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Abstract

Dataset curation has become a basis for strong large language model (LLM)
performance. While various rule-based filtering heuristics exist for English and
multilingual datasets, model-based filtering techniques have primarily focused on
English. To address the disparity stemming from limited research on non-English
languages, we develop a model-based filtering framework for multilingual datasets
that aims to identify a diverse set of structured and knowledge-rich samples. Our ap-
proach emphasizes transparency, simplicity, and efficiency, leveraging Transformer-
and FastText-based classifiers to ensure the broad accessibility of our technique
and data. We conduct comprehensive ablation studies on the FineWeb-2 web
crawl dataset across diverse language families, scripts, and resource availability
to demonstrate the effectiveness of our method. Training a 1B-parameter Llama
model for 70B and 119B tokens, our approach can match the baseline MMLU
score with as little as 15% of the training tokens, while also improving across other
benchmarks and mitigating the curse of multilinguality. These findings provide
strong evidence for the generalizability of our approach to other languages. As a
result, we extend our framework to 20 languages for which we release the refined
pretraining datasets.

1 Introduction

Large Language Models (LLMs) have demonstrated impressive performance improvements when
trained on increasingly larger datasets and model sizes [Brown et al., [2020]. While [Brown et al.
[2020] already observed the importance of using a cleaned version of Common Crawl for improved
performance, the high cost of LLM training has further motivated research into better pretraining
quality filters.

Deduplication and heuristic-based dataset cleaning have become standard practices in data cura-
tion [Rae et al.| 2021} Raffel et al.| [2020} [De Gibert et al., 2024]. These quality filters are often
complemented by additional filters, such as the removal of personally identifiable information
(PII) [Penedo et al., 2024a] or model-based toxicity filtering [Soldaini et al., |2024]. Recently,
model-based filtering has also emerged as a promising method for quality filtering. The release of
FineWeb-Edu [Penedo et al.,|2024a]] demonstrated that pretraining on just 10% of the tokens (38B)
from an English dataset filtered using a model-based approach can achieve performance comparable
to models trained on 350B tokens of unfiltered data. Moreover, when trained on equivalent amounts
of data, this model largely outperforms the baseline. Concurrently, the release of DataComp-LM
(DCLM) [Li et al., 2024b]] showed that competitive performance can be achieved using a simple
and efficient model-based approach, namely a FastText [Joulin et al.,[2017] classifier trained on a
carefully selected training dataset.
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However, these recent advances have primarily focused on English data. This emphasis risks further
widening the disparity in LLM performance between languages, as less than half of internet content
is written in English”| To address this concern, we aim to extend model-based filtering frameworks to
multilingual datasets. While model perplexity-based filtering is commonly applied to multilingual
datasets [Wenzek et al.,[2019} [Laurencon et al., 2022} [Nguyen et al.| |2023]], the current state-of-the-
art, FineWeb-2 [Penedo et al., [2024c]|, primarily relies on heuristic-based filters. In this work, we
focus on model-based filtering with a quality definition that emphasizes: 1) structured data and 2)
knowledge-rich data samples, to enhance multilingual pretraining datasets.

To achieve this, we leverage embedding-based
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In summary, our contributions are as follows:

* We develop a transparent, simple, and unified framework for multilingual model-based
filtering at web scale, enabling data curation across diverse language families, scripts and
resource availability.

* We present comprehensive per-language ablation studies of embedding-based multilingual
quality filtering on top of the FineWeb-2 dataset [Penedo et al., 2024c]], achieving perfor-
mance comparable to the baseline while using as little as 15% of the tokens. We additionally
analyze the impact of dataset contamination. Lastly, our experiments show that our dataset
doesn’t suffer from the curse of multilinguality [Chang et al.|[2023].

* We evaluate the impact of different data selection classifiers, in particular their training
datasets, on the downstream performance of LLMs.

* We release the refined pretraining dataset’| covering 20 languagesﬂ filtered using our pro-
posed framework, along with the codebase?’} to advance multilingual language modeling.

2 Related Work

Data Curation. In order to pretrain LLMs on a large amount of diverse texts, Common Craw[]
is often used as the base dataset. However, early works already observed that performing data
curation on Common Crawl is crucial for model performance [Brown et al., [2020]. In fact, data
curation is important across NLP tasks [Peter et al., 2023| [Finkelstein et al., 2024]]. Specifically
for pretraining data, there exist various data curation approaches, such as deduplication [Lee et al.,
2022, PII removal [Subramani et al., [2023], or toxicity filtering [[Arnett et al.l 2024]. Another
important aspect is quality filtering of the documents. For this, the definition of quality is an
important aspect. A common approach is to use heuristics to remove documents outside of the target
distribution, such as filtering based on average word length, existence of punctuation, or document
length [Rae et al. [2021] Raffel et al., |2020]]. Another approach is to define model-based filters,
where research has focused on perplexity measure of the text [Wenzek et al., [2019) Marion et al.,
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2023, |Ankner et al.l 2024], distributional similarity measures [Li et al.| [2024b] and LLM-based
quality assessment [[Gunasekar et al., 2023} Wettig et al., | 2024} Sachdeva et al., 2024, |Penedo et al.,
20244]). In this work, we build upon previous curated datasets based on heuristic filtering, namely
the state-of-the-art dataset FineWeb-2 [Penedo et al.,[2024c], and focus on model-based filtering for
structured and knowledge-rich documents relying on textual embeddings.

Curated English datasets. One of the early curated datasets was C4 [Raffel et al.,[2020], followed
by MassiveText [Rae et al., 2021]]. RefinedWeb [Penedo et al., | 2023|] was an important step forward,
demonstrating that filtered web data can outperform selected high-quality data sources. Although
these datasets have not been made fully publicly available, their filtering techniques have been
expanded upon in recent fully public datasets, such as Dolma [Soldaini et al., [2024]], FineWeb,
FineWeb-Edu [Penedo et al., 2024al] and DCLM [Li et al., [2024bf]. While FineWeb primarily relies on
filter heuristics for data quality, Dolma adopts model perplexity filtering. FineWeb-Edu takes model-
based filtering a step further and relies on LLM-based quality assessment. DCLM, a concurrent work,
has achieved competitive performance using a FastText [Joulin et al., 2017]| classifier trained on a
carefully selected training dataset. In this work we adapt and extend this approach to the multilingual
context.

Curated Multilingual Datasets. Analogously to English datasets, significant work has been done
in the multilingual space. For example, CCNet [Wenzek et al.l 2019] has been influential, with its
language identification and model perplexity filtering for data quality being adopted in subsequent
datasets. Similar to earlier English datasets, CCNet was not published directly, but rather provided
tools for data cleaning. RedPajama [Together Computer, [2023]] is a prominent multilingual dataset
relying on these filtering techniques, offering data in 5 European languages. Other datasets, such as
OSCAR [Ortiz Suarez et al.,[2019} |Abadji et al., 2021} |/Abadji et al., 2022], mC4 [Xue et al., 2021]],
ROOTS [Laurencon et al.|[2022], MADLAD-400 [Kudugunta et al., 2023]], CulturaX [Nguyen et al.|
2023, and HPLT [de Gibert et al., 2024, expanded coverage across a variety of language families
and scripts. These datasets offer refined content for hundreds of languages, while FineWeb-2 [Penedo
et al., 2024c] pushes the limit to thousands of languages and further improves performance. A
concurrent work by Martins et al.| [2025] uses translation to train a multilingual quality filter based on
the English FineWeb-Edu [Penedo et al., [2024a]] scores. Our work similarly focuses on filtering high-
quality samples across various language families and scripts. However, we take a different approach:
we train a separate classifier for each language from scratch using structured and knowledge-rich
representative samples. We limit our scope to 20 languages as the number of documents drops quickly
and there is trade-off between retaining a sufficient number of pretraining tokens and ensuring data
quality [Muennighoff et al., {2023} |Held et al., [2025]].

