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ABSTRACT

Relational thinking refers to the inherent ability of humans to form mental im-
pressions about relations between sensory signals and prior knowledge, and sub-
sequently incorporate them into their model of their world. This ability plays a key
role in human understanding of speech, yet it has not been a prominent feature in
any artificial speech recognition systems. Recently, there have been some attempts
to correct this oversight, but these have been limited to coarse utterance-level mod-
els that operate exclusively in the time domain. In an attempt to narrow the gap
between artificial systems and human abilities, this paper presents a novel spectro-
temporal relational thinking based acoustic modeling framework. Specifically, it
first generates numerous probabilistic graphs to model the relations among con-
secutive speech segments across both time and frequency domains. These graphs
are then coupled and transformed into latent representations for downstream tasks,
during which meaningful spectro-temporal patterns formed by the co-occurrence
of certain node pairs can be uncovered. Models built upon this framework outper-
form state-of-the-art systems with a 7.82% improvement in phoneme recognition
tasks. In-depth analyses further reveal that our proposed relational thinking mod-
eling mainly improves the model’s ability to recognize vowel phonemes.

1 INTRODUCTION

Deep learning techniques have brought in substantial advancements into automatic speech recogni-
tion (ASR), making it one of the most promising means of human-machine communication (Hinton
et al., 2012). However, most deep neural network (DNN) based speech recognition systems (Vinyals
et al., 2012; Abdel-Hamid et al., 2014; Chan et al., 2016; Passricha & Aggarwal, 2019; Wang et al.,
2020; Baevski et al., 2020; Gulati et al., 2020) have drawn limited inspiration from the way speech
is processed and recognized by human brain (Bohnstingl et al., 2022), instead treating the process as
a black-box. As a consequence, the performances of these systems still lag behind that of the human
brain (Malik et al., 2021). Recognizing the limitations inherent in current artificial systems, recent
researches have endeavored to integrate biologically inspired mechanisms into existing DNN based
systems, seeking to enhance interpretability and narrow the gap between artificial systems and the
human brain (Dong & Xu, 2020; Bohnstingl et al., 2022).

Human minds are constantly and unconsciously filled with innumerable mental impressions pertain-
ing to relations between current sensory signals and prior knowledge while hearing, seeing, smelling,
etc. (Peirce, 2012). These mental impressions (i.e., percepts) are subsequently coupled and trans-
formed into generalized understandings (i.e., concepts) (Mandler, 2007). This process, termed as
relational thinking, is a fundamental human learning process that enables discerning meaningful
patterns within the continuous flow of sensory data (Alexander, 2016). While humans rely on this
inherent mechanism for speech comprehension (Birjandi & Sabah, 2012), artificial speech recogni-
tion systems have rarely employed it. The majority of the state-of-the-art systems, e.g., wav2vec2
(Baevski et al., 2020), have been developed using the transformer architectures (Vaswani et al.,
2017), which basically employ attention mechanisms to capture dependencies between different
parts of the sequence. However, these systems do not explicitly comprehend the relational infor-
mation inherent in the sequence in the same way as the human brain. The attention mechanisms
actually assess the significance of different parts of the sequential input when producing each entry
of the output, allowing the model to focus on only pertinent information, as illustrated by Fig. 1 (a).
In contrast, relational thinking captures the inherent relationships and interactions between various
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pair-wise elements or features within the input sequence and estimates each entry of the output by
aggregating all the pair-wise information, as shown in Fig. 1 (b). The information captured through
relational thinking thus places a greater emphasis on the implications rooted in the co-occurrence
of pairs of informative elements. This proves particularly beneficial to speech recognition, as cer-
tain pairs tend to appear jointly, for instance, the phonemes /m/ and /iy/ (“me”, “autonomy”, etc.).
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Figure 1: Graphical illustrations of (a) attention mecha-
nism, (b) conventional relational thinking, and (c) proposed
joint spectro-temporal relational thinking. A darker line in-
dicates greater importance (i.e., with a larger weight).

However, such knowledge is not intrinsi-
cally captured by the attention mechanism
prevalent in most current systems.

One of the few examples of the use of rela-
tional thinking models formulated this pro-
cess in a conversational speech recognition
scenario (Huang et al., 2020); the relational
information acquired during the process was
utilized as an additional input for the recog-
nition task. However Huang et al. (2020)
only investigated utterance-level relational
information in conversational scenarios. In a distinct yet highly relevant realm, natural language
processing, Xue et al. (2021) proposed an approach to relation extraction which focused on extract-
ing relations between words. Both Huang et al. (2020) and Xue et al. (2021) modeled the relations
either at the utterance-level or the word-level. However, humans process speech and language at the
more granular level of phonemes (Dusan & Rabiner, 2005; Wingfield et al., 2017). Furthermore,
existing works have modeled the relations among elements of the input sequence separated in time
only, whereas humans process speech by jointly considering multiple domains (e.g., time, frequency,
semantics, etc.) rather than focusing exclusively on relationships in the time domain (Jurafsky &
Martin, 2000).

In this paper, we propose a novel joint spectro-temporal relational thinking based acoustic modeling
framework. The novelty lies in four aspects. 1) In contrast to previous approaches that focused solely
on temporal patterns, the proposed framework captures relations across both time and frequency do-
mains of the sensory input (as illustrated by Fig. 1 (c)) using a collection of probabilistic graphs,
and then transform the relational information involved in the graphs into a form that can be used
by downstream tasks. 2) Our approach tackles real-world scenarios where the input and output se-
quences differ in length. To facilitate the training of the proposed framework, we develop a tractable
loss that optimizes the variational lower bound for the model log-likelihood. 3) Models built upon
our proposed framework outperform the state-of-the-art baseline, demonstrating a performance gain
of up to 7.82% in phoneme recognition tasks. Further analysis shows that the performance gain pri-
marily originates from the model’s enhanced ability to recognize vowels. This enhancement mirrors
human proficiency in recognizing vowels more readily than consonants (Meyer et al., 2006). We
also uncover the relevance of the captured relations to phoneme groups, where the patterns involved
in the relations exhibit more similarities for phoneme classes within the same group. Additionally,
the generalizability of the proposed framework is validated by employing other types of acoustic
features (e.g., MFCCs), where relational thinking modeling consistently benefits downstream tasks.
4) We theoretically analyze the differences between self-attention mechanisms and relational think-
ing. These details are provided in Appendix D for those interested in further exploration.

2 MODELING RELATIONAL THINKING

Previous relational thinking approaches have employed graphs to model relationships between en-
tries (or time steps) of a sequence, where each entry has been regarded as a node in the graphs. The
goal of such approaches is to capture meaningful pair-wise patterns over time using these graphs (as
illustrated by Fig.1 (b)), and then aggregate and transform the relational information involved in the
graphs into a latent form that can be interpreted by subsequent layers of the model. Consider a sen-
sory input H = [h1, . . . ,hT ] corresponding to T time steps. As illustrated by Fig. 2, the relational
thinking process is carried out via the following three steps (Huang et al., 2020):

1) Perception: We first construct an infinite number of graphs {G(k)}+∞
k=1, where G(k)(V(k), E(k)) is

the k-th percept graph, with V(k) and E(k) denoting the node set and edge set, respectively. Each
hi ∈ RDh , i = 1, . . . , T corresponds to a node v(k)i in every percept graph G(k), while each element
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Ḡ
<latexit sha1_base64="okcpx62MrLBt3CHZ074Cr36oLok="></latexit>

{G(k)}+1
k=1

<latexit sha1_base64="K7UQgG5kSlNWABJbUd2E637dCws=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyoVJcFNy4r2Ae2pWTSO21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knOPHwuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLV8alGwSU2DTcCO7FCGvoC2/7kNvPbT6g0j+SDmcbYD+lI8oAzaqz02AupGftBqmaDcsWtunOQVeLlpAI5GoPyV28YsSREaZigWnc9Nzb9lCrDmcBZqZdojCmb0BF2LZU0RN1P54ln5MwqQxJEyj5pyFz9vZHSUOtp6NvJLKFe9jLxP6+bmOCmn3IZJwYlW3wUJIKYiGTnkyFXyIyYWkKZ4jYrYWOqKDO2pJItwVs+eZW0LqperXp5f1Wp1/I6inACp3AOHlxDHe6gAU1gIOEZXuHN0c6L8+58LEYLTr5zDH/gfP4A8xuREg==</latexit>r

<latexit sha1_base64="3PEL2rFi3qZaf0Zu860w2j9ktSs="></latexit>

r =
X

(i,j)2{(i,j)|i<j,(i,j)2Ē}
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Figure 2: Modeling of relational thinking process.
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(k)
j ). Since the percepts form at an unconscious level of awareness (Rapp & Braasch, 2023),

we assume that the probability of an edge’s existence within the percept graphs is close to zero. To
model this characteristic, we let the edge weights for the percept graphs follow a set of Bernoulli
distributions, i.e., {α(k)

i,j }+∞
k=1 ∼ Bern(λi,j), where the probability of edge existence λi,j → 0.

