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Abstract

The sparse Johnson-Lindenstrauss transform is
one of the central techniques in dimensionality
reduction. It supports embedding a set of n points
in Rd into m = O(ε−2 lg n) dimensions while
preserving all pairwise distances to within 1± ε.
Each input point x is embedded to Ax, where A
is an m×d matrix having s non-zeros per column,
allowing for an embedding time of O(s∥x∥0).
Since the sparsity of A governs the embedding
time, much work has gone into improving the
sparsity s. The current state-of-the-art by Kane
and Nelson (2014) shows that s = O(ε−1 lg n)
suffices. This is almost matched by a lower
bound of s = Ω(ε−1 lg n/ lg(1/ε)) by Nelson
and Nguyen (2013) for d = Ω(n). Previous work
thus suggests that we have near-optimal embed-
dings. In this work, we revisit sparse embeddings
and present a sparser embedding for instances in
which d = no(1), which in many applications
is realistic. Formally, our embedding achieves
s = O(ε−1(lg n/ lg(1/ε)+lg2/3 n lg1/3 d)). We
also complement our analysis by strengthening
the lower bound of Nelson and Nguyen to hold
also when d ≪ n, thereby matching the first term
in our new sparsity upper bound. Finally, we
also improve the sparsity of the best oblivious
subspace embeddings for optimal embedding di-
mensionality.
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1. Introduction
Dimensionality reduction is a central technique for speeding
up algorithms for large scale data analysis and reducing
memory consumption for storage. A Euclidean-distance-
preserving dimensionality reduction is, loosely speaking,
an embedding of a high-dimensional Euclidean space into
a space of low dimension, that approximately preserves
the Euclidean distance between every two points. One of
the cornerstone results is the Johnson-Lindenstrauss trans-
form (Johnson & Lindenstrauss, 1984), stating that every
set of n points in a d-dimensional space can be embedded
into only m = O(ε−2 lg n) dimensions while preserving
all pairwise Euclidian distances between points to within a
factor (1± ε). The simplest (random) constructions of such
dimensionality reducing maps, known as the Distributional
Johnson-Lindenstrauss Lemma, samples a random m × d
matrix A with entries either i.i.d. N (0, 1) distributed or as
uniform Rademachers (−1 or 1 with probability 1/2 each).
For a set X ⊂ Rd of n points, it then holds with probability
at least 1− 1/n that L = A/

√
m satisfies

∀x, y ∈ X : ∥Lx− Ly∥22 ∈ (1± ε)∥x− y∥22 . (1)

We say that a matrix L satisfying (1) is an ε-JL matrix for
X . It is worth noting that some works require that an ε-JL
matrix satisfies (1) without the square on the Euclidian norm.
The two definitions are equivalent up to a constant factor
scaling in ε and we work with the former as it simplifies
calculations.

While the target dimension of m = O(ε−2 lg n) is known
to be optimal (Jayram & Woodruff, 2013; Larsen & Nel-
son, 2017), even when d = O(m), computing the embed-
ding Lx of a point x using the construction above requires
Ω(md) = Ω(ε−2d lg n) operations. In some applications,
this may constitute the computation bottleneck, hence much
work has gone into designing faster embedding algorithms.
These works may roughly be categorized by two approaches.
(1) Constructions that use structured embedding matrices
with fast matrix-vector multiplication algorithms; and (2)
constructions using sparse embedding matrices.

A classic example of the former approach is the FastJL
transform by Ailon and Chazelle (2009). Their construction
embeds a point x by computing the product PHDx, where
D is a diagonal matrix with random signs on the diagonal, H
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is a d×d Hadamard matrix and P is a random sparse matrix
where each entry is non-zero only with some small probabil-
ity. The main idea in that construction is that HD “spreads”
the mass of the vector x evenly among its coordinates, which
allows for a very sparse m×d embedding matrix P . In addi-
tion, a d×d Hadamard matrix has an O(d lg d) matrix-vector
multiplication algorithm. Analyzing the FastJL transform,
and specifically the correct tradeoff between the target di-
mension and embedding time, has been studied extensively
(see e.g. (Do et al., 2009; Krahmer & Ward, 2011; Freksen
& Larsen, 2020; Jain et al., 2020)). The state-of-the-art tight
analysis by Fandina, Høgsgaard and Larsen (2023) shows
that the embedding time can be bounded by O(d lg d +
min{ε−1d lg n,m lg n ·max{1, ε lg n/ lg(1/ε)}}).

In the latter approach one instead designs embedding matri-
ces with only s ≪ m non-zeros per column. Given such a
sparse embedding matrix, it is straightforward to embed a
point in O(ds) time instead of O(dm), hence minimizing s
has been the focus of extensive work. The current sparsest
embedding construction is due to Kane and Nelson (2014),
achieving a sparsity upper bound of s = O(ε−1 lg n).
Nelson and Nguyen (2013) presented a lower bound of
s = Ω(ε−1 lg n/ lg(m/ lg n)) for any sparse ε-JL ma-
trix, almost settling the optimality of the construction by
Kane and Nelson. For optimal target dimension m =
Θ(ε−2 lg n), this simplifies to s = Ω(ε−1 lg n/ lg(1/ε)).
While O(dε−1 lg n/ lg(1/ε)) is often larger than the near
O(d lg d) embedding time achieved by FastJL, sparse em-
beddings have one significant advantage in that they may
also exploit sparsity in the input points. Concretely, the
embedding time of a point x is easily seen to be O(s∥x∥0),
where ∥x∥0 is the number of non-zero entries of x. In many
applications, such as embedding bag-of-words and tf-idf rep-
resentations of documents, the input points are indeed very
sparse compared to the domain size d (one non-zero entry in
x per word in the document, where d the number of distinct
words in the dictionary). For efficient use in practice sparse
dimensionality reductions techniques have for instance been
implemented in the popular library scikit-learn (Pedregosa
et al., 2011) as SparseRandomProjection.

Large Sets with Few Dimensions. While it may seem
that there is little room for improvement in the lg(1/ε) gap
between the upper and lower bounds known for the sparsity
of ε-JL matrices, we identify a shortcoming in the lower
bound of Nelson and Nguyen (2013). Concretely, the hard
instance in their proof is the set {e1, . . . , en} of standard
unit vectors. However, in many theoretical applications, the
original dimension d is significantly smaller than the size
n of the vector-set. In these scenarios, this hard instance
does not exist, in which case the lower bound degenerates
to s = Ω(ε−1 lg d/ lg(m/ lg d)). Yet, the upper bound
analysis by Kane and Nelson is incapable of exploiting the

fact that d ≪ n and remains O(ε−1 lg n).

In addition to broadening our theoretical understanding of
sparse dimensionality reduction, we also find that d ≪ n is
a natural practical setting, also when combined with sparse
input points. Consider, for instance, the Sentiment140 data
set consisting of 1.6M tweets (Go et al., 2009). Using a
bag-of-words or tf-idf representation of the tweets, where
all words occuring less than 10 times in the 1.6M tweets
have been stripped, results in a data set with n = 1.6 · 106,
d = 37, 129 and an average of 12 words/non-zeros per
tweet. These vectors are thus extremely sparse and have
d a factor 43 less than n. Similarly, for the Kosarak data
set (Benson et al., 2018) consisting of an anonymized click-
stream from a Hungarian online news portal, there are n =
900, 002 transactions, each consisting of several items. It
has a total of d = 41, 270 distinct items and each transaction
consists of an average of 8.1 items. Here we also have an d
that is a factor 22 less than n and very sparse input points.
In general, when considering bag-of-words and tf-idf, one
would assume that there is a fixed dictionary size d, while
the number of data points n may be arbitrarily large, which
further motivates distinguishing between n and d in the
sparsity bounds.

One may thus hope to give upper bounds which depend on
lg d rather than lg n. This is precisely the message of our
work.

1.1. Main Results

Our first main result is an improved analysis of the random
sparse embedding by Kane and Nelson (2014) reducing the
O(ε−1 lg n) upper bound on the sparsity in the case d ≪ n.
Formally we show the following.

Theorem 1.1. Let 0 < ε < ε0 for some constant ε0. There
is a distribution over s-sparse matrices in Rm×d with m =
O(ε−2 lg n) and

s = O

(
1

ε
·
(

lg n

lg(1/ε)
+ lg2/3 n lg1/3 d

))
,

such that for every set of n vectors X ⊂ Rd, it holds with
probability at least 1−O(1/d) that a sampled matrix is an
ε-JL matrix for X .

While the first term may resemble the lower bound presented
by Nelson and Nguyen (2013), their lower bound did not
apply when the size of X is significantly larger than the
dimension d, and thus cannot consist of just the standard
basis for Rd.

Our second result complements the upper bound in Theo-
rem 1.1 with a tight lower bound on the sparsity of ε-JL
matrices. We show that if m is sufficiently smaller than d,
then every ε-JL matrix embedding d-dimensional vectors in
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Rm must have relatively dense columns. Formally we show
the following.

Theorem 1.2. Let 0 < ε < 1/4, and let m be such that
m = Ω(ε−2 lg n) and m ≤ (εd/ lg n)1−o(1). Then there
is a set of n vectors X ⊂ Rd such that any ε-JL matrix A
embedding X into Rm, must have a column with sparsity s
satisfying

s = Ω

(
lg n

ε lg(m/ lg n)

)
.

