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ABSTRACT

Deep neural networks are vulnerable to adversarial examples. Adversarial training
(AT) is an effective defense against adversarial examples. However, AT is prone to
overfitting which degrades robustness substantially. Recently, data augmentation
(DA) was shown to be effective in mitigating robust overfitting if appropriately
designed and optimized for AT. This work proposes a new method to automatically
learn online, instance-wise, DA policies to improve robust generalization for AT.
This is the first automated DA method specific for robustness. A novel policy
learning objective, consisting of Vulnerability, Affinity and Diversity, is proposed
and shown to be sufficiently effective and efficient to be practical for automatic DA
generation during AT. Importantly, our method dramatically reduces the cost of
policy search from the 5000 hours of AutoAugment and the 412 hours of IDBH to
9 hours, making automated DA more practical to use for adversarial robustness.
This allows our method to efficiently explore a large search space for a more
effective DA policy and evolve the policy as training progresses. Empirically, our
method is shown to outperform all competitive DA methods across various model
architectures (CNNs and ViTs) and datasets (CIFAR10/100, Imagenette, ImageNet,
SVHN). Our DA policy reinforced vanilla AT to surpass several state-of-the-art
AT methods regarding both accuracy and robustness. It can also be combined with
those advanced AT methods to further boost robustness.

1 INTRODUCTION

Deep neural networks (DNNs) are well known to be vulnerable to infinitesimal yet highly malicious
artificial perturbations in their input, i.e., adversarial examples (Szegedy et al., 2014). Thus far,
adversarial training (AT) has been the most effective defense against adversarial attacks (Athalye
et al., 2018). AT is typically formulated as a min-max optimization problem:

argmin
θ

E[argmax
δ

L(x+ δ;θ)] (1)

where the inner maximization searches for the perturbation δ to maximize the loss, while the outer
minimization searches for the model parameters θ to minimize the loss on the perturbed examples.

One major issue of AT is that it is prone to overfitting (Rice et al., 2020; Wong et al., 2020). Unlike
in standard training (ST), overfitting in AT, a.k.a. robust overfitting (Rice et al., 2020), significantly
impairs adversarial robustness. Many efforts (Li & Spratling, 2023b; Wu et al., 2020; Dong et al.,
2022) have been made to understand robust overfitting and mitigate its effect. One promising
solution is data augmentation (DA), which is a common technique to prevent ST from overfitting.
However, many studies (Rice et al., 2020; Wu et al., 2020; Gowal et al., 2021; Rebuffi et al.,
2021) have revealed that advanced DA methods, originally proposed for ST, often fail to improve
adversarial robustness.Therefore, DA was usually combined with other regularization techniques
such as Stochastic Weight Averaging (SWA) (Rebuffi et al., 2021), Consistency regularization (Tack
et al., 2022) and Separate Batch Normalization (Addepalli et al., 2022) to improve its effectiveness.
However, recent work (Li & Spratling, 2023c) demonstrated that DA alone can significantly improve
AT if it has strong diversity and well-balanced hardness. This suggests that ST and AT may require
different DA strategies, especially in terms of hardness. It is thus necessary to design DA schemes
dedicated to AT.
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Figure 1: An overview of the proposed method (legend in the right column). The top part shows the
pipeline for training the policy model, fplc, while the bottom illustrates the pipeline for training the
target model, ftgt. faft is a model pre-trained on clean data without any augmentation, which is used
to measure the distribution shift caused by data augmentation. Please refer to Section 3 for a detailed
explanation.
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Figure 2: An example of the proposed augmentation sampling procedure. The policy model takes
an image as input and outputs logit values defining multiple, multinomial, probability distributions
corresponding to different sub-policies. A sub-policy code is created by sampling from each of
these distributions, and decoded into a sub-policy, i.e., a transformation and its magnitude. These
transformations are applied, in sequence, to augment the image.

IDBH (Li & Spratling, 2023c) is the first and the latest DA scheme specifically designed for AT.
Despite its impressive robust performance, IDBH employs a heuristic search method to manually
optimize DA. This search process requires a complete AT for every sampled policy, which induces
prohibitive computational cost and scales poorly to large datasets and models. Hence, when the
computational budget is limited, the hyperparameters for IDBH might be found using a reduced
search space and by employing a smaller model, leading to compromised performance.

Another issue is that IDBH, in common with other conventional DA methods such as AutoAugment
(Cubuk et al., 2019) and TrivialAugment (Müller & Hutter, 2021), applies the same strategy to all
samples in the dataset throughout training. The distinctions between different training samples, and
between the model checkpoints at different stages of training, are neglected. We hypothesize that
different data samples at the same stage of training, as well as the same sample at the different stages
of training, demand different DAs. Hence, we conjecture that an improvement in robustness could be
realized by customizing DA for data samples and training stages.

To address the above issues, this work proposes a bi-level optimization framework (see Fig. 1) to
automatically learn Adversarial Robustness by Online Instance-wise Data-augmentation (AROID).
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To the best of our knowledge, AROID is the first automated DA method specific to adversarial
robustness. AROID employs a multi-head DNN-based policy model to map a data sample to a DA
policy (see Fig. 2). This DA policy is defined as a sequence of pre-defined transformations applied
with strength determined by the output of the policy model. This policy model is optimized, alongside
the training of the target model, towards three novel objectives to achieve a target level of hardness
and diversity. DA policies, therefore, are customized for each data instance and evolve with the
target network as training progresses. This in practice produces a more globally optimal DA policy
and thus benefits robustness. Importantly, the proposed policy learning objectives, in contrast to the
conventional ones like validation accuracy (Cubuk et al., 2019), do not reserve a subset of the training
data for validation and do not rely on prohibitively expensive inner loops for training the target model
to evaluate the rewards of the sampled policies. The former ensures the entire training set is available
for training to avoid potential data scarcity. The latter enables policy optimization to be much more
efficient and scalable so that it is more practical for AT. Compared to IDBH in particular, this allows
our approach to explore a larger space of DAs on the target. Taking an example of optimizing the DA
for CIFAR10 and PRN18, AROID took 9 hours using an A100 GPU, IDBH took 412 hours using an
A100 GPU, and AutoAugment took 5000 hours using a P100 GPU (Hataya et al., 2020).

Extensive experiments show that AROID outperforms all competitive DA methods across various
datasets and model architectures while being more efficient than the prior art IDBH. AROID
achieves state-of-the-art robustness for DA methods on the standard benchmarks. Besides, AROID
outperforms, regarding accuracy and robustness, state-of-the-art AT methods. It also complements
such robust training methods and can be combined with them to improve robustness further.

2 RELATED WORK

Robust training. To mitigate overfitting in AT, many methods other than DA, have been previously
proposed. One line of works, IGR (Ross & Doshi-Velez, 2018), CURE (Moosavi-Dezfooli et al.,
2019), AdvLC (Li & Spratling, 2023b), discovered a connection between adversarial vulnerability
and the smoothness of input loss landscape, and promoted robustness by smoothing the input loss
landscape. Meanwhile, Wu et al. (2020) and Chen et al. (2021) found that robust generalization can
be improved by a flat weight loss landscape and proposed AWP and SWA, respectively, to smooth
the weight loss landscape during AT. RWP (Yu et al., 2022) and SEAT (Wang & Wang, 2022) were
later proposed to further refine AWP and SWA, respectively, to increase robustness. Many works,
including MART (Wang et al., 2020), LAS-AT (Jia et al., 2022), ISEAT (Li & Spratling, 2023a),
considered the difference between individual training instances and improved AT through regularizing
in an instance-wise manner. Our proposed approach is also instance-wise, but contrary to existing
methods tackles robust overfitting via DA instead of robust regularization. As shown in Section 4.2,
it works well alone and, more importantly, complements the above techniques.