2) Coupling: To aggregate the infinite number of percept graphs {G(k)}+∞
k=1, coupling is performed

to derive an equivalent summary graph G̃. In this graph, the original nodes h1, . . . ,hT are preserved,
while each edge α̃i,j is obtained by summing up the corresponding edges over all percept graphs.

3) Transformation: Transformation converts the innumerable unconscious percepts into a recog-
nizable notion of knowledge. Specifically, we first transform the summary graph G̃, which rep-
resents the infinite number of percept graphs, into a task-specific graph Ḡ by introducing trans-
formation variables si,j for each edge α̃i,j , such that ᾱi,j = si,jα̃i,j . Next, from Ḡ we ab-
stract a graph embedding r by summing up the embeddings of all node pairs weighted by ᾱi,j

as
∑

(i,j)∈{(i,j)|i<j,(i,j)∈Ē} ᾱi,j f̄θ(hi,hj). r is then ready for use in a specific downstream task.

The above described relational thinking modeling offers the unique ability to capture the co-
occurrence of entries within the sensory input. The additional knowledge acquired during this
process, which is not available from attention mechanisms (Vaswani et al., 2017), leads to further
enhancement of the downstream task. More details about the modeling of relational thinking and
the differences between relational thinking and attention mechanism are provided in Appendix C
and Appendix D, respectively.

3 PROPOSED SPECTRO-TEMPORAL RELATIONAL THINKING FRAMEWORK

To exploit the range of information that are more readily accessible from different domains, (e.g.,
time domain, frequency domain, etc.), we propose a framework that models this process jointly
across both the time and frequency domains (and more generally across the dimensions of any
acoustic representation). This will enable a more comprehensive description of speech signals.

3.1 SPECTRO-TEMPORAL RELATIONAL THINKING BASED ACOUSTIC MODELING

The structure of the proposed acoustic modeling framework is depicted in Fig. 3. Given the raw
waveform of a speech, we first employ the feature extraction module to calculate the acoustic feature
vectors ct ∈ RDc , t = 1, . . . , T corresponding to each of the time steps. Then, we re-organize them
into a set of feature maps C = {C1, . . . ,CT } by forming each feature map with the current and the
previous w − 1 time steps as Ct = [ct−w+1, . . . , ct]

1, guaranteeing the incorporation of causality.

1In a slight abuse of terminology, we refer to the feature space, in which c1, . . . , cT exist, as a frequency
domain, although ct can be an arbitrary type of acoustic feature.
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Ct is subsequently used as the sensory input for relational thinking modeling of time step t. For
time steps with t < w, specifically, Ct is padded with 0 ∈ RDc such that all feature maps Ct,∀t
have the identical dimension of Dc × w.

For the relational thinking module, every Ct is first smoothed and sub-sampled as

Čt = Ξ(Ct), (1)

where Ξ denotes a filtering operator. The function of Ξ is to adjust the dimension of the original
feature map Ct, such that the resultant Čt has a dimension suitable for the subsequent spectro-
temporal relational thinking modeling. Next, Čt is divided into a number of sub-feature maps as

Čt =




Λt,1,1 · · · Λt,1,D(t)

...
. . .

...
Λt,D(f),1 · · · Λt,D(f),D(t)


 ∈ RDc×w̌, (2)
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Figure 3: Spectro-temporal relational thinking based
acoustic modeling framework.

where every one of the total u = D(f) × D(t)

sub feature maps Λt,d(f),d(t) ∈ RDs×w̌s is ready
to be mapped to a node within the percept graphs
G(k)
t . As for the filtering Ξ in (1), we explain its

necessity with the example in Fig. 4. For the per-
ception step of time domain modeling illustrated
by Fig. 4 (a), each ct from a time step can be
directly mapped to a node in the percept graphs,
with the number of nodes in a graph correspond-
ing to the number of time steps (w = 7) included
in Ct. However, as per the spectro-temporal
modeling, each node in the percept graphs en-
compasses information in both the time and fre-
quency domains, spanning over w̌s and Ds, re-
spectively. As illustrated by Fig. 4 (b), given
Dc = 6, w = 7, and u = 6, it is not possible
to evenly divide the 6 × 7 feature map Ct into
2 rows and 3 columns, or 3 rows and 2 columns of sub-feature maps in the two red blocks in the
figure. As a result, adjustments for the dimension of the original feature map Ct is necessary.
We implement Ξ with a temporal convolution in the proposed framework. Furthermore, we can
define ∆t := w̌/w̌s,∆f := Dc/Ds,∆t,∆f ∈ N+ as the resolutions of relational thinking mod-
eling in time and frequency domains, respectively. A higher resolution ∆t or ∆f indicates a more
fine-grained capture of relations across the corresponding domain. By sequentially performing the
perception, coupling, and transformation steps (as described by (7)–(12) in Appendix C) toward Čt

for each time step t, we can obtain a sequence of graph embeddings r1, . . . , rT .
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(a) temporal perception (b) spectro-temporal perceptions

Figure 4: Perception step of (a) temporal and (b) spectro-
temporal relational thinking modeling.

By concatenating each rt with the corre-
sponding acoustic feature vector ct, we
then obtain a more comprehensive speech
representation

c̃t = [cTt , r
T
t ]

T (3)

for each time step. The sequence of the
concatenated representations c̃1, . . . , c̃T is
lastly fed into a prediction network (e.g., a
linear projection) for the ultimate recognition task.

In the proposed spectro-temporal relational thinking modeling, a node pair refers to a spectro-
temporal pattern formed by the co-occurrence of two sub feature maps within an interval (i.e.,
the temporal span covered by a sub-feature map Λt,d(f),d(t) ) or across intervals. Therefore, by in-
corporating both time and frequency domains, we are able to capture not only the relations between
time intervals, but also the relations across different frequency bands within an interval or across
intervals.

When modeling relational thinking for each time step t, it is essential to work with a feature map
Ct that has a sufficiently wide context (i.e., with a sufficiently large w). This ensures that there
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is enough local context available for effective relational thinking modeling. Therefore, in the pro-
posed relational thinking framework, we take into account a context spanning at least 3 consecutive
phonemes. This is in line with tri-phone models employed in HMM based acoustic models in the
past (Jurafsky & Martin).

Also note that for a given number of nodes u to be included in the graphs, there exist multiple choices
for the resolutions (∆t,∆f ). As illustrated by the two solutions for the example in Fig. 4 (b), given
u = 6, we can obtain either (∆t,∆f ) = (3, 2) or (∆t,∆f ) = (2, 3) for the spectro-temporal
perception. Additionally, we can obtain two more solutions for the resolutions, i.e., (6, 1) and (1, 6),
which in fact correspond to the temporal-only modeling and spectro-only modeling within a single
domain. Variations in the resolution settings can have different effects on the performance of the
downstream task. This aspect will be discussed in detail in Section 5.1.

3.2 TRAINING RELATIONAL THINKING BASED MODELS

For sequence modeling tasks like speech recognition, a common challenge arises from the vary-
ing lengths of the input and output sequences. This requires the loss function capable of manag-
ing such variations in sequence lengths. While Huang et al. (2020) and Chung et al. (2015) only
considered the scenarios where the input and output sequences have equal lengths, our proposed
spectro-temporal relational thinking framework is designed to handle more general scenarios where
input and output sequences can have varying lengths. However, a tractable loss function is required
to enable the training of our proposed framework. Given the complexity introduced by the random
processes governing the generation of the graph edges (as detailed by (7)–(12) in Appendix C), direct
optimization of the model log-likelihood log p(y|C) is infeasible. Instead, we employ the variational
lower bound L (Sohn et al., 2015), by optimizing which log-likelihood can be also maximized:

log p(y|C) ≥ Eq(Ã,S|C)[log p(y|C, Ã,S)]− div(q(Ã,S|C)∥p(Ã,S|C)) = L, (4)

where div(·∥·) represents the KL divergence. In our proposed framework, we have two sets of vari-
ational latent variables that require optimization: Ã = {Ã1, . . . , ÃT } and S = {S1, . . . ,ST }, rep-
resenting the adjacency matrices of the summary graphs and the graph transformation variable ma-
trices for all time steps, respectively. q(Ã,S|C) denotes the approximate posterior for p(Ã,S|C, y),
while p(Ã,S|C) represents the prior. For the case where input and output sequences have equal
lengths (Huang et al., 2020; Chung et al., 2015), the prediction term in (4) can be decomposed into
a frame-wise form as Eq(Ã,S|C)[log p(y|C, Ã,S)] = ∑T

t=1 Eq(Ã,S|C)[log p(yt|Ct, Ã,S)]. However,
it does not generalize to the case where input and output sequences are of different lengths. This
forces us to recover y using C, Ã,S throughout all time steps (see (17) in Appendix E). On the other
hand, according to Nan et al. (2023), since p(Ã,S|C) =