For optimal m = Θ(ε−2 lg n), this simplifies to s =
Ω(ε−1 lg n/ lg(1/ε)).

Recall the comparable lower bound in (Nelson & Nguyen,
2013) was specifically for the case n = d. Combined
with the refined upper bound, we now have a completely
tight understanding of sparse dimensionality reduction when
lg n ≥ lg d · lg3(1/ε). While arguably being small asymp-
totic improvements, these are the first improvements in a
decade and demonstrate that the dimension of the input data
may be exploited to speed up embeddings.

Subspace Embeddings. Given a k-dimensional subspace
V ⊂ Rd, an ε-subspace embedding (Sarlós, 2006) is a
matrix A ∈ Rm×d satisfying that for all x ∈ V , ∥Ax∥22 ∈
(1 ± ε)∥x∥22. It is known that there exists a subset V ′ ⊂
V of size O(1)k such that if A preserves the ℓ2 norm of
every vector in V ′ up to (1 + ε/2), then A is an ε-subspace
embedding (Arora et al., 2006). The JL lemma thus implies
that one can take m = O(k/ε2), and in fact this is optimal in
the case that A is drawn from a fixed distribution over Rm×d

that is independent of V (Nelson & Nguy˜̂en, 2014) (a so-
called oblivious subspace embedding (OSE)). OSE’s can be
used to speed up algorithms for approximate regression, low
rank approximation, and a large number of other problems
in numerical linear algebra; see the monograph by Woodruff
(2014).

As a simple example, consider the problem of approximate
linear regression in which one wants to find a β̃ which
approximately minimizes ∥Xβ − y∥22 for some given X ∈
Rn×d. This problem can be solved exactly in O(nd2) time
by writing the Singular Value Decomposition X = UΣV ⊤

then setting βLS := V Σ−1U⊤y. Then XβLS = UU⊤y
is the projection of y onto the column space of X , which
minimizes the error. The sketch-and-solve paradigm (Sarlós,
2006), in one analysis, suggests taking A to be a subspace
embedding for span{y, cols(X)} (which has dimension at
most d+ 1) then setting β̃ to be the minimizer of ∥AXβ −
Ay∥22. Note AX is now a much smaller matrix, so one
can compute β̃ more quickly. However, we also need A to
either be sparse or structured, so that AX can be computed
quickly. Otherwise, if A is an arbitrary unstructured matrix,
computing AX would take more time than computing βLS
exactly!

Note that if each column of A has s nonzero entries, then
AX can be computed in time O(s∥X∥0), where ∥X∥0 is
the number of nonzero entries in X . Simply using the
SparseJL transform (Kane & Nelson, 2014) would lead to
m = O(k/ε2), s = O(k/ε). Clarkson and Woodruff (2013)
showed that m = O(k2/ε2), s = O(1) is achievable, which
for OSE’s is optimal (Nelson & Nguy˜̂en, 2014; Li & Liu,
2022). What though if we do not want to increase m at
all beyond the optimal bound of O(k/ε2)? What is the
best sparsity s achievable without sacrificing the asymptotic
quality of dimensionality reduction? Nelson and Nguyen
showed m = O((k/ε2)·poly(ε−1 log k)) is achievable with
s = poly(log(k/ε))/ε (2013), and conjectured that s =
O((log k)/ε) suffices with m = O(k/ε2). Cohen provided
an improved bound, showing m = O((k log k)/ε2), s =
O((log k)/ε) suffices (2016), which remains the best known
bound today. In particular, for m = O(k/ε2), despite the
conjecture of (Nelson & Nguy˜̂en, 2013), no sparsity bound
better than s = O(k/ε) is known, which follows from
black box application of SparseJL. In this work, we provide
the first proof that keeps m = O(k/ε2) while showing
a sparsity bound that is o(k/ε). Specifically, we achieve
s = O(k/(ε log(1/ε)) + 3

√
k2 log k/ε). Formally we show

the following.
Theorem 1.3. Let 0 < ε < 1. There is a distribution over
s-sparse matrices in Rm×d with m = O(ε−2k) and

s = O

(
1

ε
·
(

k

lg(1/ε)
+ k2/3 lg1/3 k

))
,

such that for every k-dimensional subspace V ⊆ Rd, it
holds with probability at least 1 − 2−k2/3

that a sampled
matrix is an ε-JL matrix for V .

While this is far from the conjectured optimal bound of
O((log k)/ε), it provides the first analysis that maintains
optimal m while providing sparsity s strictly better than
applying SparseJL as a black box.

Recent subsequently work by (Chenakkod et al., 2023)
shows an incomparable sparsity bound of O(lg4 (k/δ) /ε6)
with embedding dimension m = O((k + log(1/δ))/ε2)
where δ is the failure probability. Thus for some parameter
regimes of δ, ε and k the bound fails to beat or is even worse
than the O(k/ε) which the black box approach of SparseJL
yields, which as mentioned the bound of Theorem 1.3 is
strictly better than, for δ ≤ 2−k2/3

.

2. Technical Overview
In this section, we present the central ideas employed in our
new contributions. We first describe our improved upper
bound analysis, then the main ideas in our lower bound, and
finally the new subspace embedding results. For ease of
notation, we henceforth write ∥x∥ to denote ∥x∥2.

3



Sparse Dimensionality Reduction Revisited

Sparser Dimensionality Reduction. One method for
achieving Sparse JL matrices presented by Kane and Nelson
(2014) is based on the CountSketch algorithm (Charikar
et al., 2004). An embedding matrix A is sampled by parti-
tioning the m rows into s groups of m/s entries each. In
every column of A a uniform random entry in each group is
sampled and set uniformly to either 1/

√
s or −1/

√
s. All

other entries are set to 0. Kane and Nelson then showed
that if s = Ω(ε−1 lg(1/δ)) then for every unit vector x, it
holds that ∥Ax∥2 ∈ 1 ± ε with probability at least 1 − δ.
Setting δ = n−3, using linearity of A and a union bound
over z = (y − x)/∥y − x∥ for all x, y in an input set of
points/vectors X completes their proof. Hereafter we fo-
cus on showing that A preserves the norm of every vector
in a set X of n2 unit vectors with good probability. Kane
and Nelson also included a short argument showing that
their analysis is tight for distances between the standard unit
vectors e1, . . . , ed.

However, our key observation is that, if d ≪ n, then a naive
union bound over all n2 unit vectors in X may be too loose.
Concretely, there are much fewer than n2 vectors that are
of this worst case form. In particular, when d ≪ n, then
most vectors in a set X of cardinality n2 must have many
entries that are small in magnitude. It is already known
from work on Feature Hashing (Weinberger et al., 2009;
Dahlgaard et al., 2017; Freksen et al., 2018; Jagadeesan,
2019) and the FastJL transform (Ailon & Chazelle, 2009;
Fandina et al., 2023) that vectors x with a small ∥x∥∞ to
∥x∥ ratio are easier to embed than worst case vectors. For
instance, for optimal m = Θ(ε−2 lg n), Jagadeesan (2019)
showed that as long as s = Ω(ε−1 lg n/ lg(1/ε)) and the ra-
tio ν = ∥x∥∞/∥x∥ satisfies ν ≤

√
εs/ lg n, then SparseJL

preserves the norm of x to within 1± ε with probability at
least 1− 1/n3.

In order to exploit a small dimension d, we split every vector
x ∈ X into two support-disjoint vectors, referred to as a
head and a tail, where the head contains the top ℓ entries
of x and the tail contains the remaining entries. That is, we
write x = xhead + xtail. Then

∥Ax∥2 = ∥Axhead∥2 + ∥Axtail∥2 + 2⟨Axhead, Axtail⟩ .

We now treat these three terms separately. Showing that
with high probability, ∥Axhead∥2 ∈ (1 ± ε)∥xhead∥2,
∥Axtail∥2 ∈ (1 ± ε)∥xtail∥2 and |⟨Axhead, Axtail⟩| ≤ ε
(since ⟨xhead, xtail⟩ = 0). The technical crux lies in bound-
ing the cross terms.

In order to bound the heads, the main observation is that
there are about

(
d
ℓ

)
≤ dℓ choices for the positions of the

heads. Once the positions have been chosen, we further
approximate the heads by an ε-net of cardinality (1/ε)O(ℓ).
Since d ≥ m = Ω(ε−2 lg n), the total number of heads we
need to consider is dℓ(1/ε)O(ℓ) = dO(ℓ). Using the analysis

by Kane and Nelson with δ = d−O(ℓ) shows that it suffices
with s = Ω(ε−1ℓ lg d) to get the required bound with high
probability.

As for the tails, there are at most n2 distinct tails and they
have ∥xtail∥∞ ≤ 1/

√
ℓ ≤ ∥xtail∥2/

√
ℓ. We can thus use

the result by Jagadeesan to show that ∥Axtail∥2 is within
the interval (1± ε)∥xtail∥2 whenever s satisfies both s =
Ω(ε−1 lg n/ lg(1/ε)) and (1/

√
ℓ) ≤

√
εs/ lg n, which is

implied by s = Ω(ε−1 lg(n)/ℓ).