Data augmentation for ST. Although DA has been a common practice in many fields, we only
review vision-based DA in this section as it is most related to our work. In computer vision, DA can
be generally categorized as: basic, composite and mixup. Basic augmentations refer to a series of
image transformations that can be applied independently. They mainly include crop-based (Random
Crop (He et al., 2016a), Cropshift (Li & Spratling, 2023c), etc.), color-based (Brightness, Contrast,
etc.), geometric-based (Rotation, Shear, etc.) and dropout-based (Cutout (DeVries & Taylor, 2017),
Random Erasing (Zhong et al., 2020), etc.) transformations. Composite augmentations denote the
composition of basic augmentations. Augmentations are composed into a single policy/schedule
usually through two ways: interpolation (Hendrycks* et al., 2020; Wang et al., 2021) and sequencing
(Cubuk et al., 2019; 2020; Müller & Hutter, 2021). Mixup (Zhang et al., 2018), and analogous works
like Cutmix (Yun et al., 2019), can be considered as a special case of interpolation-based composition,
which combines a pair of different images, instead of augmentations, as well as their labels to create
a new image and its label.

Composite augmentations by design have many hyperparameters to optimize. Most previous works,
as well as the pioneering AutoAugment (Cubuk et al., 2019), tackled this issue using automated
machine learning (AutoML). DA policies were optimized towards maximizing validation accuracy
(Cubuk et al., 2019; Lin et al., 2019; Li et al., 2020; Liu et al., 2021), maximizing training loss (Zhang
et al., 2020) or matching the distribution density between the original and augmented data (Lim et al.,
2019; Hataya et al., 2020). Optimization here is particularly challenging since DA operations are
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usually non-differentiable. Major solutions seek to estimate the gradient of DA learning objective
w.r.t. the policy generator or DA operations using, e.g., policy gradient methods (Cubuk et al.,
2019; Zhang et al., 2020; Lin et al., 2019) or reparameterization trick (Li et al., 2020; Hataya et al.,
2020). Alternative optimization techniques include Bayesian optimization (Lim et al., 2019) and
population-based training (Ho et al., 2019). Noticeably, several works like RandAugment (Cubuk
et al., 2020) and TrivialAugment (Müller & Hutter, 2021) found that if the augmentation space
and schedule were appropriately designed, competitive results could be achieved using a simple
hyperparameter grid search or fixed hyperparameters. This implies that in ST these advanced yet
complicated methods may not be necessary. However, it remains an open question if simple search
can still match these advanced optimization methods in AT. Besides, instance-wise DA strategy was
also explored in Cheung & Yeung (2022); Miao et al. (2023) for ST. Our method is the first automated
DA approach specific for AT. We follow the line of policy gradient methods to enable learning DA
policies. A key distinction here is that our policy learning objective is designed to guide the learning
of DA policies towards improved robustness for AT, while the objective of the above methods is to
increase accuracy for ST.

3 OPTIMIZING DATA AUGMENTATION FOR ADVERSARIAL ROBUSTNESS

We propose a method to automatically learn DA alongside AT to improve robust generalization. An
instance-wise DA policy is produced by a policy model and learned by optimizing the policy model
towards three novel objectives. Updating of the policy model and the target model (the one being
adversarially trained for the target task) alternates throughout training (the policy model is updated
every K updates of the target model), yielding an online DA strategy. This online, instance-adaptive,
strategy produces different augmentations for different data instances at different stages of training.

The following notation is used. x ∈ Rd is a d-dimensional sample whose ground truth label is y. xi

refers to i-th sample in a dataset. The model is parameterized by θ. L(x, y;θ) or L(x;θ) for short
denotes the predictive loss evaluated with x w.r.t. the model θ (Cross-Entropy loss was used in all
experiments). ρ(x;θ) computes the adversarial example of x w.r.t. the model θ. pi(x;θ) refers to
the output of the Softmax function applied to the final layer of the model, i.e., the probability at i-th
logit given the input x.

3.1 MODELING THE DATA AUGMENTATION POLICY USING DNNS

Following the design of IDBH (Li & Spratling, 2023c) and TrivialAugment (Müller & Hutter, 2021),
DA is implemented using four types of transformations: flip, crop, color/shape and dropout applied
in order. We implement flip using HorizontalFlip, crop using Cropshift (Li & Spratling, 2023c),
dropout using Erasing1 (Zhong et al., 2020), and color/shape using a set of operations including
Color, Sharpness, Brightness, Contrast, Autocontrast, Equalize, Shear (X and Y), Rotate, Translate
(X and Y), Solarize and Posterize. A dummy operation, Identity, is included in each augmentation
group to allow data to pass through unchanged. More details including the complete augmentation
space are described in Appendix A.

To customize the DA applied to each data instance individually, a policy model parameterized by θplc,
is used to produce a DA policy conditioned on the input data (see Fig. 2). The policy model employs
a DNN backbone to extract features from the data, and multiple, parallel, linear prediction heads on
the top of the extracted features to predict the policy. The policy model used in this work has four
heads corresponding to the four types of DA described above2. The output of a head is converted into
a multinomial distribution where each logit represents a pre-defined sub-policy, i.e., an augmentation
operation associated with a strength/magnitude (e.g. ShearX, 0.1). Different magnitudes of the same
operation are represented by different logits, so that each has its own chance of being sampled. A
particular sequence of sub-policies to apply to the input image are selected based on the probabilities
encoded in the four heads of the policy network.

1Different from the original version applied at half chance, here erasing is always applied but the location
and aspect ratio are randomly sampled from the given range.

2When training on SVHN only three heads were used, as HorizontalFlip is not appropriate for this dataset.
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3.2 OBJECTIVES FOR LEARNING THE DATA AUGMENTATION POLICY

The policy model is trained using three novel objectives: (adversarial) Vulnerability, Affinity and
Diversity. Vulnerability (Li & Spratling, 2023b) measures the loss variation caused by adversarial
perturbation on the augmented data w.r.t. the target model:

Lvul(x;θplc) = L(ρ(x̂;θtgt);θtgt)− L(x̂;θtgt),where x̂ = Φ(x;S(θplc(x))) (2)

Φ(x;S(θplc(x))) augments x by S(θplc(x)), the augmentations sampled from the output distribution
of policy model conditioned on x, so x̂ is the augmented data. A larger Vulnerability indicates that x
becomes more vulnerable to adversarial attack after DA. A common belief about the relationship
between training data and robustness is that AT benefits from adversarially hard samples. From a
geometric perspective, maximizing Vulnerability encourages the policy model to project data into the
previously less-robustified space. Nevertheless, the maximization of Vulnerability, if not constrained,
would likely favor those augmentations producing samples far away from the original distribution.
Training with such augmentations was observed to degrade accuracy and even robustness if accuracy
overly reduced (Li & Spratling, 2023c). Therefore, Vulnerability should be maximized while the
distribution shift caused by augmentation is constrained:

argmax
θplc

Lvul(x;θplc) s.t. ds(x, x̂) ≤ D (3)

where ds(·) measures the distribution shift between two samples and D is a constant. Directly solving
Eq. (3) is intractable, so we convert it into an unconstrained optimization problem by adding a penalty
on the distribution shift as:

argmax
θplc

Lvul(x;θplc)− λ · ds(x, x̂) (4)

where λ is a hyperparameter and a larger λ corresponds to a tighter constraint on distribution shift,
i.e., smaller D. Distribution shift is measured using a variant of the Affinity metric (Gontijo-Lopes
et al., 2021):

ds(x, x̂) = Laft(x;θplc) = L(x̂;θaft)− L(x;θaft) (5)
Affinity captures the loss variation caused by DA w.r.t. a model θaft (called the affinity model): a
model pre-trained on the original data (i.e., without any data augmentation). Affinity increases as the
augmentation proposed by the policy network makes data harder for the affinity model to correctly
classify. By substituting Eq. (5) into Eq. (4), we obtain an adjustable Hardness objective:

Lhrd(x;θplc) = Lvul(x;θplc)− λ · Laft(x;θplc) (6)

This encourages the DA produced by the policy model to be at a level of hardness defined by λ (larger
values of λ corresponding to lower hardness). Ideally, λ should be tuned to ensure the distribution
shift caused by DA is sufficient to benefit robustness while not being so severe as to harm accuracy.