Multilingual Embedding Models. Early word embedding models like Word2Vec [Mikolov et al.,
2013]] and GloVe [Pennington et al., 2014 lacked contextual understanding. FastText [[Bojanowski
et al., 2017] built upon them and improved performance by incorporating subword information.
Transformer [Vaswani et al.,[2023]] models like BERT [Devlin et al.,[2019] and GPT [Radford et al.,
2018]| then revolutionized the field with context-aware embeddings. Multilingual models like mBERT,
XLM [Lample and Conneaul 2019], and XLM-RoBERTa [[Conneau et al.,[2020] further advanced
cross-lingual understanding, with recent open-source LLMs pushing performance even higher [Llama
Team)| 2024] Mistral Al 2025]]. Using such Transformer models, documents and representative
samples can be mapped into a shared embedding space to estimate their similarity. Focusing on
transparency, simplicity and efficiency in our work, we use FastText and XLM-RoBERTa for our
model-based filtering.

Multilingual Evaluation. Evaluating LLMs requires diverse benchmarks testing linguistic and
cognitive abilities like reading comprehension, reasoning, and knowledge. While established bench-
marks such as MMLU [Hendrycks et al., [2020] and ARC [[Clark et al., 2018|] exist for English
evaluation, assessments in other languages often rely on translations from English sources, as seen
in XNLI [Conneau et al., 2018]] and the machine-translated version of MMLU [Lai et al., [2023]].
However, translations can be problematic, failing to capture cultural nuances or introducing "transla-
tionese" [Romanou et al., [2024]. Recent work by Romanou et al.|[2024]] and |Singh et al.|[2024a]
emphasizes the importance of culturally sensitive, natively collected benchmarks. Task difficulty
and formulation also impact model performance when trained for shorter durations [Kydlicek et al.,
2024]. In our work, we follow FineTasks, a recent evaluation tasks suite by [Kydlicek et al.| [2024] to
assess our model-based filtering approaches across multiple languages.



3 Methods

In this work, we present our model-based filtering approaches. Our methodology is structured into
two key components: 1) we select suitable training datasets, aiming to identifying a diverse set of
structured and knowledge-rich samples and 2) we describe the different models, namely FastText and
Transformer embedding-based filters, used to capture and leverage these characteristics.

3.1 Classifier Training Dataset

Representative Sample Selection. Our goal is to identify a diverse set of structured and knowledge-
rich samples, especially within a multilingual context. We define two criteria for our training datasets:
1) the samples must be informative and well-structured and 2) the datasets must be available in
multiple languages. While some multilingual benchmark datasets meet these criteria precisely, it is
important to note that we do not train the LLM directly on this data. Instead, we train a proxy model
to assess pretraining data quality. Nevertheless, we must remain cautious about potentially increased
pretraining data contamination stemming from this approach, as discussed in Section[4.2.3]

Based on our criteria, we selected the following datasets as representative examples.

* Aya Collection. A prompt completion dataset comprising ~514M samples covering a variety
of tasks, generated using instruction-style templates in 101 languages [Singh et al., 2024b].

* Aya Dataset. Human-annotated instruction fine-tuning dataset consisting of ~202K prompt-
completion pairs in 65 languages [Singh et al., [2024b].

* MMLU. Dataset contains ~14K multiple-choice knowledge questions on various topics in
English [Hendrycks et al.|[2020]]. Multilingual version was translated into 14 languages by
professional translators [OpenAl 2024]).

* OpenAssistant-2. The dataset contains ~14K user-assistant conversations with multiple
messages in 28 languages [Fischer et al., [2024]).

¢ Include-Base-44. Multiple-choice questions focused on general and regional knowledge,
extracted from academic and professional exams. Spanning 44 languages, it includes a total
of ~23K samples [Romanou et al., 2024].

Representative Sample Collection. MMLU and Include-Base-44 are highly curated benchmark
datasets, containing structured, knowledge-rich samples. The Aya Dataset is human-curated, while
OpenAssistant-2 is partially human-curated and partially generated by large language models (LLMs).
In contrast, the Aya Collection consists of various Al-generated samples without quality guarantee,
though it represents the largest and most multilingual of the five.

To address the quality difference, we create two Multilingual Knowledge Collection (MKC) configu-
rations which allow us to evaluate the trade-off between data quality and scale:

e MKC: Includes Include-Base-44, OpenAssistant-2, MMLU, and the Aya Dataset
e MKC*: Includes MKC and the Aya Collection

Dataset Creation. For our model-based filtering approaches, our goal is to identify documents from
the pretraining dataset that are most similar to our representative samples, with the notion of similarity
determined by the specific classifier used. We can directly measure similarity to our training data, for
example, by calculating cosine similarity with training samples in the embedding space. Alternatively,
following the approach of |Li et al.|[2024b], the task can be framed as a binary classification problem,
with the representative samples as the positive class. For the negative class, we can subsample
documents from our pretraining dataset, under the assumption that the majority of these documents
are not well-structured or knowledge-rich. We use both approaches for our classifiers.

To create the binary classification training dataset, we selected up to 80K positive samples by using
all examples from the smaller source datasets (e.g., Include-Base-44) and randomly subsampling
from the Aya Collection for MKC™. The positive samples were combined with the same number of
randomly sampled negative examples from FineWeb-2. The same training dataset was utilized across
all model-based filtering approaches, disregarding negative samples when unnecessary. Additionally,
we created a training dataset for each language individually to avoid leaking language-specific biases
to data of other languages.



Sample Pre-processing. We applied no pre-processing to the FineWeb-2 (negative) samples but
performed minimal pre-processing on the representative (positive) samples. For instance, in datasets
like MMLU or OpenAssistant-2, we concatenated various sample components. For the Aya Collection,
we resolved encoding issues in non-Latin languages and removed samples containing <unk> tokens,
which were particularly prevalent in Arabic data (37.1%).

3.2 FastText-based Filtering (FT)

To efficiently process datasets with over 100 million documents [Penedo et al., [2024c], similar to
DCLM |[Li et al.,[2024bf], we used a binary FastText classifier [Joulin et al., 2017|]. FastText runs on
CPU and can be deployed across multiple cores, for example using DataTrove [Penedo et al., [2024b].

We trained our FastText classifier on the processed training set using 2-gram features (4-gram for
Chinese). These classifiers were then used to assign scores to all documents in the pretraining
dataset. To filter the dataset, we applied a score threshold based on the desired retention percentage
of documents. This approach balances dataset size and the predicted quality of the samples.

3.3 Transformer Embedding-based Filtering

To leverage rich semantic information based on contextual relationships, we utilized Transformer
model embeddings. Specifically, we selected a pretrained XLM-RoBERTa base model [|Conneau
et al.| 2020]] due to its support of 100 languages, a relatively small size of 279M parameters, and its
transparent training procedure. This choice enabled us to process web-scale data efficiently without
being restricted to a single language and aligned with our commitment to open science.

To retain general embeddings that can be reused across methods, we opted against fine-tuning the
model. For each document from our datasets, we computed the 768-dimensional embedding by mean
pooling the embeddings of the output sequence. Since the model has a fixed maximum sequence
length of 512 tokens, we considered only the first 512 tokens of each document, assuming they are
representative of the entire document.

After computing the embeddings of our corpora, we experimented with two methods: 1) classification
of embeddings using a multi-layer perceptron and 2) cosine similarity between the embeddings. As
in the FastText approach, we scored each document and applied a threshold to retain the desired
percentage of the highest-scoring documents.

Multi-Layer Perceptron (MLP). We trained a single-hidden-layer neural network with a dimension
of 256, the ReLLU activation function, a 20% dropout, and the sigmoid function on the output. The
network was trained for 6 epochs using the AdamW optimizer [Loshchilov and Hutter, 2019] with a
constant learning rate 0.0003 and binary cross-entropy loss. We computed document scores using the
output layer of the MLP model, which used XML-RoBERTa document embeddings as input.

