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ABSTRACT

Unlike perfect information games, where all elements are known to every player,
imperfect information games emulate the real-world complexities of decision-
making under uncertain or incomplete information. GPT-4, the recent breakthrough
in large language models (LLMs) trained on massive passive data, is notable for its
knowledge retrieval and reasoning abilities. This paper delves into the applicability
of GPT-4’s learned knowledge for imperfect information games. To achieve this, we
introduce Suspicion-Agent, an innovative agent that leverages GPT-4’s capabilities
for imperfect information games. With proper prompt engineering to achieve
different functions, Suspicion-Agent based on GPT-4 demonstrates remarkable
adaptability across a range of imperfect information card games. Importantly,
GPT-4 displays a strong high-order theory of mind (ToM) capacity, meaning it
can understand others and intentionally impact others’ behavior. Leveraging this,
we design a planning strategy that enables GPT-4 to competently play against
different opponents, adapting its gameplay style as needed, while requiring only
the game rules and descriptions of observations as input. In the experiments, we
qualitatively showcase the capabilities of Suspicion-Agent across three different
imperfect information games and then quantitatively evaluate it in Leduc Hold’em.
As an exploration study, we show that Suspicion-Agent can potentially outperform
traditional algorithms without any specialized training or examples, but still cannot
beat Nash-Equilibrium algorithms. In order to encourage and foster deeper insights
within the community, we make our game-related data publicly available.

1 INTRODUCTION

Recently, large language models (LLMs) (Brown et al., 2020b; Chowdhery et al., 2022; Touvron et al.,
2023), which are trained extensively on text corpora and code datasets and aligned with instructions
(Ouyang et al., 2022; Wei et al., 2021; Longpre et al., 2023), have demonstrated remarkable knowledge
retrieval and reasoning capabilities (Kojima et al., 2022; Wei et al., 2022b;a) on natural language
benchmarks and exams (Hendrycks et al., 2020; Cobbe et al., 2021). Given few-shot examples or
specific instructions as prompts, these models, especially GPT-4 (OpenAI, 2023), can understand
human intentions and make informed decisions in open-ended scenarios, and tackle intricate tasks
by gathering observations and utilizing the learned prior knowledge, such as Voyager (Wang et al.,
2023a), ReAct (Yao et al., 2022) and SwiftSage (Lin et al., 2023).

However, most of these methods typically assume that the agent has access to all relevant information,
an assumption that is often unrealistic in real-world settings. Take diplomacy (Team et al., 2022; Gray
et al., 2020) as an example: representatives must discern the veiled intentions of other countries based
on incomplete information and decide accordingly to maximize benefits for their own nation. This
challenge is not unique to diplomacy but extends to other domains as well, such as poker (Moravčík
et al., 2017; Brown & Sandholm, 2018) and economic simulations (Holmström & Myerson, 1983;
Harsanyi, 1968). The inherent unpredictability in these games makes it impractical for a learned
agent to adopt a single, optimal strategy for every scenario (Brown et al., 2019). This necessitates
predictive capabilities for handling incomplete information, along with a theory of mind (ToM) ability
(Frith & Frith, 2005) to comprehend decisions from others’ perspectives. Such complexities, both
strategic and cognitive, represent ongoing challenges in the field of AI research.

Furthermore, recent advancements in imperfect information games, such as ReBel (Brown et al.,
2020a), DeepStack (Moravčík et al., 2017), and Libratus (Brown & Sandholm, 2018), typically start
training from scratch, and thus they normally need millions of data to understand the game rules
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and learn the adequate strategies for each new game. Such a high sample complexity hampers their
ability to generalize across different games and poses challenges when applying them into complex
and open-ended imperfect information scenarios. By contrast, as alluded to previously, LLMs have
undergone training on massive passive datasets. This leads to an intriguing proposition: Can we
harness pre-trained LLMs’ knowledge and reasoning capabilities to navigate imperfect information
games without additional training or data?

To achieve this, we propose Suspicion-Agent, an innovative autonomous agent based on GPT-4. This
agent harnesses its extensive prior knowledge and cognitive adaptability to effective strategies against
a range of adversaries without any specialized training. Concretely, we first decompose the process
of solving such games into multiple sub-modules like observation interpreter and planning module to
understand the game rules and game states (as Figure 1 shows) so that GPT-4 can make decisions
accordingly. Each module employs different prompts to enable GPT-4 to fulfill specific functions.
However, unlike perfect information games, planning strategies in imperfect information games can
have varying effectiveness depending on the opponent’s behavior (Brown et al., 2020a; Moravčík
et al., 2017; Brown & Sandholm, 2018). To tackle these challenges, we introduce a theory of mind
(ToM) aware planning approach that leverages the higher-order ToM capability (Frith & Frith, 2005)
present in LLMs. Specifically, the model utilizes its understanding of human cognition to predict
opponents’ thought processes, susceptibilities, and actions. This aligns with the idea that individuals
use their own minds as models to understand and affect others (Montes et al., 2022). For instance, the
model might consider, "If I execute Plan 1, how would this influence my opponent’s beliefs about
my cards, and what actions might they take based on their behavioral patterns?"

Concretely, given the gameplay history as the input, we find that GPT-4 can identify an opponent’s
strategic tendencies and analyze how our actions influence the opponent’s behavior, e.g. if Suspicion-
Agent identifies a weak hand held by the opponent, coupled with the cautious strategy, it might
strategically raise the bet to encourage the opponent to fold, even when Suspicion-Agent itself
holds a similarly weak hand (as illustrated in Figure 9 and K). Remarkably, by using some simple
prompts, e.g., GPT-4 can even self-examine its behavior through the lens of the opponent (Refer to
G). Leveraging its ToM capabilities, GPT-4 can predict and even influence an opponent’s actions
effectively (Röska-Hardy, 2008). Integrating these simulated actions into our planning module can
mitigate the information asymmetry inherent in imperfect information games and more accurately
assess the effectiveness of various strategies. As a result, our Suspicion-Agent can adjust its strategy
to play effectively against a range of opponents, as shown in Section 4.1. In the experiments, we
first conduct a qualitative assessment of Suspicion-Agent’s in 3 two-player imperfect information
games, aiming to showcase the generalization capabilities of our method. Subsequently, we perform a
quantitative analysis in Leduc Hold’em (Southey et al., 2012). The results reveal that Suspicion-Agent
exhibits varying behaviors when interacting with previous works such as CFR+ (Tammelin, 2014) and
NFSP (Heinrich & Silver, 2016) while outperforming some of them in terms of overall performance.
In summary, our contributions are as follows:

1. We introduce Suspicion-Agent, the first agent framework designed to empower GPT-4 with the-
ory of mind (ToM) ability to compete in various imperfect information games by understanding
game rules and observational data without requiring any specialized training or examples. By
incorporating the ToM capability into the planning process, Suspicion-Agent captures the inherent
uncertainty of opponent behavior in our strategic deliberations. This enables Suspicion-Agent to
adapt its tactics dynamically when facing opponents with differing behavioral patterns.

2. We are the first to demonstrate that an agent based on GPT-4 can potentially outperform traditional
algorithms in imperfect-information games, such as Leduc Hold’em (Southey et al., 2012), when
compared to established learning-based methods like NFSP (Heinrich & Silver, 2016) and DMC
(Zha et al., 2021), but still unperformed Nash-Equilibrium algorithms like CFR+ (Tammelin, 2014)
which may inspire more subsequent use of LLMs in imperfect-information games.

3. We make all interaction data between Suspicion-Agent and traditional algorithms for imperfect-
information games in Leduc Hold’em publicly available. This will enable the research community to
scrutinize the capabilities of GPT-4-based agents and inspire further work, particularly in fine-tuning
smaller language models.

2 PROBLEM DEFINITION

Two-Player Imperfect Information Game In this paper, we propose to employ LLMs to play
imperfect information games. As a preliminary exploration, we concentrate primarily on two-player
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Figure 1: Left Figure. The illustration of the Suspicion-Agent which trains the ego policy by pairing
it with the copied partner policy. Right Figure. The illustration about the first-order ToM planning
method, where the texts in yellow blocks are outputs, and green blocks are inputs.
imperfect information games, such as Leduc Hold’em (Southey et al., 2012), which involves two
players, denoted by N = {1, 2}, who share the same action space, A. Let a1 ∈ A and a2 ∈ A
represent the actions chosen by player 1 and player 2, respectively. Each player has access to two
types of observations: a private observation, denoted as Spri(i) where i ∈ N is the player index,
and a public observation, shared among both players, denoted as Spub.

As the game progresses in discrete timesteps indexed by j, each player i observes a his-
tory h of the game. This history comprises the series of public and private observations
and actions up to timestep j − 1 and the result of game rj , formally given as h =

(S0
pub, S

0
pri(i), a

0
i , a

0
¬i, r

0 . . . , Sj−1
pub , S

j−1
pri(i), a

j−1
i , aj−1

¬i , rj−1). Simultaneously, players receive the

current private and public observations, Sj
pri(i) and Sj

pub, and select the next action aji according to
a policy πi. All game histories are constructed as a dataset D, denoted as D = (h1, h2, . . . , hM ),
where M indexes individual games. The goal of each player is to select the next action aji with the
imperfect observation according to the game rules, aiming for victory over many games. Specifically,
the order of players is not fixed and depends on the game rule for each game. For example, the role
of the small blind rotates among players in Texas Holed’em, dictating the order of play.

3 METHOD

To enable LLMs to play various imperfect information games without specialized training, we break
down the overall task into several modules shown in Figure 1, such as the observation interpreter,
game pattern analysis, and planning module. In the following sections, we will demonstrate how we
craft specific prompts to guide LLMs to use its prior knowledge, reasoning ability, and psychological
ability in performing these modular functions and explain how we combine these functions to equip
the model with the capability to navigate the intricacies of imperfect information games. All prompts
and codes will be made public on our codebase (Please refer to our supplementary material).

3.1 GAME RULE & OBSERVATION UNDERSTANDING

While LLMs excel in processing text data, it can be misled in imperfect information games because
they normally provide only brief, low-level descriptions. To mitigate this issue, we initially develop
structured prompts that assist LLMs in comprehending both the game’s rules and its current state.
For each type of imperfect information game, one can write a structured rule description as follows:

• General Rules: A brief game introduction, the number of rounds, and betting rules;
• Action Descriptions: {Description of Action 1}, {Description of Action 2}, ...;
• Single Win/Loss Rule: The conditions for winning, losing, or drawing in a single game;
• Win/Loss Payoff Rule: The rewards or penalties for winning or losing a single game;
• Whole Win/Loss Rule: The number of games and the overall win/loss conditions.

In most imperfect information game environments (Zha et al., 2019), game states are often represented
as low-level numerical values, such as one-hot vectors, to facilitate machine learning. Leveraging
LLMs, we can convert these low-level game states into natural language text (Wu et al., 2023; Wang
et al., 2023a; Guo et al., 2022; Lin et al., 2023), thereby aiding the model’s understanding. For each
game, it is also essential to define an observation conversion rule. Similar to structuring game rules,
we organize the observation conversion rule as follows:

• Input Explanation: The type of inputs received, such as dictionaries, lists, or other formats,
and describes the number of elements in the game state along with the name of each element;
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Figure 2: Left Figure. The decision-making of the vanilla planning of Suspicion-Agent. Middle
Figure. The decision-making of the planning with first-order ToM of Suspicion-Agent. Right Figure.
The decision-making of the planning with second-order ToM of Suspicion-Agent.