Last, we introduce a Diversity objective to promote diverse DA. Diversity enforces a relaxed uniform
distribution prior over the logits of the policy model, i.e., the output augmentation distribution:

Lh
div(x) =

1

C
[−

ph
i <l∑
i

log(phi (x;θplc)) +

ph
j >u∑
j

log(phj (x;θplc))] (7)

C is the total count of logits violating either lower (l), or upper (u) limits and h is the index of the
prediction head. Intuitively speaking, the Diversity loss penalizes overly small and large probabilities,
helping to constrain the distribution to lie in a pre-defined range (l, u). As l and u approach the mean
probability, the enforced prior becomes closer to a uniform distribution, which corresponds to a highly
diverse DA policy. Diversity encourages the policy model to avoid the over-exploitation of certain
augmentations and to explore other candidate augmentations. Note that Diversity is applied to the
color/shape head in a hierarchical way: type-wise and strength-wise inside each type of augmentation.

Combining the above three objectives together, the policy model is trained to optimize:

argmin
θplc

−Ei∈BLhrd(xi;θplc) + β · Eh∈HLh
div(x;θplc) (8)

where B is the batch size and β trades-off hardness against diversity. Lh
div is calculated across

instances in a batch, so no need for averaging over B like Lhrd. The design of Eq. (8) reflects the
prior that DA should have strong diversity and well-balanced hardness to be effective for AT (Li &
Spratling, 2023c). Appendix B explains how the proposed method mitigates robust overfitting.
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Algorithm 1. High-level training procedures of the
proposed method. α is the learning rate. M is the
number of training iterations.

for i = 1 to M do
// for every K iterations
if i %K == 0 then

// update the policy
model by Algo. 2

end
// the policy distribution
d = θplc(xi)
// sample & apply

augmentations
x̂i = Φ(xi;S(d))
L = L(ρ(x̂i;θtgt);θtgt)
// update the target model
θtgt = θtgt − αtgt · ∇θtgtL

end

Algorithm 2. Pseudo code of training the policy
model for one iteration. x is randomly sampled
from the entire dataset.
d = θplc(x)
// same x used by all traj.
for t = 1 to T do

x̂(t) = Φ(x, S(d))

P(t) =
∏H

h=1 p
h
(t) // prob of traj

t

L(t)
hrd // computed by Eq. (6)

end
˜Lhrd = 1

T

∑T
t=1 L

(t)
hrd // mean L(t)

hrd

L = 1
T

∑T
t=1 log(P(t))[L

(t)
hrd − ˜Lhrd]

L(h)
div // computed using Eq. (7)

L = −L+ β 1
H

∑H
h=1 L

(h)
div

θplc = θplc − αplc · ∇θplc
L

3.3 OPTIMIZATION

The entire training is a bi-level optimization process (Algo. 1): the target and policy models are
updated alternately. This online training strategy adapts the policy model to the varying demands for
DA from the target model at the different stages of training. The target model is optimized using AT
with the augmentation sampled from the policy model:

argmin
θtgt

L(ρ(Φ(x;S(θplc(x)));θtgt);θtgt) (9)

After every K updates of the target model, the policy model is updated using the gradients of the
policy learning loss as follows:

Eq. (8)
∂θplc

= −∂Ei∈BLhrd(xi;θplc)

∂θplc
+ β

Eh∈HLh
div(x;θplc)

∂θplc
(10)

The latter can be derived directly, while the former ∂Lhrd

∂θplc
cannot because the involved augmentation

operations are non-differentiable. To estimate these gradients, we apply the REINFORCE algorithm
(Williams, 1992) with baseline trick to reduce the variance of gradient estimation. It first samples
T augmentations, named trajectories, in parallel from the policy model and then computes the real
Hardness value, L(t)

hrd, using Eq. (6) independently on each trajectory t. The gradients are estimated
(see Appendix C for derivation) as follows:

∂Ei∈BLhrd(xi;θplc)

∂θplc
≈ 1

B · T

B∑
i=1

T∑
t=1

H∑
h=1

∂ log(ph(t)(xi;θplc))

∂θplc
[L(t)

hrd(xi;θplc)− ˜Lhrd] (11)

ph(t) is the probability of the sampled sub-policy at the h-th head and ˜Lhrd = 1
T

∑T
t=1 L

(t)
hrd(xi;θplc)

is the mean Lhrd (the baseline used in the baseline trick) averaged over the trajectories. Algo. 2
illustrates one iteration of updating the policy model. Note that, when one model is being updated,
backpropagation is blocked through the other. The affinity model, used in calculating the Affinity
metric, is fixed throughout training. Appendix D discusses the stability of our method.

3.4 EFFICIENCY

The cost of AROID is composed of two parts: policy learning and DA sampling. Policy learning can
be one-time expense if AROID is used in an offline way: DA policies are sampled from pre-trained
policy models. DA sampling requires only one forward pass of the policy model, which can be
negligible because the policy model can be much smaller than the target model while not hurting the
performance. Therefore, AROID in offline mode is roughly as efficient as other regular DA methods.
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Table 1: Comparison of the performance of various DA methods. The best and second best results
are highlighted in each column. The baseline augmentation was Horizontal Flip plus Random Crop.

DA Method
CIFAR10 CIFAR100 Imagenette

WRN34-10 ViT-B/4 WRN34-10 PRN18 ViT-B/16

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

baseline 85.83 52.26 83.04 46.72 61.44 27.98 55.04 24.83 92.73 66.47
Cutout 86.95 52.89 83.61 48.67 59.04 27.51 57.37 24.51 93.27 67.20
Cutmix 86.88 53.38 80.83 47.24 58.57 27.49 57.32 25.54 93.87 70.20
AutoAugment 87.71 54.60 81.96 47.47 64.10 29.08 58.51 25.28 95.13 67.60
TrivialAugment 87.35 53.86 80.55 46.39 62.55 28.97 57.24 24.82 95.25 69.00
IDBH 88.61 55.29 85.09 49.63 60.93 29.03 59.38 26.24 95.20 69.93
AROID (ours) 88.99 55.91 87.34 51.25 64.44 29.75 60.17 26.56 94.88 71.32

In online mode, in the worst case, AROID adds about 43.6% extra computation to baseline AT (see
calculation in Appendix E.1) when T = 8 and K = 5. This is less than the overhead 52.5% of the
state-of-the-art AT method LAS-AT (Jia et al., 2022) and substantially less than the search cost of
IDBH and AutoAugment (compared in Section 4.5). Furthermore, we observed that AROID can still
achieve robustness higher than other competitors with a much smaller policy model (Appendix G.5.2),
reduced T and increased K (Section 4.5) for improved efficiency. For example, setting T = 4 and
K = 20, the overhead is only about 10% compared to baseline AT. Another efficiency concern, as
for all other deep learning methods, is hyperparameter optimization. Appendix E.2 discusses how
this can be done efficiently so that AROID can be fast adapted to a new setting.

4 EXPERIMENTS

The experiments in this section were based on the following setup unless otherwise specified. We
used model architectures WideResNet34-10 (WRN34-10) (Zagoruyko & Komodakis, 2016), Vision
Transformer (ViT-B/16 and ViT-B/4) (Dosovitskiy et al., 2021) and PreAct ResNet-18 (PRN18) (He
et al., 2016b). We used ℓ∞ PGD10 for AT and AutoAttack (Croce & Hein, 2020) for evaluating
adversarial robustness. By default, AROID is trained with T = 8 and K = 5. Please refer to
Appendix F for the detailed experimental settings and the values of other hyper-parameters.

4.1 BENCHMARKING DATA AUGMENTATION ON ADVERSARIAL ROBUSTNESS

Tab. 1 compares our proposed method against existing DA methods. AROID outperforms all
existing methods regarding robustness across all four tested settings. The improvement over the
previous best method is particularly significant for ViT-B on CIFAR10 (+1.62%) and Imagenette
(+1.12%). Note that in most cases IDBH is the only method whose robustness is close to ours.
However, our method is much more efficient than IDBH in terms of policy search (shown in
Section 4.5). If our method is compared only to those methods with a computational cost the same
or less than AROID’s, i.e., excluding IDBH and AutoAugment, the improvement over the second
best method is +2.05%/2.58%/1.12%/1.02% for the four experiments. Furthermore, we highlight the
substantial improvement over the baseline of our method, +3.65%/4.53%/4.85%/1.73%, in these four
settings.

