Fast MRI for All: Bridging Access Gaps by Training
without Raw Data

Yasar Utku Alcalar Merve Giille Mehmet Akcakaya*
University of Minnesota University of Minnesota University of Minnesota
alcal029Qumn.edu g11e0001@umn. edu akcakayaQumn.edu
Abstract

Physics-driven deep learning (PD-DL) approaches have become popular for im-
proved reconstruction of fast magnetic resonance imaging (MRI) scans. Though
PD-DL offers higher acceleration rates than existing clinical fast MRI techniques,
their use has been limited outside specialized MRI centers. A key challenge is gener-
alization to rare pathologies or different populations, noted in multiple studies, with
fine-tuning on target populations suggested for improvement. However, current
approaches for PD-DL training require access to raw k-space measurements, which
is typically only available at specialized MRI centers that have research agreements
for such data access. This is especially an issue for rural and under-resourced areas,
where commercial MRI scanners only provide access to a final reconstructed image.
To tackle these challenges, we propose Compressibility-inspired Unsupervised
Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training
using only routine clinical reconstructed images exported from an MRI scanner.
CUPID evaluates output quality with a compressibility-based approach while ensur-
ing that the output stays consistent with the clinical parallel imaging reconstruction
through well-designed perturbations. Our results show CUPID achieves similar
quality to established PD-DL training that requires k-space data while outperform-
ing compressed sensing (CS) and diffusion-based generative methods. We further
demonstrate its effectiveness in a zero-shot training setup for retrospectively and
prospectively sub-sampled acquisitions, attesting to its minimal training burden.
As an approach that radically deviates from existing strategies, CUPID presents
an opportunity to provide broader access to fast MRI for remote and rural popula-
tions in an attempt to reduce the obstacles associated with this expensive imaging
modality. Code is available at https://github.com/ualcalar17/CUPID.

1 Introduction

Magnetic resonance imaging (MRI) is a central tool in modern medicine, offering multiple soft tissue
contrasts and high diagnostic sensitivity for numerous diseases. However, MRI is among the most
expensive medical imaging modalities, in part due to its long scan times. Demand for MRI scans
has shown an annual growth rate of 2.5%, while the number of MRI units per capita has increased
by 1.8% in a similar time frame [S5]]. This mismatch has further increased the wait times for MRI
exams [14}42]], particularly in rural areas and under-resourced/remote communities [[17], shown in
Fig.[I] Thus, techniques for fast MRI scans that can reduce overall scan times without compromis-
ing diagnostic quality [6] are critical for improving the throughput of MRI. Computational MRI
approaches, including partial Fourier imaging [56], parallel imaging [61} 134], compressed sensing
(CS) [53], and more recently deep learning (DL) [38}63] have been developed for accelerating MRI.
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artifacts. DL-based methods, especially
physics-driven DL (PD-DL) approaches,
offer state-of-the-art improvements over
parallel imaging [48]. However, the
translation of PD-DL to clinic has been
hindered by generalizability and artifact
issues related to details not well repre-
sented in training databases, in other words when faced with out-of-distribution samples at test
time [31, 149,59, [11]. This is a problem for many typical MRI centers, whose population characteris-
tics do not necessarily align with specialized MRI centers in urban settings, where training databases
for PD-DL are currently curated.

Figure 1: Many regions lack direct MRI access or rely on
local/mobile units: (a) Over half of MRI services in Min-
nesota are in non-urban areas [17], and (b) these scanners
often lack vendor agreements for raw data access, limiting
Al fine-tuning.

In such cases, fine-tuning of the PD-DL model on the target population may be beneficial [47, 25|
74, 19]. However, a major roadblock for this strategy is that all current training methods for PD-DL
require access to raw MRI data. Such access requires research agreements with MR vendors, and is
typically not available outside specialized/academic MRI centers. This is especially an issue for rural
and under-resourced areas, where commercial MRI scanners only provide access to a final image,
reconstructed via parallel imaging.

In this work, we tackle these challenges associated with typical PD-DL training, and propose
Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID), which trains
PD-DL reconstruction from routine clinical images, e.g., in Digital Imaging and Communications in
Medicine (DICOM) format. Succinctly, CUPID uses a compressibility-inspired term to evaluate the
goodness of the output, while ensuring the output is consistent with parallel imaging via well-designed
input perturbations. CUPID can be used both with database-training and in a subject-specific/zero-
shot manner, attesting to its minimal fine-tuning burden. Our key contributions include:

* We introduce CUPID, a novel method that enables high-quality training of PD-DL reconstruction
in unsupervised and zero-shot/subject-specific settings. By using only routine clinical reconstructed
MR images, CUPID eliminates the need for access to raw k-space measurements. To the best of
our knowledge, our method is the first attempt to train PD-DL networks using only these images
that are exported from the scanner.

» CUPID is trained on DICOM images acquired at the farget acceleration rate, which often have
noise and aliasing artifacts due to high sub-sampling, in an unsupervised manner. Note this is a
deviation from other methods that use reference fully-sampled DICOM images to train a likelihood
or score function, such as generative models.

* CUPID uses a novel unsupervised loss formulation that enforces fidelity with using parallel imaging
algorithms via carefully designed perturbations, in addition to evaluating the compressibility of the
output image. This parallel imaging fidelity ensures the network does not converge to overly sparse
solutions.

* We provide a comprehensive evaluation encompassing both retrospective and prospective acquisi-
tions at target acceleration rates, along with expert radiologist assessments and pathology cases
from FastMRI+ [79]], demonstrating that CUPID achieves reconstruction quality comparable to
leading supervised and self-supervised methods that require raw k-space data, while outperforming
conventional CS techniques and diffusion-based generative methods.

2 Background and Related Work

2.1 MRI forward model and conventional methods for MRI reconstruction

MRI raw data is acquired in the frequency domain of the image, referred to as k-space. For fast
MRI, data is acquired in the sub-Nyquist regime by undersampling the acquisition in k-space. In this



case, the forward acquisition model relating the image x € C" to these raw MRI data (or k-space)
measurements is given as:

yo =Eqox +n, (H
where yq denotes the acquired k-space data corresponding to the undersampling pattern € with
|2 = m < n. Eq denotes the multi-coil encoding operator that includes information from 7,

receiver coils, each of which are sensitive to a different part of the image [37]. When the acceleration
rate R = n/m is less than n., this system of equations is over-determined due to the redundancies
among the receiver coils. Parallel imaging uses these redundancies to solve the maximum likelihood
estimation problem under i.i.d. Gaussian noise [61]]:

xpr = argmin |yq — Eox|3 = (EGEa) " 'Eqyo. ()

Numerically, this can be solved directly for certain undersampling patterns [[61]] or more broadly
iteratively using conjugate gradient (CG) [60]. Using the equivalence of multiplication in image
domain and convolutions in k-space [68]], it can also be solved as an interpolation problem in k-
space [34]. Parallel imaging remains the most clinically used acceleration method for MRI, with
some MR systems using the image-based reconstruction, while others utilizing the equivalent k-space
interpolation.