Cosine Similarity (CS). We computed the document scores as the maximum cosine similarity
between its embeddings and a set of K randomly sampled positive sample embeddings. We experi-
mented with varying values of K, including 1024, 2048, 4096, 8192, and 16384. However, we did
not observe a significant differences in the documents with high scores across these variations when
manually inspecting the data. To strike a balance between the diversity of the positive samples and
computational efficiency, we chose K = 8192 for our experiments.

4 Experiments

4.1 Experimental Setup

Technical Details. We evaluate 1B-parameter Llama models [Llama Team), 2024] to demonstrate the
effectiveness of our model-based filtering approaches. The models are trained on either 70B or 119B
tokens, balancing token quality and diversity. The smaller dataset (70B tokens) exposes the model to
each token at most once (with a few exceptions where some tokens appear twice). The larger dataset
(119B tokens) simulates longer training, resulting in increased token repetition. Training utilizes the
HuggingFace Nanotron library [Hugging Face| |2024al] with the AdamW optimizer [Loshchilov and
Hutter, 2019]] and a WSD learning rate schedule [Hagele et al., 2024]).



To minimize the need for costly hyperparameter tuning, we maintain a consistent setup across all
experiments. Specifically, we adopt the DeepSeek scaling law [DeepSeek-Al et al., |2024]] with a
batch size of 1.6M tokens, learning rate of 0.0008, and 2000 warmup steps.

As the base dataset, we use FineWeb-2 [Penedo et al., [2024c]||, which has been shown to provide a
strong baseline across a variety of languages. Since FineWeb-2 is globally deduplicated, we rehydrate
both filtered and unfiltered data using the hyperparameters recommended by [Penedo et al.|[2024c].

To validate our method on English, we use three datasets: FineWeb [Penedo et al., 2024a]| as the
baseline, along with FineWeb-Edu [Penedo et al., 2024al] and DCLM |[Li et al., [2024b], both of which
represent the current state-of-the-art. Tokenization is performed using the multilingual Mistral v3
(Tekken) tokenizer [Mistral All [2024].

Evaluation. Our evaluation prioritizes a diverse range of tasks to ensure the models retain well-
rounded capabilities, rather than focusing exclusively on knowledge-based tasks. Specifically, we
include tasks covering reading comprehension, general knowledge, natural language understanding,
common-sense reasoning, and generative tasks in the target language. To evaluate our approach, we
use the HuggingFace LightEval library [Fourrier et al., 2023]].

For French, Chinese, and Arabic, we utilize the FineTasks [Kydlicek et al.l [2024]] multilingual
evaluation suite, which is designed to provide meaningful signals even for models trained in the order
of 100B tokens. We select analogous tasks for German and Danish. For English, we rely on the
SmolLM tasks suite [Hugging Face, 2024b]. A complete list of tasks and their evaluation metrics for
each language is provided in Appendix [D]

Model Selection. We follow the approach used in FineTasks [Kydlicek et al.,[2024] for filter selection,
computing a global rank score across individual metrics and languages to determine the optimal
approach. For a detailed description of the average rank computation, please refer to Appendix [E]

Computational Cost. We run our experiments on a compute cluster containing four GH200 chips
per node, with each GH200 chip containing 72 CPU cores and one H100 GPU. Model training on
119B tokens costs approximately 1.1K H100 compute hours, while the embedding computation of
all data for 20 languages costs approximately 4K H100 compute hours. We release the embeddings
publicly so this computation does not have to be repeated’| In total, we use approximately 152K
H100 compute hours for running our experiments and generating the document embeddings. Data
selection classifier training (i.e. FastText and MLP) takes a few minutes on a CPU. Filtering using
any of the approaches (i.e., FastText, MLP, or CS) is computationally inexpensive, parallelizable, and
is run on CPU. Overall, filtering German, Chinese, French, Arabic, and Danish data for one filtering
approach in the ablations costs approximately 60 CPU hours, which is distributed over multiple CPU
cores depending on the dataset size in each language to have filtering finish in approximately 30
minutes.

4.2 Experimental Results & Discussion Table 1: Benchmark performance comparison:
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trained on MKC™" or MKC, retaining top 10% for
Chinese, German, and French, 56% for Arabic,
and 65% for Danish. The average rank is com-
puted across FineTasks for 1B-parameter models
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(Arabic and Danish, respectively). These percentages maintain approximately 70B tokens, under the
assumption of uniform token distribution across documents. We also exclude approaches that use
MKC for training on Danish, as it lacks sufficient training data. For detailed, per-language results,
please refer to Appendix [C.1}
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Figure 2: Benchmark performance comparison: Accuracy during 119B token training between base-
line methods (FineWeb, DCLM, FineWeb-Edu, FineWeb-2) and our proposed filtering approaches
(FT, MLP, and CS), trained on MKC*. Our approaches use 10% data retention for English, Chinese,
German, and French, 56% for Arabic, and 65% for Danish. For English, Chinese, German, and

French, baseline-level performance is reached at approximately 20B tokens (16.7% of total).

Table E] demonstrates that MLP MKC™ approach outperforms all other approaches. Interestingly, the
high- and low-scored samples presented in Appendix [F|align with the observed rankings. Figure 2]
further highlights the strong performance of MLP MKC™, particularly for high-resource languages,
where it largely outperforms the baseline. For lower-resource languages—where less data was
filtered—the performance gains are less pronounced. Notably, FT filtering is also competitive. Given
the computational expense of XLM-RoBERTa embeddings, FastText can be a promising alternative
in resource-constrained setups.

4.2.2 Threshold Selection Table 2: Benchmark performance comparison:
Average rank between FineWeb-2 baseline and our
proposed filtering methods (F7, MLP) trained on
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4.2.3 Training Data Analysis

The experiments in Sections and are based on the training datasets MKC and MKC™". But
is the diversity introduced by combining various base datasets truly necessary? We evaluate the
impact of each base dataset individually and compare it to the combined MKC™* dataset. For this
ablation study, we use our best filtering method (MLP with a top 10% retention) and train the models
on 30B tokens. This token count is chosen to match the size of the smallest filtered dataset, ensuring
consistency across comparisons.

The results, presented in Table[3] show that despite the absence of a quality guarantee for all samples
in the Aya Collection, this dataset yields strong performance, making our approach applicable for
various languages. Overall, we observe that the diversity resulting from combining all individual
training datasets gives the best results.

Interestingly, models trained exclusively on Table 3: Benchmark performance comparison:
Include-Base-44 and OpenAssistant-2 perform  Average rank between FineWeb-2 baseline and
worse overall than the baseline. This may re- MLP filtering trained on either full MKC" or its
flect dataset characteristics—Include-Base-44 is  individual components, retaining top 10% for Chi-
small and domain-specific, containing mostly nese, German, and French, 56% for Arabic, and
driving license exam questions in its German 65% for Danish. The average rank is computed
subset. OpenAssistant-2 includes a limited num- across FineTasks for 1B-parameter models trained
ber of samples, with fewer than 2K positive on 30B tokens per language.

samples per training set, which likely nega-

tively impacts classifier performance. In Ap- Damsit Average Rank
pendix [C.3] we reexamine how document length LA ) L2

. . Aya Collection 291
bias relates to model performance, confirming Ava Dataset 317
our Section[4.2.2]finding that performance de- MMLU 3.57
pends on factors beyond document length. In Baseline 4.09
Appendix we further verify our filterin OpenAssistant-2 453

Pb @ y g Include-Base-44 5.42

approach preserves sufficient dataset diversity.

