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Abstract

We present a methodology for the estimation of optical net-
work physical layer parameters from signal to noise ratio via
history matching. An expensive network link simulator is em-
ulated by a Gaussian process surrogate model, which is used
to estimate a set of physical layer parameters from simulated
ground truth data. The a priori knowledge assumed consists
of broad parameter bounds obtained from the literature and
specification sheets of typical network components, and the
physics-based model of the simulator. Accurate estimation of
the physical layer parameters is demonstrated with a signal to
noise ratio penalty of 1 dB or greater, using only 3 simulated
measurements. The proposed approach is highly flexible, al-
lowing for the calibration of any unknown simulator input
from broad a priori bounds. The role of this method in the
improvement of optical network modeling is discussed.

Introduction
Optical fiber networks form the backbone of global telecom-
munications. The network physical layer concerns how raw
bits are transmitted using the installed network equipment,
including the propagation physics of the modulated laser and
the physical behavior of the components. Physics-based sim-
ulators of the physical layer are critical for the design and
operation of optical networks. These simulators take as an
input a set of physical layer parameters that describe the per-
formance of the network components, as well as operational
parameters such as the launch power, and then output met-
rics of the signal quality of transmission (QoT). However,
these physical layer parameters have significant uncertain-
ties in deployed networks, which limits the accuracy of sim-
ulators (Pointurier 2021). Moreover, physical layer param-
eters can change with time as the components age, mean-
ing that parameter estimation errors may increase over the
network lifetime. Therefore, physical layer parameter esti-
mation has two crucial uses. First, it improves the modeling
accuracy of physics-based network simulators by reducing
uncertainty in the physical layer parameters. Second, physi-
cal parameter information can be used for diagnosis of net-
work health, as well as for building virtual network models,
such as digital twins.
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Methods for the estimation of physical layer parameters
proposed in the literature include least-squares fitting of
a physics-based model of the SNR with free parameters
to measured data from a lab (Ives et al. 2017) and data
from installed network monitors (Ives, Caballero, and Sa-
vory 2018). Moreover, others have utilized monitoring data
to learn physical layer parameters using a number of ma-
chine learning techniques, such as Markov chain Monte
Carlo (Meng et al. 2017), maximum likelihood estima-
tion (Bouda et al. 2018), and gradient descent (Seve et al.
2018). However, several outstanding issues remain, which
we address with the proposed method. For instance, some
existing techniques require measurements that are taken far
from the optimal operating launch power. As the QoT in
optical networks has a nonlinear dependence on the signal
launch power (Agrawal 2013), making such measurements
means existing network services suffer a signal to noise ra-
tio (SNR) penalty. Furthermore, the flexibility of some pro-
posed techniques to estimate different parameters is limited,
requiring significant modifications in order to estimate new
parameters. Additionally, many proposed techniques rely on
gradient-based approaches, which can be prone to finding
local optima. Although this risk can be mitigated to some
degree, for example by starting the parameter search from a
range of initial conditions, a non-gradient based technique
such as history matching (HM) is less susceptible to this
problem. In this work we present a novel method for esti-
mating the set of inputs to a network simulator, consisting of
physical layer parameters, that agree with SNR simulations
generated for a virtual optical network with a set of ground
truth parameters. This technique is demonstrated with four
parameters, namely the fiber attenuation coefficient α, the
fiber nonlinearity coefficient γ, the amplifier noise figure
(NF) and the transceiver back-to-back SNR SNR0, but is
general and can be applied to any simulator input.

Method

Here we outline the proposed method for physical layer
parameter estimation, covering the machine learning tech-
niques used, the optical network link simulator and the novel
estimation algorithm.



Gaussian Process-Driven History Matching
HM is a method for the calibration of simulators, in which
sets of inputs that are consistent with a set of simulated
or measured ground truth outputs are identified based on
a plausibility criterion (Svalova et al. 2021). For expensive
simulators, HM is often performed using computationally
cheap surrogate models of the simulator, such as Gaussian
process emulators (GPEs), to explore the parameter space
efficiently (Rana, Ertekin, and King 2018; Gardner, Lord,
and Barthorpe 2020; Svalova et al. 2021).