In modern computational MRI, additional regularization is often incorporated into the objective
function [39]:

arg m)in lya — Eaox|3 + R(x), 3)

where R(-) denotes a regularizer. For instance, CS uses the idea that images should be compressible
in an appropriate transform domain [53]], and uses R(x) = 7|[Wx||1, where 7 is the regularization
weight, W is a linear sparsifying transform such as a discrete wavelet transform (DWT) and || - ||; is
the /1 norm.

2.2 PD-DL reconstruction via algorithm unrolling

Among different PD-DL methods [3, 133} 48]}, unrolled networks [58]] remain the highest performer
in reconstruction challenges [39, |59]. These methods unroll iterative algorithms for solving the
regularized least squares objective in Eq. (3) [32]], such as proximal gradient descent [63] [43] or
variable splitting with quadratic penalty (VS-QP) [2], over a fixed number of steps. Unrolled networks
are conventionally trained using supervised learning over a database, where the reference raw k-space
measurements are first retrospectively undersampled to form yq. Subsequently, the network is trained
to map to the original full reference k-space or the corresponding reference image [38, 2| [77] by
minimizing:

min E (£ (Yiet, Eran(f (v, Eq; 9)))] 4)

where 0 are the network parameters, f(yq, Eq; @) denotes the network output for inputs yq, and Egq,
Egyy is the fully-sampled encoding operator, y.. is the fully-sampled reference k-space data, and
L(-,-) is a loss function.

2.3 Self-supervised and unsupervised methods

Obtaining fully-sampled reference data in MRI can be infeasible due to prolonged scan durations,
organ movement in acquisitions such as real-time cardiac imaging or myocardial perfusion [62]],
or signal decay in acquisitions like diffusion MRI with EPI [69]]. To enable training of PD-DL
networks without fully sampled raw MRI data, a variety of unsupervised learning methodologies
have emerged [5]], including self-supervised learning techniques [[75] 20] and generative modeling
approaches [45] 23] [22].

Self-supervised methods generate supervisory labels from the undersampled data itself [[75, 1204157, [44]].
A pioneering method in this field, self-supervision via data undersampling (SSDU) [[75, [73], involves
partitioning the acquired measurement indices €2 into two disjoint subsets (2 = A U ©) to train the
network in a self-supervised manner:

min E (£ (yr, Ea(f(ye,Ee;0)))] (5)



Even though these self-supervision based approaches demonstrate exceptional performance across
various tasks, they lack the ability to train the model without access to undersampled raw data, as
they cannot operate solely using images that are exported from the scanner.

Conversely, generative methods learn the prior distribution of the given dataset, which is then
leveraged in conjunction with a log-likelihood data term during the testing phase. Although recent
methods based on diffusion/score-based models have shown substantial promise, these methods
require large amounts of high-quality images either reconstructed from raw data [45) [52] or as
DICOMs [23]], as well as computational resources to perform the training, both of which may not be
feasible in the setups we are focused on.

3 Methodology

3.1 Why is it important to train PD-DL networks without raw k-space data?

A major limitation in the clinical adoption of deep learning (DL)-based MRI reconstruction is the issue
of generalizability [38 146l 147,59, 126L 141} 180]]. Models trained on data from a specific scanner, patient
population, or acquisition protocol often fail when applied to different settings due to distribution
shifts [59}151]]. This lack of robustness can lead to artifacts or hallucinations which are false structures
that resemble real anatomy, but are not present in the underlying data [47} 59,41} |51]].

Studies have shown that pre-trained models struggle to adapt to real-world variations, particularly in
centers where patient demographics, scanner configurations, or imaging protocols differ from the
original training data [41]]. This limitation was highlighted in the FastMRI challenges in the transfer
track [59]], where networks trained on images from one vendor failed to generalize to data from
another. Traditional solutions involve fine-tuning models with additional raw k-space data from the
target domain [27} [74], but this is infeasible in many clinical environments. While all MRI scanners
inherently sample k-space data, the majority of scanners outside specialized academic or research
institutions (e.g., as those in local hospitals and mobile MRI units) lack the ability to export this data
due to vendor restrictions [72]. As a result, most DL-based reconstruction methods, which typically
rely on raw k-space during training or fine-tuning, cannot be applied in these settings.

Outside the context of PD-DL methods, diffusion models as generative priors offer an alternative in
this setting. Initial promising results [45, 23} 166] have suggested more robustness to sampling pattern
shifts, and some robustness to anatomy changes, though more recent works have argued that diffusion
priors also face generalizability issues for out-of-distribution samples [13]]. Thus, while promising,
the robustness of the learned prior to distribution shifts, as well as the heuristic tuning of data fidelity
parameters during posterior sampling, require further investigation. Furthermore, diffusion models
are trained on either raw data [45] [1]], fully-sampled magnitude [23]] or complex-valued [22, 10, 36]]
DICOMs. However, they have not been trained on sub-sampled DICOM:s that still contain artifacts, as
explored in this work. Finally, there are other challenges for the clinical applicability and acceptance
of diffusion models in MRI, including the longer inference times compared to PD-DL, and more
importantly the stochasticity of the output.

In light of these, training/fine-tuning PD-DL networks without raw k-space data is not just a matter of
convenience, but a necessary step toward ensuring that DL-based MRI reconstruction can generalize
across diverse clinical settings.

3.2 Training without raw k-space data

In this study, we introduce a novel framework to train PD-DL models, utilizing only routinely
available clinical images exported directly from MRI scanners. Recently, inspired by the connections
between PD-DL and compressibility-based processing [35]], a compressibility-inspired loss was
proposed to evaluate the goodness of unsupervised PD-DL training [9]. However, this approach still
requires access to raw k-space data to stabilize training, making it unsuitable for our goals. Here,
we adapt the compressibility idea and augment it with a parallel imaging fidelity to successfully
reconstruct clinical images in DICOM format without needing any raw k-space data.