4.2.4 Approach Validation on English

Previous experiments have shown strong per- Table 4: English benchmark performance: Our
formance of our MLP MKC™ approach. But MLP MKC™" approach (top 10% documents) com-
do these results translate to English? Table[d] pared to FineWeb, DCLM, and FineWeb-Edu
presents the performance of MLP MKCT with baselines. The average rank is computed across
10% retention applied to the English FineWeb SmolLM tasks using 1B-parameter models trained
dataset [Penedo et al.| [2024a]. Our method on 119B tokens.

is compared against FineWeb and baselines 5 —— Ouws  DCLM* FW-Ede"  Fw-
using model-based filtered datasets, includ-

ing DCLM [[i et al] [2024b] and FineWeb- ARG ichalenge)  0.3530 0350 03880 03010

Edu [Penedo et al.l [2024a]. To save compu-  ARC (Easy) 0.6670  0.6470  0.6970 0.5880
tational resources, we use the 6 most recent ~ CommonsenseQA 0.3870 0.4100 0.3770 03850

. . HellaSwag 0.6040 0.5960  0.5700  0.5930
FineWeb and FineWeb-Edu dumps and the first  pvpLy 03400 03160 03470  0.3030

partition of DCLME], which we denote with *.  OpenBookQA 0.3860 0.3840 04180  0.3560

: PIQA 0.7510 07510  0.7410  0.7620
Each of these subsets contains more than 119B =0, 05720 05610  0.5660  0.5550
tokens, with FineWeb retaining this size even TriviaQA 0.0820 0.1240  0.0320 0.0370
after applying our filtering retaining top 10% of

the documents.

While each approach demonstrates strengths in different benchmarks, as seen from Table [4] and
Figure[2] the overall average rank results indicate that our method outperforms all other baselines.

4.2.5 Data Contamination Analysis

Our LLMs are never trained on benchmark datasets. But is the strong performance observed in the
previous sections primarily due to an increased ratio of data contamination? To ensure the validity
of our approach, we conduct decontamination experiments, as web crawl data may include evaluation
benchmark tasks. While |Li et al.| [2024b]] addressed similar concerns, our approach follows the

®huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet


https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet

methodology of Brown et al.|[2020]. Specifically, we perform 13-gram decontamination of the LLM
training data separately for English and French evaluation benchmarks. However, unlike the original
approach, we remove the entire document if it is flagged as contaminated, using the implementation
provided in DataTrove [[Penedo et al., [2024b].

Tables[5]and|[6]present the results of decontamination experiments for English and French, respectively.
We used the following experimental setup (removed document contamination rates): baseline FineWeb
English (0.16%), MLP MKC* English with 10% retention (0.19%), baseline FineWeb-2 French
(0.14%), and MLP MKC™ French with 10% retention (0.14%). All models were trained on 119B
tokens. Additionally, we compare the results against equivalent training runs without decontamination
to further analyze its impact. For an example of a contaminated sample, see Appendix [G|

For English models, decontamination slightly reduces performance both for our approach and baseline
FineWeb data. Even after decontamination, our approach still outperforms the baseline trained on
non-decontaminated data. For French models, our approach performs similarly on decontaminated
and non-decontaminated data, both outperforming baseline FineWeb-2. Interestingly, decontaminated
baseline data yields better results than its non-decontaminated counterpart.

Table 5: English benchmark performance: Our  Table 6: French Benchmark performance: Our
MLP MKC* approach (retaining top 10% doc- MLP MKC™ approach (retaining top 10% of the
uments) in both decontaminated (D) and non-  documents) in both decontaminated (D) and non-
decontaminated versions, compared to baseline  decontaminated versions, compared to baseline
FineWeb datasets with the same variants. The av-  FineWeb-2 datasets with the same variants. The
erage rank is computed across SmolLM tasks for ~ average rank is computed across FineTasks for

1B-parameter models trained on 119B tokens. 1B-parameter models trained on 119B tokens.
Dataset Ours Oursp FW* FWp5 Dataset Ours Oursp FW-2p FW-2
Average Rank 1.5000 2.1111 3.0556 3.3333 Average Rank 2.0556 2.0556 2.7222  3.1667
ARC (Challenge) ~ 0.3550 03440 03010 0.2880 Belebele 0.3533 03400 03778  0.3444
ARC (Easy) 0.6670 0.6520 0.5880 0.5700 HellaSwag 0.5380 0.5350 0.5180  0.5180
CommonsenseQA ~ 0.3870  0.4000 03850  0.3820 X-CSQA 0.2740 02810 02730  0.2870
HellaSwag 0.6040 0.6040 0.5930 0.5890 XNLI 2.0 0.7400 0.7400 0.7070  0.7180
MMLU 0.3400  0.3220  0.3030  0.3050 FQuAD 0.2803  0.2620 0.2890  0.2401
OpenBookQA 0.3860 0.3840 0.3560 0.3740 MMLU 0.2895 0.2875 0.2711  0.2706
PIQA 07510 0.7590  0.7620  0.7600 Mintaka 0.0438  0.0797 0.0658  0.0712
WinoGrande 0.5720 0.5550 0.5550 0.5570 X-CODAH 0.2667 0.2900 0.2800  0.2633
TriviaQA 0.0820 0.0380 0.0370  0.0250 ARC (Challenge) 0.3180 0.3110  0.2880  0.2850

4.2.6 Impact on Multilingual Training - Mitigating the Curse of Multilinguality

Although not our main focus, we found that Table 7: French benchmark performance: Mul-
our refined datasets boost the performance of tilingual LLMs (M) trained on FineWeb-2 or our
multilingual models. We trained a multilingual MLP MKC™ refined dataset (retaining top 10%
IB-parameter model on 595B tokens (119B per for Chinese, German and French, 56% for Arabic,
language), covering all five languages: Chinese, 65% for Danish) with 595B tokens, compared to
German, French, Arabic and Danish. We com- monolingual models trained on 119B tokens. The
pared each language’s results to its monolingual —average rank is computed across FineTasks for 1B-
counterpart trained on 119B tokens. Training is parameter models.

performed once for our filtered data and once

for original (unfiltered) FineWeb-2. Dataset Ourspy  Ours  FW-2  FW-2u
. Average Rank 1.8333 2.0556 3.0000 3.1111

The results for French are presented in Table Belebele 0.3667 0.3533 0.3444  0.3511
Surprisingly, the curse of multilinguality [[Chang geg;z‘fg 8;318 ggggg g; 3;58 8;*3;8
et al., 2023]] turns into a b.e.neﬁt for our quality 1150 07660 07400 07180  0.7330
filtered datasets: The multilingual model outper-  rqQuaD 03212 02803 02401 02459
forms its monolingual counterpart, when both ~ MMLU 0.2841 0.2895 0.2706  0.2735
models have seen an equal amount of tokens of ~ Mintaka 0.0456 0.0438  0.0712  0.0579
X-CODAH 0.2900 0.2667 0.2633  0.2567

the language of interest. Meanwhile, for unfil-
tered training data, the multilingual LLM suffers
from the curse as expected. The disappearance of the curse is consistent across all languages except
Chinese. Detailed results for the other languages are provided in Appendix

ARC (Challenge) 0.2970 0.3180 0.2850  0.2670




5 Conclusion

In this work, we developed a framework for model-based filtering of web-scale multilingual pretrain-
ing datasets, demonstrating consistent improvements on LLM benchmarks across a wide range of
languages. Our Transformer embedding-based classifier, MLP MKC™, outperforms state-of-the-art
methods on both English and multilingual datasets, even when decontaminating the datasets or using
them for training multilingual LLMs. While our FastText-based filtering approach performed well
and shows promise in resource-constrained setups, MLP MKC™ consistently outperformed all other
methods and can be easily scaled to other languages. These results provide strong empirical evidence
supporting our expansion of the framework to 20 languages. We release the corresponding refined
pretraining datasets and code, contributing to the advancement of multilingual language modeling.
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paper’s contributions and scope?
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Justification: Claims are backed by experimental results in Section 4]
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e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix [B]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the methods in Section [3] experimental
setup in Section 4] evaluation benchmarks selection in Appendix [D] and the codebase.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the dataset and the codebase with sufficient information to repro-
duce the main experimental results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all details in Section [3|and Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: [Penedo et al.|[2024c]] show that standard deviation when pretraining large
language models in different languages on multiple seeds is small. We do not provide error
bars because training large language models is expensive and we use our compute allocation
budget for the main experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the type of compute workers and the number of GPU hours used
in our experiments in Section[4] and the storage usage of the data in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We conduct our research in accordance with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not introduce societal impacts beyond those already associated with
large language models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We base our dataset on the FineWeb-2 dataset which conforms to Common
Crawl robots.txt opt-outs (at crawl time), removes personally identifiable content, and offers
a form for requesting data removal.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit all assets with their licenses in Appendix [H|and respect their licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We document the experiments as a part of the dataset creation process in
Section ] and include dataset information in Appendix [A]