The main challenge lies in bounding the cross terms, show-
ing |⟨Axhead, Axtail⟩| ≤ ε. Previous results, and specifi-
cally the aforementioned results by Kane and Nelson (2014)
and Jagadeesan (2019) cannot be employed, as on one hand
the number of pairs is very large, and more specifically de-
pends polynomially on n, and on the other hand the ℓ∞/ℓ2
ratio of the corresponding vectors cannot be upper bounded
as the heads have heavy entries. In order to bound the
cross terms we present new concentration bounds on the
CountSketch-based construction by Kane and Nelson. We
first show that for optimal dimension m = O(ε−2 lg n), for
sparsity s ≤ εm and ℓ ≤ ε−1/2 we get that with high prob-
ability for every x ∈ X , there are only few rows in A where
more than 5 non-zero entries coincide with the support of
xhead. In turn, this means that most entries of Axhead are
not too large, and specifically do not exceed

√
5/s. We then

turn to analyze the probability that for some x ∈ X ,

⟨Axhead, Axtail⟩ =
∑
i∈[m]

(Axhead)i(Axtail)i

=
∑
i∈[m]

(Axhead)i
∑

j∈supp(xtail)

aijxj


is at most ε. To this end, we partition the sum into two sums,
where the first sum handles terms (i, j) where (Axhead)i
and xj are large and the second sum handles the remaining
terms. Here we exploit that (Axhead)i is small for most i
as just argued. Furthermore, since x is unit length, there are
also few choices of j where xj is large. The first sum can
thus be handled by exploiting that there are few terms in the
sum, and the second sum has strong concentration since the
terms are small.

Stronger Lower Bound. To improve over the lower
bound given by Nelson and Nguyen (2013), we first need
to define a harder input instance. Concretely, they used the
standard unit vectors e1, . . . , en, which as argued earlier,
only is a valid input for d ≥ n.

Our hard instance X instead consists of all vectors of the
form vS =

∑
i∈S ei/

√
|S| for subsets S ⊆ [d] of cardi-

nality lg n/ lg d, all the standard unit vectors e1, . . . , ed, as
well as the origin 0.
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Now consider an m × d embedding matrix A, such that
each column of A has at most s non-zeros, and A is an
ε-JL matrix for X . Since e1, . . . , ed and 0 are in the input,
it must be the case that each column aj of A has norm in
1± ε ≤ 2. Now assume for simplicity that all the columns
of A had precisely s non-zero entries and those took values
{−1/

√
s, 1/

√
s}. For a subset T ⊆ [m] of t entries and

a list of t signs σ = (σ1, . . . , σt), we say that aj has the
signature (T, σ) if aj is non-zero in every coordinate corre-
sponding to T and its coordinates inside T have the signs
σ. Any column would then have

(
s
t

)
distinct signatures.

Since there are
(
m
t

)
2t signatures and d columns, it follows

by averaging that there must be a signature shared by at
least d

(
s
t

)
/
(
m
t

)
2t ≈ d(s/m)t columns. We set t roughly as

c lg d/ lg(m/s) for a small constant c > 0, resulting in at
least poly(d) columns sharing the same signature.

We now fix such a signature and let S be the subset of
columns in A with that signature. If |S| = poly(d) ≥
ε−1 lg n/ lg d, then we can select ε−1 disjoint subsets
S1, . . . , Sε−1 of S, each of cardinality lg n/ lg d. For each
such subset Si, we know that the vector vSi is in X . Now
inside the coordinates in T , all columns in Si are non-zero
and have the same sign. Hence the entries of AvSi

inside
T are

√
lg n/(s lg d) in magnitude as the columns add up.

Moreover, the entries inside T also have the same signs
across distinct AvSi and AvSj .

If we now delete the entries in T from all such AvPi
,

we are left with vectors whose norm is no more than
1 + ε < 2. Moreover, since vSi and vSj have disjoint
supports, they were orthogonal before embedding and thus
to preserve their distance, the inner products of AvSi

and
AvSj

must be O(ε). Deleting the entries in T reduces
these inner products by |T | lg n/(s lg d) = t lg n/(s lg d) ≈
lg n/(s lg(m/s)). If we call the resulting vectors ÃvSi

, then
it must hold that 0 ≤ ∥

∑ε−1

i=1 ÃvSi
∥2 =

∑ε−1

i=1 ∥ÃvSi
∥2 +∑

i

∑
j ̸=i⟨ÃvSi

, ÃvSj
⟩ ≤ 2ε−1 + ε−1(ε−1 − 1)(O(ε) −

lg n/(s lg(m/s))). Multiplying by ε and solving for s gives
s = Ω(ε−1 lg n/ lg(m/s)). Since m = Ω(ε−2 lg n), this is
equivalent to s = Ω(ε−1 lg n/ lg(m/ lg n)).

To deal with columns of A that are not of the form
{−1/

√
s, 0, 1/

√
s} we redefine signatures to be subsets of

coordinates where aj has large norm restricted to those co-
ordinates. Also, instead of the signs σ, we instead build a
1/4-net over the T coordinates and let the closest net point
be a substitute for the signs.

Comparing our argument to that of Nelson and Nguyen
(2013), the key difference lies in summing up multiple
columns of A that all share the same signature. To en-
sure this sum of columns corresponds to a vector in X , we
add every sum of lg n/ lg d columns vS to the input.

While the full proof is omitted from the main body of the

paper, for sake of completeness, a detailed proof of Theo-
rem 1.2 can be found in Appendix B.

Subspace Embeddings. For subspace embeddings, we
note that the classic approach for showing a sparsity of
s = O(ε−1k) follows by constructing a 1/2-net N 1

2
⊂ V

over the k-dimensional subspace V . One can then (roughly)
show that if a linear embedding matrix A preserves the
norm of all net points, then it preserves the pairwise distance
between all points in V . Since such a net has cardinality
2O(k), the claimed sparsity follows from Kane and Nelson’s
s = O(ε−1 lg(1/δ)) with δ = 2−O(k).

A first attempt at improving over this would be to di-
rectly insert n = 2O(k) into our improved sparse em-
bedding from above. This would result in a sparsity of
s = O(ε−1(k/ lg(1/ε) + k2/3 lg1/3 d)). The first term is
fine, but the latter term depends on d, which would make
the bound incomparable to previous results that only depend
on k and ε. We thus take a closer look at the origin of the
dependency on d.

Recall that for a set of n vectors, such as the net N 1
2

, we
partition the vectors w in N 1

2
into a head and a tail as w =

whead + wtail where whead contains the largest ℓ entries of
w. We then observed that for an embedding matrix A, we
have that ∥Aw∥2 can be written as

∥Awhead∥2 + ∥Awtail∥2 + 2⟨Awhead, Awtail⟩.

We then show that ∥Awhead∥2 and ∥Awtail∥2 are in
the respective intervals (1 ± O(ε))∥whead∥2 and (1 ±
O(ε))∥wtail∥2 and |⟨Awhead, Awtail⟩| = O(ε). For the
second term, we exploited that ∥wtail∥∞ ≤ 1/

√
ℓ and then

combined this with the result by Jagadeesan for embed-
ding vectors with a small ∥ · ∥∞. The requirement on s
resulting from this term was s = Ω(ε−1 lg n/ lg(1/ε)) =
Ω(ε−1k/ lg(1/ε)) as well as s = Ω(ε−1 lg(n)/ℓ) which is
Ω(ε−1k/ℓ). Hence no dependencies on d here. Similarly,
for the cross terms, we got the requirement s being at least
Ω(ε−1 lg(n)/

√
ℓ) = Ω(ε−1k/

√
ℓ). Thus the dependency

on d comes only from preserving the norms of the heads.

For the heads, we argued that there were
(
d
ℓ

)
choices for

the positions of the heads and thereafter, we needed an ε-
net on the chosen ℓ positions. This resulted in dO(ℓ) heads
in the net and we then used Kane and Nelson’s analysis
yielding s = O(ε−1 lg(1/δ)) with δ = d−O(ℓ). Thus we
need a tighter bound on the number of heads to avoid the
dependency on d.

The first idea is to change the definition of the head whead

to be all entries wi of w with |wi| ≥ 1/
√
ℓ. This is a

small but crucial change from the previous definition where
the head contained the top ℓ entries. To distinguish the
two, we instead denote the heavy entries by wheavy and the
remaining entries by wlight = w − wheavy.

5
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Next, we argue that the positions of the at most ℓ entries in
wheavy, must be among a small set of coordinates:

Lemma 2.1. Let V be a k-dimensional subspace of Rd.
For every ℓ ≥ 1, there is a set S ⊆ [d] of coordinates
with |S| ≤ kℓ such that for every unit vector v ∈ V , all
coordinates i ∈ [d] \ S satisfy |vi| < 1/

√
ℓ.

Lemma 2.1 states that the positions of the non-zeros in all
wheavy must be contained in a small set S of cardinality
only |S| = kℓ. Thus there are only

(|S|
ℓ

)
= 2O(ℓ lg k) pos-

sible positions of the non-zeros in wheavy. Next, we also
argue that once the positions of the heavy entries have been
determined, it suffices with 1/2-net on the chosen positions.
Hence we reduce the number of wheavy to just 2O(ℓ lg k) and
have removed the dependency on d. Using Kane and Nelson
now gives us that we need s = Ω(ε−1ℓ lg k). Balancing this
with s = Ω(ε−1k/

√
ℓ) gives ℓ = (k/ lg k)2/3. The final

bound thus becomes s = O(ε−1(k/ lg(1/ε)+k2/3 lg1/3 k))
as claimed.

