0.12
Quadratic 3D, L = 128 −2.46± 0.12 −2.73± 0.10 −2.94± 0.41 −2.95± 0.13 −2.13± 0.25 −1.79± 0.07 −2.14± 0.05 −2.19± 0.11 −2.18± 0.07 −1.71± 0.05
Furuta Dynamics 7.50± 0.27 7.06± 0.12 7.13± 0.12 7.04± 0.20 7.40± 0.46 8.25± 0.33 7.55± 0.24 7.80± 0.13 7.67± 0.14 8.39± 0.20

Table 5: Predictive log-likelihood on a 2D
image completion task on MNIST, averaged
over N ∈ {0, 1, . . . , 392} context pixels.

PB/det. ANP
BA MA (CNP) MA + Attention

2D Image Completion 2.75± 0.20 2.05± 0.36 1.62± 0.03

As shown in Tab. 5, BA improves performance in
comparison to MA by a large margin. This highlights
that BA’s ability to quantify the information content
of a context tuple is particularly beneficial on this
task, as, e.g., pixels in the middle area of the images
typically convey more information about the identity
of the digit than pixels located near the borders.

Self-attentive Encoders. Another interesting baseline for BA is MA, combined with a self-attention
(SA) mechanism in the encoder. Indeed, similar to BA, SA yields non-uniform weights for the latent
observations rn, where a given weight is computed from some form of pairwise spatial relationship
with all other latent observations in the context set (cf. App. 7.3 for a detailed discussion). As BA’s
weight for rn only depends on (xn, yn) itself, BA is computationally more efficient: SA scales
like O(N2) in the number N of context tuples while BA scales like O(N), and, furthermore, SA
does not allow for efficient incremental updates while this is possible for BA, cf. Eq. (9). Tab. 6
shows a comparison of BA with MA in combination with various different SA mechanisms in
the encoder. We emphasize that we compare against BA in its vanilla form, i.e., BA does not
use SA in the encoder. The results show that Laplace SA and dot-product SA do not improve
predictive performance compared to vanilla MA, while multihead SA yields significantly better
results. Nevertheless, vanilla BA still performs better or at least on-par and is computationally more
efficient. While being out of the scope of this work, according to these results, a combination of
BA with SA seems promising if computational disadvantages can be accepted in favour of increased
predictive performance, cf. App. 7.3.

6 CONCLUSION AND OUTLOOK

We proposed a novel Bayesian Aggregation (BA) method for NP-based models, combining context
aggregation and hidden parameter inference in one holistic mechanism which enables efficient
handling of task ambiguity. BA is conceptually simple, compatible with existing NP-based model
architectures, and consistently improves performance compared to traditional mean aggregation.
It introduces only marginal computational overhead, simplifies the architectures in comparison to
existing CLV models (no r̄-to-z-networks), and tends to require less complex encoder and decoder
network architectures. Our experiments further demonstrate that the VI likelihood approximation
traditionally used to train NP-based models should be abandoned in favor of a MC-based approach,
and that our proposed PB likelihood approximation represents an efficient deterministic alternative
with strong predictive performance. We believe that a range of existing models, e.g., the ANP or
NPs with self-attentive encoders, can benefit from BA, especially when a reliable quantification of
uncertainty is crucial. Also, more complex Bayesian aggregation models are conceivable, opening
interesting avenues for future research.
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7 APPENDIX

We present the derivation of the Bayesian aggregation update equations (Eqs. (8), (9)) in more
detail. To foster reproducibility, we describe all experimental settings as well as the hyperparameter
optimization procedure used to obtain the results reported in Sec. 5, and publish the source code
online.5 We further provide additional experimental results and visualizations of the predictions of
the compared architectures.