• Element Descriptions: {Description of Element 1}, {Description of Element 2}, ...;
• Conversion Tips: More guidelines for transforming the low-level game states into text.

By leveraging both the game rule and the observation conversion rule, we can efficiently transform low-
level game states into readable text, denoted as Obsr. This readable text serves as the input for LLMs.
Using the prompts Promptobs, the conditional distribution for each element Obsr[i] in the generated
text can be modeled as: Obsr ∼

∏M
i=1 Fθ(Obsr[i]|Promptobs, Rule,Ruleobs, Obsr[1, . . . , i− 1]).

Here, Fθ represents the language model parameterized by θ; M is the length of the generated text
Obsr. The concrete definition can be found in Appendix A. We name this module an Observation
Interpreter. This formulation allows for a more understandable interaction with the model in
imperfect information games.

3.2 VANILLA PLANNING MODULE AND REFLEXION

After understanding the game rules and converting the game states into a readable format, we can
craft prompts to guide LLMs in formulating strategies. Inspired by advancements in LLMs-agent and
prompt engineering (Ganguli et al., 2023; Wang et al., 2023d; Liu et al., 2023b; Shinn et al., 2023),
we introduce a vanilla planning method which features a Reflexion module aimed at automatically
scrutinizing game history to enable LLMs to learn and improve planning from the experience of the
history, as well as a separate planning module dedicated to making decisions accordingly.

Reflexion The Reflexion module takes as input the history of games played against the current
opponent and outputs a Reflexion. In the j-th round of the i-th game, we gather all prior game histories,
denoted as Di = (h1, h2, . . . , hi−1), and prompt LLMs to carry out these analytical functions to
get the Reflexion output Oi

f ∼
∏M

i=1 Fθ(Of [i]|PromptReflexion, Rule,Di, Of [1, . . . , i− 1]), i.e.,
Oi

f ∼ FReflexion
θ , which covers why we won or lost in specific previous games, and suggests how to

improve strategies for future games. Importantly, the Reflexion module empowers Suspicion-Agent
to enhance its strategies during gameplay, even without previous examples.

Planning After obtaining the Reflexion Of , we proceed to use the game rules, the current game history
hi, the current readable observation Obsr, and the set of valid actions {a} in the current game as inputs.
We then prompt LLMs to formulate multiple textual plans based on its understanding of the imperfect
information, i.e., Oplan ∼

∏M
i=1 Fθ(Oplan[i]|Promptplan, Rule,Obsr, h

j−1, Of , Oplan[1, . . . , i−
1]), Oplan ∼ F plans

θ . Specifically, the vanilla planning method assumes the marginal distribution of
the actions of the opponent is uniform, and thus it can be regarded as a special case of planning with
the zero-order ToM. In this way, we can further denote F plans

θ as F zero−plan
θ .

Evaluator To assess the likely success of each plan, we introduce an evaluation module. This
module takes into account factors such as the game’s current state, i.e., readable observation Obsr,
the Reflexion OReflexion, the game rule Rule and estimated plans Oplan as the input, to estimate the
win rates for each of the proposed plans and output the next action by prompting LLMs, i.e., the next
action aj = F zero−eval

θ (Obsr, OReflexion, Rule,Oplan).

3.3 PLANNING WITH THEORY OF MIND (TOM)

However, the vanilla planning method often struggles against the inherent uncertainties that typify
imperfect information games, particularly when faced with opponents skilled at exploiting others’

4



Under review as a conference paper at ICLR 2024

strategies. Inspired by this adaptability, we seek to devise a new planning method that capitalizes on
LLMs’ ToM capabilities (Frith & Frith, 2005; Kosinski, 2023) to understand the opponent’s behavior
and thus can adjust the strategy accordingly. In the following sections, we will detail how we employ
LLMs to analyze the behavior patterns of other agents and predict their subsequent actions in response
to various plans using different orders of ToM (results are shown in Table 3), thereby facilitating
more informed decision-making. Note that all sample outputs are given in Section K and G.

Planning with First-Order ToM Modelling: In the first-order ToM modeling approach (as Figure 7
shows), Suspicion-Agent goes a step further by inferring the probable hand of the opponent based on
their actions to that point, e.g., if the opponent raised, they likely have a strong hand. Consequently,
Suspicion-Agent can adapt their strategy to maximize winnings when holding a strong hand and
minimize losses with a weak hand. To forecast the opponent’s actions, we first introduce a behavior
pattern analysis process. In this process, we feed the game history Di = (h1, h2, . . . , hi−1) and the
game rules into LLMs, prompting it to analyze the opponent’s behavioral pattern. The formulation and
the prompts can be expressed as: Obp ∼

∏M
i=1 Fθ(Obp[i]|Promptpattern,Rule, Di, Obp[1, . . . , i− 1]).

Sample Prompts for First-Order Behaviour Pattern Analysis (Incomplete) : From my per-
spective, please infer several beliefs about the opponent’s game pattern/preference for each round
when holding different cards and the public card (if have).

Through this approach, we can deduce the opponent’s behavior pattern. Notably, since the in-
put for behavior pattern analysis is the same as that for the Reflexion module, we have in-
tegrated them into a single module to reduce inference time, as shown in Figure 1. After
identifying the opponent’s behavior pattern, LLMs can be prompted to predict the strength of
the opponent’s current hand or observations in the game. This is expressed as: Ocard_pred ∼∏M

i=1 Fθ(Ocard_pred[i]|Promptcard_pred,Rule, hj−1, Obp,Obsjr, Ocard_pred[1, . . . , i− 1]).

Sample Prompts for First-Order Cards Prediction (Incomplete) : Understanding the game
rule, your observation, progress summarization in the current game, the estimated behaviour pattern
of the opponent, and your knowledge about the game, please infer the probabilities about the cards
of the opponent (number 100% in total) step by step.

With these predictions, we can further augment the previous Planning module and Evaluator module
with Ocard_pred as the additional input, so that we can further propose better plans considering the
opponent’s card and estimate the winning rate of each plan, so that we can better make the decision.
Because the input of Planning module and Evaluator module are highly overlapped and our budgets
are limited, we combine these two modules together to save the costs:
Sample Prompts for Planning and Evaluator (Incomplete): Make Reasonable Plans: Please
plan several strategies according to actions you can play now to win the whole game step by step.
Note that you can say something or keep silent to confuse your opponent.

Potential opponent’s actions and Estimate Winning/Lose/Draw Rate: From the perspective of the
opponent, please infer what the action opponent with probability would do when the opponent holds
different cards based on his behaviour pattern, and then calculate the winning/lose/draw rates when
opponent holds different cards step by step. Output in a tree structure:

The sample outputs are shown in Figure 8 and G.1.

Planning with Second-Order ToM Modelling: However, elite players in imperfect information
games like poker are also adept at dynamically adjusting their strategies, and they may employ
"bluffing" as a tactic, feigning a strong hand when they actually hold a weak one to deceive their
opponent. Relying solely on a first-order ToM in such situations could lead to incorrect assumptions
and potentially costly mistakes. Recognizing this, we introduce a planning method that incorporates a
second-order ToM. In this enhanced model, Suspicion-Agent engages in even more intricate reasoning,
where Suspicion-Agent not only considers what the opponent might do (as in first-order ToM) but
also what the opponent believes Suspicion-Agent will do as Figure 7 shows. This level of strategic
thinking allows Suspicion-Agent to gain an advantage in situations involving tactics like bluffing.

To implement this, Suspicion-Agent needs to not only just consider the current state from its own
perspective, but also be capable of role-switching to think his own observation from the opponent’s
viewpoint. In traditional methods (De Weerd et al., 2013; Tatarchenko et al., 2016), they need to
iteratively call the first-order ToM function to estimate the action of the opponent. However, we
surprisingly find that we can just add the prompts like below, and get the outputs in Sec G.2.
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Sample Prompts for Second-Order Behaviour Pattern Analysis (Incomplete): From my
perspective, please infer under what circumstances is the opponent likely to be influenced by my
actions? Additionally, in what situations would the opponent make decisions based solely on their
own hand?

From the perspective of the opponent (he cannot observe my card but only action), please infer
several beliefs about my game pattern/preference when holding different cards.
With this, LLMs are able to automatically generate insights into whether the opponent’s behavior is
likely to be reactive to Suspicion-Agent’s actions, or if they are likely to act independently. Then, we
can directly reuse the prompts of the first-order Tom to predict the opponent’s cards based on the
behavior pattern estimated from the second-order ToM, and we can get sample results in Figure 9 and
Section G.2. In this way, we can utilize the Planning with second-order ToM to make decisions and
adapt the strategies accordingly. The concrete algorithms are given in Section H. Without mentioning
otherwise, we use the second-order ToM and GPT-4-0613 by default.

4 EXPERIMENTS

We conduct experiments to answer the following questions:
• Can Suspicion-Agent achieve comparable performance with traditional imperfect information algo-

rithms without any specialized training? (Section 4.1)
• Can Suspicion-Agent adapt its strategies when playing with different opponents? (Section 4.1)
• Can Suspicion-Agent play different imperfect information games without any specialized training?

(Section K.1)
• How different orders of ToM improve the performance of Suspicion-Agent? (Section 4.3 and I)

4.1 QUANTITATIVE EVALUATION

Environments To quantitatively assess the performance of LLMs in imperfect information games,
we chose the RLCard environment (Zha et al., 2019). Due to budget limits, our quantitative evaluation
focuses on Leduc Hold’em 1, a simplified version of Limit Texas Hold’em. The game rules of Leduc
Hold’em can be found in Appendix B. Following (Southey et al., 2012), we also add the opponent’s
observation into the single game history h after the end of each game, which also conforms with the
real-world experience, but we also perform the ablation study about it in Section 4.3 and J.

Competing Methods We have selected a range of methods commonly used in decision-making,
such as NFSP (Heinrich & Silver, 2016), DQN (Mnih et al., 2015), DMC (Deep Monte Carlo Search
for imperfect information games) (Zha et al., 2021) and CFR+ (Zinkevich et al., 2007). Among these,
NFSP and DMC are specifically designed for imperfect information games and are based on self-play,
while CFR+ is grounded in game theory. These algorithms typically show different strategies in the
imperfect information games, allowing us to evaluate the adaptability of each method. Note that, our
Suspicion-Agent does not have any specialized training when compared with these methods.

Evaluation Methods To ensure the robustness of our evaluation metrics, we meticulously designed
a dual-method evaluation framework aimed at mitigating the randomness intrinsic to imperfect
information games. (1) Variable Random Seeds: Suspicion-Agent play against different baselines
for 100 games utilizing varying random seeds for each game. This tactic is intended to dampen
the stochastic variability introduced by the random seed settings. The results are shown in Table
1. (2) Same Cards with Exchange Position: We ran a series of 50 games with a fixed random
seed, thereby keeping the sequence of cards constant across these games. Suspicion-Agent initially
played at position 0 for the first 50 games, then we rerun the 50 games but switched the position of
Suspicion-Agent and the baseline model. In this way, Suspicion-Agent and the baseline should have
the same card strength over 100 games, and thus we can better evaluate the performance of each. The
results of these experiments are presented in Table 2.