∏T
t=1 p(Ãt,St|Ct), the KL divergence

term in (4) can be decomposed as
∑T

t=1 div(q(Ãt,St|Ct)∥p(Ãt,St|Ct)), where q(Ãt,St|Ct) and
p(Ãt,St|Ct) denote the approximate posterior and prior for time step t, respectively. Given that
each element s(t)i,j of St is conditioned on the Binomial variable α̃

(t)
i,j for the same edge of the t-th

summary graph G̃t (as indicated by (11) in Appendix C), we can further derive the KL divergence
term for each time step t as

div(q(Ãt,St|Ct)∥p(Ãt,St|Ct)) =
∑

(i,j)∈Ẽt
{div(q(α̃(t)

i,j |Ct)∥p(α̃(t)
i,j |Ct))

+ E
q(α̃

(t)
i,j |Ct)

[div(q(s(t)i,j |α̃
(t)
i,j ,Ct)∥p(s(t)i,j |α̃

(t)
i,j ,Ct))]}.

(5)

More details on the training of the proposed framework are provided in Appendix E, where we
obtain a computationally tractable form of loss function that optimizes (4).

4 EXPERIMENTAL SETTINGS

Goals To gain insights into how the proposed model could aid downstream tasks, we aim to answer
the following five questions:

Q1: Does the proposed joint spectro-temporal modeling provide additional information that further
benefits downstream tasks when compared to pure temporal or spectral modeling?
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Q2: Is it more beneficial to model a larger context in the time domain or frequency domain?

Q3: Does the temporal span for relational thinking modeling affect the model’s performance in
downstream tasks?

Q4: Does relational thinking provide additional benefits beyond what the attention mechanism has
achieved for downstream tasks?

Q5: Does the proposed framework consistently offer advantages across different types of acoustic
features?

Dataset We evaluate our proposed acoustic modeling framework in a general phoneme recognition
downstream task. The TIMIT dataset (Garofolo et al., 1993) is used for training and evaluation, since
it provides precise annotations for the start and end instants of each phoneme within an utterance,
allowing for comprehensive analyses that lead to in-depth understanding of the proposed models. To
recover the target phoneme sequence y, we use the best path decoding method (Graves et al., 2006).
The phoneme error rate (PER) is employed for system evaluation.

Settings We employ the pre-trained wav2vec2 BASE (Baevski et al., 2020) for feature extraction
and apply the proposed relational thinking modeling on top of it. Given that the majority (over 96%)
of 3 consecutive phonemes in TIMIT has a duration shorter than 400 ms, we let Ct consist of 20
consecutive frames (i.e., w = 20, spanning a duration of 405 ms), such that the relations associated
with 3 consecutive phonemes can be modeled. We include 8 nodes in each percept graph, i.e., u = 8.
To answer Q1, we explore the time-only model w20-t8f1, the frequency-only model w20-t1f8, and
the joint spectro-temporal models w20-t2f4 and w20-t4f2, by manipulating the resolutions for time
and frequency domains as described in Section 3, with the naming of the models following the
format ww-t∆tf∆f . To address Q3, we include another model w8-t2f4, with a different temporal
span w = 8 for relational thinking modeling. For Q5, the effectiveness of the proposed model is
further validated using MFCCs. Additional implementation details are available in Appendix F.

5 EXPERIMENTAL RESULTS AND ANALYSES

5.1 PHONEME RECOGNITION PERFORMANCE

A1: Temporal vs. Spectral vs. Spectro-temporal The performances of different models are com-
pared in Table 1. We first fix the pre-trained parameters within the wav2vec2 module to eliminate
the impact of variations in acoustic features. As shown in Table 1, the two joint spectro-temporal

Table 1: Phoneme recognition performances of baselines and pro-
posed models without fine-tuning.

temporal spectro spectro-temporal PER (%)
dev test

baseline wav2vec2 17.92 25.70

proposed

w20-t8f1 ✓ 19.32 22.83
w20-t1f8 ✓ 16.14 21.76
w20-t4f2 ✓ 17.31 20.80
w20-t2f4 ✓ 14.02 20.66

w8-t2f4 ✓ 18.89 22.93

models, w20-t4f2 and w20-t2f4, out-
perform the temporal and spectral
models, w20-t8f1 and w20-t1f8. This
comparison clearly demonstrates the
advantage of joint spectro-temporal
modeling over the temporal or spec-
tro modeling within a single do-
main. It is also evident that all
the proposed relational thinking mod-
els (with 100.8M parameters in to-
tal) outperform the wav2vec2 base-
line (with 94.4M parameters in total),
with a relative reduction in PER rang-
ing from 11.17% to 19.61%.

A2: Trading off Temporal Context against Spectral Context We compare the models with a
higher resolution in frequency domain to those with a higher resolution in time domain. Specifically,
two sets of models, {w20-t1f8, w20-t8f1} which model relations within a single (time or frequency)
domain, and {w20-t2f4, w20-t4f2} which model relations in both time and frequency domains, are
respectively compared. As illustrated by Table 1, in both sets, the model with higher frequency
domain resolution (w20-t2f4 or w20-t1f8) exhibit superiority over its counterpart with higher time
domain resolution (w20-t4f2 or w20-t8f1). This suggests that there might be potential benefits in
modeling relations across frequency bands in greater detail by setting a higher frequency domain
resolution compared to focusing more on time domain relations.
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Figure 5: Relations learned by spectro-temporal relational thinking. Relational thinking evaluates the impor-
tance of the co-occurrence of a pair of nodes, representing a novel type of information beyond the assessment
of individual nodes as typically done by attention mechanism. A pair of nodes is of more importance when the
edge connecting them attains a larger value of ᾱ(t)

i,j , as indicated by the arrows.

A3: Impact of Temporal Span To further understand the impact of the temporal span for re-
lational thinking modeling, i.e., the value of w for every Ct, on the performance of downstream
task, we compare two proposed models with relational thinking modeled throughout 20 and 8
consecutive time steps, respectively. In other words, relational thinking is performed through-
out temporal spans corresponding to triphones and monophones in the two models, respectively.

Table 2: Phoneme recognition performances of baselines and
proposed models in terms of PER (%) over TIMIT dataset.

dev test

baseline

CNN + TD-filterbanks (Zeghidour et al., 2018) 15.6 18.0
PASE+ (Ravanelli et al., 2020) – 17.2

Li-GRU + fMLLR (Ravanelli et al., 2018) – 14.9
wav2vec (Schneider et al., 2019) 12.9 14.7

vq-wav2vec (Baevski et al., 2019) 9.6 11.6
wav2vec2 (Baevski et al., 2020) 7.26 9.98

proposed w20-t4f2 6.18 9.26
w20-t2f4 6.23 9.20

We set the time and frequency resolutions
to (2, 4) for both models. As shown in
Table 1, the w8-t2f4 model, which incor-
porates relational information singly asso-
ciated with the current phoneme at each
time step, outperforms the wav2vec2 base-
line with a 10.78% reduction in PER.
However, when compared to the w20-t2f4
model, which incorporates relational in-
formation associated with the current and
2 preceding phonemes, it suffers a 10.99%
drop in performance. This suggests that
certain spectro-temporal patterns associ-
ated with consecutive phonemes contribute to further improving the prediction performance for the
current phoneme.

A4: Comparison with SOTA The proposed models are compared with the transformer (more
essentially, self-attention mechanism) based wav2vec2 baseline (Baevski et al., 2020) and other
state-of-the-art systems (Zeghidour et al., 2018; Ravanelli et al., 2020; 2018; Schneider et al., 2019;
Baevski et al., 2019) in Table 2. For the proposed models and the baseline, the (wav2vec2) fea-
ture extraction module is jointly optimized (i.e., fine-tuned) during training. Our proposed spectro-
temporal models, w20-t4f2 and w20-t2f4, significantly outperform all the counterparts, specifically
yielding 7.21% and 7.82% relative improvements of PER over the wav2vec2 baseline in the test
dataset, respectively, revealing the additional advantages offered by relational thinking modeling
compared to self-attention mechanism in enhancing speech representation.