7.1 DERIVATION OF THE BAYESIAN AGGREGATION UPDATE EQUATIONS

We derive the full Bayesian aggregation update equations without making any factorization assump-
tions. We start from a Gaussian observation model of the form

p (rn| z) ≡ N (rn| z,Σrn) , rn = encr,φ (xcn, y
c
n) , Σrn = encΣr,φ (xcn, y

c
n) , (12)

where rn and Σrn are learned by the encoder network. If we impose a Gaussian prior in the latent
space, i.e.,

p (z) ≡ N (z|µz,0,Σz,0) , (13)
we arrive at a Gaussian aggregation model which allows to derive the parameters of the posterior
distribution, i.e., of

qφ (z| Dc) = N (z|µz,Σz) (14)
in closed form using standard Gaussian conditioning (Bishop, 2006):

Σz =

[
(Σz,0)

−1
+

N∑
n=1

(Σrn)
−1

]−1

, (15a)

µz = µz,0 + Σz

N∑
n=1

(Σrn)
−1

(rn − µz,0) . (15b)

As the latent space z is shaped by the encoder network, it will find a space where the following
factorization assumptions work well (given dz is large enough):

Σrn = diag
(
σ2
rn

)
, σ2

rn = encσ2
r ,φ

(xcn, y
c
n) , Σz,0 = diag

(
σ2
z,0

)
. (16)

This yields a factorized posterior, i.e.,

qφ (z| Dc) = N
(
z|µz, diag

(
σ2
z

))
, (17)

with

σ2
z =

[(
σ2
z,0

)	
+

N∑
n=1

(
σ2
rn

)	]	
, (18a)

µz = µz,0 + σ2
z �

N∑
n=1

(rn − µz,0)�
(
σ2
rn

)
. (18b)

Here 	, � and � denote element-wise inversion, product, and division, respectively. This is the result
Eq. (8) from the main part of this paper.

7.2 DISCUSSION OF VI LIKELIHOOD APPROXIMATION

To highlight the limitations of the VI approximation, we note that decoder networks of models
employing the PB or the MC likelihood approximation are provided with the same context information
at training and test time: the latent variable (which is passed on to the decoder in the form of latent
samples z (for MC) or in the form of parameters µz , σ2

z describing the latent distribution (for PB)) is
in both cases conditioned only on the context set Dc. In contrast, in the variational approximation
Eq. (2), the expectation is w.r.t. qφ, conditioned on the union of the context set Dc and the target set
Dt. As Dt is not available at test time, this introduces a mismatch between how the model is trained

5https://github.com/boschresearch/bayesian-context-aggregation
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and how it is used at test time. Indeed, the decoder is trained on samples from qφ (z| Dc ∪ Dt) but
evaluated on samples from qφ (z| Dc). This is not a serious problem when the model is evaluated
on context sets with sizes large enough to allow accurate approximations of the true latent posterior
distribution. Small context sets, however, usually contain too little information to infer z reliably.
Consequently, the distributions qφ (z| Dc) and qφ (z| Dc ∪ Dt) typically differ significantly in this
regime. Hence, incentivizing the decoder to yield meaningful predictions on small context sets
requires intricate and potentially expensive additional sampling procedures to choose suitable target
sets Dt during training. As a corner case, we point out that it is not possible to train the decoder on
samples from the latent prior, because the right hand side of Eq. (2) vanishes for Dc = Dt = ∅.

7.3 SELF-ATTENTIVE ENCODER ARCHITECTURES

Kim et al. (2019) propose to use attention-mechanisms to improve the quality of NP-based regression.
In general, given a set of key-value pairs {(xn, yn)}Nn=1, xn ∈ Rdx , yn ∈ Rdy , and a query x∗ ∈ Rdx ,
an attention mechanism A produces a weighted sum of the values, with the weights being computed
from the keys and the query:

A
(
{(xn, yn)}Nn=1 , x

∗
)

=

N∑
n=1

w (xn, x
∗) yn. (19)

There are several types of attention mechanisms proposed in the literature (Vaswani et al., 2017),
each defining a specific form of the weights. Laplace attention adjusts the weights according to the
spatial distance of keys and query:

wL (xn, x
∗) ∝ exp (−||xn − x∗||1) . (20)

Similarly, dot-product attention computes

wDP (xn, x
∗) ∝ exp

(
xTnx

∗/
√
dx

)
. (21)

A more complex mechanism is multihead attention, which employs a set of 3H learned linear

mappings
{
LKh
}H
h=1

,
{
LVh
}H
h=1

,
{
LQh
}H
h=1

, where H is a hyperparameter. For each h, these
mappings are applied to keys, values, and queries, respectively. Subsequently, dot-product attention is
applied to the set of transformed key-value pairs and the transformed query. The resulting H values
are then again combined by a further learned linear mapping LO to obtain the final result.