Results Analysis (1) Suspicion-Agent outperforms most baselines: As illustrated in Table 1,
it is evident that our GPT-4-based Suspicion-Agent outperforms most other algorithms specifically
trained on Leduc Hold’em environments except CFR+. Notably, it not only defeats most of these
methods but also secures the highest average chip count in the comparisons. Our approach surpasses
the second-best method by an impressive margin of approximately 25%. Even if the current design

1https://rlcard.org/games.html
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cannot achieve Nash-Equilibrium, these findings compellingly showcase the potential of employing
large language models in the realm of imperfect information games, as well as affirm the effectiveness
of our proposed framework. (2) The gap between GPT-3.5 and GPT-4 is large: While GPT-4
delivers performance that either matches or outperforms other baselines, agents using GPT-3.5
experience a significant drop in performance. Specifically, the winning probability for agents built on
GPT-3.5 stands at just 50%, as opposed to 100% for GPT-4-based agents. Additionally, the average
chip payoff for GPT-3.5 agents is negative, underlining the stark performance disparity between the
two versions of the language model. The further reason analysis can be found in Appendix C. (3)
Suspicion-Agent outperforms baselines in both positions: Utilizing identical card sequences for
both positions, Suspicion-Agent exhibits a consistent winning pattern against various baselines, as
evidenced in Table 2. This robust performance serves as compelling evidence to substantiate the
claim that Suspicion-Agent outperforms the baseline models when card strength is held constant.

Table 1: The comparison results of Suspicion-Agent when playing with different algorithms trained
on Leduc Hold’em environments. The results are the win/lose chips after 100 games with different
seeds, and the number of win/lose chips ranges from 1 to 14.

Opponent Model

NFSP DQN DMC CFR+ Ours
(GPT-3.5)

Ours
(GPT-4) Avg.

NFSP - -33 -22 -21 -3 -142 -61.25
DQN +33 - -55 -8 +200 -44 +22.8
DMC +22 +55 - -15 -49 -24 +4
CFR+ +21 +8 +15 - +126 +22 +38.4

Ours (GPT-3.5) +3 -200 +49 -126 - - -55
Ours (GPT-4) +142 +45 +24 -22 - - +47.25

Table 2: The comparison results of Suspicion-Agent when playing with CFR+ and DMC trained
in Leduc Hold’em environments. These results are quantified over 50 games, and pos denote the
position of the opponent model. For example, CFR+ (pos 0) denotes the opponent model is in the
position 0, and the model is located in the position 1.

Opponent Model
CFR+
(pos 0)

CFR+
(pos 1)

DMC
(pos 0)

DMC
(pos 1)

Ours
(pos 0)

Ours
(pos 1) Avg.

DMC -21 -6 -10 +10 -36 -4 -11.17
CFR+ +35 -35 +6 +21 +16 -1 +7
Ours +1 -16 +11 +36 - - +8

Behaviour Pattern Analysis We illustrate the action percentages of Suspicion-Agent and baselines
in Figure 3. We can observe that (1) Suspicion-Agent vs CFR+: CFR+ algorithm (Zinkevich et al.,
2007) exhibits a mixed strategy, characterized by a conservative approach where it tends to fold in
the face of a weak hand, especially when this hand does not align well with the public cards. Our
agent, recognizing this pattern, strategically opts to raise more frequently. This tactic effectively
applies pressure on the CFR+ algorithm, increasing the likelihood of it folding under uncertain
conditions. However, Over-reliance on bluffing can lead to significant losses, especially when facing
opponents capable of recognizing and exploiting this pattern. Additionally, it’s noteworthy that CFR+
itself is not averse to bluffing. Although it typically plays conservatively, CFR+ does occasionally
employ bluffing tactics, which can result in losses for our agent. (2) Suspicion-Agent vs DMC:
DMC algorithm (Zha et al., 2021) based on the search algorithm DMC employs a more diversified
strategy that includes bluffing. It often raises both when it has the weakest and the strongest hands.
In response, Suspicion-Agent adapts by raising less frequently and opting to call or fold more often
based on its own hand and the observed behavior of DMC. (3) Suspicion-Agent vs DQN: DQN
appears to have a more aggressive stance, almost always raising with strong or mid-level hands and
never folding. Suspicion-Agent identifies this and, in turn, minimizes its own raises (the lowest
percentage among all matchups), opting more often to call or fold based on the public cards and
DQN’s actions. (4) Suspicion-Agent vs NFSP: NFSP exhibits a follow-through strategy, opting to
always call and never fold. Suspicion-Agent responds to this by raising less frequently (compared
to matches against CFR+) and choosing to call more (compared to matches against CFR+) based
on the public card and NFSP’s observed actions. The analysis clearly shows that Suspicion-Agent
is highly adaptable and capable of exploiting the weaknesses in the strategies employed by various
other algorithms. This speaks volumes about the large language model’s capability to reason and
adapt in imperfect information games.
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Figure 3: Left Figure. The illustration of the action percentage of Suspicion-Agent when playing
against different algorithms. Right Figure. The illustration of the action percentage of different
algorithms when playing against Suspicion-Agent.

.
4.2 QUALITATIVE EVALUATION

In the qualitative evaluation, we assess Suspicion-Agent on three imperfect information games: Coup,
Texas Hold’em Limit, and Leduc Hold’em (Southey et al., 2012). For each game, we provide only
the rules and observation rules as described in Section 3.1. Importantly, Suspicion-Agent is able to
play these games without any additional training or sampling. Qualitative examples from these games
are presented in the subsequent sections.

Action: Call (Holds Jack or Queen)

Obs:In this round, you are holding a Jack of Hearts. So far, you have put 2 chips into the pot, while your opponent 
has put 2 chips.

Vanilla Planning

Belief on GoodGuy's cards: GoodGuy chose to 'call' in the first round. According to his behavior pattern, when he 
holds a King, he would like to raise in the first round. Therefore, it is unlikely that he holds a King. When he 
holds a Queen or a Jack, he would like to call in the first round. Therefore, he is likely to hold a Queen or a 
Jack. So, the probabilities are: King (0%), Queen (50%), Jack (50%).
Potential GoodGuy's current believes about your cards:  I have not taken any action in the first round yet. 
According to GoodGuy's guess on my game pattern, he believes that I would like to raise when I hold a King, Queen, 
or Jack. Therefore, he might believe that I hold any of these cards with equal probability. So, the probabilities 
are: King (33.33%), Queen (33.33%), Jack (33.33%).

Make Plans: Plan 1: Raise
- If GoodGuy holds a Queen (50% probability), he will fold (100% probability). I will win the pot, which will 
be 6 chips (4 from me, 2 from GoodGuy). The winning rate is 50%, the losing rate is 0%, and the draw rate is 
0%.
- If GoodGuy holds a Jack (50% probability), he will fold (100% probability). I will win the pot, which will 
be 6 chips (4 from me, 2 from GoodGuy). The winning rate is 50%, the losing rate is 0%, and the draw rate is 
0%.
Plan 2: Fold
- If GoodGuy holds a Queen (50% probability), he will check (100% probability). I will lose the pot, which 
will be 4 chips (2 from me, 2 from GoodGuy). The winning rate is 0%, the losing rate is 50%, and the draw rate 
is 0%.
- If GoodGuy holds a Jack (50% probability), he will check (100% probability). I will lose the pot, which will 
be 4 chips (2 from me, 2 from GoodGuy). The winning rate is 0%, the losing rate is 50%, and the draw rate is 
0%.
Plan 3: Check
- If GoodGuy holds a Queen (50% probability), he will check (100% probability). The game will proceed to the 
second round. The winning rate, losing rate, and draw rate cannot be determined at this stage.
- If GoodGuy holds a Jack (50% probability), he will check (100% probability). The game will proceed to the 
second round. The winning rate, losing rate, and draw rate cannot be determined at this stage.

Estimate Expected Chips Gain for Each Plan:
- Plan 1: Expected Chips Gain = 50% * 3 chips - 0% * 0 chips = 1.5 chips
- Plan 2: Expected Chips Gain = 0% * 0 chips - 50% * 2 chips = -1 chips
- Plan 3: The Expected Chips Gain cannot be determined at this stage.

Plan Selection: Plan 1: raise

Action: Raise

Action: Fold

Figure 4: The qualitative sample of planning with second-order ToM Suspicion-Agent about Strategic
Bluffing on Leduc Hold’em. More samples are given in Appendix K.

Leduc Hold’em We present qualitative samples showcasing Suspicion-Agent’s behaviour under
different strategies: Vanilla Planning, Planning with First-Order ToM, and Planning with Second-
Order ToM in Leduc Hold’em. These samples can be viewed in Figure 6, 7, 8, and 9, respectively,
and the concrete analysis is given in Appendix K.1.

Game Coup and Texas Hold’em Limit As illustrated in Figure 12 and 11 in Appendix, when
provided solely with the rules and observation guidelines of Texas Hold’em Limit and Coup, and
keeping the agent prompts consistent, Suspicion-Agentis still adept at discerning the opponent’s game
patterns. It analyzes the strength of its hand and subsequently makes informed decisions to accumulate
chips. This is the strong evidence to demonstrate the generalization ability of Suspicion-Agent based
on GPT-4 on different imperfect information games, and thus outperforming the algorithms need to
be re-trained for every new imperfect information game. Specifically, In the game of Coup, without
any prior training, Suspicion-Agent rapidly discerns which character the opponent lacks. It then
strategically bluffs as that character to block the opponent’s actions. This ability to bluff successfully
gives Suspicion-Agent a consistent advantage throughout multiple rounds.
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4.3 ABLATION STUDY AND COMPONENT ANALYSIS

Table 3: The comparison results
of Suspicion-Agent when play-
ing with different levels of ToM
against CFR+ on Leduc Hold’em
environments. The results are
quantified after 100 games.

Opponent Model
CFR+ DMC

Ours (vanilla plan) -89 -72
Ours (w/ First ToM) -67 -26

Ours (w/ Second ToM) -22 +24

Table 4: The comparison results indicate the impact of in-
cluding opponent observations in the game history in Leduc
Hold’em environments. These results are quantified over 50
games, and pos denote the position of the opponent model.