Compressibility aspect of the loss formulation Compressibility/sparsity in the output of the
PD-DL network can be enforced by utilizing a weighted ¢; norm [9], which has been demonstrated
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Figure 2: Our Compressibility-inspired Unsupervised Learning via Parallel Imagmg Fldellty (CUPID)
method trains PD-DL models in an unsupervised and/or zero-shot manner without requiring any raw
k-space data. The network is unrolled for 7" units, with each unit consisting of regularizer (R) and
data fidelity (DF). The proposed loss function comprises two terms: (a) a reweighted ¢; component
that assesses the compressibility of the network’s output; (b) a fidelity term that ensures the output
stays consistent with parallel imaging reconstructions via carefully designed perturbations, thereby
preventing the network from producing a sparse all-zeros output.

to provide a closer approximation to the ¢y norm compared to the standard ¢; norm [[18]. Thus, this
compressibility of the output image in CUPID is achieved by the loss term

1 XL /(W f(xp, E
Cuamtonom) = -3 (it e ) ©

where xp; denotes the DICOM input acquired using parallel imaging, W represents the wavelet
transform, N is the total number of wavelet coefficients and x(™) signifies the signal estimate
following the training during the m™ reweighting step. Similar to [9}[18], we chose the initial weights
from a CS reconstruction that has a large regularization and e is added for numerical stability. Note,
here we redefined f(-, -) without the network parameters, €, and used xpy as the network input instead
of yq, to simplify notation.

Parallel imaging fidelity via perturbation equivariance Relying solely on Eq. @ will result
in inaccurate training as the neural network learns to produce an all-zeros image in an effort to
drive the wavelet coefficients in the numerator to zero, which minimizes the loss function in Eq. (6).
In [9], fidelity with raw k-space data was used to avoid this training issue. In our setting without raw
k-space access, we introduce a novel fidelity operator that stabilizes the training of the reconstruction
algorithm, building on ideas from parallel imaging. Specifically, we define a secondary loss term that
enforces parallel imaging fidelity formulated as:

Lyit(xp1) = Ep [|lp — p™2/IIpll2], (M

where p*' = f(xp; + p, Eq) — f(xp1, Eq). To motivate this loss term, we build upon the theoretical
foundation of equivariant imaging (EI) [20]. In EI, an equivariance property for the composition
of the forward operator and the reconstruction network is assumed with respect to a transformation
group, and necessary conditions are derived for signal recovery [20].

Our work adapts this framework by introducing a novel transformation group tailored to parallel
imaging (PI) in MRI. We note that parallel imaging reconstructions exhibit an equivariance property
with respect to a specific group of perturbations P = {pk}le, which are designed to ensure that
their R-fold aliasing do not create overlaps in the field-of-view. For p € P, welet Tp(x) =x+ p
be the affine perturbation from this group. Our parallel imaging fidelity then assumes equivariance of
the reconstruction network to perturbations from this group as follows:

[(Tp(xp),Eq) = f(xp1 + P, Eq) = f(xp1, Eq) + p = Tp (f(xp1, Eq)), (®)

Our second loss term, defined in Eq. (7)), promotes this equivariant behavior by penalizing deviations
from this property. We also note this set of perturbations satisfy the necessary conditions in [20]. In



doing so, it implicitly encodes parallel imaging consistency without relying on access to raw k-space
data. Our final loss function for CUPID is:

‘CCUPID = Ecomp +A- Epifv )
where A is a trade-off parameter between two terms.

Perturbation design specifics The perturbations used for R-fold acceleration are constructed to
avoid aliasing overlaps in the field-of-view, ensuring they are resolvable via parallel imaging. This
design aligns with the equivariance assumption introduced above: the network should recover an
accurate estimate of x from xpy, and x + p from xp; + p. Both cases are illustrated in Fig. E}

From an implementation perspective, the expectation over p is calculated over K such perturbations
{px}. The fold-over constraint for each {py,} is achieved by picking the perturbations as randomly
rotated and positioned letters, numbers, card suits or other shapes that have different intensity values.
These choices also ensure that high-frequency information, such as edges, are accurately reconstructed
by the regularization process. Further information on this is given in Appendix[C.2]

Subject-specific/zero-shot application In resource-limited settings, it may be more practical to
fine-tune the method using only a few subjects, or even a single subject, to significantly reduce
computational costs. As Eq. (@) does not solely focus on the subtraction between two entities, it lacks
an inherent mechanism to drive the loss to zero through overfitting. Therefore, CUPID can be tailored
to suit a scan-specific context [4] without any modification to the loss given in Eq. (9).

4 Evaluation

4.1 Experimental setup and implementation details

We conducted a thorough evaluation of our method, assessing its performance through both qualitative
and quantitative analyses, and focused on uniform/equidistant patterns which produces coherent
artifacts that are more difficult to remove compared to the incoherent artifacts from random under-
sampling [47].

Retrospective undersampling setup In our retrospective studies, we used fully-sampled multi-coil
knee and brain MRI data from the fastMRI database, acquired with relevant institutional review board
approvals [49, [78]. Knee dataset included fully-sampled coronal proton density-weighted (coronal
PD) and PD with fat suppression (coronal PD-FS) data, both with matrix sizes of 320 x 320. For
brain MRI, axial T2-weighted (ax T2) and axial FLAIR (ax FLAIR) datasets with matrix size of
320 x 320 are used. Both knee datasets comprise data collected from 15 receiver coils, while the brain
datasets include data collected from 16 and 20 receiver coils for the ax T2 and FLAIR, respectively.

Every dataset was retrospectively undersampled using a uniform/equidistant pattern at R = 4. 24
lines of auto-calibration signal (ACS) from center of the raw k-space data were kept. DICOM
images to train our proposed model were reconstructed using parallel imaging (CG-SENSE), solving
xp1 = (EJEq)'Ef yq. For each dataset, models were trained using 300 slices, and testing was
performed using 380 slices for knee MRI and 300 slices for brain MRI, from distinct subjects. More
details about the implementation of the PD-DL models are provided in Appendix [A]

Prospective undersampling setup In this experiment, we replicate the practical pipeline for
CUPID, where data is acquired at the desired high acceleration rate, and reconstructed to xp; with
noise and aliasing artifacts, using parallel imaging. To this end, a 3D MP2RAGE sequence [54] was
acquired on a 7T Siemens Magnetom MRI scanner, with institutional review board approval, and
matrix size= 320 x 300 x 224, isotropic resolution = 0.75mm, prospective undersampling R = 4 (in
k, only). This is the desired target acceleration, which is higher than the standard clinical acquisition.
Low-resolution images were acquired in the same orientation for sensitivity estimation [S0]. Training
and reconstruction with CUPID was done in a zero-shot subject-specific manner.