Self-attention (SA) is defined by setting the set of queries equal to the set of keys. Therefore, SA
produces again a set of N weighted values. Combining SA with an NP-encoder, i.e., applying SA
to the set {fx(xn) , rn}Nn=1 of inputs xn and corresponding latent observations rn (where we also
consider a possible nonlinear transformation fx of the inputs) and subsequently applying MA yields
an interesting baseline for our proposed BA. Indeed, similar to BA, SA computes a weighted sum of
the latent observations rn. Note, however, that SA weighs each latent observation according to some
form of spatial relationship of the corresponding input with all other latent observations in the context
set. In contrast, BA’s weight for a given latent observation is based only on features computed from
the context tuple corresponding to this very latent observation and allows to incorporate an estimation
of the amount of information contained in the context tuple into the aggregation (cf. Sec. 4.1). This
leads to several computational advantages of BA over SA: (i) SA scales quadratically in the number
N of context tuples, as it has to be evaluated on all N2 pairs of context tuples. In contrast, BA
scales linearly with N . (ii) BA allows for efficient incremental updates when context data arrives
sequentially (cf. Eq. (9)), while using SA does not provide this possibility: it requires to store and
encode the whole context set Dc at once and to subsequently aggregate the whole set of resulting
(SA-weighted) latent observations.

The results in Tab. 6, Sec. 5 show that multihead SA leads to significant improvements in predictive
performance compared to vanilla MA. Therefore, a combination of BA with self-attentive encoders
seems promising in situations where computational disadvantages can be accepted in favour of
increased predictive performance. Note that BA relies on a second encoder output σ2

rn (in addition to
the latent observation rn) which assesses the information content in each context tuple (xn, yn). As
each SA-weighted rn is informed by the other latent observations in the context set, obviously, one
would have to also process the set of σ2

rn in a manner consistent with the SA-weighting. We leave
such a combination of SA and BA for future research.
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Table 7: Comparison of the predictive log-likelihood of NP-based architectures with two simple GP-
based baselines, (i) Vanilla GP (optimizes the hyperparameters individually on each target task and
ignores the source data) (ii) Multi-task GP (optimizes one set of hyperparameters on all source tasks
and uses them without further adaptation on the target tasks). Both GP implementations use RBF-
kernels. As in the main text, we average performance over context sets with sizes N ∈ {0, ..., 64}
for RBF GP and N ∈ {0, ..., 20} for the other experiments. Multi-task GP constitutes the optimal
model (assuming it fits the hyperparameters perfectly) for the RBF GP experiment, which explains its
superior performance. On the Quadratic 1D experiment, Multi-task GP still performs better than the
other methods as this function class shows a relatively low degree of variability. In contrast, on more
complex experiments like Quadratic 3D and the Furuta dynamics, none of the GP variants is able
to produce meaningful results given the small budget of at most 20 context points, while NP-based
methods produce predictions of high quality as they incorporate the source data more efficiently.

NPs with MC-loss GP
BA MA Vanilla Multi-task

RBF GP 1.62± 0.05 1.07± 0.05 1.96 2.99
Quadratic 1D, L = 64 1.71± 0.23 1.27± 0.06 −1.56 2.11
Quadratic 3D, L = 128 −1.79± 0.07 −2.14± 0.05 −472.76 −173.78
Furuta Dynamics 8.25± 0.33 7.55± 0.24 −6.16 −2.47

7.4 NEURAL PROCESS-BASED MODELS IN THE CONTEXT OF SCALABLE PROBABILISTIC
REGRESSION

We discuss in more detail how NP-based models relate to other existing methods for (scalable)
probabilistic regression, such as (multi-task) GPs (Rasmussen and Williams, 2005; Bardenet et al.,
2013; Yogatama and Mann, 2014; Golovin et al., 2017), Bayesian neural networks (BNNs) (MacKay,
1992; Gal and Ghahramani, 2016), and DeepGPs (Damianou and Lawrence, 2013).