While the full proof is omitted from the main body of the
paper, for sake of completeness, a detailed proof of Theo-
rem 1.3 can be found in Appendix C.

3. Sparsity Upper Bound
In this section we prove Theorem 1.1. Let d be an integer,
let ε ∈ (0, 1) and let X ⊆ Rd be some finite set of n vectors.
Let m = O(ε−2 lg n) and let s = O(ε−1 lg n/ lg(1/ε) +

ε−1 lg2/3 n lg1/3 d). We will show that if A is sampled as
in Kane and Nelson (2014), then A is an ε-JL matrix for X
with probability at least 1−O(1/d).

For simplicity, we will actually only show that it is an O(ε)-
JL matrix. A simple rescaling of ε by a constant factor
implies the result.

As A is a linear transformation, and n appears in all terms
inside a logarithm, it is enough to show the following claim
(by replacing X with X ′ containing xi,j = (xi−xj)/∥xi−
xj∥ for all xi, xj ∈ X).

Claim 3.1. Assume A is sampled as in Kane and Nelson
(Kane & Nelson, 2014) with m = O(ε−2 lg n) and s =

O(ε−1 lg n/ lg(1/ε) + ε−1 lg2/3 n lg1/3 d), then for every
set X ⊆ Rd of n unit vectors, it holds that with probability
at least 1−O(1/d) for all x ∈ X that ∥Ax∥2 ∈ (1±O(ε)).

For the rest of the section we therefore prove Claim 3.1, and
we start by introducing the following notation.

Notation 1. Let x ∈ Rd, and let ℓ ∈ [d]. Denote by xhead(ℓ)

the vector obtained from x where all but the top ℓ entries
are zeroed out. Denote xtail(ℓ) = x− xhead(ℓ).

Let ℓ =

⌈
min

{
ε−1/2,

(
lgn
lg d

)2/3}⌉
be an integer. For

every T ∈
(
[d]
ℓ

)
, let YT be the set of all vectors y ∈ Rd such

that ∥y∥ ≤ 1 and supp(y) ⊆ T . Let Y =
⋃

T∈([d]ℓ )
YT .

Note that for every i ∈ [d], ei ∈ Y .

Fix some set X ⊆ Rd of n unit vectors. Define E1 to
be the set of all matrices A ∈ Rm×d such that for all
x ∈ Y , ∥Ax∥2 ∈ (1 ± ε)∥x∥2. Define E2 to be the
set of all matrices A ∈ Rm×d such that for all x ∈ X ,
∥Axtail(ℓ)∥2 ∈ ∥xtail(ℓ)∥2 ± ε. Define E3 to be the set of
all matrices A ∈ Rm×d such that for all x ∈ X , either
∥Axhead(ℓ)∥2 > 2 or

∣∣〈Axhead(ℓ), Axtail(ℓ)

〉∣∣ < ε.

Claim 3.2. Assume A ∈ E1∩E2∩E3. Then for every x ∈ X ,
∥Ax∥2 ∈ (1±O(ε)).

Proof. Let x ∈ X , then ∥Ax∥2 can be written as

∥Axhead(ℓ)∥2 + ∥Axtail(ℓ)∥2 + 2
〈
Axhead(ℓ), Axtail(ℓ)

〉
.

If A is in E1, then ∥Axhead(ℓ)∥2 is in the interval (1 ±
ε)∥xhead(ℓ)∥2. Specifically ∥Axhead(ℓ)∥2 < 2 and thus
since we also have A in E3, it must be the case that∣∣〈Axhead(ℓ), Axtail(ℓ)

〉∣∣ < ε. Therefore

∥Ax∥2 ≤ (1 + ε)∥xhead(ℓ)∥2 + ∥xtail(ℓ)∥2 + ε+ 2ε.

Similarly

∥Ax∥2 ≥ (1− ε)∥xhead(ℓ)∥2 + ∥xtail(ℓ)∥2 − ε− 2ε

i.e. ∥Ax∥2 ∈ (1±O(ε)) as claimed.

It remains to show that Pr[A ∈ E1 ∩ E2 ∩ E3] happens with
at least probability 1−O(1/d). This is implied by the next
three claims, bounding the probability of each of the events
separately.

Claim 3.3. Pr[A ∈ E1] ≥ 1− d−1.

Claim 3.4. Pr[A ∈ E2] ≥ 1− n−1.

Claim 3.5. Pr[A ∈ E3] ≥ 1− n−1.

Claim 3.5, that essentially shows that with high probability
over the choice of A the cross terms are small, constitute
the technical crux of the upper bound result, and its proof
requires a much more careful examination of the construc-
tion by Kane and Nelson (2014). We now therefore give
the proof of Claim 3.5 whereas the proofs of Claim 3.3 and
Claim 3.4 can be found in Appendix A.

Recall that for a choice of m and s, the construction works
by grouping the rows of A into s blocks of m/s consecutive
rows each, [1,m/s], [m/s+ 1, 2m/s] and so on. For every
column, a uniform random entry in each block is chosen
together with an independent uniform sign σ. That entry
is then set to σ/

√
s. Each column thus has exactly one

non-zero per block of rows.

6
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The rest of this section is devoted to the proof of Claim 3.5.
We start by proving that xhead(ℓ) often has a desirable prop-
erty. Concretely, we define the following

Definition 3.6. A set J ∈
(
[d]
ℓ

)
of ℓ columns of A is well-

behaved if there are no more than 6 lg n/ lg(1/ε) rows i ∈
[m] such that |{j ∈ J : aij ̸= 0}| ≥ 6.

Claim 3.7. Let A be sampled as in Kane and Nelson (Kane
& Nelson, 2014) with m = O(ε−2 lg n) and s ≤ εm. Then
for every set J ∈

(
[d]
ℓ

)
of ℓ columns of A, it holds with

probability at least 1− n−3 that J is well-behaved.

Proof. Let J ∈
(
[d]
ℓ

)
, and denote β = 6 lg n/ lg(1/ε). For

every subset I = {i1, . . . , iβ} ∈
(
[m]
β

)
of β rows and every

sequence V1, . . . , Vβ ∈
(
J
6

)
of subsets of J of size 6 each,

define the event EI,V1,...,Vβ
to be the set of all matrices A

such that for every i ∈ I , for every j ∈ Vi, ai,j ̸= 0.

Note first that if the entries {ai,j}i∈I,j∈Vi are not inde-
pendent, then there must be two such entries in the same
column and same subset of m/s rows. In this case,
Pr[EI,V1,...,Vβ

] = 0 as at most one of them may be non-zero.
Otherwise, all 6β entries of A considered in EI,V1,...,Vβ

are

independent and therefore Pr[EI,V1,...,Vβ
] ≤

(
s
m

)6β
. As

s ≤ εm and ℓ ≤ ε−1/2, and by applying a union bound we
get that Pr[J is not well-behaved] is less than

∑
I∈([m]

β )

∑
V1,...,Vβ∈(J6)

Pr[EI,V1,...,Vβ
] ≤

(
me

β

)β

· ℓ6βε6β

≤ (O(1)ε−2 lg(1/ε))β · ε3β .

For ε smaller than some constant, this is at most εβ/2 ≤
n−3.

Next we show that if the the support of xhead(ℓ) is a well-
behaved subset of columns, then Axhead(ℓ) has few ”large”
entries (note that | supp(xhead(ℓ))| ≤ ℓ).

Claim 3.8. Let x ∈ X and assume the support of
xhead(ℓ) is well-behaved. Then Axhead(ℓ) has at most
6 lg n/ lg(1/ε) entries that exceed

√
5/s. Furthermore, we

have ∥Axhead(ℓ)∥∞ ≤
√
ℓ/s.

Proof. Let I ⊆ [m] be the set of rows i ∈ [m] for which
|{j ∈ supp(xhead(ℓ)) : aij ̸= 0}| ≥ 6. Consider an
i ∈ [m] \ I . The number of columns j ∈ [d] such
that aij ̸= 0 is at most 5 and for each of these we have
|aij | ≤ 1/

√
s. Therefore since ∥xhead(ℓ)∥ ≤ 1 we get

that |(Axhead(ℓ))i| ≤
√
5/s. Since supp(xhead(ℓ)) is well-

behaved, then |I| ≤ 6 lg n/ lg(1/ε), and the claim fol-
lows. The bound ∥Axhead(ℓ)∥∞ ≤

√
ℓ/s follows simply

from the support of xhead(ℓ) only having cardinality ℓ and
∥xhead(ℓ)∥ ≤ 1.

For every x ∈ X , let E3,x be the set of matrices A where
∥Axhead(ℓ)∥2 ≥ 2 or |⟨Axhead(ℓ), Axtail(ℓ)⟩| < ε. Then
E3 = ∩x∈XE3,x. Our goal is to show that Pr[E3,x] ≥ 1 −
O(1/n2) which by a union bound over all x ∈ X completes
the proof of Claim 3.5. To this end, define Wx to be the set
of all matrices A for which the support of xhead(ℓ) is a well-
behaved set of columns. Claim 3.7 implies that Pr[Wx] ≥
1 − n−3. It is therefore enough to show that Pr[E3,x |
Wx] ≥ 1− O(n−2), as Pr[E3,x] ≥ Pr[E3,x | Wx] Pr[Wx].
The following lemma thus concludes the proof of Claim 3.5,
and the rest of this section is devoted to its proof.