A5: Generalization to Other Acoustic Features We also train a relational thinking based model
using MFCCs (referred to as MFCC-RT-w20-t2f4) and compare it with an MFCC baseline imple-
mented with a simple linear projection. Detailed configurations of the two models can be found in

Table 3: Phoneme recognition performances
of baseline and proposed model using MFCCs.

dev test

baseline MFCC 39.80 47.90
proposed MFCC-RT-w20-t2f4 39.58 41.02

Appendix F.2. As shown in Table 3, the proposed
MFCC-RT-w20-t2f4 model significantly outperforms
the MFCC baseline, achieving a 14.36% reduction in
PER over the test set. This validates that our proposed
relational thinking modeling can generalize to sequen-
tial inputs composed of various types of acoustic fea-
tures, providing additional relational information that
consistently benefits downstream tasks.

5.2 LEARNED RELATIONAL INFORMATION

The proposed relational thinking modeling enables us to infer relationships amongst different re-
gions of the feature map without using any prior relational annotations during training. To illustrate
the learned relational information, we randomly select a sample from the TIMIT test set, feed it into
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Figure 6: Proportions of recognized phoneme classes by baseline and proposed w20-t2f4 model. Ground
truth reveals the actual proportions of all phoneme classes in the TIMIT test set. The proportions of vowel
classes recognized by the proposed model align more closely with the ground truth proportions, suggesting the
proposed model’s better performance in recognizing vowels.

a proposed relational thinking model, and visualize the inferred task-specific graphs for 4 consec-
utive time steps out of the total T time steps in Fig. 5. In each graph, a red curve represents an
edge ᾱ(t)

i,j that connects a specific pair of sub feature maps from Čt. The intensity of an edge’s color

corresponds to the regularized value of ᾱ(t)
i,j ranging from 0 to 1. For each time step, the respective

task-specific graph clearly reveals the intricate relations among different sub feature maps of Čt. As
can be observed, all the task-specific graphs are relatively sparse, with only a few edges having large
values of ᾱ(t)

i,j (as indicated in the figure). This observation aligns with our discussion in Section 3.1,
indicating that certain spectro-temporal patterns (i.e., the co-occurrence of certain sub feature maps)
are more important to the ultimate task than many others which are less meaningful.

We further explore the captured relational information by analyzing the edges ᾱ
(t)
i,j of the learned

task-specific graphs across different phoneme sub-groups (e.g., vowels, fricatives, nasals, etc.) in
the frame-wise phoneme classification tasks. As shown in Fig. 12, the captured relations between
different regions of the feature map, i.e., the edges ᾱ(t)

i,j of the task-specific graph, exhibit more sim-
ilarities for phoneme classes within the same sub-group. However, the captured relations between
phoneme classes from different sub-groups vary significantly. This suggests that the proposed model
can discern and learn the intrinsic characteristics of various phoneme classes. More details can be
found in Appendix G.2.

5.3 ANALYSIS OF PERFORMANCE OF DIFFERENT PHONEME GROUPS

We carry out additional analyses to gain a deeper understanding of how the proposed models en-
hance phoneme recognition performance. It is expected that the proposed relational thinking based
models demonstrate superior advantages over the baseline in recognizing vowel phonemes. This
is because vowel phonemes tend to have longer durations than non-vowel phonemes, allowing the
relational thinking module to capture more significant relational information, which in turn bene-
fits the downstream task. To this end, we separately investigate the performances of the models in
recognizing vowels and non-vowels.

Intuitively, a good recognizer should produce a distribution of recognized phoneme classes that
closely matches the ground truth distribution. To assess this, we calculate the proportion of each
phoneme class among all the recognized phonemes in the test set for both the wav2vec2 baseline
and the proposed w20-t2f4 model. These proportions are depicted in Fig. 6, where the ground truth
proportions of phoneme classes in the test set are also provided. As can be observed, there are sig-
nificant differences in the distributions of vowel classes (e.g., /ah/, /aw/, /er/, /ey/, /ih/) recognized
by the two models, especially for the classes circled out in Fig. 6. In particular, the proportions
of vowel classes recognized by the proposed model are more consistent with the ground truth pro-
portions, with an average absolute difference of 0.23 pp. While the baseline shows a much higher
average absolute difference of 0.35 pp (refer to Appendix G.1.1 for more details). This indicates
that the proposed model exhibits superior performance in recognizing vowels.

Next, we conduct separate analyses of the errors made by both models in recognizing vowels and
non-vowels. To be specific, given the recognition result of each model for a test sample, i.e., a
sequence of recognized phonemes, we extract all the vowels/non-vowels from it and create a new
sequence by combining the extracted phonemes with the original order preserved. This allows us
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to formulate recognized vowel/non-vowel sequences. For example, we can obtain a vowel sequence
[/ix/, /ah/, /ix/, /ae/, /ix/, /ix/, /ux/, /iy/, /ux/] from [/w/, /ix/, /dcl/, /s/, /ah/, /tcl/, /ch/, /ix/, /n/,
/ae/, /kcl/, /t/, /ix/, /v/, /r/, /ix/, /f/, /y/, /ux/, /zh/, /el/, /bcl/, /b/, /iy/, /y/, /ux/, /s/, /f/, /el/]. The
ground truth vowel/non-vowel sequences can be derived from the reference target sequence in the
same way. To approximate the errors made by each model in recognizing vowels/non-vowels, we
calculate the edit distance (Navarro, 2001) between the recognized vowel/non-vowel sequence and
the corresponding ground truth counterpart for all test samples. Fig. 7 illustrates the distributions of
edit distances between the recognized sequences and the ground truth sequences for all test samples.

Figure 7: Distributions of edit distances between
recognized sequences and ground truth sequences.

In Fig. 7 (a), which pertains to the performances
of the two models in recognizing vowels, it is evi-
dent that the proposed model outperforms the base-
line. The distribution of edit distances for the pro-
posed model is significantly skewed towards the left,
compared to that for the baseline, with the average
edit distance for the proposed model (3.6488) much
smaller than that for the baseline (4.2238). While
for the performances of the two models in recogniz-
ing non-vowels as depicted in Fig. 7 (b), the pro-
posed model only shows a slight improvement over
the baseline. In this case, the distributions of errors
made by the two models are closer compared to the case of recognizing vowels, where the average
edit distances for the two models are 3.9435 and 4.2030, respectively.

When the biologically inspired relational thinking process is incorporated, the model’s performance
in recognizing vowels shows a more noticeable improvement compared to its performance in rec-
ognizing non-vowels. This finding also coincides with the results of a speech intelligibility test
conducted with human listeners, as reported in Meyer et al. (2006). The test results suggested that
vowel identification is a relatively easier task for humans compared to consonant identification. Ad-
ditional analyses related to the phoneme recognition tasks can be referred to Appendix G.1.

5.4 SPEECH RECOGNITION WITH PROPOSED FRAMEWORK

The proposed spetro-temporal relational thinking modeling is further validated in speech recognition
tasks and evaluated using word error rate (WER), aiming to demonstrate the generalizability of our
proposed framework to other prevalent tasks. A word-level relational thinking model, built upon the
proposed framework (as detailed in Appendix G.3), displays a 2.55% reduction in WER against the
wav2vec2 baseline (Baevski et al., 2020) when language model is not applied. The incorporation of
a 4-gram language model increases this reduction in WER to 3.23% (refer to Table 6 for details).
These improvements imply that comprehending and utilizing the spectro-temporal relations associ-
ated with words also advantages the downstream speech recognition tasks, in that certain words tend
to coherently and frequently appear together, such as “I am”.

6 CONCLUSION

We propose a novel spectro-temporal relational thinking based acoustic modeling framework, where
its core module is inspired by a fundamental human learning process. This framework is capable of
capturing a unique form of pair-wise information, distinct from the assessment of individual nodes
as performed by attention mechanism. Models constructed using this framework show state-of-the-
art performance in phoneme recognition tasks. Further analysis conveys connections between the
captured relations and phoneme groups, where the patterns involved in the relations exhibit more
similarities for phoneme classes within the same group, while showing significant variations be-
tween phoneme classes from different groups. Our analysis also reveals that relational thinking
modeling primarily enhances the model’s ability to recognize vowels. Additionally, we demonstrate
the generalizability of the proposed framework by applying other types of acoustic features and em-
ploying it for different downstream tasks, where relational thinking modeling consistently benefits
downstream tasks. This study aims to pave a new pathway for integrating biologically inspired hu-
man learning processes into deep learning approaches, improving the model’s capability in speech
recognition and potentially its interpretability.
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A FUTURE WORK

Given the success of the proposed framework in both phoneme-level and word-level recognition
tasks, respectively, as well as the evidence suggesting that speech recognition in human brain is a
holistic process that involves various types of linguistic units (e.g., phonemes, syllables, words, etc.)
(Dusan & Rabiner, 2005), we can potentially extend the proposed single-level modeling to a multi-
level (e.g., phoneme-level and word-level) modeling. Relying on such an approach, we would be
able to simultaneously capture the relations associated with linguistic units across different levels,
allowing us to explore their combined impact on the ultimate task.