NPs are motivated in Garnelo et al. (2018a;b), Kim et al. (2019), as well as in our Sec. 1, as models
which combine the computational efficiency of neural networks with well-calibrated uncertainty
estimates (like those of GPs). Indeed, NPs scale linearly in the number N of context and M of target
data points, i.e., like O(N +M), while GPs scale like O(N3 +M2). Furthermore, NPs are shown
to exhibit well-calibrated uncertainty estimates. In this sense, NPs can be counted as members of the
family of scalable probabilistic regression methods.

A central aspect of NP training which distinguishes NPs from a range of standard methods is that
they are trained in a multi-task fashion (cf. Sec. 3). This means that NPs rely on data from a set of
related source tasks from which they automatically learn powerful priors and the ability to adapt
quickly to unseen target tasks. This multi-task training procedure of NPs scales linearly in the number
L of source tasks, which makes it possible to train these architectures on large amounts of source
data. Applying GPs in such a multi-task setting can be challenging, especially for large numbers of
source tasks. Similarly, BNNs as well as DeepGPs are in their vanilla forms specifically designed for
the single-task setting. Therefore, GPs, BNNs, and DeepGPs are not directly applicable in the NP
multi-task setting, which is why they are typically not considered as baselines for NP-based models,
as discussed in (Kim et al., 2019).

The experiments presented in Garnelo et al. (2018a;b) and Kim et al. (2019) focus mainly on
evaluating NPs in the context of few-shot probabilistic regression, i.e., on demonstrating the data-
efficiency of NPs on the target task after training on data from a range of source tasks. In contrast,
the application of NPs in situations with large (> 1000) numbers of context/target points per task
has to the best of our knowledge not yet been investigated in detail in the literature. Furthermore,
it has not been studied how to apply NPs in situations where only a single or very few source tasks
are available. The focus of our paper is a clear-cut comparison of the performance of our BA with
traditional MA in the context of NP-based models. Therefore, we also consider experiments similar
to those presented in (Garnelo et al., 2018a;b; Kim et al., 2019) and leave further comparisons with
existing methods for (multi-task) probabilistic regressions for future work.

Nevertheless, to illustrate this discussion, we provide two simple GP-based baseline methods: (i) a
vanilla GP, which optimizes the hyperparameters on each target task individually and does not use
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the source data, and (ii) a naive but easily interpretable example of a multi-task GP, which optimizes
one set of hyperparameters on all source tasks and uses it for predictions on the target tasks without
further adaptation. The results in Tab. 7 show that those GP-based models can only compete with
NPs on function classes where either the inductive bias as given by the kernel functions fits the data
well (RBF GP), or on function classes which exhibit a relatively low degree of variablity (Quadratic
1D). On more complex function classes, NPs produce predictions of much better quality, as they
incorporate the source data more efficiently.

7.5 EXPERIMENTAL DETAILS

We provide details about the data sets as well as about the experimental setup used in our experiments
in Sec. 5.

7.5.1 DATA GENERATION

In our experiments, we use several classes of functions to evaluate the architectures under considera-
tion. To generate training data from these function classes, we sample L random tasks (as described
in Sec. 5), and Ntot random input locations x for each task. For each minibatch of training tasks,
we uniformly sample a context set size N ∈ {nmin, . . . , nmax} and use a random subset of N data
points from each task as context sets Dc. The remaining M = Ntot −N data points are used as the
target sets Dt (cf. App. 7.5.3 for the special case of the VI likelihood approximation). Tab. 8 provides
details about the data generation process.

GP Samples. We sample one-dimensional functions f : R→ R from GP priors with three different
stationary kernel functions as proposed by Gordon et al. (2020).