Lemma 3.9. Pr[E3,x | Wx] ≥ 1−O(n−2).

Since Pr[E3,x | Wx∧∥Axhead(ℓ)∥2 ≥ 2] = 1 it is enough to
bound Pr[E3,x | Wx ∧∥Axhead(ℓ)∥2 < 2]. Note that by dis-
jointness of the support of xhead(ℓ) and xtail(ℓ), the vectors
Axhead(ℓ) and Axtail(ℓ) are independent. In fact, Axtail(ℓ)

is completely independent of all columns of A in the sup-
port of xhead(ℓ). We will therefore show that conditioned on
Wx ∧ ∥Axhead(ℓ)∥2 < 2, |⟨Axhead(ℓ), Axtail(ℓ)⟩| = O(ε)
with probability at least 1−O(1/n2) over the choice of the
random columns in the support of xtail(ℓ). We can there-
fore condition on some outcome of u = Axhead(ℓ) where
supp(xhead(ℓ)) is also well-behaved.

For every i ∈ [m] and j ∈ supp(xtail(ℓ)) define bij as
the Bernoulli random variable taking the value 1 if entry
(i, j) of A is non-zero and 0 otherwise. In addition, let
σij denote uniform random and independent signs. Then
⟨u,Axtail(ℓ)⟩ =

∑m
i=1 ui

∑
j∈supp(xtail(ℓ))

bijσijxj/
√
s.

To bound the sum, we split it into two sums, and bound
the probabilities of each part being at most O(ε). Denote

R = {(i, j) ∈ [m]× supp(xtail(ℓ)) : |ui| >
√
5/s

and |xj | > 1/(
√
ℓ lg2(1/ε))}

and
S = ([m]× supp(xtail(ℓ))) \R

Claim 3.10. Pr

[∣∣∣∣∣ ∑(i,j)∈R

ui · bijσijxj/
√
s

∣∣∣∣∣ ≤ O(ε)

]
≥

1− n−2.

Proof. Recall that ∥u∥∞ ≤
√

ℓ/s and ∥xtail(ℓ)∥∞ ≤
1/
√
ℓ. Therefore∣∣∣∣∣∣
∑

(i,j)∈R

ui · bijσijxj/
√
s

∣∣∣∣∣∣ ≤ 1√
s

∑
(i,j)∈R

|ui| · bij |σijxj |

≤ 1

s

∑
(i,j)∈R

bij .

To complete the proof we will show that with probability
at least 1 − n−2 it holds that

∑
(i,j)∈R bij ≤ O(sε) ≤

7
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c lg n/ lg(1/ε). Since supp(xhead(ℓ)) is well-behaved,
there are at most 6 lg n/ lg(1/ε) rows i ∈ [m] for which
|ui| >

√
5/s and since ∥xtail(ℓ)∥ = 1 there are at most

ℓ lg4(1/ε) columns j ∈ supp(xtail(ℓ)) such that |xj | ≥
1/(

√
ℓ lg2(1/ε)). Thus |R| ≤ 6ℓ lg n lg3(1/ε), and there-

fore µ := E
[∑

(i,j)∈R bij

]
≤ (s/m) · 6ℓ lg n lg3(1/ε) ≤

ε1/2 lg n lg3(1/ε), where the last inequality follows from
the fact that s ≤ εm and ℓ ≤ ε−1/2. For ε smaller
than some constant we get that the expectation is at most
µ ≤ ε1/4 lg n/ lg(1/ε). Straightforward calculations give
the following observation, whose proof is deferred to Ap-
pendix D.

Observation 3.11. For every t > 0,

E
[
exp

(
t
∑

(i,j)∈R bij

)]
≤

∏
(i,j)∈R

E [exp (tbij)].

Employing Observation 3.11 we can apply Hoeffding-like
inequalities on the probability that

∑
(i,j)∈R bij is large.

Specifically for a large enough constant c let δ = cε−1/4−1
and t = ln(1 + δ) we get from Markov’s inequality that

Pr
[∑

(i,j)∈R bij >
c lgn
lg(1/ε)

]
= Pr

[
exp

(
t
∑

(i,j)∈R bij

)
> exp

(
tc lg n

lg(1/ε)

)]
≤ eδµ

(1 + δ)c lgn/ lg(1/ε)
.

As (1 + δ) = cε−1/4 and µ ≤ ε1/4 lg n/ lg(1/ε) we get
that if c is large enough

Pr
[∑

(i,j)∈R bij >
c lgn
lg(1/ε)

]
≤
(
eε1/4

) c lg n
lg(1/ε) ≤ n−2 .

Claim 3.12. Pr[|
∑

(i,j)∈S ui · bijσijxj/
√
s| ≤ O(ε)] is at

least 1−O(n−2).

Proof. We first note that the sum can be thought of as an
inner product between two vectors indexd by (i, j) ∈ S.
Specifically let σ,w ∈ RS be defined as follows. For ev-
ery (i, j) ∈ S, σ(i,j) = σij and w(i,j) = c(i,j)bij , where
c(i,j) = uixj/

√
s. As σ and w are independent, we get

from Hoeffding’s inequality that for every c > 0

Pr [|⟨w, σ⟩| > cε | ∥w∥] ≤ 2 exp

(
− (cε)2

2∥w∥2

)
.

Therefore it is enough to show that with probability at least
1 − O(n−2) it holds that ∥w∥2 = O(ε2/ lg n). Note first

that

E
[
∥w∥2

]
= E

[ ∑
(i,j)∈S

c2(i,j)b
2
ij

]
=

1

s

∑
(i,j)∈S

u2
ix

2
jE[bij ]

=
1

m

∑
(i,j)∈S

u2
ix

2
j =

1

m
∥xtail(ℓ)∥2∥u∥2 .

Since we conditioned on ∥u∥2 < 2, and since ∥xtail(ℓ)∥2 ≤
1 we have that E

[
∥w∥2

]
≤ 2/m = O(ε2/ lg n). Our goal

is therefore to bound Pr[∥w∥2 > (1+δ)E[∥w∥2]] for some
constant δ > 0. Similarly to the previous proof we em-
ploy the following observation, whose proof is deferred to
Appendix D.

Observation 3.13. For every t > 0,

E
[
exp

(
t
∑

(i,j)∈S

c2(i,j)bij
)]

≤
∏

(i,j)∈S

E
[
exp

(
tc2(i,j)bij

)]
.

We start by bounding the coefficients c(i,j). Recall that
∥u∥∞ ≤

√
ℓ/s and ∥xtail(ℓ)∥∞ ≤ 1/

√
ℓ, and let (i, j) ∈ S.

Then either |ui| ≤
√

5/s or |xj | ≤ 1/(
√
ℓ lg2(1/ε)). In

the former case |uixj/
√
s| ≤

√
5/(s

√
ℓ), and by the choice

of s and ℓ we get |uixj/
√
s| ≤ O(ε/ lg n). In the latter

case |uixj/
√
s| ≤ 1/s lg(1/ε) = O(ε/ lg n). We conclude

that for all (i, j) ∈ S we have |c(i,j)| = |uixj/
√
s| ≤

O(ε/ lg n). Let µ = E[∥w∥2], α = O((ε/ lg n)2) and let
t = ln(1 + δ)/α for some large enough constant δ, then we
get from Markov’s inequality that

Pr[∥w∥2 > (1 + δ)/m] ≤
E
[
exp

(
t
∑

(i,j)∈S c2(i,j)bij
)]

exp(t(1 + δ)/m)

≤
∏

(i,j)∈S E
[
exp

(
tc2(i,j)bij

)]
(1 + δ)(1+δ)/(αm)

(2)

Now note that for every (i, j) ∈ S it holds that

E
[
exp

(
tc2(i,j)bij

)]
=

s

m
etc

2
(i,j) +

(
1− s

m

)
= 1 +

s

m

(
etc

2
(i,j) − 1

)
= 1 +

s

m

(
(1 + δ)c

2
(i,j)/α − 1

)
Since c2(i,j) ≤ α, we get that (1+ δ)c

2
(i,j)/α ≤ 1+ δc2(i,j)/α.

Therefore

E
[
exp

(
tc2(i,j)bij

)]
≤ 1+

sc2(i,j)δ

αm
≤ exp

(
δ

α
·
sc2(i,j)

m

)
.

Plugging into (2) we get that

Pr
[
∥w∥2 > (1 + δ)µ

]
≤

∏
(i,j)∈S

exp
(
δ
α · sc2(i,j)

m

)
(1 + δ)(1+δ)/(αm)

=
eδµ/α

(1 + δ)(1+δ)/(αm)
≤
(

e2δ

(1 + δ)1+δ

)1/(αm)

,

8
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where the last inequality is due to the fact that µ ≤ 2/m.
As 2/(αm) = Ω(lg n), then for a large enough constant δ
the probability is at most n−2
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A. Proofs for Claim 3.3 and Claim 3.4
In this section we supply the proofs for Claims 3.3 and 3.4 from Section 3. We start with the proof of Claim 3.3 i.e.
Pr[A ∈ E1] ≥ 1− d−1, where E1 is defined in the beginning of Section 3.