In addition, AROID also achieves the highest accuracy in three of the four tested settings, and in
the fourth setting (Imagenette) the accuracy gap between the best method and ours is marginal (0.37%).
Overall, our method significantly improves both accuracy and robustness, achieving a much better
trade-off between accuracy and robustness. The consistent superior performance of our method,
across various datasets (low and high resolution, simple and complex) and model architectures (CNNs
and ViTs, small and large capacity), suggests that it has a good generalization ability. To ensure
the reliability of our evaluation, the result of robustness evaluated by alternative attacks is given in
Appendix G.1.
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Table 2: The performance of various robust training (RT) meth-
ods with baseline (HorizontalFlip+RandomCrop) and our aug-
mentations for WRN34-10 on CIFAR10.

RT method DA method Accuracy Robustness

AT (Madry et al., 2018) baseline 85.83±.76 52.26±.02
AT-SWA (Rebuffi et al., 2021) baseline 84.30±.14 54.29±.15
AT-AWP (Wu et al., 2020) baseline 85.93±.25 54.34±.40
AT-RWP (Yu et al., 2022) baseline 86.86 ±.51 54.61±.11
MART (Wang et al., 2020) baseline 84.17 51.10
MART-AWP (Wu et al., 2020) baseline 84.43 54.23
SEAT (Wang & Wang, 2022) baseline 86.44±.12 55.67±.22
LAS-AT (Jia et al., 2022) baseline 86.23 53.58
LAS-AWP (Jia et al., 2022) baseline 87.74 55.52
AT (Madry et al., 2018) AROID (ours) 88.99±.24 55.91±.25
AT-SWA AROID (ours) 87.84±.16 56.67±.21
AT-AWP AROID (ours) 87.94±.11 56.98±.20
AT-AWP-SWA AROID (ours) 88.39±.10 57.03±.01

Table 3: The result of AROID on
ImageNet with ConvNeXt-T.

DA method Accuracy Robustness

baseline 71.22 36.22
AutoAugment 70.42 37.80
AROID (ours) 71.62 40.40

Table 4: The performance of our
method when the policy model is
pre-trained (AROID-T) or trained
on-the-fly (AROID) for WRN34-10
on CIFAR10.
Policy source Accuracy Robustness

AROID-T 88.76 ± .14 55.61 ± .14
AROID 88.99 ± .24 55.91 ± .25

4.2 COMPARISON WITH STATE-OF-THE-ART ROBUST TRAINING METHODS

Tab. 2 compares our method against state-of-the-art robust training methods. It can be seen that
AROID substantially improves vanilla AT in terms of accuracy (by 3.16%) and robustness (by 3.65%).
This improvement is sufficient to boost the performance of vanilla AT to surpass the state-of-the-art
robust training methods like SEAT and LAS-AWP in terms of both accuracy and robustness. This
suggests that our method achieved a better trade-off between accuracy and robustness while boosting
robustness. More importantly, our method, as it is based on DA, can be easily integrated into the
pipeline of existing robust training methods and, as our results show, is complementary to them. By
combining with SWA and/or AWP, our method substantially improves robustness even further while
still maintaining an accuracy higher than that achieved by others methods. Appendix G.3 compares
AROID against more state-of-the-art methods.

4.3 GENERALIZATION TO A LARGE-SCALE DATASET

To further test the generalizability and scalability of our method to a large-scale dataset, we train
AROID on ImageNet (Deng et al., 2009) with ConvNeXt-T (Liu et al., 2022). Some DA methods are
missing in this comparison due to the limit of computational resource (explained in Appendix F.4).
As shown in Tab. 3, AROID significantly improves robustness over the baseline by 4.18% and
AutoAugment by 2.6%. It also achieves the highest accuracy among the tested methods. Overall,
AROID is able to scale and generalize to ImageNet.

4.4 TRANSFERABILITY OF A LEARNED DATA AUGMENTATION POLICY

This section assesses the effectiveness of offline AROID: sampling DA policies from pre-trained
policy models. This transferred version of AROID is called AROID-T. At each epoch of training
the target network, AROID-T uses a policy network checkpoint saved at the corresponding epoch
when using AROID. We consider the case where AROID-T is used to train a target network with the
same architecture on the same dataset as was used when creating the policy network checkpoints. We
did not test the transferability across different training setups such as model architectures and robust
training methods, because it is expected that the required DA policies will differ, especially when the
capacity of the target model is considerably different (Li & Spratling, 2023c).

As shown in Tab. 4, AROID-T achieved a robustness of 55.61% which is slightly lower than that
of AROID (55.91%). Note that the result of AROID-T is still better than that of the previous best
DA-based method (IDBH 55.29%, see Tab. 1), and is close to the result of the best robust training
method (SEAT 55.67%, see Tab. 2). Therefore, the policy learned by AROID is able to transfer to a
reasonable degree, at least when using the same architecture and training settings.

8



Under review as a conference paper at ICLR 2024

Table 5: The cost of policy search for automated DA methods using PRN18 on CIFAR10. AROID
is used in online mode. The size of search space counts the possible combinations of probabilities
and magnitudes. Our search space is uncountable due to its continuous range of probability, and is
much larger than that of IDBH as it covers a much wider range of probabilities and magnitudes. Time
denotes the total hours required for one search over the search space using an Nvidia A100 GPU for
IDBH and AROID and a P100 GPU for AutoAugment (data is copied from Hataya et al. (2020)).

Method K T Acc. Rob. Search Space Time
Prior dep. Probability Magnitude Size

AutoAugment - - 83.27 49.20 No discrete discrete 2.9× 1032 5000
IDBH - - 84.23 50.47 Yes discrete discrete 80 412.83
AROID 5 8 84.68 50.57 No continuous discrete uncountable 9.51
AROID 20 8 84.11 50.45 No continuous discrete uncountable 6.85
AROID 20 4 83.63 50.52 No continuous discrete uncountable 6.24

4.5 COMPARISON OF POLICY SEARCH COSTS

We compare here the cost of policy search of AROID against other automated DA methods, i.e.,
AutoAugment and IDBH. Before comparison, it is important to be aware that the search cost for
IDBH increases linearly with the size of search space, while the cost of AROID stays approximately
constant. IDBH thus uses a reduced search space that is much smaller than the search space of
AROID. However, reducing the search space depends on prior knowledge about the training datasets,
which may not generalize to other datasets. Moreover, scaling IDBH to our larger search space is
intractable, and it would be even more intractable if IDBH was applied to find DAs for each data
instance at each stage of training, as is done by AROID.

Even in the most expensive configuration (K = 5 and T = 8), AROID is substantially cheaper than
IDBH and AutoAugment regarding the cost of policy search as shown in Tab. 5. The computational
efficiency of AROID can be further increased by reducing the policy update frequency (increasing
K) and/or decreasing the number of trajectories T , while still matching the robustness of IDBH. If
IDBH and AutoAugment were restricted to use the same, much lower, budget for searching for a
DA policy, given the huge gap, we suspect that they may find nothing useful. Last, even ignoring the
training time of the DA policy and comparing AROID used in an offline manner, AROID-T, it still
outperforms IDBH and AutoAugment (Tabs. 1 and 4).

4.6 ABLATION STUDY AND VISUALIZATION

Ablation study is conducted in Appendix G.5 including the sensitivity of AROID to its hyperparame-
ters and the architecture of policy model, and the comparison of learned policy to uniform sampling.
Besides, the learned DA policies are visualized in Appendix H. We observe that the learned DA
policies vary among instances and evolve during training. Furthermore, the augmentation preference
of the learned DA policies is consistent to the previous findings (Cubuk et al., 2019; Rebuffi et al.,
2021), which verifies AROID’s effectiveness.

5 CONCLUSIONS

This work introduces an approach, dubbed AROID, to efficiently learn online, instance-wise, DA poli-
cies for improved robust generalization in AT. AROID is the first automated DA method specific for
AT. Extensive experiments show its superiority over both alternative DA methods and contemporary
AT methods in terms of accuracy and robustness. This confirms the necessity of optimizing DA for
improved adversarial robustness. The learned DA policies are visualized to verify the effectiveness of
AROID and understand the preference of AT for DA.