B RELATED WORK

1) Automatic Speech Recognition: There have been extensive studies into automatic speech recog-
nition (ASR) over the past decades. In a classic ASR pipeline, the acoustic model was constructed
using a combination of Gaussian mixture models (GMMs) and a Hidden Markov model (HMM),
where the GMMs were employed to model the observation probabilities associated with the hidden
states, while the HMM was responsible for modeling the transition probabilities among the hidden
state sequence (Mohamed et al., 2009; He et al., 2008). However, due to its limited representational
capacity, the GMM-HMM model struggles to effectively model the streams of interacting knowl-
edge sources in speech. Furthermore, the decoding and learning processes for the GMM-HMM
model are feasible only when relying on the Markov assumption or conditional independence as-
sumption (Mohamed et al., 2009). Driven by the advancements in computer hardware and deep
learning techniques, ASR has then undergone a profound change. Following the initial adoption of
deep neural networks (DNNs), which were introduced to replace GMMs for hidden state modeling
(Mohamed et al., 2009; Dahl et al., 2011; Hinton et al., 2012), researchers then explored a range of
neural network structures to enhance the performance of ASR systems. These included the use of
one or a mixture of the convolutional neural networks (CNNs), recurrent neural networks (RNNs),
transformers, etc. (Abdel-Hamid et al., 2014; Vinyals et al., 2012; Passricha & Aggarwal, 2020;
Wang et al., 2020). Training and deployment processes for ASR systems were both largely sim-
plified with the advent of end-to-end models. The connectionist temporal classification (CTC) ap-
proach enabled automatic detection of the alignment between the input and output sequences, elim-
inating the requirement for pre-segmented training data (Graves et al., 2006). The attention based
encoder-decoder (AED) architecture further removed any assumptions about the dependency of the
output sequence (Chorowski et al., 2015; Chan et al., 2016; Hou et al., 2017). To address the chal-
lenge of limited annotated data, self-supervised learning techniques have been incorporated. Models
were initially pre-trained to learn general speech representations from large volumes of unannotated
data, and were subsequently fine-tuned using limited annotated data for specific downstream tasks
(Schneider et al., 2019; Baevski et al., 2019; 2020). Notably, the latest wav2vec2 framework has
prominently improved the state-of-the-art performance in speech recognition tasks (Baevski et al.,
2020). However, most existing systems have drawn limited inspiration from the way speech is pro-
cessed and recognized by human brain (Bohnstingl et al., 2022), rendering their performance still
lagging behind that of human brain (Malik et al., 2021). Our biologically inspired approach, in
contrast, explicitly models the intrinsic relational thinking process that is critically associated with
human speech processing. This in turn leads to further performance improvement.

2) Relational Thinking Modeling: Studies on the modeling of relational thinking process are still
quite primitive. Huang et al. (2020) developed utterance-level relational thinking modeling for con-
versational speech recognition. Relying on a Bayesian deep learning method (Wang & Yeung, 2020),
they modeled the perception process by generating an infinite number of probabilistic graphs rep-
resenting the unconscious percepts, with each node within a graph referring to an utterance in a
conversation. To address the computational challenges arising from the innumerable number of per-
cepts, they obtained an analytical solution by creating an equivalent new graph that summarized
the original ones. The relational information involved in this graph was further transformed into a
form that could be used in downstream tasks (refer to Fig. 8 and Fig. 2 (a)). In the field of natural
language processing, Xue et al. (2021) introduced a simplified modeling approach for relation ex-
traction tasks. They extended a BERT-based language model by incorporating a latent multi-view
graph created using a Gaussian graph generator. This graph aimed to capture various potential word-
level relations between tokens. This approach differs from Huang et al. (2020) in terms of the task’s
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Figure 8: Illustration of relational thinking process in human brain (Rapp & Braasch, 2023).

objective. Specifically, in Xue et al. (2021), the goal was to explicitly learn the relations between
tokens, where the relational information had been provided by the dataset and was adopted as labels.
In contrast, Huang et al. (2020) focused on inferring relations among utterances without relying on
any prior relational data. Besides, both Huang et al. (2020) and Xue et al. (2021) have modeled
the relations among the input sequence solely throughout time domain. Nevertheless, human brain
processes speech by jointly considering multiple domains (e.g., time, frequency, semantics, etc.)
rather than focusing exclusively on time domain (Jurafsky & Martin, 2000). Our work presents a
spectro-temporal relational thinking modeling, which can offer a more comprehensive representa-
tion of speech and further narrows the gap between artificial systems and human brain. Concerning
the sensory signals from multiple sources, Xing et al. (2019) introduced a perception coordination
network (PCN) designed to replicate the process of concept acquisition from multi-modal sensory
signals (e.g., vision, audition, and touch) in human brain. Within the hierarchical structure of the net-
work, fundamental features (e.g., colors, shapes, syllables, basic flavors) were initially transformed
into a set of unimodal concepts. Subsequently, a multi-sensory integration step was implemented to
associate these primary unimodal concepts. However, despite its potential, the PCN, formulated as
a type of self-organizing network (Jantvik et al., 2011), still faces challenges when it comes to its
practical application in specific downstream tasks.

C DETAILS OF RELATIONAL THINKING MODELING

The entire relational thinking process as described in Section 2 is demonstrated by Fig. 2. Consider
a sensory input

H = [h1, . . . ,hT ] (6)
corresponding to T time steps. The relational thinking process can be primitively modeled through-
out time domain with the following steps (Huang et al., 2020).

1) Perception: We first construct an infinite number of graphs {G(k)}+∞
k=1, where G(k)(V(k), E(k)) is

the k-th percept graph, with V(k) and E(k) denoting the node set and edge set, respectively. Each
hi, i = 1, . . . , T corresponds to a node v

(k)
i in every percept graph G(k), while each element α(k)

i,j

of the adjacency matrix A(k) is associated with an edge e
(k)
i,j ∈ E(k) between node i and node j of

G(k).

Since the percepts attain an unconsciousness characteristic (Alexander, 2016), we assume that the
probability of edge existence within the percept graphs is close to zero. Specifically, considering an
infinite number of edges {α(k)

i,j }+∞
k=1 between node i and node j, we sample as

{
α
(k)
i,j

}+∞

k=1
∼ Bern(λi,j), (7)

where Bern(λi,j) is a Bernoulli distribution with probability of edge existence λi,j → 0.

2) Coupling: Coupling aims to obtain a summary graph G̃ that is capable of representing the infi-
nite number of percept graphs {G(k)}+∞

k=1. In this graph, the original nodes h1, . . . ,hT are kept.
While since it is intractable to simply take a summation over all adjacency matrices {A(k)}+∞

k=1, we
equivalently generate each edge of G̃ upon sampling from a Binomial distribution, i.e.,

α̃i,j =

+∞∑

k=1

α
(k)
i,j ⇔ α̃i,j ∼ B(n, λi,j), (8)
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where n → +∞ and λi,j → 0.
Theorem 1. Let B(n, λ) denote a Binomial distribution with n → +∞, λ → 0, and let m = nλ.
There exists a Gaussian distribution N (m,m(1 − m)) that approximates B(n, λ) with a bounded
approximation error, where

m =
1

2



1 +

2σ2

1− 2µ
−
[
1 +

(
2σ2

1− 2µ

)2
] 1

2



 (9)

is derived from a Gaussian distribution N
(
µ, σ2

)
with µ < 1/2.

According to Theorem 1 (Huang et al., 2020), by letting mi,j = nλi,j , we can bypass the direct
parameterization of both the infinite n and the near-zero λi,j , and find a tractable Gaussian proxy
N (mi,j ,mi,j(1−mi,j)) for the Binomial distribution B(n, λi,j) in (8).