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not perform crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not perform research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Beyond pretraining and evaluating large language models, the core methodol-
ogy does not involve the use of large language models.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset Information

Based on the results of our experiments, we create the dataset, named FineWeb2-HQ, by filtering
all available FineWeb-2 data (version 2.0.1) in 20 languages using the MLP MKC" approach
with 10% retention rate. The statistics of the resulting dataset are presented in Table [§] We re-
lease the dataset under the Open Data Commons Attribution License (ODC-By) v1.0 license at
huggingface.co/datasets/epfml/FineWeb2-HQ.

The main use case of our dataset is LLM pretraining, however, the dataset may also be used for other
natural language processing tasks.

Table 8: Statistics (number of documents and disk size) of the dataset resulting from filtering
FineWeb-2 using the MLP MKC™ approach with 10% retention rate in 20 languages.

Language Number of documents  Disk size

Russian 55,220,956 1.2TB
Chinese 54,211,986 784GB
German 43,095,728 618GB
Spanish 40,057,637 515GB
Japanese 34,185,427 393GB
French 32,248,772 483GB
Italian 21,180,304 269GB
Portuguese 18,135,468 222GB
Polish 13,384,885 168GB
Dutch 12,920,963 160GB
Indonesian 8,911,149 125GB
Turkish 8,578,808 100GB
Czech 5,995,459 104GB
Arabic 5,560,599 94GB
Persian 5,107,187 69GB
Hungarian 4,527,332 79GB
Swedish 4,382,454 61GB
Greek 4,346,440 84GB
Danish 4,082,751 61GB
Vietnamese 4,003,956 59GB

B Limitations

A limitation of our work is that we perform experiments on relatively small 1B models with one seed
per experiment. We use 1B models to balance the trade-off between the cost of pretraining and the
measured signal from the experiments, as found in prior work [Penedo et al.|[2024alc| [Li et al.,2024b].
Additionally, we compare our method to one multilingual baseline, FineWeb-2. However, since
FineWeb-2 is the current state-of-the-art and due to our limited computational budget, we decided to
allocate more compute towards understanding the mechanics of the data selection process, rather than
confirming our results across previous datasets. Nevertheless, computational constraints prevented us
from ablating every decision—such as our choice to use only the first 512 tokens for classification.
We assume that if the first 512 tokens demonstrate good quality, the remainder of the document likely
does as well. Given the strong performance achieved using the first 512 tokens, we prioritized this
methodological simplicity. To facilitate further exploration of alternative selection strategies, we
have made FineWebZ-embedde(ﬂ available to the community, which contains embeddings for all
512-token chunks.

Although we develop our framework on languages from diverse language families, with different
writing systems and with varying resource availability to find an approach that best generalizes for
general web crawl text data across languages, classifier training datasets have no quality guarantees
for other languages and may result in performance differences that are not visible in our experiments.

Since we focus on simple methods with broad availability and low computational cost, we discuss
the computational cost difference between FastText and Transformer embeddings-based methods.

“huggingface.co/datasets/epfml/FineWeb2-embedded
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While FastText classifiers are cheap to train and inference and can be efficiently run on CPU,
Transformer-based methods require an initial computation of embeddings. To mitigate the higher
cost of Transformer embeddings, we use a relatively small XLM-RoBERTa model and additionally
release the dataset with precomputed embedding@. The total cost for computing the embeddings is
approximately 4K compute hours for the 20 languages.

We base our dataset on the FineWeb-2 dataset which conforms to Common Crawl robots.txt opt-outs
(at crawl time), removes personally identifiable content, and offers a form for requesting data removal.
Since ensuring privacy and fairness of our dataset is beyond the scope of this work, we make the
dataset publicly available. This allows other researchers and the public to analyze potential biases,
a critical task given that data curation is a political process that can introduce cultural and political
impacts [Desai et al., [2024].

C Additional Results

C.1 Model Selection - Per Language Results

For clarity, we present the individual benchmark results of the 1B-parameter model trained on 119B
tokens for each language in the following tables: Table 9| for Chinese, Table[I0|for French, Table[IT]
for German, Table [I2]for Arabic, and Table [[3]for Danish.

Table 9: Chinese Benchmark performance comparison: Average rank between FineWeb-2 baseline
and our proposed filtering methods (FT, MLP, and CS) trained on MKC™ or MKC, retaining top 10%
of documents. The average rank is computed across FineTasks for 1B-parameter models evaluated
after 119B tokens.

Approach MLP MKCt MLPMKC CSMKC FTMKC FTMKC" Baseline CSMKCT
Average Rank 1.7333 24333 4.0667 4.0667 4.4667 52333  6.0000
AGIEval 0.2995 0.2948 0.2897 0.2919 0.2817 0.2853  0.2773
Belebele 0.3300 0.3233 0.3178 0.3133 0.3133 0.3056  0.3022
c? 0.4550 0.4480 0.4400  0.4500 0.4400 0.4400  0.4370
C-Eval 0.3095 0.3060 02760  0.2903 0.2906 0.2878  0.2805
CMMLU 0.3312 0.3259 0.3041 0.3043 0.3060 0.3009  0.2995
CMRC 2018 0.2224 0.2125 0.1614  0.2251 0.2164 0.1949  0.1866
HellaSwag 0.3790 0.3800 03530  0.3680 0.3660 03510  0.3370
M3Exam 0.3319 0.3245 0.3084 0.3201 0.3245 03216  0.3245
X-CODAH 0.3033 0.3000 0.3233 0.3100 0.2900 0.2967  0.3067
X-CSQA 0.2740 0.2680 02690  0.2610 0.2520 02510  0.2650
XCOPA 0.6200 0.6400 0.6180  0.5740 0.5740 0.6000  0.5620
OCNLI 0.5470 0.5470 0.5340  0.5250 0.5600 0.5420  0.5060
Chinese-SQuAD  0.0929 0.1097 0.0865 0.0889 0.0850 0.0777  0.0585
XStoryCloze 0.5800 0.5630 0.5710  0.5560 0.5610 0.5580  0.5570
XWINO 0.6429 0.6528 0.6587 0.6131 0.5992 0.6429  0.6111

C.2 Threshold Selection

Complete Result. To confirm that the CS filtering method is not competitive with MLP and FT,
even when a higher percentage of documents is retained, we present the complete threshold selection
results, including the CS method, in Table [14] in addition to the results shown in Section
(Table2).

Document Length Bias. Motivated by the observed bias in certain approaches favoring the selection
of shorter documents, as seen in Figure 3] Figure ] and Table[I5] we examine how this bias interacts
with performance when retaining more documents. As demonstrated in Table [I3] the MLP MKC
approach shows a tendency to retain shorter documents, while achieving higher performance with an
increased number of retained documents. In contrast, the CS and FT filtering methods present mixed
results, suggesting that the optimal threshold selection may be influenced by additional factors.
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Table 10: French Benchmark performance comparison: Average rank between FineWeb-2 baseline
and our proposed filtering methods (FT, MLP, and CS) trained on MKC™ or MKC, retaining top 10%
of documents. The average rank is computed across FineTasks for 1B-parameter models evaluated

after 119B tokens.