However, AROID has some limitations as well. First, despite being more efficient than IDBH, it still
adds extra computational burden to training, unless AROID-T is used. This could harm its scalability
to larger datasets and model architectures. Second, the Diversity objective enforces a minimal chance
(set by the lower limit) of applying harmful transformations and/or harmful magnitudes if they are
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included in the search space. This constrains the ability of AROID to explore a wider (less filtered)
search space. Future works could investigate more efficient AutoML algorithms for learning DA
policies for AT, and design new policy learning objectives to reduce the number of hyperparameters
and alleviate the side-effect of Diversity.
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Table 6: Augmentation space

Flip Crop Color/Shape Dropout

operations magnitudes count operations magnitudes count operations magnitudes count operations magnitudes count

Identity - 1 Identity - 1 Identity - 1 Identity - 1
Horiz. Flip - 1 Cropshift 1, 2, 3, 4, 5, 15 Autocontrast - 1 Erasing .05, .10, 10

6, 7, 8, 9, Equalize - 1 .15, .20,
10, 11, 12, Posterize 4, 5, 6, 7, 8 5 .25, .30,
13, 14, 15 Solarize 25, 51, 76, 102, 10 .35, .40,

128, 153, 179, .45, .50
204, 230, 256

Rotate 3, 6, 9, 12, 15, 10
18, 21, 24, 27, 30

ShearX .03, .06, .09, 10
.12, .15, .18,
.21, .24, .27, .30

ShearY .03, .06, .09, 10
.12, .15, .18,
.21, .24, .27, .30

TranslateX 1, 2, 3, 4, 5, 10
6, 7, 8, 9, 10

TranslateY 1, 2, 3, 4, 5, 10
6, 7, 8, 9, 10

Color .28, .46, .64, .82, 10
1.0, 1.18, 1.36,
1.54, 1.72, 1.9

Contrast .28, .46, .64, .82, 10
1.0, 1.18, 1.36,
1.54, 1.72, 1.9

Brightness .28, .46, .64, .82, 10
1.0, 1.18, 1.36,
1.54, 1.72, 1.9

Sharpness .28, .46, .64, .82, 10
1.0, 1.18, 1.36,
1.54, 1.72, 1.9

A DA SEARCH SPACE FOR AROID

Tab. 6 shows the complete DA search space used by AROID. For Color/Shape group, we adopted the
same operations as RandAugment’s, but discretize the range of magnitudes for each operation into 10
even values if possible. For Erasing in Dropout group, the magnitude corresponds to the scale (the
proportion of erased area against input image), while the aspect ratio (of erased area) is uniformly
sampled from range (0.3, 3.3). The search space only defines the operations and their magnitudes,
while the probabilities of applying these operations are learned by AROID.

B AROID’S MECHANISM FOR MITIGATING ROBUST OVERFITTING

Below is some insight into the effectiveness of AROID. Robust generalization has been shown in
Schmidt et al. (2018) to require much more data than ST. That’s why data augmentation in general
can alleviate robust overfitting. Next, focusing on “dynamic”, it has been observed in ST that different
training stages (Hataya et al., 2022; Lin et al., 2019) and different classes/instances (Cheung &
Yeung, 2022) prefer different data augmentations. Regarding AT, a relevant observation is that robust
overfitting occurs with the degradation of training adversary throughout training (Li & Spratling,
2023b). Therefore, dynamic DA mitigates robust overfitting by dynamically tuning DA policy to keep
appropriately hard or even become progressively harder over the course of AT. For example, imaging
that some data augmentations are adversarially overfitted by the underlying model (i.e. adversarial
examples generated on the augmented data become easier to correctly classify) at the early stages of
AT, dynamic DA counters this overfitting by reducing their probability to be sampled and raising the
chance of sampling other potential underfitted yet beneficial data augmentations.

Specific to the objectives of policy learning, the Vulnerability objective is calculated based on the
feedback of adversarial vulnerability from the target model. Therefore, the policy model learns from
the feedback of target model about what type and strength of DA increases adversarial vulnerability.
The Affinity objective is then used to constrain data augmentation to be not so overly hard that it
impairs the performance. The Diversity objective prevents the over-exploitation of particular data
augmentations and encourages the exploration of a diverse range of data augmentations. These three
objectives jointly determine what DA are necessary for a training sample.
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C DETAILED DERIVATION

This section discusses how we derive the gradients of Hardness metric w.r.t. the parameters of the
policy model:

∂Ei∈BLhrd(xi;θplc)

∂θplc
(12)

First, we rewrite Eq. (12) as below, so that we can focus on the gradient derivation part.

1

B

B∑
i=1

∂Lhrd(xi;θplc)

∂θplc
(13)

Next, to apply the REINFORCE algorithm, we substitute the gradient of the Lhrd for a sampled
trajectory in Eq. (13) with the gradient of the expected Lhrd for multiple sampled trajectories as

1

B

B∑
i=1

∂Et∈TL(t)
hrd(xi;θplc)

∂θplc
(14)

By applying the REINFORCE algorithm, we have (batch averaging is omitted for simplicity)

∂Et∈TL(t)
hrd(xi;θplc)

∂θplc
=

∂
∑T

t=1 P(t)(xi;θplc)L(t)
hrd(xi;θplc)

∂θplc
(15)

=

T∑
t=1

∂P(t)(xi;θplc)

∂θplc
L(t)
hrd(xi;θplc) (16)

=

T∑
t=1

P(t)(xi;θplc)
∂ log(P(t)(xi;θplc))

∂θplc
L(t)
hrd(xi;θplc) (17)

= Ei∈T

∂ log(P(t)(xi;θplc))

∂θplc
L(t)
hrd(xi;θplc) (18)

P(t)(xi;θplc) is the probability of sampled trajectory. Following the previous practices (Zhang et al.,
2020; Lin et al., 2019; Jia et al., 2022), we approximate Eq. (18) as

∂Et∈TL(t)
hrd(xi;θplc)

∂θplc
≈ 1

T

T∑
t=1

∂ log(P(t)(xi;θplc))

∂θplc
L(t)
hrd(xi;θplc) (19)

Next, by expanding P(t) =
∏H

h=1 p
h
(t), we have

∂Et∈TL(t)
hrd(xi;θplc)

∂θplc
≈ 1

T

T∑
t=1

∂ log(
∏H

h=1 p
h
(t)(xi;θplc))

∂θplc
L(t)
hrd(xi;θplc) (20)

≈ 1

T

T∑
t=1

∂
∑H

h=1 log(p
h
(t)(xi;θplc))

∂θplc
L(t)
hrd(xi;θplc) (21)

≈ 1

T

T∑
t=1

H∑
h=1

∂ log(ph(t)(xi;θplc))

∂θplc
L(t)
hrd(xi;θplc) (22)

To reduce the variance of gradient estimation, we apply the baseline trick by subtracting mean value,
˜Lhrd = 1

T

∑T
t=1 L

(t)
hrd(xi;θplc), from L(t)

hrd as

∂Et∈TL(t)
hrd(xi;θplc)

∂θplc
≈ 1

T

T∑
t=1

H∑
h=1

∂ log(ph(t)(xi;θplc))

∂θplc
[L(t)

hrd(xi;θplc)− ˜Lhrd] (23)

Eventually, by adding back the batch averaging, we have our ultimate form of gradients as

∂Ei∈BEt∈TL(t)
hrd(xi;θplc)

∂θplc
≈ 1

B · T

B∑
i=1

T∑
t=1

H∑
h=1

∂ log(ph(t)(xi;θplc))

∂θplc
[L(t)

hrd(xi;θplc)− ˜Lhrd]

(24)
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D STABILITY OF ALTERNATED TRAINING OF AROID

We have tested AROID on 5 datasets (CIFAR10, CIFAR100, SVHN, Imagenette, ImageNet), 5
adversarial training methods (PGD, SCORE, TRADES, AWP, SWA) and 4 model architectures (PRN,
WRN, ViT, ConvNeXt with varied model size) with numerous ablation studies of 6 hyper-parameters,
λ, β, diversity limits, T and K. We have not observed any stability issue in all these experiments.
Besides, the variance of performance across multiple runs in the same setting is small (Tab. 1) further
confirming the stability and reproducibility of AROID. Furthermore, a similar alternating process of
training a policy model using the REINFORCE algorithm has been adopted in several previous works
like LAS-AT (Jia et al., 2022), OHL (Lin et al., 2019) etc., and none of them reported any stability
issue. We see no reason for our method to be an exception. Overall, the experience from previous
works and our experimental data both suggest that AROID has no issue of stability/reproducibility.