Gaussian Processes (GPs) are machine learning models
that find a predictive mean function f̄∗ describing the map-
ping between a set of inputs X and targets y, in which a
kernel function is used to model the relationship between
neighboring data points (Rasmussen and Williams 2006). In
this work we use the squared exponential kernel function,
defined by Daub (2021) as,

kSE(x) = exp

(
− ||xi − xj ||2

2l2

)
+ δI (1)

where ||·|| represents the L2 norm of two input vectors xi,j , l
is a hyper-parameter controlling the length scale of the GP, δ
controls how noise is added to the covariance matrix (Daub
2021), and I is an n × n identity matrix, where n is the
number of examples in X . We choose this kernel as we do
not expect a priori that the target function will contain any
properties requiring a more specialized kernel, such as pe-
riodicity or multiple length scales. The plausibility criterion
for GP-driven HM is defined as follows. For a single set of
query inputs xq and data target y:

IF y − f̄∗(xq) ≤ nσ

√
V [f∗(xq)], xq is plausible, (2)

where nσ is the maximum number of GP predictive stan-
dard deviations a query GP prediction is permitted to deviate
from the ground truth data target whilst remaining plausible.
In this work, we choose nσ = 3 as the threshold for HM.
Thus, as we would expect 99.7% of the simulation values to

lie within 3 predictive standard deviations
√

V [f∗(xq)] of
f̄∗(xq) for any set of inputs xq , there is a 0.3% chance of xq

being falsely ruled out.

Optical Network Link Simulator
In this work we simulate an optical network link between
two nodes, and use this simulator to infer the physical behav-
ior of the components along this link. A detailed description
of the link setup is provided in the appendix. The depen-
dence of SNR on the launch power P is given by (Savory,
Vincent, and Ives 2019)

SNR =

(
a+ bP 3

P
+

1

SNR0

)−1

, (3)

where a is the total linear noise power accumulated over the
link which is proportional to NF, b is a scalar representing
the strength of the nonlinear contribution to the noise, and
SNR0 is the back-to-back SNR of the transceiver, meaning

Table 1: Physical layer parameters

PARAM. G.TRUTH RANGE UNIT
α 0.2 U [0.19, 0.22] dB·km−1

NF 4.5 U [4.3, 4.8] dB
γ 1.2 U [1.0, 1.5] W−1km−1

SNR0 14.8 U [14.5, 15.2] dB

Figure 1: Simulated dataset of SNR vs launch power gener-
ated using the simulator, for SNR penalties of 0.25, 0.5, 1, 2
and 3 dB. Here the solid curve is included to show the be-
havior of the simulator at intermediate launch power values.
The ground truth parameters used are α = 0.2 dBkm−1,
γ = 1.2 W−1km−1, NF= 4.5 dB and SNR0 = 14.8 dB.
Also marked are the optimal operating point at -1.1 dBm,
and the linear and nonlinear physical regimes.

the SNR that is obtained by connecting the transmitter di-
rectly to the receiver. SNR0 describes the quantity of noise
that is added to the signal by the transceiver. b can be es-
timated using models of the nonlinear physics of transmis-
sion (Agrawal 2013). In Equation 3, as the launch power de-
creases bP 3 becomes small and a dominates, meaning that
SNR variation with launch power is linear, which we call the
linear regime. At high power, bP 3 dominates and the SNR
dependence on power becomes nonlinear, which we call the
nonlinear regime. Thus, the launch power at which we mea-
sure changes the physical behavior of the system.

We utilize the expensive split-step Fourier method
(SSFM) (Ip and Kahn 2008) in our simulator, as it is offers
unparalleled accuracy. This allows us to estimate b and thus
to calculate SNR at a given launch power via Equation 3 us-
ing estimates for NF and SNR0. Thus, the simulator takes as
input a set of parameters pertaining to the characteristics of
the system components, as well as the launch power.



Simulated Dataset Generation
To demonstrate our method, we use the simulator with a set
of ground-truth parameters, outlined in Table 1, to generate
a dataset of SNR as a function of launch power, shown in
Figure 1, and infer the set of ground truth parameters from
this dataset. Specifically, we estimate the fiber attenuation
coefficient α, the fiber nonlinearity coefficient γ, the ampli-
fier NF, and the transceiver back-to-back SNR SNR0. The
launch powers at which we simulate the SNR are chosen
as those that correspond to an SNR penalty of 0.25, 0.5, 1,
2 and 3 dB, to a power precision of 0.1 dBm. Here, SNR
penalty refers to the difference between a given SNR and
the optimum SNR.