Approach FTMKCY MLP MKCt MLPMKC FTMKC CSMKC CSMKC" Baseline
Average Rank 3.2222 3.5000 3.5556 3.7778 4.0000 4.6667 5.2778
Belebele 0.3378 0.3533 0.3678 0.3489 0.3444 0.3344 0.3444
HellaSwag 0.5380 0.5380 0.4990 0.5150 0.5280 0.5070 0.5180
X-CSQA 0.2820 0.2740 0.2730 0.2990 0.2850 0.2900 0.2870
XNLI 2.0 0.7340 0.7400 0.7430 0.7230 0.7450 0.7330 0.7180
FQuAD 0.2597 0.2803 0.3032 0.2981 0.2411 0.2476 0.2401
MMLU 0.2896 0.2895 0.2925 0.2886 0.2806 0.2815 0.2706
Mintaka 0.0710 0.0438 0.0334 0.0670 0.0610 0.0976 0.0712
X-CODAH 0.3000 0.2667 0.2867 0.2767 0.3000 0.2800 0.2633
ARC (Challenge)  0.3120 0.3180 0.3090 0.3060 0.2950 0.2830 0.2850

Table 11: German Benchmark performance comparison: Average rank between FineWeb-2 baseline
and our proposed filtering methods (F7, MLP, and CS) trained on MKC* or MKC, retaining top 10%
of documents. The average rank is computed across FineTasks for 1B-parameter models evaluated

after 119B tokens.

Approach MLP MKC* FTMKCT™ FTMKC CSMKC MLPMKC CSMKC" Baseline
Average Rank 3.1250 3.1250 3.5000 3.7500 4.5000 4.7500 5.2500
MMLU 0.2940 0.2879 0.2926 0.2770 0.2905 0.2764 0.2718
ARC (Challenge)  0.2760 0.2850 0.2820 0.2880 0.2830 0.2640 0.2680
Mintaka 0.0580 0.0548 0.0735 0.0576 0.0494 0.0766 0.0498
Belebele 0.3611 0.3578 0.3544 0.3544 0.3567 0.3422 0.3544
X-CODAH 0.3367 0.3500 0.3300 0.3567 0.3400 0.3600 0.3467
X-CSQA 0.2978 0.3008 0.2877 0.2887 0.2857 0.2918 0.2787
HellaSwag 0.4640 0.4710 0.4870 0.4820 0.4540 0.4390 0.4470
XNLI 2.0 0.6620 0.6530 0.6740 0.6440 0.6610 0.6520 0.6890
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Figure 3: Document length comparison: Average length and standard deviation in FineWeb-2 before
and after 10% retention filtering. Red horizontal line shows average document length, red dots
indicate medians. Length measured by space-separated tokens.

C.3 Training Data Analysis
We give details on the variation in the average length of documents retained by our model-based

filtering method MLP for Chinese, French, Arabic, and Danish with different training datasets. The
results are shown for German in Figure [5|and for all other languages in Figure 6]

C.4 Replay of Original Data
We explore whether incorporating a small percentage of original raw data (replay) can help improve

performance. We do this for our best FastText (FT MKC") and Transformer approaches (MLP
MKCT). Tablepresents the results of experiments where 5% and 10% unfiltered data were mixed
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Table 12: Arabic Benchmark performance comparison: Average rank between FineWeb-2 baseline
and our proposed filtering methods (FT, MLP, and CS) trained on MKC™ or MKC, retaining top 56%
of documents. The average rank is computed across FineTasks for 1B-parameter models evaluated
after 119B tokens.

Approach MLP MKC™ MLPMKC FTMKC"T Baseline CSMKCT™ CSMKC FTMKC
Average Rank  2.7812 3.2500 3.6875 3.9688  3.9688 5.0312 5.3125
EXAMS 0.3537 0.3656 0.3552 0.3582  0.3443 0.3262 0.3346
MMLU 0.4007 0.3909 0.4023 0.3894  0.3912 0.3781 0.3885
ARC (Easy) 0.4330 0.4230 0.4210 0.4120  0.4020 0.3940 0.4080
AlGhafa SciQ ~ 0.6915 0.7005 0.6965 0.6854  0.6724 0.6683 0.6804
Belebele 0.3456 0.3356 0.3322 0.3311  0.3356 0.3567 0.3233
SOQAL 0.7333 0.6867 0.7000 0.7200  0.7267 0.6867 0.7133
MLQA 0.2386 0.2402 0.1928 0.1901  0.2189 0.2154 0.1793
TyDi QA 0.1547 0.1476 0.1230 0.1441  0.1223 0.1097 0.1182
AlGhafa RACE  0.3720 0.3740 0.3640 0.3710  0.3590 0.3660 0.3730
ARCD 0.3638 0.3505 0.3235 0.3354  0.3358 0.3432 0.3043
X-CODAH 0.2600 0.2533 0.2567 0.2633  0.2633 0.2500 0.2600
AlGhafa PIQA  0.6360 0.6320 0.6400 0.6240  0.6320 0.6320 0.6370
X-CSQA 0.2740 0.2810 0.2770 0.2900  0.2880 0.2720 0.2770
XNLI 2.0 0.6570 0.6910 0.6990 0.7010  0.6910 0.6900 0.6770
HellaSwag 0.4270 0.4220 0.4280 0.4250  0.4260 0.4320 0.4150
XStoryCloze 0.6150 0.6100 0.6100 0.6070  0.6130 0.6180 0.5930

Table 13: Danish Benchmark performance comparison: Average rank between FineWeb-2 baseline
and our proposed filtering methods (FT, MLP, and CS) trained on MKC* or MKC, retaining top 65%
of documents. The average rank is computed across FineTasks for 1B-parameter models evaluated
after 119B tokens.

Approach CSMKCT™ MLPMKC™ FTMKC"Y Baseline
Average Rank 1.0000 2.5000 3.1667 3.3333
ARC (Challenge)  0.2820 0.2650 0.2730 0.2560
HellaSwag 0.4950 0.4850 0.4750 0.4750
Belebele 0.3333 0.3289 0.3189 0.3289
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Figure 4: Document length comparison: Average length and standard deviation in FineWeb-2 before
and after 10% retention filtering. Red horizontal line shows average document length, red dots
indicate medians. Length measured by space-separated tokens.

into the training dataset, alongside results from training without any replay. Although, the FT MKC™
filters shows mixed signal, our MLP MKC™ approach clearly demonstrates that replay does not
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Table 14: Benchmark performance comparison: Average rank between FineWeb-2 baseline and our
proposed filtering methods (FT, MLP) trained on MKC™ or MKC, retaining top 10%, 15% or 20% of
documents. The average rank is computed across FineTasks for 1B-parameter models evaluated on
Chinese, German and French after 70B and 119B tokens.

Approach Threshold  Average Rank

MLP MKC™* 10% 11.73
MLP MKC™* 15% 12.13
MLP MKC 20% 15.07
MLP MKC 15% 15.09
MLP MKC* 20% 15.40
MLP MKC 10% 16.09
FT MKC™* 10% 18.61
CS MKC 15% 19.02
CS MKC 20% 19.24
FT MKC 15% 19.84
FT MKC 10% 20.02
CS MKC 10% 20.67
FT MKC 20% 20.80
FTMKC* 15% 22.05
FTMKC* 20% 22.52
CS MKC™ 15% 24.66
CS MKC™* 20% 25.08
Baseline = 25.54
CS MKC™* 10% 26.94

Table 15: Token retention comparison: Counts in FineWeb-2 before and after filtering using our
approach with 10% document retention for Chinese, French and German, 56% for Arabic, and 65%
for Danish. Token counts represent tokenized dataset sizes using the multilingual Mistral v3 (Tekken)
tokenizer [Mistral Al 2024].