4.2 Comparison methods

We compared our method with several database training methods that have access to raw k-space
data, including supervised PD-DL [38, 2, 48], SSDU [/75]], and equivariant imaging (EI) [20]. All
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Figure 3: Representative slices reconstructed at an acceleration factor of R = 4 using equidistant
undersampling from coronal PD and coronal PD-FS knee MRI, as well as axial T2-weighted brain
MRI. The baseline CG-SENSE, CS, El-trained PD-DL, and DDS suffer from residual artifacts
highlighted by red arrows. PD-DL trained with CUPID improves upon them while delivering
reconstruction quality comparable to supervised and SSDU-trained PD-DL.

PD-DL methods used the same unrolled network and components (Appendix [A) to ensure that only
the training process differed for fair comparisons. We also compared CUPID with recent diffusion
model based techniques, ScoreMRI and DDS [22]. These train a time-dependent score function
using denoising score matching on a large dataset of reference fully-sampled DICOM images or
raw data, and uses this score function during inference to sample from the conditional distribution
given the measurements. Finally, we also included conventional reconstruction methods, CG-SENSE,
which was used to generate the original xp; as the clinical baseline comparison that is typically not
clinically usable at high acceleration rates [38]], as well as CS [533]].

We note that all aforementioned methods use EJy, for data fidelity during inference, since this is
what is needed to run gradient descent or conjugate gradient on /»-based fidelity terms including
yao and Egx, as seen in Eq. () or SuppMat Sec. 6. EH y, can be formed without accessing yq by
simply multiplying xp; with EZ Eq,. Note that Eq includes information about the undersampling
pattern €2, which is completely known from the acquisition parameters, and coil sensitivities, which
can be estimated from separate calibration scans in DICOM format [50]. We emphasize that what
sets CUPID apart from other PD-DL strategies is that it is the only one that can train the unrolled
network without using yq. Thus, without loss of generality, Eq is known both in training and in
testing for all methods.

In the zero-shot setup, we compared our zero-shot results with zero-shot SSDU (ZS-SSDU) [[74]
as well as CS, and our baseline method, CG-SENSE - all of which are compatible with zero-shot
inference. We also include DDS and ScoreMRI for inference in this setup, while noting that these
diffusion priors have been pre-trained on very large databases. This is done to highlight CUPID’s
performance and versatility, which is trained in a zero-shot manner on the given slice. All quantitative
evaluations used structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). We further
emphasize that CUPID does not use raw k-space data, and as a result, it does not benefit from the
redundancies across multiple coils due to the lack of access to multi-coil raw k-space data. Therefore,
resources are further restricted, unlike the comparison methods.

4.3 Experiments with retrospective undersampling

Database results Representative results in Fig. [3] show that baseline CG-SENSE, CS and EI
reconstructions exhibit residual artifacts, whereas DDS suffers from minor noise amplification. In



Table 1: Quantitative results for comparison methods on Coronal PD, Coronal PD-FS, Ax FLAIR, and
Ax T2 datasets using equispaced undersampling pattern at R = 4. First 3 rows: Gold standard setup.
Trained on the same organ, contrast and acceleration rate as the target population using fully-sampled
or sub-sampled raw data. Mid 2 rows: Trained on the same organ as the target population, using
either fully-sampled raw data or fully-sampled artifact-free DICOM images. Last 3 rows: No access
to raw data; only sub-sampled DICOM images with artifacts. The best and second-best values are
highlighted, excluding the gold standard setup.

Cor PD, Knee MRI Cor PD-FS, Knee MRI Ax FLAIR, Brain MRI Ax T2, Brain MRI

Method

PSNRT SSIMT PSNRtT  SSIM?  PSNRtT  SSIMT  PSNRT  SSIMt
Supervised [38] 40.44 0.964 35.72 0.893 37.91 0.967 36.77 0.933
SSDU [73] 39.64 0.957 35.68 0.892 37.55 0.964 36.59 0.931
EI [20] 38.07 0.938 33.83 0.849 36.40 0.953 34.58 0.909
ScoreMRI [23] 37.85 0.928 35.01 0.883 35.26 0.934 33.83 0.899
DDS 38.64 0.950 34.89 0.875 36.18 0.950 35.16 0.914
PI [60), 35.51 0.909 29.48 0.735 31.97 0.906 31.02 0.833
CS [33] 36.92 0.922 33.31 0.841 33.17 0.929 33.61 0.897

CUPID (ours)  38.82 0.952 35.04 0.880 36.49 0.957 35.31 0.921

contrast, CUPID successfully eliminates these artifacts from the CG-SENSE image using a well-
trained PD-DL network, achieving a state-of-the-art reconstruction quality comparable to supervised
PD-DL and SSDU, despite only having access to xpy for training, and not to raw k-space data unlike
these other methods. We observe that parallel imaging reconstruction is not clinically usable at higher
acceleration rates, but is improved using a CUPID-trained PD-DL reconstruction. Quantitative results
in Tab. [T support visual observations, showing that CUPID consistently outperforms CG-SENSE, CS,
and EI across multiple datasets. It also outperforms ScoreMRI and DDS across various scenarios in
the majority of cases, while achieving performance comparable to supervised PD-DL and SSDU,
both of which have access to raw data. Further qualitative results are provided in Appendix [l

Subject-specific/zero-shot learning results Fig. d] shows zero-shot reconstruction results. CG-
SENSE and CS suffer from noise amplification and residual artifacts, with CG-SENSE showing more
severe degradation. ScoreMRI and DDS exhibit artifacts in coronal PD, and ScoreMRI introduces
blurring in coronal PD-FS. This blurring leads to higher distortion metrics (e.g., PSNR/SSIM), which
favor smoother outputs due to penalties on high-frequency details, reflecting the perception-distortion

DICOM Generated Compressed

Reference via CG-SENSE (xp) Sensing Zs-Ssbu ScoreMRI DDS CUPID

Coronal PD, Knee MRI

Coronal PD-FS, Knee MRI

Figure 4: Representative subject-specific/zero-shot learning results for various algorithms on coronal
PD and coronal PD-FS knee MRI for retrospective R = 4 equidistant undersampling, along with
results from database-trained diffusion models on knee data. Baseline CG-SENSE, CS, ScoreMRI and
DDS suffer from residual artifacts (red arrows) and blurring. PD-DL with CUPID loss successfully
removes these artifacts, and functions in a similar manner to ZS-SSDU.



trade-off [[16}, 211 [7]. CUPID again achieves superior artifact and noise reduction, closely matching
ZS-SSDU quality despite lacking raw data or self-validation.