Proof. Denote δ = 2−Ω( 3
√

lg2 n lg d). As n ≥ d we get that m ≥ Ω(ε−2 lg(1/δ)) and s ≥ Ω(ε−1 lg(1/δ)). Following Kane
and Nelson (Kane & Nelson, 2014), for every unit vector x ∈ Rd we have that Pr

[
∥Ax∥2 ∈ (1± ε)

]
≥ 1− δ. Denote by

Ŷ the set of all vectors y ∈ Y such that for every i ∈ T , d3yi is an integer. Then for every y ∈ Ŷ , for every i ∈ supp(y),
d3yi ∈ {−d3,−d3 + 1, . . . , d3}, and therefore

|Ŷ| ≤
(
d

ℓ

)
(2d3)ℓ ≤ (2d4)ℓ ≤ 2O(ℓ lg d) = 2O( 3

√
lg2 n lg d) ≤ 1√

δ
.

Therefore with probability at least 1−
√
δ ≥ 1− d−1, we get that for all y ∈ Ŷ , ∥Ay∥2 ∈ (1± ε).

Assume therefore that for all y ∈ Ŷ , ∥Ay∥2 ∈ (1 ± ε). Let x ∈ Y , and let y ∈ Ŷ be the closest vector in Ŷ to x. Then
∥x− y∥2 ≤ ℓ/d3. Since ∥A∥2F = d we get that

∥A(x− y)∥ ≤ ∥A∥F ∥x− y∥ ≤
√

sdℓ

d3
≤ O

(√
(lg n)5/3

εd2

)
= O(ε) ,

where the last inequality is due to the fact that d ≥ lgn
ε2 . Therefore

∥Ax∥ ≤ ∥Ay∥+ ∥A(x− y)∥ ≤ 1 + ε+O(ε) ≤ 1 +O(ε),

and similarly ∥Ax∥ ≥ 1−O(ε).

Next we give the proof of Claim 3.4 i.e. Pr[A ∈ E2] ≥ 1 − d−1, where E2 is defined in the beginning of Section 3. In
showing this claim, we will make use of the following result by Jagadeesan (2019).

Theorem A.1 ((Jagadeesan, 2019)). For any 0 < δ < 1 and 0 < ε < ε0 for some constant ε0, assume A is sampled as in
Kane and Nelson (2014) with m ≥ Θ(ε−2 lg(1/δ)) and m ≥ s exp(max{1, ln(1/δ)/(εs)}), then for any vector v with

∥v∥∞
∥v∥

= O

(√
εs ln(mε2/ ln(1/δ))

ln(1/δ)

)

we have Pr[∥Av∥2 ∈ (1± ε)∥v∥2] ≥ 1− δ.

Using Theorem A.1, we now turn to bound the probability of E2.

Proof. Fix x ∈ X . Denote v = xtail(ℓ), and let ε̂ = max{ε, lgn
s

(
∥v∥∞
∥v∥

)2
}. We wish to apply Theorem A.1 and thus start

by verifying that our choice of parameters satisfy the constraints in the theorem. Applying the right constants, we have that
m ≥ Θ(ε−2 log n) ≥ Θ(ε̂−2 log n). Furthermore

seΘ(max{1,(ε̂s)−1 lgn}) ≤ seΘ(max{1,(εs)−1 lgn}) ≤ semax{Θ(1),− lg ε} = s ·max{eΘ(1),
1

ε
}

= O

(
1

ε

(
3

√
lg2 n lg d+ lg n/ lg(1/ε)

))
max{eΘ(1),

1

ε
} ≤ m.

Finally note that √
ε̂s

lg mε̂2

lgn

lg n
≥

√
lg n

s

(
∥v∥∞
∥v∥

)2

· s 1

lg n
≥ ∥v∥∞

∥v∥

Therefore, Theorem A.1 gives us that with probability ≥ 1 − 1
n2 we have ∥Av∥2 ∈ (1 ± ε̂)∥v∥2. That is ∥Av∥2 ∈

∥v∥2 ± ε̂∥v∥2 = ∥v∥2 ± max{ε∥v∥2, lgn
s ∥v∥2∞}. Note first that ε∥v∥2 < ε. Next, as v = xtail(ℓ), and ∥x∥ = 1 we

11
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have that ∥v∥∞ ≤ 1√
ℓ
, and therefore lgn

s ∥v∥2∞ ≤ lgn
sℓ = O

(
1
s ·max{lg1/3 n lg2/3 d , ε1/2 lg n}

)
= O(ε). We conclude

that with probability ≥ 1 − 1
n2 we have that ∥Axtail(ℓ)∥2 ∈ ∥xtail(ℓ)∥2 ± O(ε). Applying a union bound we get that

Pr[A ∈ E2] ≥ 1− 1
n .

B. Sparsity Lower Bound
In this section, we prove our lower bound result, Theorem 1.2. Let 0 < ε < 1/4. We first define a hard set of input
vectors in Rd. Let ℓ = lg n/ lg(ed/ℓ). For every ℓ-sized subset S ⊆ [d] of coordinates, form the vector xS =

∑
i∈S ei/

√
ℓ.

The collection of these vectors, along with the 0-vector and e1, . . . , ed, is our hard input instance X of cardinality
|X| ≤

(
d
ℓ

)
+ 1 + d ≤ (ed/ℓ)ℓ + n ≤ 2n.

Assume that A is an m × d matrix in which every column has at most s non-zeros, and that A satisfies ∥Au − Av∥2 ∈
(1± ε)∥u− v∥2 for all u, v ∈ X . We also assume that m = Ω(ε−2 lg n) as such a lower bound on m is already known. We
prove a lower bound on s from these assumptions. Throughout the proof, we assume s ≤ m/2 as otherwise, we are already
done.

Let aj denote the j’th column of A. We first observe that ∥aj∥2 ∈ (1±ε) for all j since ∥aj∥2 = ∥Aej∥2 = ∥Aej−A0∥2 ∈
(1± ε)∥ej − 0∥2 = (1± ε).

Our next step is to identify a subset T ⊆ [m], such that many of the columns of A have large entries in T . For this, we prove
the following lemma:

Lemma B.1. Let v ∈ Rm be a vector with at most s ≤ m/2 non-zeros. For any t ≤ s/8, there are at least
min{

(
m−1
t−1

)
, (s/(8t))t} distinct subsets T ⊆ [m] of cardinality |T | = t for which

∑
i∈T v2i ≥ t∥v∥2/(2s).

We defer the proof to the end of the section and instead proceed with the lower bound argument.

Let t be a parameter to be fixed. There are d columns in A, which by Lemma B.1 and averaging among all t-
sized subsets of [m] implies that there is a T with |T | = t such that at least dmin{

(
m−1
t−1

)
, (s/(8t))t}/

(
m
t

)
≥

dmin{t/m, (s/(8t))t/(em/t)t} = dmin{t/m, (s/(8em))t} columns aj of A satisfy
∑

i∈T a2i,j ≥ (1 − ε)t/(2s) ≥
t/(4s). Fix such a T and let AT be the subset of columns satisfying the previous conditions for this T .

Let N 1
4

be a 1/4-net for the set of unit vectors in Rt, i.e. for any x ∈ Rt with ∥x∥ = 1, there is an x′ ∈ N 1
4

with
∥x− x′∥ ≤ 1/4 and ∥x′∥ = 1. Standard results give that there is such a N 1

4
of cardinality 2O(t). For every aj ∈ AT , let aTj

denote aj restricted to the t entries in T and let w(aj) denote the closest vector in N 1
4

to aTj /∥aTj ∥. By averaging, there is a
vector w ∈ N 1

4
where at least dmin{t/m, (s/m)t}2−O(t) vectors aj ∈ AT have w as the closest vector to aTj /∥aTj ∥. Fix

such a w and let AT,w be the subset of columns in A satisfying the conditions.

Now fix t = (1− o(1)) lg(εd/ℓ)/ lg(m/s). Assume first that for this choice, we have (s/m)t ≤ t/m. Then since s = o(m)
(otherwise we are done with the lower bound proof), we have

|AT,w| ≥ d(s/m)t2−O(t) = d(s/m)(1+o(1))t ≥ ℓ/ε.

From AT,w, construct ε−1 disjoint sets of ℓ vectors each. For each such set S, we have that the vector
∑

aj∈S ej/
√
ℓ is

in X . Let v1, . . . , vε−1 denote these vectors. Since they have disjoint supports, we have ⟨vi, vj⟩ = 0 for i ̸= j and thus
∥vi − vj∥2 = 2. This also implies that ∥Avi −Avj∥2 ∈ 2± 2ε. Since ∥Avi −Avj∥2 = ∥Avi∥2 + ∥Avj∥2 − 2⟨Avi, Avj⟩
and ∥Avi∥2, ∥Avj∥2 ∈ 1± ε, it must be the case that ⟨Avi, Avj⟩ ∈ ±2ε.