A radial basis functions (RBF) kernel with lenghtscale l = 1.0:

kRBF (r) ≡ exp
(
−0.5r2

)
. (22)

A weakly periodic kernel:

kWP (r) ≡ exp
(
−2 sin (0.5r)

2 − 0.125r2
)
. (23)

A Matern-5/2 kernel with lengthscale l = 0.25:

kM5/2 (r) ≡
(

1 +

√
5r

0.25
+

5r2

3 · 0.252

)
exp

(
−
√

5r

0.25

)
. (24)

Quadratic Functions. We consider two classes of quadratic functions. The first class
fQ,1D : R→ R is defined on a one-dimensional domain and parametrized by three parameters
a, b, c ∈ R:

fQ,1D (x) ≡ a2 (x+ b)
2

+ c. (25)

The second class fQ,3D : R3 → R is defined on a three-dimensional domain and also parametrized
by three parameters a, b, c ∈ R:

fQ,3D (x1, x2, x3) ≡ 0.5a
(
x2

1 + x2
2 + x2

3

)
+ b (x1 + x2 + x3) + 3c. (26)

This function class was proposed in Perrone et al. (2018).

For both function classes we add Gaussian noise with standard deviation σn to the evaluations,
cf. Tab. 8.

Furuta Pendulum Dynamics. We consider a function class obtained by integrating the non-linear
equations of motion governing the dynamics of a Furuta pendulum (Furuta et al., 1992; Cazzolato
and Prime, 2011) for a time span of ∆t = 0.1 s. More concretely, we consider the mapping

Θ (t)→ Θ (t+ ∆t)−Θ (t) , (27)
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Table 8: Input spaces and parameters used to generate data for training and testing the architectures
discussed in the main part of this paper. U (a, b) denotes the uniform distribution on the interval [a, b],
and, likewise U {a, a+ n} denotes the uniform distribution on the set {a, a+ 1, . . . , a+ n}.

Symbol Description Value/Sampling distribution
GP Samples

x Input U (−2.0,+2.0)
Ntot Number of data points per task 128
{nmin, . . . nmax} Context set sizes during training {3, . . . , 50}

1D Quadratic Functions
x Input U (−1.0,+1.0)
a Parameter U (−0.5,+1.5)
b Parameter U (−0.9,+0.9)
c Parameter U (−1.0,+1.0)
σn Noise standard deviation 0.01
Ntot Number of data points per task 128
{nmin, . . . nmax} Context set sizes during training U{0, . . . , 20}

3D Quadratic Functions
x1, x2, x3 Inputs U (−1.0,+1.0)
a, b, c Parameters U (+0.1,+10.0)
σn Noise standard deviation 0.01
Ntot Number of data points per task 128
{nmin, . . . nmax} Context set sizes during training U{0, . . . , 20}

Furuta Dynamics
θarm, θpend Input angles U (0.0, 2π rad)

θ̇arm, θ̇pend Input angular velocities U (−2π rad/0.5 s, 2π rad/0.5 s)
marm Mass arm U

(
6.0 · 10−2 kg, 6.0 · 10−1 kg

)
mpend Mass pendulum U

(
1.5 · 10−2 kg, 1.5 · 10−1 kg

)
larm Length arm U

(
5.6 · 10−2 m, 5.6 · 10−1 m

)
Larm Distance joint arm — mass arm U

(
1.0 · 10−1 m, 3.0 · 10−1 m

)
Lpend Distance joint pend. — mass pend. U

(
1.0 · 10−1 m, 3.0 · 10−1 m

)
barm Damping constant arm U

(
2.0 · 10−5 Nms, 2.0 · 10−3 Nms

)
bpend Damping constant pendulum U

(
5.6 · 10−5 Nms, 5.6 · 10−3 Nms

)
στ,arm Action noise standard dev. arm 0.5 Nm
στ,pend Action noise standard dev. pend. 0.5 Nm
Ntot Number of data points per task 256
{nmin, . . . nmax} Context set sizes during training U{0, . . . , 20}

2D Image Completion MNIST
x1, x2 Input pixel locations U {0, 27} (scaled to [0, 1])
Ntot Number of data points per task 28 · 28
{nmin, . . . nmax} Context set sizes during training U{0, . . . , 28 · 28/2}

where Θ =
[
θarm (t) , θpend (t) , θ̇arm (t) , θ̇pend (t)