Opponent Model
CFR+
(pos 1)

DMC
(pos 1) Avg. Win

Probability
DMC -6 +10 +2 50%
CFR+ -35 +21 -14 50%

Ours (w/o hind_obs) -45 +18 +17 100%
Ours (w/ hind_obs) -16 +36 +36.5 100%

Ablation Study on Orders of ToM In order to explore how different orders of ToM-aware
planning methods affect the behavior of the large language model. We perform the experiments and
comparisons on Leduc Hold’em and play against CFR+. We illustrate the action percentages of
Suspicion-Agent with planning with different levels of ToM in Figure 5 and the chips gain results in
Table 3. We can observe that (1) Vanilla Planning: Based on Reflexion module, vanilla planning
tends to call and check more (the highest call and check percentage when playing against both
CFR+ and DMC) during the game, which cannot push the pressure to make the opponent fold and
result in many unnecessary losses. In this way, vanilla planning has the lowest chip gain as Table 3
shows. (2) Planning with First-Order ToM: Utilizing First-Order ToM, Suspicion-Agent is capable
of making decisions based on its own and estimates of the opponent’s card strength. As a result,
it will raise more than vanilla planning but it tends to fold more frequently than other strategies,
aiming to minimize unnecessary losses. However, this cautious approach can be exploited by savvy
opponent models. For example, DMC often raises when holding the weakest hand, and CFR+
may occasionally raise even with a mid-level hand to exert pressure on Suspicion-Agent. In these
instances, Suspicion-Agent’s tendency to fold can lead to losses. (3) Planning with Second-Order
ToM: In contrast, Suspicion-Agent excels at identifying and capitalizing on the behavioural patterns
of opponent models. Specifically, when DMC checks—suggesting its hand doesn’t align with the
public cards—Suspicion-Agent will raise as a bluff to induce folds from the opponents. As a result,
Suspicion-Agent exhibits the highest raise rate among the three planning methods evaluated. This
aggressive strategy allows Suspicion-Agent to accumulate more chips even when holding a weak
hand, thereby maximizing its chip gains.

Ablation Study on the Effect of Hindsight Observation Following (Southey et al., 2012),
we assume that Suspicion-Agent has access to observations of the opponent after the end of each
game, i.e., Hindsight Observation. To assess the impact of it, we conduct an ablation study in which
hindsight observations are not incorporated into the current game. Without hindsight observations,
we augment the Reflexion module with additional prompts to enable it to infer the opponent’s cards
based on game outcomes and Suspicion-Agent’s own observations. As demonstrated in Table 5 and
4, Suspicion-Agent retains its performance advantage over the baseline methods without the benefit
of hindsight observations. Specifically, we observe that Suspicion-Agent adopts a more conservative
strategy under the increased uncertainty that comes without hindsight observations. This leads to
reduced bluffing, resulting in fewer gains when playing against CFR+. However, it also minimizes
the risk of over-bluffing when facing DMC, thus yielding higher chip earnings.

5 CONCLUSION

In this paper, we introduce Suspicion-Agent, the first prompting system designed to enable large
language models to engage in various imperfect information games using only the game rules and
observations for interpretation. By incorporating first-order ToM and second-order ToM capabilities,
we show that a GPT-4-based Suspicion-Agent can outperform traditional algorithms such as NFSP,
even without specialized training or examples. Additionally, we identify and discuss the current
limitations of utilizing LLMs in the context of imperfect information games. We make all our code and
interactive data publicly available to the research community. This will help in better understanding
the capabilities of large language models, particularly GPT-4, and we hope our data will encourage
the development of more efficient models for imperfect information games. In addition, we also
present the limitations of Suspicion-Agent in Appendix E.
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A BACKGROUND

Prompting in LLMs Recent research has shown that LLMs, notably GPT-4, can function
as universal approximators (Schuurmans, 2023; Kim et al., 2023). Given well-crafted prompts,
these models can autonomously perform a broad range of tasks using autoregressive text gen-
eration (Schuurmans, 2023; Kim et al., 2023). To formalize this, let Fθ denote a pre-trained
LLM characterized by the parameter θ. Consider L = (L[0], L[1], . . . , L[M ]) as a sequence
of language tokens, where each L[i] is a distinct token. The distribution Fθ(L) can then be
expressed as: Fθ(L) =

∏M
i=1 Fθ(L[i]|L[0, . . . , i − 1]). By framing the input to the language

model as specific task instructions or as few-shot input-output examples (Kojima et al., 2022;
Wei et al., 2022b), it becomes possible to guide Fθ to generate meaningful output for various
tasks. For convenience, let’s denote the prompt as P = (P [0], P [1], . . . , P [M ]). The output
from the LLM, represented by Y , can then be defined by the following probability distribution:
pY =

∏M
i=1 Fθ(Y [i]|P, Y [1, . . . , i− 1]), where M is the total number of output tokens. For conve-

nience, the conditional function Fθ(Y [i]|P, Y [1, . . . , i − 1]) can be abbreviated as FP
θ , indicating

that it is the function specific to the given prompt P .

B GAME RULES OF LEDUC HOLD’EM

In Leduc Hold’em, the deck consists only of two Jacks, two Queens, and two Kings. Each player is
dealt one of these as a hole card, and a single public card is revealed. The winner is determined by
matching the rank of the public card with their hole card; if no such match exists, the player with the
higher-ranked hole card wins. Note that the big blind in our setting is 2, and the payoff of a single
game ranges from 1 to 14. Following (Southey et al., 2012), we also add the opponent’s observation
into the single game history h after the end of each game, which also conforms with the real-world
experience, but we also perform the ablation study about it in Section 4.3 and J.

C GAP BETWEEN GPT-3.5 AND GPT-4

Upon closer examination, we’ve identified several areas where GPT-3.5 falls short: (a) Instruction
Comprehension: GPT-3.5 struggles with understanding instructions as effectively as GPT-4 does.
(b) Long Prompt Handling: The performance of GPT-3.5 significantly deteriorates in scenarios
involving lengthy prompts. (c) Reasoning and ToM: Even when GPT-3.5 successfully comprehends
the instructions, its reasoning and ToM capabilities are markedly inferior to those of GPT-4, resulting
in less reasonable outcomes.

D RELATED WORKS

Imperfect Information Game Imperfect information games, exemplified by poker (Brown &
Sandholm, 2018; 2019; Moravčík et al., 2017; Southey et al., 2012), have emerged as captivating
subjects of research due to the inherent absence of complete information concerning player states and
potential actions (Frank & Basin, 2001). In contrast to perfect information games, these settings allow
players to employ strategies that encompass elements of deception and exploration, often leaning
towards stochastic approaches over deterministic ones (Montes et al., 2022; Kreps & Wilson, 1982).
Previous investigations into imperfect information games have explored a plethora of dimensions,
including principles from game theory (Lu et al., 2023b) such as CFR (Zinkevich et al., 2007), CFR+
(Tammelin, 2014) and its optimistic variants (Farina et al., 2019b;a) along with other new versions
such as discounted CFR (Brown & Sandholm, 2019) and predictive CFR (Jiang et al., 2022) ,
techniques from reinforcement learning (Ouyang & Zhou, 2023; Roughgarden, 2016), the integration
of deep reinforcement learning (Brown et al., 2020a) such as some decision-making methods already
used in card games: NFSP (Heinrich & Silver, 2016), DQN (Mnih et al., 2015), and DMC (Zha
et al., 2021), strategies based on observation (Chatterjee et al., 2007), considerations for limited
lookahead (Kroer & Sandholm, 2020), and methodologies for abstracting away the intricacies of
imperfect information (Sokota et al., 2023). Nonetheless, these approaches often demand extensive
computational training and entail the collection of copious behavioral data during gameplay. Recent
studies have also delved into the application of LLMs within the context of imperfect information
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games (Gupta, 2023). LLMs have not only demonstrated strong performance in decoding and
predicting player behaviors (Akata et al., 2023) but have also excelled in simplifying natural
language interactions within these gaming environments (Xu et al., 2023). Notably, the zero-shot
capabilities of LLMs obviate the necessity for exhaustive pre-training or the accumulation of action
data, distinguishing LLM-based methods from the traditional techniques mentioned aforementioned.

Reasoning and Planning of LLMs LLMs have recently shown remarkable prowess in reasoning
and planning across various downstream tasks (Brown et al., 2020b; Chowdhery et al., 2022;
Touvron et al., 2023). They exhibit the ability to employ evidence, arguments, and logic to draw
conclusions or make informed judgments (Huang & Chang, 2022). The introduction of the Chain-
of-Thought (CoT) approach, which prompts LLMs to generate intermediate reasoning steps, has
led to enhanced performance in arithmetic, commonsense, and symbolic reasoning tasks (Wei
et al., 2022b). Furthermore, the zero-shot capability of LLMs has proven its potency by simply
incorporating a straightforward prompt phrase (Kojima et al., 2022). Subsequently, the Tree-of-
Thought (ToT) framework was proposed, enabling exploration over coherent units of text that serve as
intermediary steps toward problem-solving, thereby generalizing the popular CoT approach to prompt
language models (Yao et al., 2023). Additionally, the Algorithm of Thought (AoT) leverages the
inherent recurrence dynamics of LLMs, expanding their idea exploration with minimal queries (Sel
et al., 2023). Drawing inspiration from recent developments such as Voyager (Wang et al., 2023a),
BabyAGI (Nakajima, 2023), ReAct (Yao et al., 2022), SwiftSage (Lin et al., 2023), Auto-GPT
(Richards et al., 2023) and Agent-GPT (Reworkd, 2023), we posit that the reasoning and planning
capabilities of LLMs could prove invaluable in supporting agents in imperfect information games,
utilizing only the game rules and observations for interpretation. More specifically, when provided
with well-crafted prompts, LLM-based agents can autonomously generate a wide array of text, which
can be harnessed to facilitate reflection and planning in the context of imperfect information games
(Schuurmans, 2023; Kim et al., 2023). Nevertheless, our paper focuses on integrating theory-of-mind
(ToM) capacities into the planning process, whereas others do not use them.

Theory of Mind (ToM) In the domain of imperfect information games, classical methodologies
often draw from game theory. However, these approaches recognize that human decision-making
follows a "cognitive hierarchy" of strategies rather than strictly adhering to the hyper-rational Nash
equilibrium solution concept (Wunder et al., 2011). The concept of Theory of Mind (ToM) is
crucial in understanding human cognitive abilities. ToM involves comprehending and predicting the
behaviors of oneself and others by attributing internal mental states like beliefs, knowledge, desires,
and intentions (Premack & Woodruff, 1978; Frith & Frith, 2005; Davies, 1994; Nichols & Stich,
2003; Hurley, 2008). In the context of imperfect information games, ToM has been employed to
anticipate opponents’ actions and observations, enhancing decision-making effectiveness (De Weerd
et al., 2013). Level-k thinking theory within cognitive hierarchy theory posits that players in strategic
games rely on predictions of other players’ likely actions, and it categorizes these players based
on the depth of their strategic thinking, a dimension potentially intertwined with ToM (Crawford,
2018). Within the framework of simulating ToM, a player adopts the perspective of their opponent to
infer their own potential actions in similar situations. Moreover, ToM can employ recursively nested
beliefs through higher-order ToM (Frith & Frith, 2005), enabling not only the assessment of the
counterpart’s thoughts but also self-reflection on observations and how one’s actions may influence
the counterpart’s future actions. Recent studies have also evaluated ToM capabilities in LLMs (Frith
& Frith, 2005; Kosinski, 2023). Nevertheless, there remains a notable gap in the existing literature
concerning the integration of ToM within LLMs for imperfect information games.

Limited by our capacity, we are unable to include all relevant literature in our work. If you find any
missing relevant references, please feel free to tell us. We appreciate your efforts to improve our
paper quality.