Physical Layer Parameter Estimation Approach

Algorithm 1: Parameter estimation process
1) Let X = {Xi = {x1, x2, . . . , xj , . . . , xm} : jL ≤ xj ≤
jU , 1 ≤ i < ∞, 1 ≤ j ≤ m be the continuous sample space
containing the samples Xi consisting of a set of m physical
layer parameters xj with specified ranges bounded by upper and
lower limits jU and jL respectively. Let PGPE be a set of launch
powers, Xsol ⊆ X be a solution set, nsam be the number of
GPE training samples, nHM be the number of HM samples, and
L1, L2 be the L1, L2 error norms with respect to the ground
truth dataset respectively.
for power pj ∈ PGPE do

2) Train GPEj :
for k := [1, .., nsam] do

Draw sample Xk := LHD(X).
SNRj,k := Simulator(Xk, pj).

end for
Optimize GPEj hyperparameters.
Validate GPEj.
3) perform HM:
Let Xsolj = {} be the set of plausible solutions for power
pj .
for i := [1, .., nHM ] do

Draw sample Xi := LHD(X).
if Xi is plausible based on Equation 2 then

Xsolj := Xsolj ∪Xi.
end if

end for
Round Xsolj to 3 significant figures
4) Xsol := Xsol ∩Xsolj .

end for
5) Generate GPE predictions for Xsol at PGPE :
for r := [1, .., |Xsol|] do

for pj ∈ PGPE do
SNRj,r := GPEj(Xr, pj).

end for
end for
6) Xbest := argmin(L1, L2).

The proposed process for physical layer parameter esti-
mation using GPE-driven HM is described in Algorithm 1.
We draw 200 samples from the input parameter space of
the simulation X using a Latin hypercube design (LHD),
for efficient coverage of the input space (Stein 1987). Table
1 shows the parameter ranges, chosen such that the ground
truth parameters do not lie at the exact center of the ranges,

to ensure that the ground truth cannot be obtained via any
averaging effects across the range. Then, we train a separate
GPE for each launch power value, corresponding to SNR
penalties of 0.25, 0.5, 1, 2 and 3 dB. The features of X are
the target physical layer parameters and a GP is trained on
the simulator SNR predictions for X to learn the variation
of the SNR with the parameters. An additional 20 samples
are drawn for validation of the trained GPE.

This process is then repeated for np different launch
power values, to learn the SNR variation with the parameters
in the linear and nonlinear physical regimes. Following this,
HM is performed and we generate SNR predictions from the
trained GPE models for nHM LHD samples of the parame-
ter space and compare them to the corresponding simulated
SNR target using Equation 2. This process is repeated for
np separate launch power values, producing np sets of can-
didate solutions Xsol1 , Xsol2 , ..., Xsolnp

. The values of these
parameters are then rounded to 3 significant figures. We then
take the intersection Xsol1∩Xsol2∩...∩Xsolnp

to produce a
single set of candidate solutions Xsol. In doing this, we con-
sider candidate solutions that are consistent with simulated
data in the linear and nonlinear physical regimes, which al-
lows us to narrow down the set of plausible parameters. To
select the best set, we then input each set of candidate pa-
rameters into the trained GPE models to generate a set of
SNR values at the target launch powers. These values are
then compared to the corresponding data targets, and the op-
timal sets are selected as those for which the error vector
minimizes the L1-norm and L2-norm. Here only np launch
power values have been used, and thus only np measure-
ments would be required to use this method for a deployed
system. We consider two error metrics as each has a differ-
ent qualities. The L1-norm is the simplest error measure to
interpret, as it is simply the sum of the absolute value of
the differences between the ground truth and the results be-
ing tested, and the L2-norm penalizes larger deviations more
strongly than smaller ones. It should also be noted that prac-
tically, Algorithm 1 must be run link-by-link in a real net-
work, as the physical layer parameters may vary spatially.

Results
In order to validate the accuracy of the GPE models used,
we draw an extra 20 samples from the parameter space us-
ing a LHD and evaluate the error of the GPE predictions
with respect to the simulator. Figure 2 shows the mean of
the L1 and L2 error norms across the 20 validation samples.
Thus, 200 samples is sufficient for the GPE to learn the de-
pendence of the simulator SNR output on the physical layer
parameters to within a precision of at least 0.003 dB. This
corresponds to a relative error of 0.03%, which provides em-
pirical justification for the choices made in the design of the
GPE approach.