]T
denotes the four-dimensional vector describ-

ing the dynamical state of the Furuta pendulum. The Furuta pendulum is parametrized by seven
parameters (two masses, three lengths, two damping constants) as detailed in Tab. 8. During
training, we provide L = 64 tasks, corresponding to 64 different parameter configurations. We
consider the free system and generate noise by applying random torques at each integration time step
(∆tEuler = 0.001 s) to the joints of the arm and pendulum drawn from Gaussian distributions with
standard deviations στ,pend, στ,arm, respectively.
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(d) MA + VI (LP-NP), MA + MC.

Figure 4: Model architectures used for our experiments in Sec. 5. For the ANP architecture we refer
the reader to Kim et al. (2019). Orange rectangles denote MLPs. Blue rectangles denote aggregation
operations. Variables in green rectangles are sampled from normal distributions with parameters
given by the incoming nodes. To arrive at a fair comparison, we optimize all MLP architectures,
the latent space dimensionality dz , as well as the Adam learning rate, individually for all model
architectures and all experiments, cf. App. 7.5.3.

2D Image Completion. For this task, we use the MNIST database of 28 × 28 images of
handwritten digits (LeCun and Cortes, 2010), and define 2D functions mapping pixel locations
x1, x2 ∈ {0, . . . 27} (scaled to the unit square) to the corresponding pixel intensities y ∈ {0, . . . , 255}
(scaled to the unit interval), cf. Tab. 8. One training task corresponds to one image drawn randomly
from the training set (consisting of 60000 images) and for evaluation we use a subset of the test set
(consisting of 10000 images).

7.5.2 MODEL ARCHITECTURES

We provide the detailed architectures used for the experiments in Sec. 5 in Fig. 4. For ANP we use
multihead cross attention and refer the reader to Kim et al. (2019) for details about the architecture.

7.5.3 HYPERPARAMETERS AND HYPERPARAMETER OPTIMIZATION

To arrive at a fair comparison of our BA with MA, it is imperative to use optimal model architectures
for each aggregation method and likelihood approximation under consideration. Therefore, we
optimize the number of hidden layers and the number of hidden units per layer of each encoder and
decoder MLP (as shown in Fig. 4), individually for each model architecture and each experiment.
For the ANP, we also optimize the multihead attention MLPs. We further optimize the latent space
dimensionality dz and the learning rate of the Adam optimizer. For this hyperparameter optimization,
we use the Optuna framework (Akiba et al., 2019) with TPE Sampler and Hyperband pruner (Li et al.,
2017). We consistently use a minibatch size of 16. Further, we use S = 10 latent samples to evaluate
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the MC likelihood approximation during training. To evaluate the VI likelihood approximation, we
sample target set sizes between Ntot and N in each training epoch, cf. Tab. 8.

7.5.4 EVALUATION PROCEDURE

To evaluate the performance of the various model architectures we generate L = 256 unseen test
tasks with target sets Dt` consisting of M = 256 data points each and compute the average posterior

predictive log-likelihood 1
L

1
M

∑L
`=1 log p

(
yt`,1:M

∣∣∣xt`,1:M ,Dc` , θ
)

, given context sets Dc` of size N .

Depending on the architecture, we approximate the posterior predictive log-likelihood according to:

• For BA + PB likelihood approximation:

1

L

1

M

L∑
`=1

M∑
m=1

log p
(
yt`,m

∣∣xt`,m, µz,`, σ2
z,`, θ

)
. (28)

• For MA + deterministic loss (= CNP):

1

L

1

M

L∑
`=1

M∑
m=1

log p
(
yt`,m

∣∣xt`,m, r̄`, θ) . (29)

• For architectures employing sampling-based likelihood approximations (VI, MC-LL) we
report the joint log-likelihood over all data points in a test set, i.e.