E LIMITATIONS

Robustness of Results Due to budgetary constraints, our experiments are limited to running 100
games for each comparison with baseline methods. (1) Although this sample size may not be
extensive, the superior performance observed over four different baseline algorithms with varying
behavioral patterns can still serve as a preliminary demonstration of the cognitive capabilities and
potential of large language models like GPT-4 in imperfect information games. (2) Given the same
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game sequences, Suspicion-Agent can outperform baselines in both positions. This consistency
highlights the adaptability and robustness of Suspicion-Agent even when faced with varied strategies
that give the same card strength. Considering the limited budgets and the experimental results we get,
it is safe to claim that Suspicion-Agent based on GPT-4 can potentially outperform previous methods
designed for imperfect information games.

Hallucination Problem of Large Language Model Hallucination problem (Zhang et al., 2023;
McKenna et al., 2023; Bang et al., 2023)—generating outputs that are nonsensical or unfaithful
to the provided source content (Ji et al., 2023)—poses a significant challenge in LLMs. In our
experiments, we found that when given only simple instructions, LLMs can produce outputs that
are either meaningful and rigorous or less rigorous and even invalid. This variability compromises
the reliability of LLMs, particularly when they interact with models trained for specialized tasks. In
addition, the outputs of LLMs are very sensitive to the prompts. To mitigate this issue, we developed
multiple output templates to improve the quality of the outputs of LLMs, the effectiveness of
which is empirically demonstrated in our main results (these templates will be made publicly available
in our code repository). However, further work is needed to better align LLM-generated outputs with
given instruction prompts. Enhancing this alignment is a critical area of research for improving the
reliability and real-world applicability of LLMs.

Long Reasoning Problem The limitations of LLMs like GPT-4 manifest in two ways when applied
to complex tasks in imperfect information games:

1) Long Prompts Problem: To adapt LLMs for different imperfect information games, it is necessary
to input both game rules and game conversion rules. When these are combined with the specialized
prompts designed for our Suspicion-Agent, the resulting language model prompts become excessively
long. We have observed a rapid decline in the quality of the model’s output as the length of these
prompts increases. Limited by the budgets, we implement the planning and evaluator model into a
single function, which results in a quite long sequence generation, leading to the performance decline
to some extent.

2) Complex Reasoning/Calculation Problem: When tasked with conducting intricate calcula-
tions—such as computing the average win, lose, or draw rate when an opponent holds different
cards—GPT-4 struggles to consistently generate accurate mathematical equations and results.

Expensive Inference Cost and Slow Inference Time As demonstrated in Table 1, only GPT-4
is capable of performing well in the game of Leduc Hold’em. Due to the extensive prompts and
inference tokens, the cost per game reaches nearly one dollar. Additionally, the large model size of
GPT-4 leads to a longer inference time for Suspicion-Agent, requiring several minutes to complete a
single game of Leduc Hold’em. These two limitations underscore the importance of developing a
specialized local language model for this task, which also serves as our motivation for releasing all
associated data.

Planning Depth In our paper, we only focus on single-step planning, but note that our planning
method is orthogonal to recently proposed approaches that leverage large language models for
planning with depth, such as Tree-of-Thoughts (Yao et al., 2023), Graph-of-Thoughts (Besta et al.,
2023), and Algorithm-of-Thoughts (Sel et al., 2023). While these approaches offer promising
directions for future research, they come with high computational costs, and thus we do not incorporate
them into our current methods.

More Language Model Evaluation In this paper, the evaluation is confined to the performance of
GPT-3.5 and GPT-4 on imperfect information games, which represent only a fraction of the large
language models in the contemporary research landscape. For future work, we aim to expand the scope
of our evaluation to include other state-of-the-art large language models, such as PaLM2 (Anil et al.,
2023), Claude2 (Models, 2023), and LLaMA2 (Touvron et al., 2023), among others. This broader
evaluation will not only offer a more comprehensive understanding of the capabilities and limitations
of these models in imperfect information games but also facilitate a nuanced comparative analysis.
Such an approach is expected to yield richer insights into the adaptability and generalizability of
large language models in complex, real-world scenarios, thereby contributing to the field’s collective
understanding of their potential applications and limitations.
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F FUTURE WORK

Tool Use As outlined in the section E, Suspicion-Agent suffers from hallucination problems and
struggles with long context reasoning. This can lead to calculation inaccuracies and sometimes
produce responses that deviate from factual information or are out of context. Such issues considerably
degrade the performance in final decision-making. A natural solution is to break down the problem
into multiple sub-problems and employ specialized smaller models or tools (Wang et al., 2023c;
Schick et al., 2023; Wang et al., 2023b; Patil et al., 2023; Lu et al., 2023a; Patil et al., 2023), for better
task completion.

Multi-Modality In the present paper, the analytical scope is limited to text-based imperfect infor-
mation games. However, it is important to recognize that real-world interactions often encompass
more than just textual information. For instance, human communication frequently involves a variety
of modalities such as facial expressions and vocal tones, which can serve as additional cues for
interpreting beliefs or intentions. Given the increasing advancements in multi-modal large language
models—e.g., InstrucBLIP (Dai et al., 2023), LLaVa (Liu et al., 2023a)—we aim to extend our
research to incorporate these multi-modal aspects. By doing so, we aspire to develop AI agents
capable of navigating imperfect information games that more closely mimic real-world complexities.
Integrating multi-modal observations into our model will not only enrich the agents’ understanding
of the game environment but also broaden the applicability of our methods. This will potentially lead
to a more nuanced and comprehensive understanding of the strategic behavior of LLMs in scenarios
that more accurately reflect real-world conditions.

Multi-Player Setting In the paper, our focus is restricted to two-player imperfect information
games. However, it is worth acknowledging that real-world scenarios often involve multi-player
settings, which introduce additional complexities and nuances that are not captured in a two-player
framework. Recent developments have given rise to novel multi-player game environments, such as
AgentVerse (Chen et al., 2023) and Mind Agent (Gong et al., 2023). These environments present
more realistic settings for evaluating the applicability and efficacy of large language models in game
theory scenarios. Therefore, a natural extension of our research will be to adapt our methods to these
multi-player environments.

G OUTPUT SAMPLES

G.1 FIRST-ORDER TOM AWARE PLANNING

Opponent’s Pattern:
1st Round: - When GoodGuy holds a King, he tends to raise (70%) or call (30%). - When
GoodGuy holds a Queen, he tends to call (60%) or raise (40%). - When GoodGuy holds a
Jack, he tends to fold (60%) or call (40%).
2nd Round: - When GoodGuy holds a King and the public card is a Queen or Jack, he tends
to raise (80%) or check (20%).- When GoodGuy holds a Queen and the public card is a King
or Jack, he tends to call (70%) or check (30%). - When GoodGuy holds a Jack and the public
card is a King or Queen, he tends to fold (60%) or call (40%).

Belief on GoodGuy’s cards:
In the 1st round, GoodGuy raised (probability 70%), which according to his behavior pattern,
suggests that he might be holding a King (70%) or a Queen (30%). In the current round,
GoodGuy raised again (probability 80%), which according to his behavior pattern and the
match with the current public card (Queen), suggests that he might be holding a King (80%)
or a Queen (20%).
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Reasonable Plans:
Plan 1: Call - If I call, I will match GoodGuy’s bet of 10 chips, bringing the total pot to 20
chips. This is a conservative strategy that allows me to stay in the game without risking too
many chips. However, it also means that I am not putting any pressure on GoodGuy, which
could allow him to win the game easily if he has a higher-ranking card. Plan 2: Raise -
If I raise, I will increase the bet by 8 chips, bringing the total pot to 24 chips. This is an
aggressive strategy that puts pressure on GoodGuy and could potentially force him to fold
if he has a low-ranking card. However, it also risks losing more chips if GoodGuy has a
higher-ranking card and decides to call or raise. Plan 3: Fold - If I fold, I will forfeit the
game and lose any chips I have already put into the pot. This is a defensive strategy that
minimizes my losses if I believe that GoodGuy has a higher-ranking card. However, it also
means that I give up any chance of winning the game.
Potential GoodGuy’s actions and Estimate Winning/Lose/Draw Rate:
- If GoodGuy holds a King (80% probability), he will likely raise (80% probability) or call
(20% probability) . If this happens, I will likely lose (100% probability), as a King is higher
than my Jack. Therefore, the overall lose rate for this scenario is 80%.- If GoodGuy holds a
Queen (20% probability), he will likely call (70% probability). If this happens, I will likely
lose (100% probability), as a pair of Queens is stronger than my single Jack. Therefore, the
overall lose rate for this scenario is 20% * 70% = 14%. - Therefore, my overall lose rate is
80% + 14% = 94%. My overall win rate is 0%, as there is no scenario in which I can win.
My overall draw rate is also 6%.
Estimate Expected Chips Gain for Each Plan: Plan 1: Call - Expected Chips Gain = win
rate * winning payoff - lose rate * lose payoff = 0% * 10 - 94% * 10 = -9.4 chips. Plan 2:
Raise - Expected Chips Gain = win rate * winning payoff - lose rate * lose payoff = 0% * 12
- 94% * 12 = -15.6 chips. Plan 3: Fold - Expected Chips Gain = win rate * winning payoff -
lose rate * lose payoff = 0% * 0 - 100% * 8 = -8 chips.
Plan Selection: - Plan 1: Call: -9.4 chips - Plan 2: Raise: -15.6 chips- Plan 3: Fold: -8
chips. Based on the estimated expected chips gains, the best plan is to fold, as it results in the
smallest loss of chips. This is a reasonable decision, as it minimizes my losses in a situation
where I am likely to lose. It also aligns with my strategy improvement of being more cautious
when I have a low-ranking card.
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G.2 SECOND-ORDER TOM AWARE PLANNING

Opponent’s Pattern:
1. When GoodGuy holds a Jack: - If the opponent raises in the first round, GoodGuy tends to
fold (probability 80%) or call (probability 20%). - If the opponent checks or calls in the first
round, GoodGuy tends to call (probability 70%) or raise (probability 30%). - In the second
round, if the public card is a King or Queen, GoodGuy tends to fold (probability 90%) or call
(probability 10%). - If the public card is a Jack, GoodGuy tends to raise (probability 80%) or
call (probability 20%).
2. When GoodGuy holds a Queen: - If the opponent raises in the first round, GoodGuy
tends to call (probability 60%) or fold (probability 40%). - If the opponent checks or calls
in the first round, GoodGuy tends to raise (probability 60%) or call (probability 40%). -
In the second round, if the public card is a King, GoodGuy tends to fold (probability 70%)
or call (probability 30%). - If the public card is a Queen or Jack, GoodGuy tends to raise
(probability 70%) or call (probability 30%).
3. When GoodGuy holds a King: - If the opponent raises in the first round, GoodGuy tends
to call (probability 70%) or raise (probability 30%). - If the opponent checks or calls in the
first round, GoodGuy tends to raise (probability 80%) or call (probability 20%). - In the
second round, regardless of the public card, GoodGuy tends to raise (probability 70%) or
call (probability 30%).
The opponent’s guess on Suspicion-Agent’s game pattern:
1. When I hold a Jack: - GoodGuy might believe that I tend to raise in the first round
(probability 60%) or call (probability 40%). - In the second round, if the public card is a King
or Queen, GoodGuy might believe that I tend to fold (probability 70%) or call (probability
30%). - If the public card is a Jack, GoodGuy might believe that I tend to raise (probability
80%) or call (probability 20%).
2. When I hold a Queen: - GoodGuy might believe that I tend to raise in the first round
(probability 70%) or call (probability 30%). - In the second round, if the public card is a
King, GoodGuy might believe that I tend to fold (probability 60%) or call (probability 40%). -
If the public card is a Queen or Jack, GoodGuy might believe that I tend to raise (probability
70%) or call (probability 30%).
3. When I hold a King: - GoodGuy might believe that I tend to raise in the first round
(probability 80%) or call (probability 20%). - In the second round, regardless of the public
card, GoodGuy might believe that I tend to raise (probability 70%) or call (probability 30%).