In choosing the launch powers used for physical layer pa-
rameter estimation, there is a trade-off between minimizing
the SNR penalty and probing further into the linear and non-
linear physical regimes, which will yield parameters that are
consistent with all physical regimes and thus are more likely
to be close to the ground truth. In optical networks, mea-



Figure 2: Mean of L1 and L2 norm errors with respect to
simulator output for 20 GPE validation runs for each launch
power used in the estimation.

surements at non-optimal launch power values cause SNR
penalties for services in the network, whereas taking mea-
surements at the optimal launch power causes minimal dis-
ruption, assuming operation at the optimal launch power. We
thus choose to use only np = 3 launch power values in-
cluding at the optimal power, for SNR penalty thresholds of
0.25, 0.5, 1, 2 and 3 dB. A practical limit on nHM is en-
forced by the memory requirements of the arrays stored dur-
ing HM. We used nHM = 1.9 × 107 for all results, which
was the largest sample size we could use with the comput-
ing resources available. This was observed to be sufficiently
large to ensure consistency across 5 HM runs for all launch
powers considered.

Table 2 shows the results of the physical layer parame-
ter estimation, where Xsol is defined as in Algorithm 1. For
an SNR penalty of 2 and 3 dB, the parameters are precisely
estimated to the precision of 3 significant figures used. For
1 dB, all parameters except the NF are precisely estimated,
for which the deviation from the ground truth is 0.2%. For a
penalty of 0.5 dB, we see a different NF estimate depending
on whether the L1 or L2 norm is used to select the opti-
mal parameters, whereas for all other SNR penalties these
norms yielded the same parameters. A parameter error of
1%, 0.8%, and 4.7% (L1) or 4.4% (L2) is observed for α, γ,
and NF respectively. SNR0 is still precisely estimated. Fi-
nally, for 0.25 dB we see an error of 0.5%, 0.8%, and 2.4%
for α, γ, and NF respectively. The improved estimation for
higher SNR penalty is caused by the fact that, as we move
further from the optimal launch power, we are able to in-
clude information from further into the linear and nonlin-
ear physical regimes, as described in Equation 3. Thus, the
parameters that are compatible with the data as determined
by HM are more likely to be close to the ground truth. For
this specific simulator, we find that an SNR penalty of 2 dB
is required to ensure precise estimation of the ground truth

Table 2: Physical Layer Parameter Estimates

SNR penalty α γ NF SNR0 |Xsol|
G. TRUTH 0.200 1.20 4.50 14.8 -

3 dB 0.200 1.20 4.50 14.8 271
2 dB 0.200 1.20 4.50 14.8 551
1 dB 0.200 1.20 4.49 14.8 1612

0.5 dB (L1) 0.198 1.19 4.71 14.8 4426
0.5 dB (L2) 0.198 1.19 4.70 14.8 4426

0.25 dB 0.201 1.21 4.39 14.8 10642

parameters. However, the results with 1 dB are also highly
accurate, with only a 0.2% error in NF. This interpretation
is informed by the observation that the number of candidate
solutions |Xsol|, averaged over 5 HM runs, remaining after
the intersection operation in step 4 of Algorithm 1 decreases
as we increase the SNR penalty incurred. Therefore, as we
move away from the optimum, we narrow the set of plau-
sible parameters to those that are consistent with data from
both the linear and nonlinear regimes, as well as the opti-
mum, leading to a better estimation of the parameters.