Ablation studies We further conducted three ablation studies to examine key factors influencing

CUPID’s performance. The first examined the effect

of the number of perturbations (Appendix [CT)),

the second explored the impact of the hyperparameter A across multiple values (Appendix [E), and the
third evaluated CUPID’s robustness to different sampling patterns and higher acceleration factors

(Appendix [F).

4.4 Practical setting: Prospective undersampling

As discussed in Section 4] brain data is acquired
at the target acceleration rate, reconstructed via
parallel imaging and exported in DICOM format
for zero-shot fine-tuning. Fig. [5]shows reconstruc-
tion results for the vendor parallel imaging recon-
struction, as well as CS, DDS and CUPID. Vendor-
provided R = 4 reconstruction on the scanner ex-
hibits residual artifacts in Fig.[5h (shown in zoomed
insets). CS effectively reduces noise but results
in an overly-smooth reconstruction. DDS slightly
mitigates the artifact and reduces noise, but both re-
main present. Our proposed CUPID method deliv-
ers the most effective artifact and noise mitigation
in the DICOM image without requiring any raw
k-space data, demonstrating its real-world effec-
tiveness. We note that ZS-SSDU cannot be applied
here due to the unavailability of raw data. We also
note that the vendor-provided DICOM was gener-
ated using k-space interpolation [34] instead of the
image domain formulation in Eq. (Z). Due to their
equivalence, this did not cause any issues for CU-
PID, as expected. Furthermore, vendor-provided

MP2RAGE, Brain MRI (R=4)

Figure 5: Prospective acceleration results
for various methods that operate on parallel
imaging-reconstructed DICOMs exported from
the scanner. (a) Vendor-provided PI DICOM
(R =4), (b) CS, (c) DDS, and (d) CUPID.

DICOMSs may also include additional zero-padding [65]], which our physics-based approach handles

naturally, as well as additional filtering/processing.
given in Appendix[D]and Appendix [G]

4.5 Out-of-distribution (OOD) example

We further illustrate the generalizability issues dis-
cussed in Section [3.I] with a representative out-of-
distribution example, intended to emulate the trans-
fer from urban training datasets to inference in a
rural setting, where scanner hardware and acquisi-
tion protocols often differ. Specifically, in Fig. [6]
we demonstrate how SSDU and supervised PD-DL
models trained on 3T coronal PD data struggle when
applied to 1.5T data with a different SNR, leading
to noticeable artifacts. DDS, trained on both 3T and
1.5T data, does a better job of mitigating this issue,
though some performance degradation persists. CU-
PID, zero-shot trained on the given slice without the
need for raw data, performs the best, effectively re-
ducing artifacts and maintaining high image quality.

More information related on these aspects is

DICOM Generate:

Coronal PD, Knee MRI

Figure 6: 1.5T OOD example showing CU-
PID’s superior artifact reduction.

4.6 Qualitative radiologist readings including FastMRI+ pathology cases

To assess the clinical plausibility of CUPID’s results,

we consulted a musculoskeletal radiologist and

a neuroradiologist, whose areas of expertise align with the knee and brain datasets. Both experts



Reference CUPID Reference CUPID

Axial FLAIR, Brain MRI
Coronal PD, Knee MRI

ﬁ . ! N

Figure 7: Representative pathology cases from the FastMRI+ dataset [79] showing CUPID recon-
structions alongside reference images for brain and knee pathologies. Qualitative expert radiologist
assessments suggest that CUPID maintains diagnostic content and visual fidelity across pathology
regions of interest.

independently and blindly reviewed the reconstructed images presented in this work, as well as
representative annotated pathology cases from the FastMRI+ dataset [79]], and provided an evaluation
of diagnostically relevant contents and overall clinical realism.

In retrospective experiments regarding database results (Fig. [3), the musculoskeletal radiologist
observed that CUPID led to slightly more blurring than the supervised and self-supervised PD-DL
methods, though this was not deemed diagnostically significant. Furthermore, CUPID was judged
superior to DDS for noise suppression and artifact reduction by both radiologists. For the zero-shot
experiments (Fig. @), the musculoskeletal radiologist reported no noticeable blurring relative to
ZS-SSDU and again found CUPID to yield lower noise than DDS.

For the prospective reconstructions (Fig. [3)), reconstructions (C) and (D) were favored for their lower
noise levels, whereas (A) was identified as the noisiest. The neuroradiologist preferred (D) overall,
citing clearer gray—white matter boundaries and less pixelation compared to the other variants.

Finally, in the pathology evaluation (Fig.[7), representative FastMRI+ cases were reviewed by the
same sub-specialists. For the brain dataset, the neuroradiologist compared CUPID and reference
reconstructions of a mass and a likely cyst, noting no visible differences in the pathology regions and
confirming that diagnostic information was maintained. For the knee dataset, the musculoskeletal
radiologist assessed meniscus tear (complex degenerative tearing of the body of the meniscus with
meniscal extrusion) and detailed depiction of the articular surface, which is critical for evaluating
cartilage integrity. In both cases, CUPID reconstructions were considered diagnostically similar to
the references in the clinically relevant areas.

5 Conclusion

In this study, we proposed Compressibility-inspired Unsupervised Learning via Parallel Imaging
Fidelity (CUPID), a novel training strategy for PD-DL MRI reconstruction using only clinically
accessible images, without raw k-space data. CUPID leverages image compressibility and carefully
designed perturbations that preserve parallel imaging consistency, enabling high-quality, physics-
driven reconstructions. To our knowledge, this is the first method to train PD-DL networks solely from
clinical images. CUPID also alleviates the training burden of generative methods, which requires a
large number of data during training to capture the prior well. Extensive retrospective and prospective
evaluations demonstrate the effectiveness of CUPID across diverse MRI scans and learning settings.

Acknowledgements The authors gratefully acknowledge Dr. Jutta Ellermann and Dr. Can
Oziitemiz for providing expert radiologist assessments during the rebuttal stage on short notice.

References

[1] A. Aali, G. Daras, B. Levac, S. Kumar, A. Dimakis, and J. Tamir. Ambient diffusion posterior sampling:
Solving inverse problems with diffusion models trained on corrupted data. In Proc. Int. Conf. Learn.
Represent., 2025.