E EFFICIENCY ANALYSIS

E.1 POLICY LEARNING

The efficiency of AROID is analyzed here. Ft/Fp/Fa and Bt/Bp/Ba denote the cost of forward and
backward pass on target/policy/affinity model respectively. For each iteration of updating policy
model, the major overhead is

• Predict DA distribution: 1 Fp

• Vulnerability: for each of T trajectories, 2 (Ft +Bt) to generate adversarial examples and 1
Ft to calculate loss. Overall, (3Ft + 2Bt)T

• Affinity: 1 Fa to calculate the loss of original data which is shared by all T trajectories. 1
Fa to calculate the loss of augmented data for each of T trajectories. Overall, (FaT + Fa)

• Diversity: the calculation of diversity loss adds negligible overhead and does not require F
or B

• Update policy model: 1 Bp

To sum up, one iteration of policy update costs

(3Ft + 2Bt)T + (FaT + Fa) + Fp +Bp (25)

Policy model is updated every K iterations of target model, so the averaged policy learning cost per
iteration of target model training is

[(3Ft + 2Bt)T + (FaT + Fa) + Fp +Bp]/K (26)

The overall overhead of AROID is learning cost plus 1 Fp for every iteration of target model to
sample DA, so

[(3Ft + 2Bt)T + (FaT + Fa) + Fp +Bp]/K + Fp (27)
In worst case, policy and affinity models use the same architecture as target model, so the cost is

[(4T + 2)/K + 1]Ft + (2T + 1)Bt/K (28)

The most expensive setting we use is T = 8 and K = 5, so it costs 7.8Ft + 3.4Bt roughly, assuming
2Ft = 1Bt, 4.8(Ft + Bt) in addition to 11(Ft + Bt) of underlying PGD10 AT. Overall, in worst
case, AROID adds about 43.6% extra computation to baseline AT. For a cheaper setting T = 4 and
K = 20, the overhead is roughly 1.9Ft + 0.45Bt about 10% more than baseline AT.

E.2 HYPERPARAMETER OPTIMIZATION

First, as shown in Appendix G.5.1, most of our hyperparameters can transfer well among different
training settings, so that only a light tuning is needed to achieve reasonably good performance for
new setting. In most cases, only λ needs to be tuned. Second, hyperparameter optimization can be
accelerated by first searching with a cheap setting like K = 20 and T = 4 and then transferring the
found values to the final setting, i.e., K = 5 and T = 8. Note that our hyperparameter tuning process
is not different from others. Some related works like LAS-AT also have multiple hyper-parameters to
tune.
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F EXPERIMENTAL SET-UPS

F.1 GENERAL TRAINING SETTINGS

For CIFAR10/100, models were trained by stochastic gradient descent (SGD) for 200 epochs with
an initial learning rate 0.1 divided by 10 at 50% and 75% of epochs. The momentum was 0.9, the
weight decay was 5e-4 and the batch size was 128.

The experiments on Imagenette 3 and SVHN followed a similar protocol as those on CIFAR10 except
the following changes. The initial learning rate on SVHN was 0.01. For Imagenette, the weight decay
was 1e-4, the total number of epochs was 40, and the learning rate was decayed at 36th and 38th
epoch. The ViT-B/16 was pre-trained on ImageNet-1K (Deng et al., 2009). Gradient clipping was
applied throughout training. Note that CIFAR10 with ViT-B/4 is trained using the same setting as
Imagenette with ViT-B/16.

For ImageNet, models were trained for 50 epochs with an initial learning rate 0.01 divided by 10 at
20th and 40th epoch. Models were pre-trained on ImageNet-1K. The weight decay was 0.

Experiments were run on Tesla V100 and A100. All results reported by us were averaged over 3 runs
except for ImageNet due to the limit of computational resource.

F.2 ADVERSARIAL TRAINING SETTINGS

By default, we used ℓ∞ projected gradient descent (Madry et al., 2018) with a perturbation budget, ϵ,
of 8/255. The number of steps was 10 and the step size was 2/255 for CIFAR10 and 1/255 for SVHN.
To stabilize the training on SVHN, the perturbation budget, ϵ, was increased from 0 to ϵ linearly in the
first five epochs and then kept constant for the remaining epochs, as suggested by Andriushchenko &
Flammarion (2020). Note that, following Rice et al. (2020), we tracked PGD10 robustness on the
test set at the end of each epoch during training and selected the checkpoint with the highest PGD10
robustness, i.e., the "best" checkpoint to report robustness.

For ImageNet, the perturbation budget, ϵ, was 4/255, the number of steps was 2 and the step size was
2ϵ/3. The same warm-up strategy as used in SVHN was adopted.

F.3 CONFIGURATION OF AROID

Vulnerability objective was calculated based on PGD2 with a step size of 2/255 except that PGD1
with a step size of 4/255 for ImageNet. The affinity models used the same architecture as the target
model. The affinity models were pre-trained using ST with the same settings as their AT trained
counterparts yet with no augmentation. Early stopping was used if training accuracy was close to
100%. The policy model’s backbone was PRN18 on CIFAR10 and SVHN, and ViT-B/16 (pre-trained
on ImageNet-1K) on Imagenette as it was observed to be difficult for PRN18 to quickly fit Imagenette
data to a reasonable degree in ST. Note that this ability is especially important when training on
Imagenette because the total number of epochs (40) is much less than for the other datasets (200). The
policy model was trained using SGD with a constant learning rate (0.001 for CIFAR10 and SVHN
and 0.1 for Imagenette due to the reduced number of training epochs) and the same momentum as
the target optimizer’s. Gradient clipping was applied to stabilize the training of the policy model.
In the initial five epochs of training, we did not train the policy model nor apply it to augment the
data (no augmentation at all was applied) since the target model changed rapidly. When training on
CIFAR10, we progressively hardened DA by decreasing λ as the learning rate decayed since this
improved robustness over the constant λ scheme. By default, T = 5 and K = 8 are used except that
for ImageNet T = 20 and K = 4 due to the limit of computational resource. The value of main
hyperparameters used in our experiments are summarized in Tab. 7.

3Imagenette is a subset of ImageNet (Deng et al., 2009) consisting of 10 classes. We adopt a previous ver-
sion (v1), https://s3.amazonaws.com/fast-ai-imageclas/imagenette.tgz, as suggested
by (Mo et al., 2022).
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Table 7: The value of hyperparameters of our method used in various training settings. The value of l
and u listed here is a factor relative to the arithmetic mean chance, p̃, of sampling an augmentation
in each group (prediction head), so the real absolute threshold value will be, e.g., l · p̃. Taking an
example of the Crop prediction head with 16 (1+15) magnitudes in total, p̃ = 1/16. Hyperparameters
are optimized using grid search.

CIFAR10 CIFAR100 Imagenette ImageNet SVHN

Model WRN34-10 WRN34-10 ViT-B/4 PRN18 ViT-B/16 ConvNeXt-T PRN18
Training AT(-SWA) AT-AWP(-SWA) AT AT AT AT AT
Policy backbone PRN18 PRN18 PRN18 PRN18 ViT-B/16 PRN18 PRN18
Affinity model WRN34-10 WRN34-10 ViT-B/4 PRN18 ViT-B/16 ConvNeXt-T PRN18
λ 0.4, 0.2, 0.1 0.7 0.5 0.4 0.4 0.2 0.3 0.7 0.01
β 0.8 0.8 0.8 0.8 0.8 2 0.3
Diversity limits (l,u) (0.9, 4.0) (0.9, 4.0) (0.8, 4.0) (0.9, 4.0) (0.8, 4.0) (0.8, 4.0) (0.7, 4.0)
Policy learning rate 0.001 0.001 0.001 0.001 0.1 0.001 0.001

F.4 CONFIGURATION OF COMPARED DA METHODS

AutoAugment was parameterized as in (Cubuk et al., 2019) since we did not have sufficient re-
source to optimize. For AutoAugment, augmentations were applied in the order of HorizontalFlip-
RandomCrop-AutoAugment-Cutout (16x16) on CIFAR10 and Imagenette, and AutoAugment-Cutout
(20x20) on SVHN, as in (Cubuk et al., 2019). TrivialAugment is parameter-free so no tuning
was needed. For TrivialAugment, augmentations were applied in the order of HorizontalFlip-
RandomCrop-TrivialAugment-Cutout (16x16) on CIFAR10 and Imagenette, and TrivialAugment-
Cutout (16x16) on SVHN, as in (Müller & Hutter, 2021). For Cutmix, α = 0.25 and β = 1 on
CIFAR10 as optimized in (Li & Spratling, 2023c); α = 1 and β = 1 on Imagenette and SVHN
as suggested in (Yun et al., 2019). For Cutout, the size of cut-out area was 20x20 on all three
datasets as in (Li & Spratling, 2023c). Cutout and Cutmix were applied with the default (baseline)
augmentations in the order of HorizontalFlip-RandomCrop-Cutout and -Cutmix respectively on
CIFAR10 and Imagenette, while no additional augmentations were applied on SVHN. For IDBH,
IDBH[strong]-CIFAR10 was used on CIFAR10 and Imagenette, and IDBH-SVHN was used on
SVHN.