Approach Chinese French German Arabic Danish

MLP MKC™  150B (9%)  89B (12%)  119B (12%) 78B (61%) 71B (66%)
MLP MKC  105B (7%)  72B (10%)  87B (9%)  75B (59%) -

FTMKC™  221B(14%) 70B (10%) 63B(6%)  77B (61%) 70B (65%)

FT MKC 190B (12%) 43B (6%) 65B (7%) 80B (63%) -
CS MKC™ 170B (11%) 126B (17%) 166B (17%) 82B (65%) 77B (71%)
CS MKC 161B (10%) 132B (18%) 172B (18%) 83B (65%) -
Baseline 1597B 730B 973B 127B 108B
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Figure 5: Document length comparison: Average length and standard deviation in FineWeb-2 before
and after filtering using MLP method with 10% retention on different training datasets. Red horizontal
line shows average document length, red dots indicate medians. Length measured by space-separated
tokens.
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Figure 6: Document length comparison: Average length and standard deviation in FineWeb-2 before
and after filtering using MLP method with 10% retention for Chinese and French, 56% for Arabic and
65% for Danish on different training datasets. Red horizontal line shows average document length,
red dots indicate medians. Length measured by space-separated tokens.

improve performance, indicating the data selection already retains enough diversity. In cases of less
diverse datasets, replay was shown to offer benefits [Bethune et al., 2025} [Chen et al [2023].

Table 16: Benchmark performance comparison: Average rank of our MLP MKC™T and FT MKC*
approaches with 10% document retention, mixed with 0%, 5%, or 10% of original FineWeb-2 dataset.
The average rank is computed across FineTasks for 1B-parameter models evaluated on Chinese,
German and French after 70B and 119B tokens.

Approach Mixture Rate  Average Rank

MLP MKC* 5% 5.09
MLP MKC* 0% 5.16
MLP MKC* 10% 5.40
FT MKC™* 10% 7.17
FT MKC™* 0% 7.51
FT MKC™* 5% 8.66

C.5 Impact on multilingual model training

This section presents the results of our MLP MKC™ approach on multilingual model training for
Chinese (Table[T7), Arabic (Table[I8), German (Table[T9), and Danish (Table 20), in addition to the
results for French discussed in Section £.2.6]
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Table 17: Chinese benchmark performance: Multilingual LLMs (M) trained on FineWeb-2 or our
MLP MKC refined dataset (retaining top 10% for Chinese, German and French, 56% for Arabic,
65% for Danish) with 595B tokens, compared to monolingual models trained on 119B tokens. The
average rank is computed across FineTasks for 1B-parameter models.

Dataset Ours Oursyr FW-2u, FW-2
Average Rank 1.5667 2.1667 2.9000  3.3667
AGIEval 0.2995 0.2863 0.2894  0.2853
Belebele 0.3300 0.3456 0.3189  0.3056
c? 0.4550 0.4520 0.4480  0.4400
C-Eval 0.3095 0.2848 0.2683  0.2878
CMMLU 0.3312 0.3064 0.2967  0.3009
CMRC 2018 0.2224  0.2689 0.2090  0.1949
HellaSwag 0.3790 0.3740 0.3740  0.3510
M3Exam 0.3319 0.3040 0.3304  0.3216
X-CODAH 0.3033 0.3067 0.2800  0.2967
X-CSQA 0.2740 0.2810 0.2780  0.2510
XCOPA 0.6200 0.6020 0.5860  0.6000
OCNLI 0.5470 0.5320 0.4910  0.5420
Chinese-SQuAD  0.0929 0.1304 0.1017  0.0777
XStoryCloze 0.5800 0.5760 0.5650  0.5580
XWINO 0.6429 0.6409 0.6468  0.6429

Table 18: Arabic benchmark performance: Multilingual LLMs (M) trained on FineWeb-2 or our
MLP MKC refined dataset (retaining top 10% for Chinese, German and French, 56% for Arabic,
65% for Danish) with 595B tokens, compared to monolingual models trained on 119B tokens. The
average rank is computed across FineTasks for 1B-parameter models.

Dataset Oursy;  Ours FW-2 FW-2,
Average Rank 1.9688 2.0000 2.7500 3.2812
EXAMS 0.3336  0.3537 0.3582 0.3076
MMLU 0.3828  0.4007 0.3894 0.3599
ARC (Easy) 0.4190 0.4330 0.4120 0.3760
AlGhafa SciQ 0.6764 0.6915 0.6854 0.6563
Belebele 0.3511 0.3456  0.3311 0.3344
SOQAL 0.7000  0.7333 0.7200 0.6533
MLQA 0.2208 0.2386 0.1901 0.2085
TyDi QA 0.1634 0.1547 0.1441 0.1429
AlGhafa RACE  0.3830 0.3720 0.3710 0.3770
ARCD 0.3377 0.3638 0.3354 0.2970
X-CODAH 0.2767 0.2600 0.2633 0.2767
AlGhafa PIQA  0.6170 0.6360 0.6240 0.6160
X-CSQA 0.2860 0.2740  0.2900 0.2660
XNLI2.0 0.7080 0.6570 0.7010 0.7340
HellaSwag 0.4390 0.4270 0.4250 0.4240

XStoryCloze 0.6370 0.6150 0.6070  0.6160
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Table 19: German benchmark performance: Multilingual LLMs (M) trained on FineWeb-2 or our
MLP MKC? refined dataset (retaining top 10% for Chinese, German and French, 56% for Arabic,
65% for Danish) with 595B tokens, compared to monolingual models trained on 119B tokens. The
average rank is computed across FineTasks for 1B-parameter models.

Dataset Oursy;  Ours FW-2 FW-2 s
Average Rank 1.5000 2.1250 2.9375 3.4375
MMLU 0.2918 0.2940 0.2718 0.2691
ARC (Challenge) 0.2740 0.2760 0.2680 0.2640
Mintaka 0.0821 0.0580 0.0498 0.0660
Belebele 0.3956 0.3611 0.3544 0.3633
X-CODAH 0.3500 0.3367 0.3467 0.3167
X-CSQA 0.3048 0.2978 0.2787 0.2787
HellaSwag 0.4690 0.4640 0.4470 0.4430
XNLI 2.0 0.6420 0.6620 0.6890 0.6340

Table 20: Danish benchmark performance: Multilingual LLMs (M) trained on FineWeb-2 or our
MLP MKC? refined dataset (retaining top 10% for Chinese, German and French, 56% for Arabic,
65% for Danish) with 595B tokens, compared to monolingual models trained on 119B tokens. The
average rank is computed across FineTasks for 1B-parameter models.

Dataset Oursps  Ours FW-2 s FW-2
Average Rank 1.6667 2.1667 3.0000  3.1667
ARC (Challenge) 0.2920 0.2650 0.2600 0.2560
HellaSwag 0.4710 0.4850 0.4560 0.4750
Belebele 0.3700 0.3289 0.3311 0.3289
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D List of evaluation benchmarks and metrics

We provide a detailed overview of the evaluation benchmarks used to assess our models’ performance,
along with their respective evaluation metrics in Table[21] For non-English tasks and English MMLU,
we use the cloze multiple-choice prompt, which allows the model to directly predict each option
instead of using the standard prompt format with A/B/C/D letter prefixes as targets. This approach
was chosen because it has been shown to serve as a more reliable performance indicator earlier in
training [Kydlicek et al.l 2024f]. We evaluate the models in a 0-shot setting.

Table 21: List of Evaluation Benchmarks and Metrics used in our setup for Chinese, French, German,
Arabic, Danish, and English.