[2] H. K. Aggarwal, M. P. Mani, and M. Jacob. MoDL: Model-based deep learning architecture for inverse
problems. IEEE Trans. Med. Imag., 38(2):394—405, 2019.

10



(3]

[4

—

(5]

(6]

[7

—

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

R. Ahmad, C. A. Bouman, G. T. Buzzard, S. Chan, S. Liu, E. T. Reehorst, and P. Schniter. Plug-and-play
methods for magnetic resonance imaging: Using denoisers for image recovery. IEEE Signal Process. Mag.,
37(1):105-116, 2020.

M. Akcakaya, S. Moeller, S. Weingértner, and K. Ugurbil. Scan-specific robust artificial-neural-networks
for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging. Magn.
Reson. Med., 81(1):439-453, Jan. 2019.

M. Akcakaya, B. Yaman, H. Chung, and J. C. Ye. Unsupervised deep learning methods for biological
image reconstruction and enhancement: An overview from a signal processing perspective. /[EEE Signal
Process. Mag., 39(2):28-44, 2022.

M. Akgakaya, M. Doneva, and C. Prieto (eds.). Magnetic resonance image reconstruction: theory, methods,
and applications, volume 7 of Advances in Magnetic Resonance Technology and Applications. Academic
Press, 2022.

Y. U. Algalar and M. Akgakaya. Zero-shot adaptation for approximate posterior sampling of diffusion
models in inverse problems. In Proc. Eur. Conf. Comput. Vis., pages 444—460, 2024.

Y. U. Alcalar and M. Akcakaya. Sparsity-driven parallel imaging consistency for improved self-supervised
MRI reconstruction. In Proc. IEEE Int. Conf. Image Process., pages 851-856, 2025.

Y. U. Algalar, M. Giille, and M. Akcakaya. A convex compressibility-inspired unsupervised loss function
for physics-driven deep learning reconstruction. In Proc. IEEE Int. Symp. Biomed. Imag., pages 1-5, 2024.

Y. U. Algalar, J. Yun, and M. Akcakaya. Automated tuning for diffusion inverse problem solvers without
generative prior retraining. In Proc. IEEE Int. Workshop CAMSAP, 2025.

V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen. On instabilities of deep learning in image
reconstruction and the potential costs of Al. Proc. Natl. Acad. Sci., 117(48):30088-30095, 2020.

M. Arvinte, S. Vishwanath, A. H. Tewfik, and J. I. Tamir. Deep J-Sense: Accelerated MRI reconstruction
via unrolled alternating optimization. In Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.,
pages 350-360, 2021.

R. Barbano, A. Denker, H. Chung, T. H. Roh, S. Arridge, P. Maass, B. Jin, and J. C. Ye. Steerable
conditional diffusion for out-of-distribution adaptation in medical image reconstruction. /EEE Trans. Med.
Imag., 44(5):2093-2104, 2025.

E. Bartsch, S. Shin, K. Sheehan, M. Fralick, A. Verma, F. Razak, and L. Lapointe-Shaw. Advanced imaging
use and delays among inpatients with psychiatric comorbidity. Brain Behav., 14(2), 2024. Art. no. e3425.
T. A. Basha, M. Akcakaya, C. Liew, C. W. Tsao, F. N. Delling, G. Addae, L. Ngo, W. J. Manning,

and R. Nezafat. Clinical performance of high-resolution late gadolinium enhancement imaging with
compressed sensing. J. Mag. Res. Imag., 46(6):1829-1838, 2017.

Y. Blau and T. Michaeli. The perception-distortion tradeoff. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recog., pages 6228-6237, 2018.

B. T. Burdorf. Comparing magnetic resonance imaging and computed tomography machine accessibility
among urban and rural county hospitals. J. Public Health Res., 11(1), 2022.

E.J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted /1 minimization. J. Fourier
Anal. Appl., 14(5):877-905, 2008.

E. P. Chandler, S. Shoushtari, J. Liu, M. S. Asif, and U. S. Kamilov. Overcoming distribution shifts in
plug-and-play methods with test-time training. In Proc. IEEE Int. Workshop CAMSAP, pages 186—190,
2023.

D. Chen, J. Tachella, and M. E. Davies. Equivariant imaging: Learning beyond the range space. In Proc.
IEEE/CVF Int. Conf. Comput. Vis., pages 43794388, 2021.

H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye. Diffusion posterior sampling for general
noisy inverse problems. In Proc. Int. Conf. Learn. Represent., 2023.

H. Chung, S. Lee, and J. C. Ye. Decomposed diffusion sampler for accelerating large-scale inverse
problems. In Proc. Int. Conf. Learn. Represent., 2024.

H. Chung and J. C. Ye. Score-based diffusion models for accelerated MRI. Med. Image Anal., 80, 2022.
Art. no. 102479.

F. Cotter. Uses of complex wavelets in deep convolutional neural networks. PhD thesis, University of
Cambridge, 2020.

S. U. H. Dar, M. Ozbey, A. B. Catli, and T. Cukur. A transfer-learning approach for accelerated MRI using
deep neural networks. Magn. Reson. Med., 84(2):663-685, 2020.

M. Z. Darestani, A. S. Chaudhari, and R. Heckel. Measuring robustness in deep learning based compressive
sensing. In Proc. Int. Conf. Mach. Learn., pages 2433-2444, 2021.

11



[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

M. Z. Darestani and R. Heckel. Accelerated MRI with un-trained neural networks. IEEE Trans. Comput.
Imag., 7:724-733, 2021.

0. B. Demirel, S. Moeller, L. Vizioli, B. Yaman, L. Dowdle, E. Yacoub, K. Ugurbil, and M. Ak¢akaya.
High-quality 0.5 mm isotropic fMRI: Random matrix theory meets physics-driven deep learning. In Proc.
Int. IEEE/EMBS Conf. Neural Eng. (NER), pages 1-6, 2023.

0. B. Demirel, B. Yaman, L. Dowdle, S. Moeller, L. Vizioli, E. Yacoub, J. Strupp, C. A. Olman, K. Ugur-
bil, and M. Akc¢akaya. 20-fold accelerated 7T fMRI using referenceless self-supervised deep learning
reconstruction. In Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), pages 3765-3769, 2021.

O. B. Demirel, B. Yaman, C. Shenoy, S. Moeller, S. Weingértner, and M. Akcakaya. Signal intensity
informed multi-coil encoding operator for physics-guided deep learning reconstruction of highly accelerated
myocardial perfusion CMR. Magn. Reson. Med., 89(1):308-321, Jan. 2023.