On the other hand, we have ⟨Avi, Avj⟩ =
∑

ah∈Si

∑
ak∈Sj

⟨ah, ak⟩/ℓ. Thus
∑

ah∈Si

∑
ak∈Sj

⟨ah, ak⟩/ℓ ≤ 2ε. Now

set all entries i ∈ T to 0 for all columns of A. Call the resulting columns âj and the resulting matrix Â. Then for
two columns ah, ak, we have ⟨âh, âk⟩ = ⟨ah, ak⟩ − ⟨aTh , aTk ⟩. For any two ah, ak ∈ AT,w, we have ⟨aTh , aTk ⟩ =
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∥aTh ∥∥aTk ∥⟨w + (aTh /∥aTh ∥ − w), w + (aTk /∥aTk ∥ − w)⟩. We have

⟨w + (aTh /∥aTh ∥ − w), w + (aTk /∥aTk ∥ − w)⟩ =

∥w∥2 + ⟨w, (aTh /∥aTh ∥ − w)⟩+ ⟨w, (aTk /∥aTk ∥ − w)⟩+ ⟨(aTh /∥aTh ∥ − w), (aTk /∥aTk ∥ − w)⟩ ≥
∥w∥2 − ∥w∥∥aTh /∥aTh ∥ − w∥ − ∥w∥∥aTk /∥aTk ∥ − w∥ − ∥aTh /∥aTh ∥ − w∥|aTh /∥aTh ∥ − w∥ ≥

1− 1/4− 1/4− 1/16 ≥
1/4.

Hence for any two ah, ak ∈ AT,w, it holds that ⟨âh, âk⟩ ≤ ⟨ah, ak⟩ − ∥aTh ∥∥aTk ∥/4 ≤ ⟨ah, ak⟩ − t(1 − ε)/(8s) ≤
⟨ah, ak⟩ − t/(16s). We therefore conclude that ⟨Âvi, Âvj⟩ ≤

∑
ah∈Si

∑
ak∈Sj

(⟨ah, ak⟩ − t/(16s))/ℓ ≤ 2ε− ℓt/(16s).

Finally, consider the vector z =
∑ε−1

i=1 Âvi. We have ∥z∥2 =
∑ε−1

i=1 ∥Âvi∥2+
∑

i ̸=j⟨Âvi, Âvj⟩ ≤ ε−1(1+ε)+ε−1(ε−1−
1)(2ε − ℓt/(16s)). Since ∥z∥2 ≥ 0, it must thus be the case that (ε−1 − 1)ℓt/(16s) ≤ 1 + ε + (ε−1 − 1)2ε. Since
ε−1 − 1 ≥ ε−1/2 and 1 + ε + (ε−1 − 1)2ε ≤ 4, we conclude s ≥ ε−1ℓt/128. Since d ≥ m = Ω(ε−2 lg n), we have
lg(ed/ℓ) ≤ c′ lg(εd/ℓ) for a constant c′ > 0. Thus

s = Ω(ε−1 lg n/ lg(m/s)) = Ω(ε−1 lg n/ lg(m/ lg n)).

This was only under the assumption that (s/m)t ≤ t/m for t = (1 − o(1)) lg(εd/ℓ)/ lg(m/s). This is implied by
(ℓ/(εd))1−o(1) ≤ (1 − o(1)) lg(εd/ℓ)/(m lg(m/s)). This is in particular implied by m ≤ (εd/ℓ)1−o(1). Constraining
m ≤ (εd/ lg n)1−o(1) thus completes the proof.

Proof of Lemma B.1. First consider the case where v has at least one coordinate j with v2j ≥ t∥v∥2/(2s). In this case, there
are at least

(
m−1
t−1

)
valid choices for T .

If all coordinates j satisfy v2j < t∥v∥2/(2s), we partition the coordinates of v into buckets based on their magnitude.
Concretely, for every i = 0, . . . , lg t− 1, let Vi denote the subset of coordinates j for which v2j ∈ [∥v∥22i−1/s, ∥v∥22i/s).
Notice that all coordinates of j with v2j < ∥v∥2/(2s) contribute at most s∥v∥2/(2s) = ∥v∥2/2 to ∥v∥2. Furthermore, the
contribution from coordinates j with j ∈ Vi for a Vi with |Vi| ≤ s/(4t), is no more than

∑lg t−1
i=0 (s/(4t))∥v∥22i/s ≤

∥v∥2/4. Hence
∑

i:|Vi|>s/(4t)

∑
j∈Vi

v2j ≥ ∥v∥2/4. This implies that we also have
∑

i:|Vi|>s/(4t) |Vi| · ∥v∥22i/s ≥ ∥v∥2/4.

For each i with |Vi| > s/(4t), let ti := ⌈4t|Vi|/s⌉. Then ti ≤ 4t|Vi|/s+ 1 ≤ 4t|Vi|/s+ 4t|Vi|/s ≤ 8t|Vi|/s. Consider all
sets T having |T ∩ Vi| = ti for all i with |Vi| > s/(4t). Any such T satisfies

∑
j∈T v2j ≥

∑
i:|Vi|>s/(4t) ti∥v∥22i−1/s ≥

(2t/s)
∑

i:|Vi|>s/(4t) |Vi| · ∥v∥22i/s ≥ (t/(2s))∥v∥2. The number of such T is at least
(

m/2
t−

∑
i ti

)∏
i:|Vi|>s/(4t)

(|Vi|
ti

)
. For

|Vi| > s/(4t), we have
(|Vi|

ti

)
≥ (|Vi|/ti)ti ≥ (|Vi|/(8t|Vi|/s))ti = (s/(8t))ti . The number of valid T is thus at least(

m−s
t−

∑
i ti

)∏
i:|Vi|>s/(4t)(s/(8t))

ti ≥ (m/(2t))t−
∑

i ti(s/(8t))
∑

i ti ≥ (s/(8t))t.

C. Subspace Embeddings
In this section, we show that for any k-dimensional subspace V ⊂ Rd, an embedding matrix A sampled as in Kane and
Nelson (2014), with a sparsity s = Θ(ε−1(k/ lg(1/ε) + k2/3 lg1/3 k)) as in Theorem 1.3, preserves the norm of every
vector in V to within 1± ε with high probability, thus proving Theorem 1.3.

To simplify the proof, we will once again argue that norms are preserved to within 1 ± O(ε). As in Section 3, simple
rescaling of ε by a constant factor implies the result.

We first show that it is enough that A approximately preserves norms of a finite set defined by a 1/2-net on the subspace.
The following lemma is known and appears in previous works. For sake of completeness, we supply a proof, which is
deferred to the Appendix E.

Lemma C.1. Let A be a matrix and V a subspace of Rd. Let N 1
2

be a 1/2-net for V and N+
1
2

= {x+y : x, y ∈ N 1
2
∪{0}}.

Assume that for all v ∈ N+
1
2

, ∥Av∥2 ∈ (1±O(ε))∥v∥2, then for all unit vectors x ∈ V , ∥Ax∥2 ∈ (1±O(ε))∥x∥2.

As explained in the technical overview, we also employ Lemma 2.1. The lemma gives a combinatorial property of subspaces
of Rd.
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Lemma C.2. 2.1 Let V be a k-dimensional subspace of Rd. For every ℓ ≥ 1, there is a set S ⊆ [d] of coordinates with
|S| ≤ kℓ such that for every unit vector v ∈ V , all coordinates i ∈ [d] \ S satisfy |vi| < 1/

√
ℓ.

Proof. Let v1, . . . , vk be an orthonormal basis for V . Consider any unit vector u ∈ V and write it as u =
∑

j αjv
j with∑

j α
2
j = 1. Then ui =

∑
j αjv

j
i . By Cauchy-Schwarz, we have |ui| ≤

√∑
j α

2
j ·
√∑

j(v
j
i )

2 =
√∑

j(v
j
i )

2. Now let

S ⊆ [d] be all coordinates such that there is a unit vector u ∈ V with |ui| ≥ 1/
√
ℓ. Then for all i ∈ S, we must have∑

j(v
j
i )

2 ≥ 1/ℓ. But
∑

j

∑
i(v

j
i )

2 = k and thus |S| ≤ kℓ.

With the two lemmas above, we are ready to prove our main result on subspace embeddings, captured in Theorem 1.3.
Similarly to the proof of Theorem 1.1, we define the following notation.

Notation 2. Let x ∈ Rd. For every ℓ ∈ [d] denote by xheavy(ℓ) the vector obtained from x where all but the entries of
magnitude strictly greater than 1/

√
ℓ are zeroed out. Denote xlight(ℓ) = x− xheavy(ℓ).

Let N 1
2

be a 1/2-net on the unit ball in V , and define N+
1
2

= N 1
2
∪{x+y : x, y ∈ N 1

2
∪{0}}. A 1/2-net can be constructed

such that |N 1
2
| ≤ 4k. Let n = |N+

1
2

| ≤ 8k. Let ℓ =
⌈
min

{
ε−1/2,

(
lgn
lg k

)2/3}⌉
be an integer, and let S be defined as in

Lemma 2.1. We define Y as the set of all vectors y ∈ Rd such that supp(y) ⊆ S, | supp(y)| ≤ ℓ and ∥y∥ ≤ 1.

Define E1 to be the set of all matrices A ∈ Rm×d such that for all x ∈ Y , ∥Ax∥2 ∈ (1± ε)∥x∥2. Define E2 to be the set of
all matrices A ∈ Rm×d such that for all x ∈ N+

1
2

, ∥Axlight(ℓ)∥2 ∈ ∥xlight(ℓ)∥2 ± ε. Define E3 to be the set of all matrices

A ∈ Rm×d such that for all x ∈ N+
1
2

,
∣∣〈Axheavy(ℓ), Axlight(ℓ)

〉∣∣ < ε.