We only compare our method against the baseline and AutoAugment on ImageNet. AutoAugment
is selected because it is one of the two methods closest to AROID and has a pre-optimized version
for ImageNet while the other closest work IDBH doesn’t. Due to the tremendous cost of conducting
AT on ImageNet and the limit of our computational resource, we can’t optimize other DA methods
for AT on ImageNet so they are not included to avoid unfair comparison. In fact, like most other
researchers, we don’t have enough time and resource to train all competitive DA methods even
without re-optimization of hyperparameters.

F.5 CONFIGURATION OF COMPARED STATE-OF-THE-ART ROBUST TRAINING METHODS

We only re-implemented the algorithms of SWA and AWP to report the result based on our runs,
while the result of the others including MART, MART-AWP, SEAT, LAT-AT and LAS-AWP were
copied directly from their original works except that the result of MART was copied from (Wu et al.,
2020) for a better aligned training setting. SWA was implemented as in (Rebuffi et al., 2021) with a
decay rate of τ = 0.999. AWP was configured as in (Wu et al., 2020) with β = 0.005. Note that the
same configurations of SWA and AWP were used to train with baseline DA and AROID.

G ADDITIONAL RESULTS

G.1 ROBUSTNESS EVALUATION WITH MORE ATTACKS

To further ensure our robustness evaluation is reliable, we additionally evaluate AROID and other
related works using three more adversarial attacks PGD (Madry et al., 2018), CW (Carlini & Wagner,
2017) and JITTER (Schwinn et al., 2023) in Tab. 8. AROID is consistently superior under various
adversarial attacks (AuoAttack, PGD, CW, JITTER).
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Table 8: Robustness evaluation against more adversarial attacks. PGD uses 50 steps and 10 restarts.
CW and JITTER use 100 steps. Note that the abnormally superior PGD robustness but worse against
other attacks of Cutmix suggest a false security caused by obfuscated gradients.

Augmentation CIFAR10+WRN34-10 Imagenette+ViT-B/16
Clean AA PGD CW JITTER Clean AA PGD CW JITTER

baseline 85.83 52.26 55.50 54.27 53.59 92.73 66.47 68.10 68.47 68.80
Cutout 86.95 52.89 55.35 55.02 54.61 93.27 67.20 68.40 68.67 69.40
Cutmix 86.88 53.38 60.13 56.98 56.47 93.87 70.20 73.10 71.80 72.20
AutoAugment 87.71 54.60 58.87 56.31 55.67 95.13 67.60 68.93 69.87 70.67
TrivialAugment 87.35 53.86 57.46 55.28 55.49 95.25 69.00 70.95 70.65 71.50
IDBH 88.61 55.29 58.27 57.36 56.96 95.20 69.93 70.20 70.80 71.67
AROID (ours) 88.99 55.91 59.68 58.18 57.63 94.88 71.32 71.80 72.80 73.12

Table 9: Comparison of various DA methods when trained by alternative AT methods like TRADES
and SCORE for on CIFAR10 with PRN18. λ is 0.6 for TRADES and 0.3 for SCORE. The other
hyperparameters are configured by default as specified in Appendix F.

DA Method TRADES SCORE

Clean AA Clean AA

RandomCrop 83.01 49.10 80.19 48.88
Cutout 81.74 48.98 82.02 50.08
AutoAugment 80.76 48.64 81.68 49.93
TrivialAugment 80.91 48.04 80.39 49.49
IDBH 82.49 50.86 82.35 50.97
AROID (ours) 84.04 51.33 82.69 51.18

G.2 GENERALIZATION TO OTHER AT METHODS

To further test the generalizability of AROID to alternative AT methods, we integrate AROID into
two more superior AT methods TRADES (Zhang et al., 2019) and SCORE (Pang et al., 2022) in
Tab. 9. AROID achieves highest accuracy and robustness among all the tested DA methods under
both advanced AT methods. Overall, combining with the result in Section 4.2, AROID generalizes
well to various AT methods (PGD, TRADES, SCORE, AWP, SWA).

AROID is combined with other AT methods in the same way as any other data augmentation: simply
use the sampled data augmentation policy to augment the data before generating adversarial examples.
The update of the policy model is independent of the adversarial training method used.

Table 10: Comparison of our method with more state-of-the-art AT methods on PRN18. The results
of the compared methods are copied from their papers. "-" means that the corresponding result is not
reported in the original work.

Training CIFAR10 CIFAR100 SVHN

SCORE (Pang et al., 2022) 83.75 49.57 - - - -
Consistency (Tack et al., 2022) 84.65 47.83 60.21 23.71 - -
CFA (Wei et al., 2023) 80.40 50.10 - - - -
HAT (Rade & Moosavi-Dezfooli, 2022) 84.86 48.85 58.73 23.34 92.06 52.06
UIAT (Dong et al., 2023) 85.01 49.11 59.55 25.73 93.28 52.45
FSR (Kim et al., 2023) 84.49 48.45 - - - -
AROID (ours) 84.68 50.57 60.17 26.56 93.30 54.49
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Table 11: Comparison of the performance of various DA methods on SVHN with PRN18. The best
and second best results are highlighted in each column. The baseline was no augmentation.

DA Method Accuracy Robustness

baseline 90.54±.74 47.56±.71
Cutout 90.69±.51 50.88±.45
Cutmix 91.13±.25 51.95±.40
AutoAugment 93.68±.17 54.15±.06
TrivialAugment 93.44±.37 52.78±.26
IDBH 93.70±.13 54.56±.29
AROID (ours) 93.65±.13 54.35±.10

Table 12: The performance of various DA methods on CIFAR10 with WRN34-10 when incorporating
Stochastic Weight Averaging (SWA).

DA Method Accuracy Robustness

baseline 84.30 54.29
Cutout 87.26 55.38
Cutmix 86.78 55.60
AutoAugment 85.48 54.89
TrivialAugment 88.03 56.03
IDBH 87.48 56.45
AROID (ours) 87.84 56.67

G.3 COMPARISON TO MORE STATE-OF-THE-ART AT METHODS

To further demonstrate the superiority of AROID over the existing works, we compare AROID with
more state-of-the-art AT methods in Tab. 10. AROID outperforms all of them regarding robustness
across various datasets further confirming the superiority of our method.

G.4 COMPARISON TO OTHER DA METHODS ON MORE DATASETS

On SVHN our method achieves a similar accuracy and robustness to the best existing method, IDBH
as shown in Tab. 11. The slightly better performance of IDBH on SVHN compared to AROID is
likely due to the hyperparameters for IDBH having been tuned on the target model, whereas the
hyperparameters for IDBH on the other datasets were tuned on a simplified proxy model (PRN18)
due to the computational cost of using the target model. This highlights an advantage of AROID
over IDBH: an improved efficiency leading to a more effective DA policy tuned to the target network
(discussed in Section 4.5).

G.5 ABLATION STUDY

This section verifies the sensitivity of our method to its hyperparameters and several design choices.
The experiments were conducted on CIFAR10 with PRN18 and Imagenette with ViT-B/16 using
the setup specified in Appendix F. The default values of hyperparameters are the ones marked color
green in Fig. 3.

G.5.1 HYPERPARAMETERS

Policy update frequency K. Figs. 3i and 3l show that the highest accuracy and robustness were
achieved when K = 5, i.e., the lowest frequency under the test. This implies that AT benefits from
a more "up-to-date" DA. Furthermore, it seems possible to trade accuracy for efficiency by setting
a larger K (up to 20) while maintaining similarly high robustness. In general, the accuracy and
robustness of our method declines with lower policy update frequency.