3) Transformation: Transformation converts the innumerable unconscious percepts into a recog-
nizable notion of knowledge. This indicates that we abstract an informative representation from
the summary graph G̃ for downstream tasks. Specifically, this transformation is designed as first
weighting each edge α̃i,j of G̃ with a Gaussian variable si,j :

Ā = S⊙ Ã, (10)
where ⊙ denotes the Hadamard product, S is the graph transformation matrix, Ã and Ā are the
adjacency matrices of G̃ and the transformed graph Ḡ, respectively. si,j is assumed to be conditioned
on the corresponding edge α̃i,j of G̃, i.e.,

si,j |α̃i,j ∼ N (α̃i,jµi,j , α̃i,jσ
2
i,j). (11)

The transformed graph Ḡ is named as a task-specific graph. Finally, a graph embedding r is extracted
from Ḡ as

r =
∑

(i,j)∈{(i,j)|i<j,(i,j)∈Ē}
ᾱi,j f̄θ(hi,hj), (12)

where Ē is the edge set of Ḡ, and f̄θ(·, ·) denotes a node pair embedding function (Kipf et al., 2018).
Thus, the graph embedding r abstracted from Ḡ is ready to be used as additional information for a
specific downstream task.

D COMPARISON BETWEEN SELF-ATTENTION MECHANISM AND
RELATIONAL THINKING

Self-attention is a technique designed to emulate cognitive attention processes. It has been widely
adopted as a pivotal component of the transformer networks (Vaswani et al., 2017). In this mecha-
nism, the weights and the representation of the relations involved are calculated as




αi,j = softmax(score(Wqhi,Wkhj)), i, j = t− w + 1, . . . , t, score(q,k) =
kTq√
|k|

,

ei =

t∑

j=t−w+1

αi,jfv(hj), i = t− w + 1, . . . , t, fv(h) = Wvh,

rt = et.
(13)

For the ease of comparison, we reframe the relational thinking process (7)–(12) into the following
form



ᾱ
(t)
i,j , i, j = t− w + 1, . . . , t, ᾱ

(t)
i,j is obtained by a generative process (7)–(11),

e
(t)
i =

t∑

j=t−w+1,j>i

ᾱi,j f̄θ(hi,hj), i = t− w + 1, . . . , t, f̄θ(hi,hj) = MLP
([

hT
i ,h

T
j

]T)
,

rt =

t∑

i=t−w+1

e
(t)
i .

(14)
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As indicated by (13) and (14), both the self-attention mechanism and relational thinking share a
similar calculation structure. With either of these techniques, we eventually derive a representation
rt that captures the relations among different nodes (frames). This representation has a form of a
weighted sum of embeddings.

However, the methods for determining the weights αi,j in (13) and ᾱ
(t)
i,j in (14) differ between the

two techniques. In self-attention mechanism, a node hi is initially projected into both a query space
and a key space by Wq and Wk, respectively. Then there is always a scoring process, where the
score typically quantifies the relevance or importance of the key vector Wkhj concerning the query
vector Wqhi. While in relational thinking, the weights ᾱ

(t)
i,j are generated through a generative

process (7)–(11) as outlined in Appendix C. Each weight corresponds to an edge connecting two
nodes in the task-specific graph.

Next, when comparing the second equations in (13) and (14), we can further observe notable differ-
ences in the embedding functions used by the two techniques. In self-attention mechanism, a single
node is typically embedded using a linear transformation fv(h) = Wvh. In contrast, in relational
thinking, a pair of nodes is embedded together using a network f̄θ(·, ·). This distinction leads to
a fundamental difference in the outcomes. Specifically, self-attention mechanism ultimately calcu-
lates a weighted sum of node embeddings, while relational thinking computes a weighted sum of
node pair embeddings. Consequently, by incorporating relational thinking modeling, models gain
the ability to effectively assess the importance of a pair of nodes to the downstream task, in addition
to the capability of measuring the importance of individual nodes, which is already provided by the
self-attention mechanism.

D.1 RELATIONAL THINKING VS. STACKED SELF-ATTENTION MECHANISM

Consider a simplified 2-layer self-attention network w.l.o.g., where each layer l comprises two nodes
h
(l)
1 and h

(l)
2 . According to (13), the calculation of nodes in the subsequent layer l+1 is as follows:

[
h
(l+1)
1 ,h

(l+1)
2

]
= W(l)

v

[
h
(l)
1 ,h

(l)
2

] [ α
(l)
1,1 α

(l)
2,1

α
(l)
1,2 α

(l)
2,2

]
. (15)

As a result, the state of a node h
(3)
2 after undergoing two layers of self-attention calculations is

h
(3)
2

=α
(2)
2,1W

(2)
v

(
α
(1)
1,1W

(1)
v h

(1)
1 + α

(1)
1,2W

(1)
v h

(1)
2

)
+ α

(2)
2,2W

(2)
v

(
α
(1)
2,1W

(1)
v h

(1)
1 + α

(1)
2,2W

(1)
v h

(1)
2

)

(16a)

=
(
α
(1)
1,1α

(2)
2,1 + α

(1)
2,1α

(2)
2,2

)
W(2)

v W(1)
v h

(1)
1 +

(
α
(1)
1,2α

(2)
2,1 + α

(1)
2,2α

(2)
2,2

)
W(2)

v W(1)
v h

(1)
2 . (16b)

Even though (16a) may exhibit a similar form to (12), particularly when we view
W

(2)
v

(
α
(1)
1,1W

(1)
v h

(1)
1 + α

(1)
1,2W

(1)
v h

(1)
2

)
and W

(2)
v

(
α
(1)
2,1W

(1)
v h

(1)
1 + α

(1)
2,2W

(1)
v h

(1)
2

)
as node pair

embedding functions from a linear family F
(
h
(1)
1 ,h

(1)
2

)
, it is crucial to note that h(3)

2 is funda-
mentally still a weighted sum of node embeddings (as revealed by (16b)) rather than a weighted
sum of node pair embeddings as obtained by relational thinking (12), where f̄θ(hi,hj) is an arbi-
trary node pair embedding function. Therefore, the stacked self-attention mechanism and relational
thinking are not entirely equivalent, and models cannot solely rely on the self-attention mechanism
to effectively assess the importance of a pair of nodes.

E TRAINING OF PROPOSED FRAMEWORK

As revealed by (7)–(12), the proposed spectro-temporal relational thinking modeling involves a se-
ries of random processes that govern the generation of the graph edges. This characteristic classifies
it as a variational model, rendering the infeasibility of directly optimizing the model log-likelihood
log p(y|C), where y denotes the target sequence. Instead, the variational lower bound L is typically
employed (Sohn et al., 2015), by optimizing which log-likelihood can be maximized:

log p(y|C) ≥ Eq (Ã,S|C)
[
log p

(
y
∣∣∣C, Ã,S

)]
− div

(
q
(
Ã,S

∣∣∣ C
)∥∥∥ p

(
Ã,S

∣∣∣ C
))

= L,
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where div(·∥·) represents the KL divergence. In our proposed framework, we have two sets of
variational latent variables. Ã = {Ã1, . . . , ÃT } and S = {S1, . . . ,ST } collect the adjacency ma-
trices of the summary graphs and the graph transformation matrices for all time steps, respectively.
q(Ã,S|C) denotes the approximate posterior for p(Ã,S|C, y), while p(Ã,S|C) represents the prior.
The variational CTC loss (Nan et al., 2023) can be employed to optimize L:

L̃ =
∑

B∈F−1(y)

T∏

t=1

p
(
bt

∣∣∣C, Ã,S
)
−

T∑

t=1

div
(
q
(
Ãt,St

∣∣∣Ct

)∥∥∥ p
(
Ãt,St

∣∣∣Ct

))
, (17)

where B = [b1, . . . , bT ] denotes an alignment between C and y (Graves et al., 2006), bt ∈ W∪{−},
W is the target vocabulary, and F maps the paths B with the same length as C to the target sequence
y by first merging the consecutive duplicated labels into one and then discarding the blanks “−”.
In (17), since p(Ã,S|C) = ∏T

t=1 p(Ãt,St|Ct), the KL divergence term in (4) is decomposed into
a frame-wise form, where q(Ãt,St|Ct) and p(Ãt,St|Ct) denote the approximate posterior and
prior for time step t, respectively. As can be observed, the loss function L̃ consists of a prediction
objective and a regularization objective. The prediction objective guides the model to recover the
target sequence y, while the regularization objective encourages the model to keep its posterior
distributions close to the corresponding priors for all time steps. Note that in contrast with Huang
et al. (2020) and Chung et al. (2015), the prediction objective in (17) cannot be decomposed into a
frame-wise form. To be specific, in these two works, the input sequence and the target sequence have
the same length, i.e., they are aligned. This allows the prediction objective to be easily decomposed
as

∑T
t=1 Eq(Zt|Xt)[log p(yt|Xt,Zt)]. However, we formulated our problem (4) as a more general

one, where the input and target sequences might not be aligned. This forces us to integrally recover
the target sequence y using the input feature maps C and the latent variables Ã,S throughout all
time steps, as described by (17).