Belief on GoodGuy’s Cards:
In the first round, GoodGuy chose to call. According to GoodGuy’s behavior pattern, when
he holds a Jack, he tends to call in the first round with a probability of 70%. When he holds a
Queen, he tends to raise in the first round with a probability of 60%, and when he holds a
King, he tends to raise in the first round with a probability of 80%. Since GoodGuy chose to
call, it is more likely that he holds a Jack (probability 70%), less likely a Queen (probability
20%), and least likely a King (probability 10%).
GoodGuy’s Belief on My Cards:
In the 1st round, I haven’t taken any action yet. However, based on GoodGuy’s guess on my
game pattern, if I choose to raise, he might believe that I have a King (80% probability) or
a Queen (20% probability). If I choose to call, he might believe that I have a Queen (60%
probability) or a Jack (40% probability). If I choose to fold, he might believe that I have a
Jack (100% probability).
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Make Reasonable Plans:
Plan 1: Raise- If I raise, I can potentially confuse GoodGuy and make him believe that I have
a higher card. This could lead him to fold, especially if he has a Jack. Plan 2: Fold - Folding
would be a safe option, as I currently hold the lowest rank card. However, this would mean
giving up the current game and losing the chips I have already put in the pot.Plan 3: Check -
Checking would allow me to see the public card without putting more chips in the pot. This
could be a good strategy if I believe that GoodGuy has a higher card.
Estimate Winning/Lose/Draw Rate for Each Plan:
Plan 1: Raise- If GoodGuy holds a Jack (70% probability), he will likely fold (80% probabil-
ity). This would result in a win for me.- If GoodGuy holds a Queen (20% probability), he
will likely call (60% probability) or fold (40% probability). This would result in a draw or a
loss for me.- If GoodGuy holds a King (10% probability), he will likely call (70% probability)
or raise (30% probability). This would result in a loss for me.Plan 2: Fold- If I fold, I will
lose the current game regardless of GoodGuy’s card. Plan 3: Check - If GoodGuy holds
a Jack (70% probability), he will likely call (70% probability) or raise (30% probability).
This would result in a draw or a loss for me. - If GoodGuy holds a Queen (20% probability),
he will likely raise (60% probability) or call (40% probability). This would result in a loss
for me. - If GoodGuy holds a King (10% probability), he will likely raise (80% probability)
or call (20% probability). This would result in a loss for me. Potential believes about the
number of winning and lose payoffs for each plan: Plan 1: Raise - After the action, chips in
the pot: 6. If win, the winning payoff would be 3. If lose, the lose payoff would be 3. Plan 2:
Fold - After the action, chips in the pot: 4. If win, the winning payoff would be 0 (as I would
have already folded). If lose, the lose payoff would be 2. Plan 3: Check - After the action,
chips in the pot: 4. If win, the winning payoff would be 2. If lose, the lose payoff would be 2.
Estimate Expected Chips Gain for Each Plan: Plan 1: Raise - Expected chips gain = winning
rate * winning payoff - lose rate * lose payoff = 0.56 * 3 - 0.44 * 3 = 0.36 Plan 2: Fold -
Expected chips gain = 0 (as I would have already folded) Plan 3: Check - Expected chips
gain = winning rate * winning payoff - lose rate * lose payoff = 0.14 * 2 - 0.86 * 2 = -1.44
Plan Selection:
Based on the estimated expected chips gain, Plan 1 (Raise) would be the best strategy to
implement in the current game. This plan has the highest expected chips gain and aligns with
the strategy improvement of confusing GoodGuy by making him believe that I have a higher
card.
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Figure 5: Left Figure. The illustration of the action percentage of Suspicion-Agent with different
levels of ToM when playing against CFR+. Right Figure. he illustration of the action percentage of
Suspicion-Agent with different level of ToM when playing against DMC.
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Algorithm 1 The inference procedure of our Suspicion-Agent

Initialize the game history D, large language model Fθ, Game Rule Rule, Observation Conversion
Rule Ruleobs
for i = 1 to Max_Game_Num do

Initialize the current game buffer hi

Get the Opponent’s Behaviour Pattern and Opponent’s Guess on My Pattern, and Reflexion
Oi

bp, O
i
f ∼ F bp

θ (Rule,D).
for t = 1 to TaskHorizon do

Get the Private Observation St
pri(0), S

t
pub and action of the opponent at1 from the environ-

ment.
Get the Text Observation Description Obstr ∼ F obs

θ (Rule,Ruleobs, S
t
pri(0), S

t
pub).

Get the Card Prediction Ot
card_pred ∼ F card_pred

θ (Rule, hT , Obstr, O
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J ABLATION STUDY ON THE EFFECT OF HINDSIGHT OBSERVATION

In our primary results, following (Southey et al., 2012), we assume that Suspicion-Agent has access
to hindsight observations at the conclusion of each individual game,i.e., Hindsight Observation. To
assess the impact of this feature, we conduct an ablation study in which hindsight observations are
not incorporated into the current game. In the absence of these hindsight observations, we augment
the Reflexion module with additional prompts to enable it to infer the opponent’s cards based on
game outcomes and Suspicion-Agent’s own observations.

As demonstrated in Table 5 and 4, Suspicion-Agent retains its performance advantage over the
baseline methods even without the benefit of hindsight observations. Specifically, we observe that
Suspicion-Agent adopts a more conservative strategy under the increased uncertainty that comes
without hindsight observations. This leads to reduced bluffing, resulting in fewer gains when playing
against CFR+. However, it also minimizes the risk of over-bluffing when facing DMC, thus yielding
higher chip earnings.

Table 5: The comparison results indicate the impact of including opponent observations in the game
history when Suspicion-Agent competes against CFR+ in Leduc Hold’em environments. The results
are the win/lose chips after 100 games with different seeds, and the number of win/lose chips ranges
from 1 to 14.

Opponent Model
CFR+ DMC

Ours (w/o hindsight observation) +20 +51
Ours (w/ hindsight observation) +37 +24

K QUALITATIVE SAMPLES

K.1 LEDUC HOLD’EM

We present qualitative samples showcasing Suspicion-Agent’s behaviour under different strategies:
Vanilla Planning, Planning with First-Order ToM, and Planning with Second-Order ToM in Leduc
Hold’em. These samples can be viewed in Figure 6, 7, 8, and 9, respectively. In each scenario,
Suspicion-Agent holds a Jack, while the opponent has either a Jack or Queen. The opponent’s initial
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choice to call, rather than raise, suggests they have a weak hand. Under the Vanilla Planning strategy,
Suspicion-Agent chooses to call in order to see the public hand. When this reveals a weak hand, the
opponent promptly raises, leaving Suspicion-Agent in a precarious position, given that a Jack is the
weakest hand. With the First-Order ToM strategy, Suspicion-Agent opts to fold, aiming to minimize
losses. This decision is driven by the observation that the opponent typically calls when holding a
Queen or Jack and has a knack for successfully bluffing Suspicion-Agent. However, these strategies
fall short in capitalizing on the inferred weakness of the opponent’s hand. This shortcoming stems
from the fact that they don’t consider how Suspicion-Agent’s moves might influence the opponent’s
reactions. In contrast, as demonstrated in Figure 9, simple prompts enable Suspicion-Agent to
understand how to influence the opponent’s actions. Intentionally choosing to raise places pressure on
the opponent, urging them to fold and minimize their losses. As a result, Suspicion-Agent manages to
win numerous games even when holding hands of similar strength, so that Suspicion-Agent can earn
more chips than baselines. Moreover, as depicted in Figure 10, if the opponent either calls or counters
the raise made by Suspicion-Agent, it suggests the opponent has a strong hand. Recognizing this,
Suspicion-Agent swiftly adapts its strategy, opting to fold to prevent further losses. This demonstrates
the impressive strategic flexibility of Suspicion-Agent.

Action: Call (Holds Jack or Queen)

Obs:In this round, you are holding a 
Jack of Hearts. So far, you have putx

2 chips into the pot, while your 
opponent has put 2 chips.

Action: Check

Action: Raise

Vanilla Planning Planning with First-Order ToM Planning with Second-Order ToM

Action: Call (Holds Jack or Queen)

Obs:In this round, you are holding a 
Jack of Hearts. So far, you have putx

2 chips into the pot, while your 
opponent has put 2 chips.

Action: Fold

Action: Call (Holds Jack or Queen)

Obs:In this round, you are holding a 
Jack of Hearts. So far, you have putx

2 chips into the pot, while your 
opponent has put 2 chips.

Action: Raise

Action: Fold

Figure 6: The qualitative sample of Suspicion-Agent on Leduc Hold’em. The whole outputs of
Suspicion-Agent are given in Appendix 7, 8 and 9, respectively.

Action: Call

Obs:In this round, you are holding a Jack of Hearts. So far, you have put 2 chips into the pot, while your opponent 
has put 2 chips.

Vanilla Planning

Make Plans: Plan 1: Raise In this plan, I will raise the bet by 2 chips. This will increase the pot to 6 chips 
and put pressure on GoodGuy. If he has a low card, he might fold, giving me the win. If he has a high card, he 
might call or raise, leading to a larger pot. Plan 2: Fold In this plan, I will fold my hand. This will result 
in a loss of the current game, but I will save my chips for future games where I might have a better hand. Plan 
3: Check In this plan, I will check, which means I will not add any more chips to the pot. This will allow me to 
see the public card without risking any more chips.

Estimate Winning/Loss/Draw Rate for Each Plan: Plan 1: Raise If I raise, I have a 1/3 chance of winning if the 
public card matches my Jack, a 1/3 chance of losing if the public card is a King or Queen, and a 1/3 chance of a 
draw if the public card is another Jack. Overall, my winning rate is 33%, my losing rate is 33%, and my draw 
rate is 33%. Plan 2: Fold If I fold, I will lose this game, so my losing rate is 100%. Plan 3: Check If I check, 
the outcome will depend on the public card. The probabilities are the same as in Plan 1: a 33% chance of winning, 
a 33% chance of losing, and a 33% chance of a draw.

Expected Chips Gain for Each Plan: Plan 1: Raise The expected chips gain is 33% * 3 chips - 33% * 2 chips = 0.33 
chips. Plan 2: Fold The expected chips gain is -2 chips, because I will lose 2 chips. Plan 3: Check The expected 
chips gain is 33% * 2 chips = 0.66 chips.
Plan Selection: Comparing the expected chips gain for each plan, Plan 3: Check has the highest expected chips 
gain of 0.66 chips. Therefore, I will choose Plan 3: Check.

Action: Check

Figure 7: The qualitative sample of the vanilla planning of Suspicion-Agent on Leduc Hold’em.
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Action: Call (Holds Jack too)

Obs:In this round, you are holding a Jack of Hearts. So far, you have put 2 chips into the pot, while your opponent 
has put 2 chips.