Y. C. Eldar, A. O. Hero III, L. Deng, J. Fessler, J. Kovacevic, H. V. Poor, and S. Young. Challenges and
open problems in signal processing: Panel discussion summary from ICASSP 2017 [panel and forum].
IEEE Signal Process. Mag., 34(6):8-23, 2017.

J. A. Fessler. Optimization methods for magnetic resonance image reconstruction. /EEE Signal Process.
Mag., 37(1):33-40, 2020.

D. Gilton, G. Ongie, and R. Willett. Deep equilibrium architectures for inverse problems in imaging. /EEE
Trans. Comput. Imag., 7:1123-1133, 2021.

M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, and A. Haase.
Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med., 47(6):1202—
1210, 2002.

H. Gu, B. Yaman, S. Moeller, J. Ellermann, K. Ugurbil, and M. Akcakaya. Revisiting ¢;-wavelet
compressed-sensing MRI in the era of deep learning. Proc. Natl. Acad. Sci., 119(33), 2022. Art. no.
€2201062119.

M. Giille, J. Yun, Y. U. Alcalar, and M. Ak¢akaya. Consistency models as plug-and-play priors for inverse
problems, 2025. arXiv:2509.22736.

J. Hamilton, D. Franson, and N. Seiberlich. Recent advances in parallel imaging for MRI. Prog. Nucl.
Magn. Reson. Spectrosc., 101:71-95, 2017.

K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. Learning a
variational network for reconstruction of accelerated MRI data. Magn. Reson. Med., 79(6):3055-3071,
2018.

K. Hammernik, T. Kiistner, B. Yaman, Z. Huang, D. Rueckert, F. Knoll, and M. Ak¢akaya. Physics-driven
deep learning for computational magnetic resonance imaging: Combining physics and machine learning
for improved medical imaging. /IEEE Signal Process. Mag., 40(1):98-114, 2023.

C. Han, T. S. Hatsukami, and C. Yuan. A multi-scale method for automatic correction of intensity
non-uniformity in MR images. Magn. Reson. Med., 13(3):428-436, 2001.

R. Heckel, M. Jacob, A. Chaudhari, O. Perlman, and E. Shimron. Deep learning for accelerated and robust
MRI reconstruction. Magn. Reson. Mater. Phys. Biol. Med., 37(3):335-368, 2024.

B. Hofmann, I. @. Brandsaeter, and E. Kjelle. Variations in wait times for imaging services: a register-based
study of self-reported wait times for specific examinations in Norway. BMC Health Serv. Res., 23(1):1287,
Nov. 2023.

S. A. H. Hosseini, B. Yaman, S. Moeller, M. Hong, and M. Ak¢akaya. Dense recurrent neural networks
for accelerated MRI: history-cognizant unrolling of optimization algorithms. IEEE J. Sel. Topics Signal
Process., 14(6):1280-1291, Oct. 2020.

Y. Hu, W. Gan, C. Ying, T. Wang, C. Eldeniz, J. Liu, Y. Chen, H. An, and U. S. Kamilov. SPICER:
Self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction. Magn.
Reson. Med., 2024.

A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. Tamir. Robust compressed sensing MRI
with deep generative priors. In Proc. Adv. Neural Inf. Process. Syst., pages 14938-14954, 2021.

P. M. Johnson, G. Jeong, K. Hammernik, J. Schlemper, C. Qin, J. Duan, D. Rueckert, J. Lee, N. Pezzotti,
E. De Weerdt, et al. Evaluation of the robustness of learned MR image reconstruction to systematic
deviations between training and test data for the models from the fastMRI challenge. In Proc. Mach. Learn.
Med. Image Reconstruction, pages 25-34, 2021.

F. Knoll, K. Hammernik, E. Kobler, T. Pock, M. P. Recht, and D. K. Sodickson. Assessment of the
generalization of learned image reconstruction and the potential for transfer learning. Magn. Reson. Med.,
81(1):116-128, 2019.

12



(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

(561

(571

(58]

(591

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

F. Knoll, K. Hammernik, C. Zhang, S. Moeller, T. Pock, D. K. Sodickson, and M. Ak¢akaya. Deep-learning
methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches,
trends, and issues. IEEE Signal Process. Mag., 37(1):128-140, 2020.

F. Knoll, J. Zbontar, A. Sriram, M. J. Muckley, M. Bruno, A. Defazio, M. Parente, K. J. Geras, J. Katsnelson,
H. Chandarana, et al. fastMRI: a publicly available raw k-space and DICOM dataset of knee images for
accelerated MR image reconstruction using machine learning. Radiol., Artif. Intell, 2(1), Jan. 2020. Art.
no. €190007.

F. Krueger, C. S. Aigner, K. Hammernik, S. Dietrich, M. Lutz, J. Schulz-Menger, T. Schaeftter, and
S. Schmitter. Rapid estimation of 2D relative B1+-maps from localizers in the human heart at 7T using
deep learning. Magn. Reson. Med., 89(3):1002-1015, 2023.

T. Kiistner, K. Hammernik, D. Rueckert, T. Hepp, and S. Gatidis. Predictive uncertainty in deep learning—
based MR image reconstruction using deep ensembles: Evaluation on the fastMRI data set. Magn. Reson.
Med., 92(1):289-302, 2024.

G. Luo, M. Blumenthal, M. Heide, and M. Uecker. Bayesian MRI reconstruction with joint uncertainty
estimation using diffusion models. Magn. Reson. Med., 90(1):295-311, 2023.

M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed sensing for rapid MR
imaging. Magn. Reson. Med., 58(6):1182-1195, Dec. 2007.

J. P. Marques, T. Kober, G. Krueger, W. van der Zwaag, P.-F. Van de Moortele, and R. Gruetter. MP2RAGE,
a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage,
49(2):1271-1281, 2010.

M. Martella, J. Lenzi, and M. M. Gianino. Diagnostic technology: Trends of use and availability in a
10-year period (2011-2020) among sixteen OECD countries. Healthcare (Basel), 11(14), Jul. 2023.

G. McGibney, M. R. Smith, S. T. Nichols, and A. Crawley. Quantitative evaluation of several partial
Fourier reconstruction algorithms used in MRI. Magn. Reson. Med., 30(1):51-59, 1993.

C. Millard and M. Chiew. A theoretical framework for self-supervised MR image reconstruction using
sub-sampling via variable density Noisier2Noise. IEEE Trans. Comput. Imag., 9:707-720, 2023.