As each element s(t)i,j of St is conditioned on the Binomial variable α̃(t)
i,j for the same edge of the t-th

summary graph G̃t (as indicated by (11)), the KL divergence terms in (17) can be further derived as

div
(
q
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Ãt,St

∣∣∣Ct
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div
(
q
(
α̃
(t)
i,j , s

(t)
i,j

∣∣∣Ct

)∥∥∥ p
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Figure 9: A phoneme recognition model implemented using the proposed spectro-temporal rela-
tional thinking based acoustic modeling framework. wav2vec2 is employed as the acoustic feature
extraction module. The prediction network is implemented with a linear projection.
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The KL divergences between two Gaussian distributions are readily simplified to the following
closed-form:
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with Ẽt denoting the edge set of the t-th summary graph. Then, with the intractability of n(t) →
+∞, λ̃(t)

i,j → 0, and λ̃
(t,0)
i,j → 0 eliminated by introducing two variables m
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i,j , respectively, we can follow the Theorem 2 in Huang et al. (2020) to further

derive closed-form of KL divergences between two Binomial distributions in (5) as
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(21)
Finally, by substituting (5), (18)–(21) into (17), we obtain a closed-form loss function, allowing
direct optimization of the variational lower bound L of the model log-likelihood.
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F DETAILED EXPERIMENTAL CONFIGURATIONS

F.1 PROPOSED MODELS EMPLOYING WAV2VEC2 FOR ACOUSTIC FEATURE EXTRACTION

We apply our proposed acoustic modeling framework (as illustrated by Fig. 3) to a general phoneme
recognition downstream task. The structure of the phoneme recognition models implemented using
the proposed framework is shown in Fig. 9.

F.1.1 ACOUSTIC FEATURE EXTRACTION MODULE

Since wav2vec2 is one of the state-of-the-art frameworks for extracting speech representations
(Baevski et al., 2020), it is employed as the acoustic feature extraction module in our proposed
models. Here, we give necessary descriptions about the structure of wav2vec2, while more details
about its implementation and training can be found in Baevski et al. (2020).

The wav2vec2 framework mainly consists of three modules, namely, a feature encoder, a context
network, and a quantization module. As illustrated by Fig. 9, the feature encoder f : X → Z
contains a series of temporal convolutional blocks. The input of this module is the raw audio wave-
form X corresponding to an utterance, while its output is a sequence of latent speech representations
z1, . . . , zT for the T time steps. The output of the feature encoder Z is then fed into the subsequent
context network g : Z → C, which is built up with the serialization of several transformers (Vaswani
et al., 2017). This module generates the contextualized representations c1, . . . , cT , which capture
information from the entire speech representation sequence. Relying on a product quantization pro-
cess (Jegou et al., 2010; Baevski et al., 2019), the quantization module q : Z → Q discretizes the
outputs of the feature encoder into q1, . . . ,qT , which are from a finite set of speech representations.
To pre-train the wav2vec2 framework, the following loss function is optimized:

Lpt = Lc + αLd, (22)

where

Lc = − log
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are the contrastive loss and the diversity loss, respectively. The contrastive loss requires the model
to identify the true quantized latent speech representation for a masked time step t within a set of
distractors, while the diversity loss is designed for the sake of increasing the use of the quantized
codebook representations (Baevski et al., 2020).

In our proposed models, we directly employ the pre-trained wav2vec2 BASE2 as the acoustic feature
extraction module.

F.1.2 SPECTRO-TEMPORAL RELATIONAL THINKING MODULE

For the relational thinking module, we first investigate the duration distribution of 3 consecutive
phonemes within the TIMIT dataset (Garofolo et al., 1993). As shown in Fig. 10, the majority (over
96%) of these 3-phoneme sequences have a duration shorter than 400 ms. On the technical side,
the wav2vec2 framework defines a frame width of 25 ms and a frame stride of 20 ms. Aiming to
create a feature map that is capable of effectively modeling relations among 3 consecutive phonemes
for the majority of cases, we should let it consist of at least w = 20 frames, covering a time span
of 405 ms. As a result, the feature map is designed as Ct = [ct−19, . . . , ct] ∈ R768×20, where
768 corresponds to the dimension of the context representations generated by wav2vec2 BASE. The
kernel width and kernel stride for the temporal convolution in (1) are set to 5 and 2, respectively,
leading to Čt ∈ R768×8 and the number of nodes included in the percept graphs being u = 8.
Therefore, we can derive four different sets of resolution settings (∆t,∆f ) for time and frequency
domains, i.e., (8, 1), (4, 2), (2, 4), and (1, 8), respectively.

2https://huggingface.co/facebook/wav2vec2-base.
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Figure 10: Duration distribution of 3 consecutive phonemes within TIMIT dataset. Over 96% of the
3-phoneme sequences have a duration shorter than 400 ms. 20 wav2vec2 frames cover a time span
of 405 ms.
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The node pair embedding function f̄θ(·, ·) in (12) is implemented with an MLP, where the hidden
layer has 128 nodes. Context representations with respect to the two nodes are concatenated and then
fed into the MLP. The output dimension of f̄θ(·, ·) is 32. As a result, we eventually obtain a graph
embedding rt ∈ R32 for each time step, together with the concatenated representation c̃t ∈ R800.

Following the protocol outlined in Lee & Hon (1989), we keep all the original 62 possible phoneme
classes during training, but collapse them to 39 classes during evaluation. The phoneme error rate
(PER) is employed as the metric for recognition performance:

PER =
1

N

N∑

i=1

dist (ŷi, yi)
|yi|

, (25)
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where dist (ŷi, yi) represents the edit distance (also known as Levenshtein distance) between two
phoneme sequences ŷi and y (Navarro, 2001), ŷi is the prediction for yi, |yi| denotes the cardinality
of yi, and N is the number of samples.

F.2 MODELS USING MFCCS AS INPUTS

To demonstrate the generalizability of our proposed framework, we also train a set of models using
the MFCCs as acoustic features. The MFCC baseline is implemented with a simple linear projection,
taking as input the MFCC feature vectors from all time steps, instead of the context representations
generated by wav2vec2 BASE. In contrast, the relational thinking based MFCC model, referred to
as MFCC-RT-20-t2f4, further computes the graph embeddings for all time steps using the feature
maps Ct obtained from the MFCC feature vectors, following the procedures outlined in Section 3.1.
Here, the width of Ct is set to w = 20, and the resolutions for time and frequency domains are
(2, 4). The MFCC feature vectors and the graph embeddings are concatenated before fed into the
linear projection. Since MFCC calculations are deterministic, fine-tuning is not required for these
two models.

G ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSES

G.1 ANALYSES FOR PHONEME RECOGNITION TASKS

G.1.1 PROPORTIONS OF PHONEME CLASSES

Table 4 presents the proportions of phoneme classes recognized by the wav2vec2 baseline and the
proposed w20-t2f4 model, along with the ground truth proportions of phoneme classes in the test
set. Values within parentheses indicate the absolute differences between the proportions recognized
by the two models and the ground truth proportions. The average absolute difference between the
proportions of recognized vowel classes by the baseline and the ground truth is 0.35 pp. In contrast,
the proposed model shows a much smaller average absolute difference among vowel classes, which
is only 0.23 pp. While for non-vowel classes, both models produce an average absolute difference
of approximately 0.12 pp between the proportions of recognized phoneme classes and the ground
truths.

G.1.2 VISUALIZATION OF VOWEL CLUSTERS

In order to gain a deeper understanding of the models’ performance in recognizing vowels, we
further conduct a cluster analysis. Specifically, we collect data from the last layer of both models
by locating frames within the temporal span of any vowels when processing each utterance from
the test set. Each latent vector inferred by the last layer of a model, corresponding to these vowel
frames, is treated as a data point for clustering. Note that one vowel can span multiple frames.
Fig. 11 (a) and Fig. 11 (b) present the t-SNE results for the vowel latent vectors obtained from
the wav2vec2 baseline and the proposed w20-t2f4 model, respectively. In the t-SNE result for
the baseline, there is a non-negligible proportion of scattered points (as circled out in Fig. 11 (a)),
which are distant from any clusters and are interleaved with each other in a sparse region of the
2-dimensional embedding space. This suggests that the baseline may struggle to correctly classify
the vowel frames corresponding to these data points, which is likely because the representations
abstracted by the last layer of the baseline lack sufficient information to distinguish between all
vowel classes. On the contrary, in the t-SNE result for the proposed model which benefits from the
incorporation of additional relational information from the local context, interleaving among data
points from different vowel classes in the embedding space is greatly reduced, compared to that
for the baseline. At the same time, data points from the same vowel class are still tightly clustered
together, indicating better separability of vowel classes in the proposed model’s representations.
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Table 4: Proportions of phoneme classes recognized by baseline and proposed models (%). Values
within parentheses indicate the absolute differences (pp) between the proportions recognized by the
two models and the ground truth proportions.