Claim C.3. Assume A ∈ E1 ∩ E2 ∩ E3. Then for every unit vector x ∈ V , ∥Ax∥2 ∈ (1±O(ε)).

Proof. Following Lemma C.1 and using linearity of A, it is enough to prove the claim for x = z/∥z∥ for all vectors z in N+
1
2

.

Let therefore x be any such unit vector. Then ∥Ax∥2 = ∥Axheavy(ℓ)∥2+∥Axlight(ℓ)∥2+2
〈
Axheavy(ℓ), Axlight(ℓ)

〉
. Since

∥x∥ = 1 and every entry of xheavy(ℓ) is at least of magnitude 1/
√
ℓ, we have by the definition of S that supp(xheavy(ℓ)) ⊆ S

and | supp(xheavy(ℓ))| ≤ ℓ. Therefore xheavy(ℓ) ∈ Y and thus

∥Ax∥2 ≤ (1 + ε)∥xheavy(ℓ)∥2 + (1 + ε)∥xlight(ℓ)∥2 + ε+ 2ε ≤ (∥x∥2 +O(ε))

Similarly
∥Ax∥2 ≥ (1− ε)∥xheavy(ℓ)∥2 + (1− ε)∥xlight(ℓ)∥2 − ε− 2ε ≥ (∥x∥2 −O(ε))

As in the proof of Theorem 1.1, it remains to lower bound the probability of E1 ∩ E2 ∩ E3. Once again, we bound the
probability of each event separately.

Claim C.4. Pr[A ∈ E1] ≥ 1− 2−k2/3

.

Proof. Denote δ = 2−Ω( 3
√

lg2 n·lg k). We get that m ≥ Ω(ε−2 lg(1/δ)) and s ≥ Ω(ε−1 lg(1/δ)). Following the result by
Kane and Nelson (2014), for every unit vector x ∈ Rd, we have that Pr

[
∥Ax∥2 ∈ (1±O(ε))

]
≥ 1− δ.

Next, for every T ⊆ S such that |T | = ℓ, let YT = {y ∈ Rd : ∥y∥ ≤ 1 and supp(y) ⊆ T}, then YT is a unit ball of an
ℓ-dimensional subspace of Rd, and thus there is a 1/2-net ŶT for YT such that |ŶT | ≤ 4ℓ. Note that in these notations
Y =

⋃
T∈(Sℓ)

YT , and denote in addition Ŷ =
⋃

T∈(Sℓ)
ŶT . Then

|Ŷ| ≤
(
|S|
ℓ

)
4ℓ ≤ (4ek)ℓ = 2Ω(ℓ lg(4ek)) .

For k > 1, we have |Ŷ| ≤ 2Ω(ℓ lg k) = 2Ω( 3
√

lg2 n lg k) = δ−1/2. Therefore with probability at least 1−
√
δ ≥ 1− 2−k2/3

,
we get that for all y ∈ Ŷ , ∥Ay∥2 ∈ (1±O(ε)).
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Assume therefore that for all y ∈ Ŷ , ∥Ay∥2 ∈ (1 ± O(ε)). Let x ∈ Y , then there exists T ⊆ S such that |T | = ℓ
and supp(x) ⊆ T , hence x ∈ YT . As ŶT is a 1/2-net of YT and YT is a unit ball of an ℓ-dimensional subspace of Rd,
Lemma C.1 implies that ∥Ax∥2 ∈ (1±O(ε))∥x∥2. Therefore Pr[A ∈ E1] ≥ 1− 2−k2/3

.

The following claim completes the proof of Theorem 1.3. Proving bounds on the probabilities of E2 and E3 is analogous to
the proofs of Claims 3.4 and 3.5 respectively, and is therefore omitted.

Claim C.5. Pr[A ∈ E2] ≥ 1− 1
n and Pr[A ∈ E3] ≥ 1− 1

n .

D. Proofs for Observations 3.11 and 3.13
For sake of completeness, we prove the following lemma, which implies Observations 3.11 and 3.13.

Lemma D.1. Let I ⊆ [m]× [d] and let {c(i,j)}(i,j)∈I be a set of non-negative constants. For every (i, j) ∈ I , define bij as
the Bernoulli random variable attaining 1 if and only if aij ̸= 0, then

E

exp
 ∑

(i,j)∈I

c(i,j)bij

 ≤
∏

(i,j)∈I

E[exp(c(i,j)bij)]

Proof. Recall that the rows of A are divided into s blocks I1, . . . , Is of m/s consecutive rows each. That is for every
p ∈ [s], Ip = [(p− 1)(m/s) + 1, pm/s]. In these notations,∑

(i,j)∈I

c(i,j)bij =
∑
j∈[d]

∑
p∈[s]

∑
i∈Ip:(i,j)∈I

c(i,j)bij .

As the columns of A, as well as different blocks within each column are independent, we get that

E

exp
 ∑

(i,j)∈I

c(i,j)bij

 ≤
∏
j∈[d]

∏
p∈[s]

E

 ∏
i∈Ip:(i,j)∈I

exp(c(i,j)bij)


Fix j ∈ [d] and p ∈ [s], and denote C = {i ∈ Ip : (i, j) ∈ I}. For every i ∈ C, c(i,j) ≥ 0, and thus eci,j−1

(m/s) ≥ 0. Therefore

E

[∏
i∈C

exp(c(i,j)bij)

]
=
∑
i∈C

ec(i,j)

(m/s)
+ (1− |C|

(m/s)
) = 1 +

∑
i∈C

ec(i,j) − 1

(m/s)

≤
∏
i∈C

(
1 +

ec(i,j) − 1

(m/s)

)
=
∏
i∈C

E(exp(c(i,j)bij))
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Sparse Dimensionality Reduction Revisited

E. A 1/2-net suffices
Here we give the defered proof of Lemma C.1

Proof of Lemma C.1. Let x ∈ V be a unit vector. We construct inductively a sequence {xi}∞i=0 of vectors in N 1
2

and a
sequence {αi}∞i=0 of non-negative real numbers such that x =

∑∞
i=0 αixi and moreover αi ≤ 2−i for all i ≥ 0. Let x0 be

the closest vector to x in N 1
2

, and let α0 = 1. Then x = α0x0 + (x− α0x0). Clearly if x− α0x0 = 0 we are done, as we
can define αi = 0 for all i ≥ 1. Otherwise, denote α1 = ∥x−α0x0∥ and v1 = α−1

1 (x−α0x0), then α1 ≤ 1/2, v1 is a unit
vector and x = α0x0 + α1v1. Following by induction let p ∈ N and assume there are vectors x0, . . . , xp ∈ N 1

2
, numbers

α0, . . . , αp+1 and a unit vector vp+1 such that x =
∑p

i=0 αixi + αp+1vp+1 and such that αi ≤ 2−i for all i ≤ p+ 1. Let
xp+1 be the closest vector in N 1

2
to vp+1. Then vp+1 = xp+1 + (v − xp+1). If v − xp+1 = 0 we are done, as we can

define αi = 0 for all i ≥ p + 2. Otherwise, denote β = ∥v − xp+1∥, αp+2 = αp+1β and vp+2 = β−1(v − xp+1), then
αp+2 ≤ 2−p+1, vp+2 is a unit vector and

x =

p∑
i=0

αixi + αp+1vp+1 =

p∑
i=0

αixi + αp+1(xp+1 + (v − xp+1)) =

p+1∑
i=0

αixi + αp+2vp+2 .

This completes the construction of the sequences. Next note that

∥x∥2 =

∥∥∥∥∥
∞∑
i=0

αixi

∥∥∥∥∥
2

=

∞∑
i=0

αi ∥xi∥2 +
∑
i<j

2αiαjx
t
ixj .

Similarly we get that

∥Ax∥2 =

∥∥∥∥∥
∞∑
i=0

αiAxi

∥∥∥∥∥
2

=

∞∑
i=0

αi ∥Axi∥2 +
∑
i<j

2αiαjx
t
iA

tAxj .

Since xi ∈ N 1
2
⊆ N+

1
2

for all i we have that ∥Axi∥2 ∈ 1±O(ε). In addition, for all i < j, 2xt
ixj = ∥xi + xj∥2 −∥xi∥2 −

∥xj∥2. Since xi, xj , xi + xj ∈ N+
1
2

we have that

2xt
iA

tAxj = ∥Axi +Axj∥2 − ∥Axi∥2 − ∥Axj∥2 = ∥A(xi + xj)∥2 − ∥Axi∥2 − ∥Axj∥2 ∈ 2xt
ixj ±O(ε) ,

and thus

∥Ax∥2 =

∞∑
i=0

αi ∥Axi∥2 +
∑
i<j

2αiαjx
t
iA

tAxj

∈
∞∑
i=0

αi(∥xi∥2 ±O(ε)) +
∑
i<j

2αiαj(x
t
ixj ±O(ε))

⊆
∞∑
i=0

αi ∥xi∥2 +
∑
i<j

2αiαjx
t
ixj +O(ε)

 ∞∑
i=0

αi +
∑
i<j

2αiαj

 ⊆ 1±O(ε)
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