1

L

1

M

L∑
`=1

log

∫
qφ (z`| Dc`)

M∏
m=1

p
(
yt`,m

∣∣xt`,m, z`, θ) dz` (30)

≈ 1

L

1

M

L∑
`=1

log
1

S

S∑
s=1

M∏
m=1

p
(
yt`,m

∣∣xt`,m, z`,s, θ) (31)

= − 1

M
logS +

1

L

1

M

L∑
l=1

S

logsumexp
s=1

(
M∑
m=1

log p
(
yt`,m

∣∣xt`,m, z`,s, θ)
)
, (32)

where z`,s ∼ qφ (z| D`). We employ S = 25 latent samples.

To compute the log-likelihood values given in tables, we additionally average over various context set
sizes N as detailed in the main part of this paper.

We report the mean posterior predictive log-likelihood computed in this way w.r.t. 10 training runs
with different random seeds together with 95% confidence intervals
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Table 9: Relative evaluation runtimes and numbers of parameters of the optimized network archi-
tectures on the GP tasks. The deterministic methods (PB, det.) are much more efficient regarding
evaluation runtime, as they require only on forward pass per prediction, while the sampling-based
approaches (VI, MC) require multiple forward passes (each corresponding to one latent sample) to
compute their predictions. We use S = 25 latent samples, as described in App. 7.5.4. Furthermore,
BA tends to require less complex encoder and decoder network architectures compared to MA,
because it represents a more efficient mechanism to propagate information from the context set to the
latent state.

PB/det. VI MC
BA MA (CNP) BA MA (LP-NP) BA MA

RBF GP Runtime 1 1.4 18 25 32 27
#Parameters 72k 96k 63k 77k 122k 153k

Weakly Periodic GP Runtime 1 1.4 11 10 22 15
#Parameters 51k 87k 48k 72k 87k 89k

Matern-5/2 GP Runtime 1 1.1 6.5 11 15 19
#Parameters 53k 100k 32k 35k 108k 104k

Table 10: Posterior predictive mean squared error (MSE) on all experiments presented in this paper.
We average over the same context set sizes as used to compute the posterior predictive log-likelihood,
cf. Sec. 5, and again use S = 25 latent samples to compute the mean prediction of sampling-based
methods. Our BA consistently improves predictive performance compared to MA not only in terms of
likelihood (as shown in Sec. 5), but also in terms of MSE. Furthermore, while ANP tends to perform
poorly in terms of likelihood (cf. Sec. 5), it’s MSE is improved greatly by the attention mechanism.

PB/det. VI MC ANP
BA MA (CNP) BA MA (LP-NP) BA MA MA + Attention

RBF GP 0.0623± 0.0009 0.0687± 0.0010 0.0736± 0.0005 0.0938± 0.0036 0.0637± 0.0007 0.0741± 0.0012 0.0550± 0.0009
Weakly Periodic GP 0.0679± 0.0007 0.0761± 0.0014 0.0879± 0.0017 0.1326± 0.0518 0.0677± 0.0008 0.0832± 0.0009 0.0592± 0.0009
Matern-5/2 GP 0.2452± 0.0088 0.3021± 0.0035 0.3702± 0.0100 0.6292± 0.1077 0.2321± 0.0019 0.5166± 0.1438 0.1890± 0.0012

Quadratics 1D, L = 64 0.1447± 0.0095 0.1513± 0.0091 0.1757± 0.0128 0.1833± 0.0154 0.1473± 0.0107 0.1636± 0.0082 0.1330± 0.0037
Quadratics 3D, L = 128 190.5± 1.4 195.4± 1.5 253.1± 18.0 278.1± 40.5 196.8± 2.6 206.7± 5.3 192.5± 2.7

Furuta Dynamics 0.1742± 0.0092 0.1989± 0.0095 0.2269± 0.0088 0.2606± 0.0165 0.1758± 0.0124 0.1977± 0.0154 0.1516± 0.0073

2D Image Completion 0.0348± 0.0010 0.0417± 0.0026 – – – – 0.0215± 0.0003

7.6 ADDITIONAL EXPERIMENTAL RESULTS

We provide additional experimental results accompanying the experiments presented in Sec. 5:

• Results for relative evaluation runtimes and numbers of parameters of the optimized network
architectures on the full GP suite of experiments, cf. Tab. 9.