phoneme recognized by
baseline

recognized by
proposed ground truth

vowel

aa 3.50 (0.14) 3.01 (0.63) 3.64
ae 2.47 (0.23) 2.51 (0.28) 2.24
ah 5.18 (1.46) 3.59 (0.14) 3.72
aw 0.15 (0.19) 0.37 (0.02) 0.34
ay 1.40 (0.04) 1.26 (0.10) 1.35
eh 1.94 (0.35) 1.79 (0.50) 2.29
er 2.63 (0.84) 3.27 (0.20) 3.47
ey 0.82 (0.46) 1.22 (0.07) 1.28
ih 6.82 (0.58) 7.03 (0.37) 7.40
iy 4.03 (0.27) 4.79 (0.48) 4.31
ow 1.26 (0.02) 1.33 (0.10) 1.24
oy 0.40 (0.02) 0.48 (0.06) 0.42
uh 0.19 (0.17) 0.14 (0.21) 0.35
uw 1.07 (0.12) 1.29 (0.09) 1.19

average (0.35) (0.23)

non-vowel

b 1.42 (0.01) 1.57 (0.16) 1.41
ch 0.39 (0.02) 0.44 (0.03) 0.41
d 1.83 (0.15) 2.07 (0.09) 1.98

dh 1.66 (0.01) 1.82 (0.14) 1.67
dx 1.96 (0.46) 1.55 (0.05) 1.49
f 1.45 (0.00) 1.46 (0.01) 1.45
g 1.23 (0.03) 1.32 (0.12) 1.20

hh 1.03 (0.13) 1.01 (0.15) 1.15
jh 0.64 (0.05) 0.64 (0.05) 0.59
k 2.60 (0.04) 2.77 (0.21) 2.57
l 4.26 (0.03) 4.58 (0.29) 4.29

m 2.60 (0.10) 2.59 (0.09) 2.50
n 5.02 (0.07) 5.03 (0.08) 4.95

ng 0.79 (0.12) 0.71 (0.05) 0.67
p 1.47 (0.05) 1.52 (0.00) 1.52
r 4.21 (0.19) 4.19 (0.17) 4.01
s 4.60 (0.40) 4.45 (0.25) 4.20

sh 1.30 (0.08) 1.35 (0.03) 1.38
sil 20.33 (0.02) 19.70 (0.61) 20.31
t 2.86 (0.42) 2.57 (0.13) 2.44

th 0.30 (0.12) 0.37 (0.05) 0.42
v 1.05 (0.07) 1.15 (0.02) 1.13
w 2.13 (0.16) 1.99 (0.02) 1.97
y 1.11 (0.10) 0.97 (0.03) 1.01
z 1.87 (0.15) 2.14 (0.12) 2.02

average (0.12) (0.12)

G.2 ANALYSES OF LEARNED RELATIONAL INFORMATION IN PHONEME CLASSIFICATION
TASKS

For a deeper understanding of how the learned relational information benefits the downstream
phoneme recognition task, we further delve into a series of decomposed phoneme classification
tasks and analyse the implications of the edges ᾱ(t)

i,j within the learned task-specific graphs.
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(a) baseline (b) proposed

Figure 11: t-SNE results for vowel latent vectors obtained from (a) baseline and (b) proposed model,
respectively.

For each waveform segment that is aligned with a phoneme in the target sequence, we select 8 con-
secutive frames from its middle portion, and calculate the MFCCs XMFCC = [x

(i−7)
MFCC, . . . ,x

(i)
MFCC]

as input for the phoneme classification task. The goal of this task is to predict the phoneme class
of XMFCC. This process is feasible since the TIMIT dataset provides annotations for the start and
end instants of every phoneme within an utterance. We use the proposed spectro-temporal rela-
tional thinking module to calculate the graph embedding r, followed by an MLP for predicting the
phoneme class using x̃

(i)
MFCC = [x

(i)T
MFCC, r

T ]T .

G.2.1 VISUALIZATION OF LEARNED RELATIONAL INFORMATION

Regarding the phoneme classification task as a decomposed time step of the phoneme recognition
task, we can derive a task-specific graph from the feature map XMFCC for each sample. For the
ease of comparing the task-specific graphs derived from all samples, we flatten the edges ᾱi,j into
a
(
8
2

)
= 28 dimensional edge vector ᾱ for each graph. Fig. 12 visualizes the mean of edge vectors

from each phoneme class by groups. The mixed group includes the approximants /w/ and /y/, as
well as the liquids /l/ and /r/. As shown in each sub figure, the means of edge vectors from phoneme
classes within the same group are relatively close to one another, indicating that phonemes from
the same group, on average, share similar relational information. On the contrary, phonemes from
different groups tend to contain distinct relational information, leading to larger distances between
their corresponding means of edge vectors.

Next, we demonstrate the effectiveness of the learned relational information by conducting both a
cluster analysis and a classification analysis using the edge vectors.

G.2.2 CLUSTER ANALYSIS

We compute the t-SNE of the edge vectors ᾱ obtained from all the samples (Van der Maaten &
Hinton, 2008), as shown in Fig. 13 (a). For phoneme groups with a sufficient number of samples
(vowel, fricative, sil, as indicated in Table 5), the edge vectors are significantly clustered in the 2-
dimensional embedding space. We also separately visualize the edge vectors of these three phoneme
groups against the others in Fig. 13 (b)–(d), for the ease of observing group aggregations. For the
edge vectors from the remaining phoneme groups, however, due to the limited number of samples,
they do not show prominent aggregations. Nevertheless, this does not diminish the fact that the
relational information involved in the learned graphs reveals similarities within phoneme groups
and distinctions between phoneme groups.

G.2.3 CLASSIFICATION ANALYSIS

We also use the edge vectors ᾱ obtained from all training samples to train a simple MLP classifier.
This classifier predicts the phoneme group for an input edge vector, whose performance over the test
samples is shown in Table 5. For phoneme groups with a sufficient number of samples, the classi-
fier consistently achieves high precision. While due to significant group imbalance, it struggles to
correctly identify the phoneme group of samples from the minority groups. Even though various
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Figure 12: Visualization of learned relational information. The mean of edge vectors ᾱ from each
phoneme class is shown by groups. Resolution setting for time and frequency domains is (4, 2).

specialized approaches exist to mitigate the group imbalance problem (Johnson & Khoshgoftaar,
2019), addressing this issue is beyond the scope of our evaluation, which aims to assess the effec-
tiveness of the learned relational information. Since the learned relational information (i.e., ᾱ) is the
only input for the classifier, we reaffirm that this information is indeed effective and beneficial for
the downstream task. The results obtained in Sections G.2.1–G.2.3 are highly consistent with one
another.
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(a) (b) (c) (d)

Figure 13: t-SNE results for edge vectors. (a) t-SNE result for edge vectors from all phoneme
groups. (b)–(d) t-SNE results for edge vectors from vowel/fricative/sil vs. edge vectors from the rest
phoneme groups, respectively.

Table 5: Performance of phoneme group classification with edge vectors in terms of precision (%).

phoneme group precision number of samples

vowel 84.69 15001
fricative 81.37 6538

sil 93.36 6748
affricate 0 252
mixed 0.88 1582
nasal 0 700
stop 0 308

Table 6: Speech recognition performances of baseline and proposed model in terms of WER (%)
over TIMIT test set.

w/o LM 4-gram LM

baseline wav2vec2 (Baevski et al., 2020) 19.21 14.23
proposed 44-t4f2 18.72 13.77
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G.3 GENERALIZATION TO WORD-LEVEL RELATIONAL THINKING FOR SPEECH
RECOGNITION

The proposed phoneme-level spectro-temporal relational thinking modeling can be readily gener-
alized to modeling for other levels of linguistic units. Table 6 presents the speech recognition
performance of a word-level relational thinking model built upon our proposed acoustic model-
ing framework over the TIMIT test set. In this model, we let Ct ∈ R768×44, spanning an average
of 3 consecutive words. The kernel width and kernel stride for the temporal convolution in (1) are
set to 9 and 5, respectively. The resolutions for time and frequency domains are set to (4, 2). We
also include the performance of the state-of-the-art wav2vec2 baseline (Baevski et al., 2020) in the
table for comparison. When language modeling is not incorporated, the proposed 44-t4f2 model
outperforms the wav2vec2 baseline, achieving a 2.55% reduction in word error rate (WER). When
a 4-gram language model is applied during decoding for both models, the proposed 44-t4f2 model
exhibits an even greater performance gain, with a 3.23% decrease in WER.
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