Conclusions and Future Work
In this work we have presented a novel algorithm for phys-
ical layer parameter estimation in optical fiber communica-
tion networks, based on GP-driven HM. As we wish to min-
imize the SNR penalty incurred by taking measurements,
we investigated the trade-off between the SNR penalty and
the quality of the estimation of physical layer parameters.
Searching a broad parameter space, defined by a priori
knowledge from typical network component specification
sheets and the literature, we estimated a set of ground truth
parameter values from simulated data. We found that as the
SNR penalty increases, the quality of the parameter estima-
tion increases. This is because at high SNR penalty, meaning
launch powers far away from the optimum, we are using data
from from far into the linear and nonlinear regimes. Thus,
the parameters that are consistent with the data more accu-
rately describe the linear and nonlinear regimes, leading to
an improved parameter estimate. For a penalty of 2 dB or
higher, the parameters were estimated precisely to 3 signif-
icant figures, while a 1 dB SNR penalty yielded an precise
estimation of 3 of the 4 parameters, with only a 0.2% error
in the NF. This method presents a way to improve the mod-
eling of optical fiber networks, as it allows us to infer the pa-
rameters describing the behavior of the network components
for any two connected nodes using measurement equipment
that is installed as standard. In turn, this improves network
design and facilitates virtual models such as digital twins. In
future we aim to investigate the impact of system measure-
ment noise and higher dimension parameter spaces on the
efficacy of this method.
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Appendix: Glossary of Domain-Specific Terms
Amplifier noise figure (NF) A quantity that is directly
proportional of the noise contribution of a given amplifier.
Decibel-milliwatt (dBm) A unit to express power level
with reference to one milliwatt, commonly used to measure
signal powers in optical networks.
Fiber attenuation coefficient (α) A measure of how much
a unit length of a given optical fiber attenuates an optical
signal.
Fiber nonlinearity coefficient (γ) A measure of the
strength of the nonlinear interactions between optical
signals in a given optical fiber per unit length per unit
optical power in the fiber.
Launch power The optical power with which modulated
optical signals enter a span of fiber at the transmitter.
Linear noise Noise originating from the amplifiers that
dominates when the launch power is small, parametrized
by a in Equation 3. For the EDFA amplifiers modeled,
the dominant linear noise source is amplified spontaneous
emission noise.
Network monitors Measurement equipment that is in-
stalled in a real-world optical network to monitor a range of
metrics over time during the operation of the network, such
as the SNR.
Nonlinear noise The contribution to the total noise caused
by nonlinear interactions between laser signals in the optical
fiber, which stems from the optical Kerr effect. This effect
is parametrized by b in Equation 3.
Optical network A network in which the vertices are
comprised of optical transceivers and switches, and the
edges are made up of spans of optical fiber, connected via
in line optical amplifiers. Information is carried between
nodes in the network using modulated laser signals.
Optical Network Link A connection between two nodes
in an optical network, spanning a physical path through the
network, over which data is transferred.
Optical network physical layer The first layer defined
in the Open Systems Interconnection model (Zimmerman
1980), which concerns how raw bits are transmitted through
an optical network, via the medium of a modulated laser.
Parameters pertaining to this layer describe the physical
behavior of network components.
Quality of transmission (QoT) A metric that quantifies the
quality of a modulated laser signal, such as the signal to
noise ratio.



SNR penalty The difference between the optimal SNR
and the current SNR, which can be caused by using a
non-optimal launch power.
Split-step Fourier method (SSFM) A method for esti-
mation of the nonlinear effects in an optical fiber. This
method works by splitting up the fiber into steps and solving
the nonlinear Schrödinger equation iteratively, in order
to model the propagation of the laser signal through the
fiber (Agrawal 2013).
Transceiver back-to-back SNR (SNR0) The SNR that
is achieved by connecting the transmitter to the receiver,
which is a measure of the contribution of the transceiver to
the total noise.

Appendix: Description of Optical Network
Link Simulator

Here we present a more detailed description of the opti-
cal network link simulator used in this work. The simulator
is designed to model a link consisting of a single channel
transmitted using the quadrature phase-shift keying (QPSK)
modulation format (Agrawal 2021) over 10 spans of length
100km. In this simulation, launch power is uniform across
the spans and the signal is amplified by a 25 dB fixed-gain
EDFA, with a variable optical attenuator (VOA) to compen-
sate for the extra gain.

Appendix: Details of Implementation and
Simulation Set-up

The details of the implementation and simulation set up are
described here. The simulator is implemented in MATLAB
2020 and with parallelisation enabled by MATLAB’s GPU
functionality. We use the MOGP emulator library (Daub
2021) implementation of the GPE model and HM routine,
written in Python 3. As only uninformative priors have
been provided, the GP kernel hyperparameters are selected
by maximum likelihood estimation (Millar 2011), a special
case of maximum a posteriori estimation with uniform prior
distributions for the hyperparameters (Myung 2003; Daub
2021). This is performed by minimizing the negative likeli-
hood using the SciPy implementation of the L-BFGS-B al-
gorithm (Zhu et al. 1997). The simulations are run on us-
ing a single Nvidia P100 GPU with Intel Xeon E5-2650 v4
2.2GHz 12-core processors and 16GB memory. 200 train-
ing samples and 20 validation samples are drawn from the
simulator for training of each GPE. HM is run on a CPU
cluster with Intel Xeon Skylake 2.6GHz 16-core processors
with 6840MiB memory per CPU, using 50 nodes.