• The posterior predictive mean squared error on all experiments, cf. Tab. 10.
• The context-size dependent results for the predictive posterior log-likelihood for the 1D

and 3D Quadratic experiments, the Furuta dynamics experiment, as well as the 2D image
completion experiment, cf. Fig. 5.

• More detailed plots of the predictions on one-dimensional experiments (1D Quadratics
(Figs. 6, 7), RBF-GP, (Figs. 8, 9), Weakly Periodic GP (Figs. 10, 11), and Matern-5/2 GP
(Figs. 12, 13)).
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Figure 5: Posterior predictive log-likelihood in dependence of the context set size N for the 1D and
3D Quadratic experiments, the Furuta dynamics experiment as well as the 2D image completion
experiment.
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Figure 6: Predictions on two instances (dashed lines) of the 1D quadratic function class, given N = 3
context data points (circles). We plot mean and standard deviation (solid line, shaded area) predictions
together with 10 function samples (for deterministic methods we employ AR sampling).

22



Published as a conference paper at ICLR 2021

0.00 0.25 0.50 0.75 1.00

(a) BA + PB

0.00 0.25 0.50 0.75 1.00

(b) MA + det. (CNP)

0.00 0.25 0.50 0.75 1.00

(c) BA + VI

0.00 0.25 0.50 0.75 1.00

(d) MA + VI (LP-NP)

0.00 0.25 0.50 0.75 1.00

(e) ANP

0.00 0.25 0.50 0.75 1.00

(f) BA + MC-LL

0.00 0.25 0.50 0.75 1.00

(g) MA + MC-LL

Figure 7: Predictions on two instances (dashed lines) of the 1D quadratic function class, given
N = 19 context data points (circles). We plot mean and standard deviation (solid line, shaded area)
predictions together with 10 function samples (for deterministic methods we employ AR sampling).
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Figure 8: Predictions on two instances (dashed lines) of the RBF GP function class, given N = 20
context data points (circles). We plot mean and standard deviation (solid line, shaded area) predictions
together with 10 function samples (for deterministic methods we employ AR sampling).
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Figure 9: Predictions on two instances (dashed lines) of the RBF GP function class, given N = 60
context data points (circles). We plot mean and standard deviation (solid line, shaded area) predictions
together with 10 function samples (for deterministic methods we employ AR sampling).
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(a) BA + PB (b) MA + det. (CNP)

(c) BA + VI (d) MA + VI (LP-NP) (e) ANP

(f) BA + MC-LL (g) MA + MC-LL

Figure 10: Predictions on two instances (dashed lines) of the Weakly Periodic GP function class, given
N = 20 context data points (circles). We plot mean and standard deviation (solid line, shaded area)
predictions together with 10 function samples (for deterministic methods we employ AR sampling).
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(c) BA + VI (d) MA + VI (LP-NP) (e) ANP

(f) BA + MC-LL (g) MA + MC-LL

Figure 11: Predictions on two instances (dashed lines) of the Weakly Periodic GP function class, given
N = 60 context data points (circles). We plot mean and standard deviation (solid line, shaded area)
predictions together with 10 function samples (for deterministic methods we employ AR sampling).

27



Published as a conference paper at ICLR 2021

2 1 0 1 2

(a) BA + PB

2 1 0 1 2

(b) MA + det. (CNP)

2 1 0 1 2

(c) BA + VI

2 1 0 1 2

(d) MA + VI (LP-NP)

2 1 0 1 2

(e) ANP

2 1 0 1 2

(f) BA + MC-LL

2 1 0 1 2

(g) MA + MC-LL

Figure 12: Predictions on two instances (dashed lines) of the Matern-5/2 GP function class, given
N = 20 context data points (circles). We plot mean and standard deviation (solid line, shaded area)
predictions together with 10 function samples (for deterministic methods we employ AR sampling).
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Figure 13: Predictions on two instances (dashed lines) of the Matern-5/2 GP function class, given
N = 60 context data points (circles). We plot mean and standard deviation (solid line, shaded area)
predictions together with 10 function samples (for deterministic methods we employ AR sampling).
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