Number of trajectories T . Figs. 3h and 3k show that high accuracy and robustness are achieved
around T = 8. This suggests that (1) there is a minimum requirement on the amount of trajectories
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: Ablation study of hyper-parameters λ, β, l, u, T and K for CIFAR10 with PRN18 (even
rows) and Imagenette with ViT-B/16 (odd rows). The selected value for each hyper-parameter is
marked green color.
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Table 13: Comparison of the various policy
model backbone architectures on CIFAR10
with a target model of PRN18.

Model Size (M) Clean AA

WRN10-1 0.08 84.16 50.25
WRN22-1 0.27 84.32 50.57
WRN34-1 0.47 84.73 50.38
WRN70-1 1.05 84.04 50.28
PRN18 11.17 84.68 50.57

Table 14: Comparison of uniform sampling
from AROID DA space on CIFAR10 with
PRN18.

DA Clean AA

baseline 82.50 48.21
Uniform 81.00 49.18
AROID 84.68 50.57

for our policy gradient estimator to be accurate and (2) our method may not benefit from increasing
T beyond 8.

Strength of Vulnerability λ. As shown in Figs. 3a and 3d, robustness first increases and then
decreases within the tested range of value. This is consistent with the prior that AT benefits from
appropriate hardness but degrade if data augmentations are overly hard (Li & Spratling, 2023c).

Strength of Diversity β. As shown in Figs. 3b and 3e, the performance within the tested range of
value is close. We then further test the effect of removing Diversity by setting β = 0 on CIFAR10
with PRN18. We observed that accuracy drops to 73.88% from 84.68% and robustness drops to
22.47% from 50.57%. Training the policy network failed without Diversity as the output policy
distribution concentrated on several sub-policies, i.e., gave zero probabilities at the remaining sub-
policies. The REINFORCE method failed to recover from this situation because it no longer explored
other opportunities. Overall, these suggest that having a certain strength of Diversity constraint is
important for our policy learning, but no clear benefit is observed as the constraint is further enhanced
by increasing beta within the tested value range.

Summary. We observe that, within the tested value range, hyper-parameters like λ, β, T and
K have a quite similar trend in both settings, while the lower limit l (Figs. 3c and 3f) and upper
limit u (Figs. 3g and 3j) in the diversity objective shows slightly different trends between the two
settings. Despite the slightly different behaviors of a few hyper-parameters, the optimal value of
hyper-parameters is observed to transfer across these two settings, i.e., they achieve reasonably good
performance with a similar set of hyper-parameter values T = 8, K = 5, l = 0.8/0.9, u = 4,
λ = 0.3, β = 0.8. We also find this setting transfers well across different AT methods of PGD,
SCORE and TRADES since we can only tune the value of λ while keep the rest unchanged to achieve
reasonably good performance and outperform the other compared data augmentations.

G.5.2 POLICY MODEL ARCHITECTURE

Interestingly, we observed in Tab. 13 that for CIFAR10 a relatively small model WideResNet10-
1 (a WideResNets with depth 10 and widening factor 1) with 0.08M parameters is sufficient for
learning the DA policy for a relatively large target model PRN18 with 11.17M parameters and further
increasing capacity beyond this scale, even 100x, does not benefit either accuracy or robustness.
Therefore, the policy model can be much smaller than the target model.

G.5.3 UNIFORM SAMPLING

We experimented where of uniformly sampling data augmentations are uniformly sampled from
AROID’s data augmentation space for AT, dubbed Uniform in Tab. 14. As shown in the table, AROID
significantly improves accuracy and robustness over its uniformly sampled counterpart suggesting
the necessity of optimizing data augmentation policy.

G.6 COMPARISON AGAINST SOTA IMAGENET RESULTS

We notice that a concurrent work (Singh et al., 2023) has achieved a higher record of robustness for
ConvNeXt-T on ImageNet. We believe that directly comparing our result against (Singh et al., 2023)
is unfair. The experiment setting of (Singh et al., 2023) is substantially different from ours and several
techniques they used are advantageous. For example, they use a stronger attack APGD compared
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Figure 4: Visualization of the learned DA policies, applied to ten images randomly sampled from
CIFAR10 training set, for the Flip, Crop, Color/Shape and Dropout types of augmentations. The
policy model is resumed from a checkpoint saved at the end of 110th epoch, which is randomly
sampled from 200 epochs, i.e., a course of training a WRN34-10 model on CIFAR10 (following the
training setting as specified in Appendix F). The sampled ten images are visualized at the bottom in
an order of x-axis in the above figures. The chance of applying no transformation (Identity) is the gap
between the colored bar and the top (i.e., score of 1.0). In the Color/Shape group, the probabilities
of different magnitudes are not shown separately, but are summed to get the overall probability of a
transformation.

to our naïve PGD to generate training adversarial examples. They use EMA and label smoothing
to enhance the performance. The batch size is 1392 while ours is 128, which has been observed to
benefit generalization on ImageNet. The optimizer and learning rate schedule are AdamW and cosine
decay which are different from our SGD and multi-step decay.

Instead of comparing AROID against the heavy data augmentation of (Singh et al., 2023), we find it
may be more useful to apply AROID to optimize it. The heavy data augmentation is composed of
several individual data augmentation methods, RandAugment, CutMix, MixUp and Random Erasing,
and each of them has a few hyperparameters jointly constituting a large search space. As we learn
from (Singh et al., 2023), they did not sufficiently search this space to optimize the performance. We
consider this as an opportunity to apply our method to automatically and efficiently optimize these
hyperparameters to improve on the original scheme.
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Figure 5: Visualization of how the learned DA policies evolve as training progresses. The same,
randomly sampled, image (visualized at the bottom) was used across epochs (5, 25, 50, 75, 100,
125, 150, 175, 200) to produce the policies. The first bar in each sub-figure corresponding to the
epoch 5 describes the initial status of the policy model (recalling that the training of policy model
starts from epoch 5). For each bar in the figures, the policy model was resumed from the checkpoint
saved at the corresponding epoch (x-axis) in the same course of training. The chance of applying no
transformation (Identity) is the gap between the colored bar and the top (i.e., the score of 1.0). In
the Color/Shape group, the probabilities of different magnitudes are not shown separately, but are
summed to get the overall probability of a transformation.
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H VISUALIZATION OF LEARNED DA POLICIES

Fig. 4 visualizes the learned distribution of DAs for different, randomly sampled, data instances.
Instance-wise variation of the learned DA policy is visible for the Color/Shape augmentations (Fig. 4c)
and evident for the Dropout augmentations (Fig. 4d), but subtle in the rest (Fig. 4a and Fig. 4b). Note
that even for the different data instances from the same class (e.g., instances 4, 7, 10 from the class
"frog"), the learned DA distributions can still differ considerably (Fig. 4d). This confirms that (1)
AROID is able to capture and meet the varied demand of augmentations from different data instances,
and (2) such demand exists for some, but not all, augmentations. These observations may explain
why many instance-agnostic DA methods such as IDBH, despite being inferior to ours, still work
reasonably well (see Tab. 1).

It was also observed in Fig. 5 that the learned DA policy for the same data instance evolved as training
progressed. In the Color/Shape group (Fig. 5c), augmentations like Sharpness became observably
more likely to be selected while others such as ShearY became less probable as training continued.
Dropout (i.e. Erasing; Fig. 5d) particularly with large magnitudes was rarely applied prior to 100th
epoch, i.e., the first decay of learning rate. The possibility of applying Crop (i.e. Cropshift; Fig. 5b)
and Flip (i.e. HorizontalFlip; Fig. 5a) first dropped until the first decay of learning rate and then
stayed nearly constant afterwards.

Consistent to the previous findings on ST (Cubuk et al., 2019) and harmful augmentations (Rebuffi
et al., 2021), we observed that AT on CIFAR10 favored mostly color-based augmentations like Equal-
ize and Sharpness and disfavored geometric augmentations like Rotate and harmful augmentations
like Solarize and Posterize (see both Fig. 4c and Fig. 5c). This verifies the effectiveness of our DA
policy learning algorithm.
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