Benchmark Chinese | French | German | Arabic | Danish | English Evaluation metric
AGIEval [Zhong et al.][2023] v Normalized accuracy
AlGhafa ARC [Almazrouel et al.[|[2023] v Normalized accuracy
AlGhafa PIQA [Almazrouei et al.|[2023] v Normalized accuracy
AlGhafa RACE [Almazrouei et al.[|[2023] v Normalized accuracy
AlGhafa SciQ [Almazrouei et al.[[2023] v Normalized accuracy
ArabicMMLU [Koto et al.[[2024] v Normalized accuracy
ARC [Clark et al.[[2018] v Normalized accuracy
ARCD [Mozannar et al.[[2019] v F1 score
Belebele [Bandarkar et al.][2024] v v v v v Normalized accuracy
[ C® [Sun et al.[[2020] v Normalized accuracy
| C-Eval [Huang et al.][2023] v Normalized accuracy
Chinese-SQuAD [Pluto-Junzeng|[2019] v F1 score
CMMLU |[Li et al.|2024a] v Normalized accuracy
CMRC 2018 [Cui et al.[2019] v FI1 score
CommonsenseQA [Talmor et al.][2019] v Normalized accuracy
EXAMS [Hardalov et al.|[2020] v Normalized accuracy
FQuAD [[d"Hoffschmidt et al.][2020] v F1 score
HellaSwag [Zellers et al.]2019] v Normalized accuracy
M3Exam [Zhang et al.|[2023] v Normalized accuracy
Meta MMLU [Llama Team|[2024] v v Normalized accuracy
Mintaka [Sen et al.[[2022] v v F1 score
MLMM ARC [Lai et al.]2023] v v v Normalized accuracy
MLMM HellaSwag [Lai et al.][2023] v v v v v Normalized accuracy
MLQA [Lewis et al.|2020] v F1 score
MMLU [Hendrycks et al.[[2020] v Normalized accuracy
OCNLI [Hu et al.[[2020] v Normalized accuracy
OpenBookQA [Mihaylov etal.][2018] v Normalized accuracy
PIQA [Bisk et al.[[2019] v Normalized accuracy
SOQAL [Mozannar et al.|[2019] v Normalized accuracy
TriviaQA [Joshi et al.{[2017] v Quasi-exact match
TyDi QA [Clark et al.|[2020] v F1 score
WinoGrande [Sakaguchi et al.][2019] v Normalized accuracy
X-CODAH [Lin et al.]2021a] v v v v Normalized accuracy
XCOPA [Ponti et al.[[2020] v Normalized accuracy
X-CSQA [Lin et al.[2021a] v v v v Normalized accuracy
XNLI 2.0 [Upadhyay and Upadhya|[2023] v v v Normalized accuracy
XStoryCloze [Lin et al.[[2021b| i v v Normalized accuracy
XWINO [Tikhonov and Ryabinin][2021] v Normalized accuracy

E Average Rank Computation

Analogous to the method in FineTasks [Kydlicek et al.,2024], we compute the average rank for our
ablations as follows:

1. We train a model for each parameter configuration we want to ablate on.

2. We evaluate each model on all the selected benchmarks.

3. We compute the rank of each model (individual experiment) with regard to each benchmark
and language.

4. We compute the average rank for each model across all benchmarks and languages.
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F FineWeb documents in different scoring approaches

To illustrate the types of documents each classifier scores highly or poorly, we present the highest-
and lowest-scoring FineWeb examples for each of our classifier approaches (FT MKC*, MLP MKC™,
CS MKCT). These examples were selected from the randomly chosen FineWeb test dataset (10K
samples) used to validate the training of our model-based classifiers.

F.1 FastText Classifier (FT)

Highest score:

hi. i couldn’t solve my problem because it has two conditional logical propositions. the
problem is:can anyone help me about this, thanks =)we’re expected to know that: . is
equivalent tofind a logically equivalent proposition for:by first writing its contrapositive, and
then applying demorgan’s lawand the equality forthey were trying to be helpful by outlining
the steps we should follow,. . but i think they made it more confusing.i don’t see the purpose
of using the contrapositive here.. . i wouldn’t have done it that way.besides, the statement is
a tautology . . .which gives us: .and this is a tautology: "a thing implies itself" ... which is
always true.i don’t know of any "logically equivalent proposition" we can write . . .

Istartsll23 sep 2016 (fri) (one day only)lwant to travel soon but donaAZt wish to fork out a
fortune for flights? check out todayaAZs promotion from jetstar featuring promo fares

fr $35 all—in valid for travel period commencing 12 october 2016donaAZt miss out!
all—in frenzy fares to hong kong, penang and more from $35.sale ends 23 sep, 11pm!|
travellingllpricelltravel periodllfind flightllpenanglI$35/I [...]

F.2 Multi-Layer Perceptron (MLP)

Highest score:

Naghadeh County is a county in West Azerbaijan Province in Iran. The capital of the county
is Nagadeh. At the 2006 census, the county’s population was 117,831, in 27,937 families.
The county is subdivided into two districts: the Central District and Mohammadyar District.
The county has two cities: Nagadeh and Mohammadyar.

Custom Wedding Gifts

Personalized photo frames, albums & keepsakes. Heirloom quality!
Custom Engraved Journals

Handmade in Florence Italy. Dozens of sizes and paper styles!
Awesome Leather Journals

Personalized, Customizable, Artisan made in Santa Fe, NM.

Ink Rendering from Photos

100% Hand painted with unique style by pro artists. From $49.
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F.3 Cosine Similarity (CS)

Highest score:

When you are renting a 5, 10, 15, 20, 30 or 40 yard dumpster, you want a company you can
trust with prices that make you smile. Give us a call today and see the difference we can
make in your next construction or clean out project.

Simply give us a call and we will help you figure out your dumpster rental needs.

Our dumpsters usually go out same-day or next-day depending on when you call.

We provide top-notch service, while going easy on your bottom line. What more could you
ask for?

Our trained operators are here to give you a fast and hassle-free experience from start to
finish.[...]

Cooperative flat 206/J

- Cooperative flat 201/J - Sold

2(1)+kitchenette, 50,1 m2Cooperative flat 202/J - Sold
2(1)+kitchenette, 44,9 m2Cooperative flat 203/J - Sold
2(1)+kitchenette, 50,6 m2Cooperative flat 204/J - Sold
1+kitchenette, 27,1 m2Cooperative flat 205/J - Sold
2(1)+kitchenette, 50,1 m2Cooperative flat 206/J - On sale
3+kitchenette 86,7 m2]...]

G Example of a contaminated document

We present an example of a FineWeb document that was removed during our decontamination
pipeline.

MMLU contaminated document (matched 13-gram in bold):

Here is our diagram of the Preamble to the Constitution of the United States. It is based on
our understanding of the use of "in order to" as a subordinating conjunction that introduces a
series of infinitival clauses (without subjects) that, in turn, modify the compound verbs "do
ordain" and "establish."

See A Grammar of Contemporary English by Randolph Quirk, Sidney Greenbaum, Geoffrey
Leech, and Jan Svartvik. Longman Group: London. 1978. p. 753.

We the People of the United States, in Order to form a more perfect Union, establish
Justice, insure domestic Tranquility, provide for the common defence, promote the general
Welfare, and secure the Blessings of Liberty to ourselves and our Posterity, do ordain and
establish this Constitution for the United States of America.

If you have alternative rendering for this sentence, we would be happy to hear of it. Use the
e-mail icon to the left.

H License Information

H.1 Dataset Licenses
We use the following pretraining datasets:

* FineWeb-2 (ODC-By license)

* FineWeb (ODC-By license)

* FineWeb-Edu (ODC-By license)
* DCLM (CC-BY 4.0)
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We use the following classifier training datasets:

* Aya Collection (Apache 2.0 license)

* Aya Dataset (Apache 2.0 license)

* Translated multilingual MMLU [OpenAl 2024]] (MIT license)
* OpenAssistant-2 (Apache 2.0 license)

* Include-Base-44 (Apache 2.0 license)

H.2 Code Licenses

We use the following open source code:

* Nanotron (Apache 2.0 license)
» Datatrove (Apache 2.0 license)
* Lighteval (MIT license)
e FastText (MIT license)

H.3 Model Licenses

We use the following models:

» Mistral v3 (Tekken) (Apache 2.0 license)
¢ XLM-RoBERTa (MIT license)
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