Vanilla Planning

Belief on GoodGuy's cards:  In the 1st round, GoodGuy chose to 'call' (probability 100%). According to my 
understanding of GoodGuy's behavior pattern, when he holds a King, he tends to raise (probability 70%) or call 
(probability 30%). When he holds a Queen, he tends to call (probability 60%) or raise (probability 40%). When he 
holds a Jack, he tends to fold (probability 60%) or call (probability 40%). Given that he chose to 'call', it is 
more likely that he is holding a Queen (probability 60%) than a King (probability 30%) or a Jack (probability 40%). 
Therefore, I estimate that GoodGuy has a Queen (60%), a King (30%), or a Jack (10%).

Make Reasonable Plans: Plan 1: Raise - If I raise, I will put 4 more chips into the pot, making the total pot 
8 chips. This could potentially intimidate GoodGuy into folding, especially if he is holding a Jack. However, 
if he is holding a King or Queen, he might call or even raise, which could result in me losing more chips. 
\n\nPlan 2: Fold\n- If I fold, I will lose the 2 chips I‘ve already put into the pot. However, I will not risk 
losing any more chips. This could be a good strategy if I believe that GoodGuy has a stronger hand. Plan 3: 
Check\n- If I check, I will not put any more chips into the pot. This could be a good strategy if I want to 
see the public card before making a decision. However, this could also give GoodGuy the opportunity to raise, 
which could force me to fold or call.
Potential GoodGuy‘s actions and Estimate Winning/Lose/Draw Rate: If GoodGuy holds a Queen (60% probability): -
He will likely call (60% probability). If the public card is a Queen, I will likely lose (as I hold a Jack). 
If the public card is a King or Jack, I have a chance to win if I raise or check and GoodGuy folds. \n- He 
might raise (40% probability). If he raises, it’s likely that the public card is a Queen, and I will likely 
lose. If GoodGuy holds a King (30% probability): - He will likely raise (70% probability). If he raises, it‘s 
likely that the public card is a King, and I will likely lose. - He might call (30% probability). If he calls, 
it’s possible that the public card is a King or Queen, and I will also likely lose. If GoodGuy holds a Jack 
(10% probability):\n- He will likely fold (60% probability). If he folds, I will win regardless of the public 
card. \n- He might call (40% probability). If he calls, it‘s possible that the public card is a King or Queen, 
and I have a chance to win if I raise or check and GoodGuy folds. Overall, my winning rate is 20%, my losing 
rate is 74%, and my draw rate is 6%
Expected Chips Gain for Each Plan: Plan 1: Raise - Expected Chips Gain = Winning Rate * Winning Payoff -
Losing Rate * Losing Payoff = 20% * 4 - 74% * 4 = -2.16 chips Plan 2: Fold - Expected Chips Gain = Winning 
Rate * Winning Payoff - Losing Rate * Losing Payoff = 1 - 100% * 1 = -1 chips\n\nPlan 3: Check\n- Expected 
Chips Gain = Winning Rate * Winning Payoff - Losing Rate * Losing Payoff = 20% * 2 - 74% * 2 = -0.108 chips
Plan Selection: Based on the estimated expected chips gains, the ranking of the plans is as follows:1. Plan 2: 
Fold 2. Plan 3: Check 3. Plan 1: Raise Therefore, I should choose Plan 2: Fold

Action: Fold

Figure 8: The qualitative sample of planning with First-Order ToM Suspicion-Agent on Leduc
Hold’em.

Action: Call (Holds Jack or Queen)

Obs:In this round, you are holding a Jack of Hearts. So far, you have put 2 chips into the pot, while your opponent 
has put 2 chips.

Vanilla Planning

Belief on GoodGuy's cards: GoodGuy chose to 'call' in the first round. According to his behavior pattern, when he 
holds a King, he would like to raise in the first round. Therefore, it is unlikely that he holds a King. When he 
holds a Queen or a Jack, he would like to call in the first round. Therefore, he is likely to hold a Queen or a 
Jack. So, the probabilities are: King (0%), Queen (50%), Jack (50%).
Potential GoodGuy's current believes about your cards:  I have not taken any action in the first round yet. 
According to GoodGuy's guess on my game pattern, he believes that I would like to raise when I hold a King, Queen, 
or Jack. Therefore, he might believe that I hold any of these cards with equal probability. So, the probabilities 
are: King (33.33%), Queen (33.33%), Jack (33.33%).

Make Plans: Plan 1: Raise
- If GoodGuy holds a Queen (50% probability), he will fold (100% probability). I will win the pot, which will 
be 6 chips (4 from me, 2 from GoodGuy). The winning rate is 50%, the losing rate is 0%, and the draw rate is 
0%.
- If GoodGuy holds a Jack (50% probability), he will fold (100% probability). I will win the pot, which will 
be 6 chips (4 from me, 2 from GoodGuy). The winning rate is 50%, the losing rate is 0%, and the draw rate is 
0%.
Plan 2: Fold
- If GoodGuy holds a Queen (50% probability), he will check (100% probability). I will lose the pot, which 
will be 4 chips (2 from me, 2 from GoodGuy). The winning rate is 0%, the losing rate is 50%, and the draw rate 
is 0%.
- If GoodGuy holds a Jack (50% probability), he will check (100% probability). I will lose the pot, which will 
be 4 chips (2 from me, 2 from GoodGuy). The winning rate is 0%, the losing rate is 50%, and the draw rate is 
0%.
Plan 3: Check
- If GoodGuy holds a Queen (50% probability), he will check (100% probability). The game will proceed to the 
second round. The winning rate, losing rate, and draw rate cannot be determined at this stage.
- If GoodGuy holds a Jack (50% probability), he will check (100% probability). The game will proceed to the 
second round. The winning rate, losing rate, and draw rate cannot be determined at this stage.

Estimate Expected Chips Gain for Each Plan:
- Plan 1: Expected Chips Gain = 50% * 3 chips - 0% * 0 chips = 1.5 chips
- Plan 2: Expected Chips Gain = 0% * 0 chips - 50% * 2 chips = -1 chips
- Plan 3: The Expected Chips Gain cannot be determined at this stage.

Plan Selection: Plan 1: raise

Action: Raise

Action: Fold

Figure 9: The qualitative sample about Bluffing of planning with Second-Order ToM Suspicion-
Agent on Leduc Hold’em.

24



Under review as a conference paper at ICLR 2024

Action: Call (Holds King or Queen)

Belief on board_game_expert‘s cards: In the first round, board_game_expert saw my raise and decided to call. 
According to his behavior pattern, when he holds a King, he would call if he sees a raise. When he holds a Queen, 
he would either fold or call if he sees a raise. When he holds a Jack, he would fold if he sees a raise. 
Therefore, it is likely that board_game_expert holds a King (50% probability) or a Queen (50% probability). In 
the second round, the public card is a Queen. If board_game_expert holds a Queen, he would raise. However, he 
hasn’t made his move yet. Therefore, the probability of him holding a Queen is uncertain.
Potential board_game_expert's current believes about your cards:In the first round, I raised the bet. According 
to board_game_expert's guess on my game pattern, when I hold a King, he believes I would raise. When I hold a 
Queen, he believes I would either call or raise. When I hold a Jack, he believes I would fold. Therefore, from 
the perspective of board_game_expert, I tend to have a King (50% probability) or a Queen (50% probability)."}}

Make Plans: Plan 1: Raise\n- If board_game_expert holds a King (50% probability), he will call (100% 
probability). I will lose as King is higher than Jack. \n- If board_game_expert holds a Queen (50% probability), 
he will call (100% probability). I will lose as Queen is higher than Jack. \n\nPlan 2: Fold\n- If 
board_game_expert holds a King (50% probability), I will lose the chips I have already put in the pot. \n- If 
board_game_expert holds a Queen (50% probability), I will lose the chips I have already put in the pot. \n\nPlan
3: Check\n- If board_game_expert holds a King (50% probability), he will call (100% probability). I will lose as 
King is higher than Jack. \n- If board_game_expert holds a Queen (50% probability), he will call (100% 
probability). I will lose as Queen is higher than Jack. 
Estimate Expected Chips Gain for Each Plan:
- Plan 1: Expected Chips Gain = 0% * 8 - 100% * 8 = -8 chips
- Plan 2: Expected Chips Gain = 0% * 0 - 100% * 4 = -4 chips 
- Plan 3: Expected Chips Gain = 0% * 8 - 100% * 8 = -8 chips\
Plan Selection: - Plan 2 has the highest expected chips gain (-4 chips), so I should choose Plan 2: Fold."

Action: Fold (Minimize the loss)

Raise (Bluff)

Obs: You are currently holding a Jack of Hearts (HJ) and the public card is a Queen of Hearts (HQ). 

Figure 10: The qualitative sample about Strategic Bluffing and fold of planning with Second-Order
ToM Suspicion-Agent on Leduc Hold’em.
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Action: Foreign Aid (Means that he does not have Duke)

"readable_text_obs": You have two hidden Assassin cards and 2 coins. None of your cards are dead

Belief on GoodGuy’s cards: In the first round, GoodGuy rt attempted to take foreign aid. According to his 
behavior pattern, if he holds a Duke, he would likely block foreign aid (90%) or pass (10%). If he holds an 
Assassin or a Captain, he would pass (100%). Since he didn't block the foreign aid, it's unlikely that he has a 
Duke. Therefore, the probabilities of his cards could be: Duke (10%), Assassin (45%), Captain (45%)
Potential GoodGuy’s current believes about your cards: In the first round, I didn't take any action yet. 
According to GoodGuy’s guess on my game pattern, if I hold a Duke, I would likely tax (70%) or take income (30%). 
If I hold an Assassin, I would likely take income (80%) or tax (20%). If I hold a Captain, I would likely steal 
(60%) or take income (40%). 

Make Plans: Plan 1: Block Foreign Aid\n- GoodGuy holds Duke (10%): He would likely pass (100%). I would win 
(100%) as I successfully block his foreign aid.\n- If GoodGuy holds Assassin (45%): He would likely challenge 
(50%) or pass (50%). If he challenges, I would lose (100%) as I don't have a Duke to reveal. If he passes, I 
would win (100%) as I successfully block his foreign aid.\n- If GoodGuy holds Captain (45%): He would likely 
challenge (50%) or pass (50%). If he challenges, I would lose (100%) as I don't have a Duke to reveal. If he 
passes, I would win (100%) as I successfully block his foreign aid.\
Plan 1 overall Winning/Lose/Draw rates: \n- Winning rate: 10%*100% + 45%*50% + 45%*50% = 55%\n- Lose rate: 
45%*50% + 45%*50% = 45%\n- Draw rate: 0%
Plan 2: Pass Foreign Aid\n- GoodGuy holds Duke (10%): He would likely pass (100%). I would neither win nor lose 
as I didn't take any action.\n- If GoodGuy holds Assassin (45%): He would likely pass (100%). I would neither 
win nor lose as I didn't take any action.\n- If GoodGuy holds Captain (45%): He would likely pass (100%). I 
would neither win nor lose as I didn't take any action.\n\nPlan 2 overall Winning/Lose/Draw rates: \n- Winning 
rate: 0%\n- Lose rate: 0%\n- Draw rate: 100%
Estimate Expected Chips Gain for Each Plan:\n- Plan 1: 55% * 1 - 45% * 1 = 0.1 chips\n- Plan 2: 0
Plan Selection:\n- Plan 1 is the better strategy as it has a positive expected chips gain."

Action: block_foreign_aid (Bluff as a Duke)

Action: Pass_Block

"readable_text_obs": You have two hidden Assassin cards and 2 coins. None of your cards are dead

Belief on board_game_expert's cards: In the first round, board_game_expert attempted to take foreign aid, which 
is a neutral action that doesn't reveal much about his cards. However, when I blocked his foreign aid, he chose 
not to challenge me. This suggests that he might not have a Duke card. Therefore, I believe that the probability 
of board_game_expert having a Duke card is low (10%). Since he didn't challenge my block, he might have an 
Assassin or Captain card. Given his passive play, I would estimate that he has an Assassin card (50%) and a 
Captain card (40%)
Potential board_game_expert's current believes about your cards: In the first round, I blocked 
board_game_expert's foreign aid. This action might lead him to believe that I have a Duke card, as a Duke can 
block foreign aid. However, I could also be bluffing. Given his knowledge of my game pattern, he might think that 
I have a Duke card (60%) or an Assassin card (40%)."}}

Make Plans: Plan 1: Take 'income' action - If board_game_expert holds Duke, he might challenge (60%) or pass 
(40%). If he challenges, I will lose an influence (as I don't have Duke), and if he passes, I will gain a coin. 
\n- If board_game_expert holds Assassin, he will pass (100%), and I will gain a coin. \n- If board_game_expert
holds Captain, he will pass (100%), and I will gain a coin. 
Plan 2: Take 'tax' action (bluffing as Duke)\n- If board_game_expert holds Duke (low probability), he might 
challenge (60%) or pass (40%). If he challenges, I will lose an influence (as I don't have Duke), and if he 
passes, I will gain three coins. \n- If board_game_expert holds Assassin, he might challenge (50%) or pass 
(50%). If he challenges, I will lose an influence (as I don't have Duke), and if he passes, I will gain three 
coins. \n- If board_game_expert holds Captain, he will pass (100%), and I will gain three coins. 
Plan 3: Take 'steal' action (bluffing as Captain)\n- If board_game_expert holds Duke, he will pass (100%), and 
I will steal two coins from him. \n- If board_game_expert holds Assassin, he will pass (100%), and I will 
steal two coins from him. \n- If board_game_expert holds Captain, he might block (80%) or pass (20%). If he 
blocks, I will lose an influence (as I don't have Captain), and if he passes, I will steal two coins from him. 
\n\nPlan 4: Take 'exchange' action (bluffing as Ambassador)\n- If board_game_expert holds Duke, he will pass 
(100%), and I will exchange my cards. \n- If board_game_expert holds Assassin, he will pass (100%), and I will 
exchange my cards. \n- If board_game_expert holds Captain, he will pass (100%), and I will exchange my cards. 
Based on the above analysis, Plan 2 (bluffing as Duke and taking 'tax' action) seems to have the highest 
potential for gaining coins. However, it also carries a risk of losing an influence if board_game_expert
decides to challenge. Plan 1 (taking 'income' action) is the safest option, but the gain is minimal. Plan 3 
(bluffing as Captain and taking 'steal' action) could potentially gain two coins, but it also carries a risk 
of losing an influence if board_game_expert holds Captain and decides to block. Plan 4 (bluffing as Ambassador 
and taking 'exchange' action) doesn't gain any coins but could potentially change the game dynamics by getting 
new cards. 
Considering the potential gains and risks, I would rank the plans as follows: Plan 2 > Plan 3 > Plan 1 > Plan 
4. Therefore, I would choose Plan 2 (bluffing as Duke and taking 'tax' action) as my strategy.

Action: Tax (Bluff as a Duke)

Action: Pass_Tax (Be bluffed) 

Figure 11: The qualitative sample of Suspicion-Agent on Coup, where the GoodGuy is the opponent
model and board_game_expert is Suspicion-Agent.

26



Under review as a conference paper at ICLR 2024

Observation:{"raw_obs": {"hand": ["DQ", "H5"], "public_cards": ["D9", "CK", "C2", "H7"], 
"all_chips": [14, 10], "my_chips": 10, "legal_actions": ["call", "raise", "fold"], 

"raise_nums": [2, 2, 1, 0]}}}
Action: Raise

Observation: {"hand": ["D3", "H9"], "public_cards": ["D9", "CK", "C2", "H7"], "all_chips": [14, 18], 
"my_chips": 14, "legal_actions": ["call", "raise", "fold"], "raise_nums": [2, 2, 2, 0], "game_num": 6, 
"rest_chips": 48.0, "opponent_rest_chips": 52.0}, 
Readable Observation: In this round of Texas Hold'em Poker Limit, you are holding a 3 of Diamonds and 
a 9 of Hearts. The community cards on the table are a 9 of Diamonds, a King of Clubs, a 2 of Clubs, 
and a 7 of Hearts. Currently, you have 14 chips in the pot, while your opponent has 18 chips. You 
have the options to call, raise, or fold. So far, you have raised twice in each of the first three 
rounds of betting, and have not raised in the current round. This is the 6th game out of a total of 
40 games. You have 48 chips left, while your opponent has 52 chips left. Your best current hand is a 
pair of 9s. The potential future combinations, depending on the last community card, could be two 
pairs if a 3, 7, or King comes up, or a three-of-a-kind if another 9 comes up."}}

GoodGuy's game pattern: GoodGuy seems to be a confident player who is not afraid to raise the bet 
when he has a decent hand. He also seems to be good at bluffing, as seen in the first game where he 
managed to win despite having a high card of 10.  1. When GoodGuy holds a high card (10 or above) or 
a pair, he is likely to raise the bet (70% probability) or call (30% probability) in the first round, 
regardless of the opponent's action.  2. If the flop reveals a potential straight or flush, GoodGuy
is likely to raise the bet (60% probability) or call (40% probability) in the second round, 
regardless of the opponent's action.  3. If the turn or river does not improve his hand, GoodGuy is 
likely to check (50% probability) or fold (50% probability) if the opponent raises the bet. 
GoodGuy's guess on my game pattern: GoodGuy might perceive board_game_expert as a cautious player 
who is not afraid to fold when the situation calls for it. 
1st Round: \n- When I hold a high card (10 or above) or a pair, GoodGuy might think that I will 
raise the bet (probability 70%) or call (probability 30%).\n- When I hold a low card (9 or below), 
GoodGuy might think that I will check (probability 60%) or fold (probability 40%).\n\n2nd Round: \n-
If I have a potential straight or flush after the flop, GoodGuy might think that I will raise the 
bet (probability 80%) or call (probability 20%).\n- If I do not have a potential straight or flush 
after the flop, GoodGuy might think that I will check (probability 50%) or fold (probability 50%)

Belief on GoodGuy's cards: In the first round, GoodGuy raised after I raised, which according to his 
behavior pattern, suggests that he likely has a high card (10 or above) or a pair (70% probability). 
In the second round, the flop revealed a potential straight or flush, and GoodGuy raised again, 
suggesting that he might have a potential straight or flush (30% probability). 
Potential GoodGuy's current believes about my cards: In the first round, I raised, which might lead 
GoodGuy to believe that I have a high card (10 or above) or a pair (60% probability). In the second 
round, the flop did not improve my hand, but I raised again, which might confuse GoodGuy and lead him 
to believe that I am bluffing or that I have a strong hand (50% probability). In the current round, I 
have not raised yet, which might lead GoodGuy to believe that I am cautious and do not have a strong 
hand (70% probability). From the perspective of GoodGuy, I might have a pair (30% probability), a 
potential straight (20% probability), a potential flush (20% probability), or a high card (30% 
probability)."}}

Make Reasonable Plans: Plan 1: Call- If I call, I will match GoodGuy's bet. This is a safe move 
that does not risk too many chips. I can say, \"I'll match your bet, GoodGuy. Let's see the next 
card.\"Plan 2: Raise\n- If I raise, I will increase the bet and put pressure on GoodGuy. This 
could potentially lead to a bigger win, but it also risks more chips. I can say, \"I'm feeling 
confident, GoodGuy. I'll raise the bet."Plan 3: Fold- If I fold, I will forfeit the current game 
and lose the chips I have already bet. This is a cautious move that minimizes losses. I can say, 
\"I think I'll sit this one out, GoodGuy.\"
Potential GoodGuy's actions and Estimate Winning/Lose/Draw Rate for Each Plan: Plan 1: Call- If 
GoodGuy has a potential straight or flush (30% probability, he will likely raise (70% 
probability). I will likely lose (100% probability).-If GoodGuy has a high card (10 or above) or 
a pair (70% probability), he will likely raise (50% probability) or call (50% probability). I 
will likely win (60% probability), draw (20% probability), or lose (20% probability).\ Overall, 
the winning rate for plan 1 is 42.0%, the losing rate is 46.0%, and the draw rate is 14.0%.
Plan 2: Raise - If GoodGuy has a potential straight or flush (30% probability, he will likely 
raise (70% probability). I will likely lose (100% probability)- ). -If GoodGuy has a high card 
(10 or above) or a pair (70% probability), he will likely call (50% probability) or fold (50% 
probability). I will likely win (80% probability), draw (10% probability), or lose (10% 
probability).\ Overall, the winning rate for plan 1 is 56.0%, the losing rate is 37.0%, and the 
draw rate is 7.0%. 
Plan 3: Fold\n- If I fold, I will automatically lose the game. The winning rate for plan 3 is 0%, 
the losing rate is 100%, and the draw rate is 0%.
Potential believes about the number of winning and lose payoffs for each plan: Plan 1: Call\n-
After the action, Chips in the pot: 18. If win, the winning payoff would be 9 chips. If lose, the 
lose payoff would be 9 chips.\n\nPlan 2: Raise\n- After the action, Chips in the pot: 22. If win, 
the winning payoff would be 11 chips. If lose, the lose payoff would be 11 chips.\n\nPlan 3: 
Fold\n- After the action, Chips in the pot: 16. If win, the winning payoff would be 0 chips. If 
lose, the lose payoff would be 8 chips.
Estimate Expected Chips Gain for Each Plan: Plan 1: Call - Expected Chips Gain = 42.0% * 9 -
46.0% * 9 = -3.6 chips\n\nPlan 2: Raise\n- Expected Chips Gain = 56% * 11 - 37% * 11 =  21 chips 
Plan 3: Fold\n- Expected Chips Gain = 0% * 0 - 100% * 9 = -9 chips Plan Selection:\n\nThe rank of 
estimated expected chips gains for every plan is as follows:\n1. Plan 2: Raise\n2. Plan 1: 
Call\n3. Plan 3: Fold\n\nTherefore, I should execute Plan 2: Raise, as it has the highest 
estimated expected chips gain."}}

Action: Raise

Action: Fold

Figure 12: The qualitative sample of Suspicion-Agent on Texas Hold’em Limited, where the GoodGuy
is the opponent model and board_game_expert is Suspicion-Agent.

27