V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep learning for signal and
image processing. IEEE Signal Process. Mag., 38(2):18-44, 2021.

M. J. Muckley, B. Riemenschneider, A. Radmanesh, S. Kim, G. Jeong, J. Ko, Y. Jun, H. Shin, D. Hwang,
M. Mostapha, et al. Results of the 2020 fastMRI challenge for machine learning MR image reconstruction.
IEEE Trans. Med. Imag., 40(9):2306-2317, 2021.

K. P. Pruessmann, M. Weiger, P. Bornert, and P. Boesiger. Advances in sensitivity encoding with arbitrary
k-space trajectories. Magn. Reson. Med., 46(4):638-651, 2001.

K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger. SENSE: Sensitivity encoding for fast
MRI. Magn. Reson. Med., 42(5):952-962, 1999.

P. S. Rajiah, C. J. Frangois, and T. Leiner. Cardiac MRI: State of the art. Radiology, 307(3), 2023.

J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert. A deep cascade of convolutional
neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag., 37(2):491-503, 2018.

I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury. The dual-tree complex wavelet transform. /IEEE
Signal Process. Mag., 22(6):123-151, 2005.

E. Shimron, J. I. Tamir, K. Wang, and M. Lustig. Implicit data crimes: Machine learning bias arising from
misuse of public data. Proc. Natl. Acad. Sci., 119(13), 2022.

Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in medical imaging with score-based
generative models. In Proc. Int. Conf. Learn. Represent., 2022.

R. Timofte, E. Agustsson, L. V. Gool, M.-H. Yang, and L. Zhang. NTIRE 2017 challenge on single image
super-resolution: Methods and results. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog. Workshop,
pages 114-125, 2017.

M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S. Vasanawala, and M. Lustig.
ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn.
Reson. Med., 71(3):990-1001, 2014.

K. Ugurbil, J. Xu, E. J. Auerbach, S. Moeller, A. T. Vu, J. M. Duarte-Carvajalino, C. Lenglet, X. Wu,
S. Schmitter, P. F. Van de Moortele, et al. Pushing spatial and temporal resolution for functional and
diffusion MRI in the Human Connectome Project. Neuroimage, 80:80-104, 2013.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recog., pages 9446-9454, 2018.

13



[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

(791

[80]

D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil, W.-M. H. Consortium,
et al. The WU-Minn Human Connectome Project: An overview. Neuroimage, 80:62-79, 2013.

L. Winter, J. Periquito, C. Kolbitsch, R. Pellicer-Guridi, R. G. Nunes, M. Héuer, L. Broche, and T. O’Reilly.
Open-source magnetic resonance imaging: Improving access, science, and education through global
collaboration. NMR Biomed., 37(7), 2024.

B. Yaman, H. Gu, S. A. H. Hosseini, O. B. Demirel, S. Moeller, J. Ellermann, K. Ugurbil, and M. Ak¢akaya.
Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic
resonance imaging. NMR Biomed., 35(12), 2022. Art. no. e4798.

B. Yaman, S. A. H. Hosseini, and M. Akcakaya. Zero-shot self-supervised learning for MRI reconstruction.
In Proc. Int. Conf. Learn. Represent., 2022.

B. Yaman, S. A. H. Hosseini, S. Moeller, J. Ellermann, K. Ugurbil, and M. Akcakaya. Self-supervised
learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn.
Reson. Med., 84(6):3172-3191, Dec. 2020.

B. Yaman, C. Shenoy, Z. Deng, S. Moeller, H. El-Rewaidy, R. Nezafat, and M. Ak¢akaya. Self-supervised
physics-guided deep learning reconstruction for high-resolution 3D LGE CMR. In Proc. IEEE Int. Symp.
Biomed. Imag., pages 100-104, 2021.

J. Yun, Y. U. Alcalar, and M. Akcakaya. Time-embedded algorithm unrolling for computational MRI,
2025. arXiv:2510.16321.

J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A. Defazio, R. Stern, P. Johnson,
M. Bruno, et al. fastMRI: An open dataset and benchmarks for accelerated MRI, 2019. arXiv:1811.08839.

R. Zhao, B. Yaman, Y. Zhang, R. Stewart, A. Dixon, F. Knoll, Z. Huang, Y. W. Lui, M. S. Hansen, and M. P.
Lungren. fastMRI+, clinical pathology annotations for knee and brain fully sampled magnetic resonance
imaging data. Scientific Data, 9(1):152, 2022.

Y. Zhao, Y. Ding, V. Lau, C. Man, S. Su, L. Xiao, A. T. Leong, and E. X. Wu. Whole-body magnetic
resonance imaging at 0.05 Tesla. Science, 384(6696), 2024.

14



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We confirm that the main claims made in the abstract and introduction accurately reflect
our contributions and scope.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims made in the
paper.
* The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations of out work in extensively, see the Limitations section
in Appendix Section[G}
Guidelines:

¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,

asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: We do not propose a theoretical proof. This question is not applicable to our work.
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We confirm that we have provided a detailed explanation of our experimental setup in
Section[d.T|and Appendix Section[A] Furthermore, our source codes will be published if the paper is
accepted.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

¢ Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Data for our retrospective studies are openly available and details to reproduce the
main experimental results are provided in Sectiond.T]and Appendix Section[A] The code is publicly
available at https://github.com/ualcalar17/CUPID.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide a comprehensive explanation of all relevant details in the main text and the
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars/standard deviations of quantitative metrics are described in Appendix Sec-
tion [H]

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

¢ The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: We have provided sufficient information on the computer resources in Appendix.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We have discussed the potential positive societal impacts of this work in Section[I]and
Section[3.1] We believe our work does not pose any negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: We think that our paper poses no such risks.
Guidelines:

¢ The answer NA means that the paper poses no such risks.
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13.

15.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

¢ Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: The assets including data and baseline models used in this paper are properly cited.
Guidelines:

¢ The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

» The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: We do not do any crowdsourcing or research with human subjects that require instructions
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]

Justification: The 3D MP2RAGE brain imaging data was acquired on a 7T Siemens Magnetom MRI
scanner under the relevant institutional review board (IRB) approvals. Knee and brain imaging data
was obtained from the publicly available NYU fastMRI dataset [49} 78], which was collected with
IRB approval and subject consent as detailed in the original publication. No additional data involving
human subjects were collected in this study.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used in any part of the core methodology, data processing, analysis, or
experimental design of this research.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Implementation Details for Each Method

PD-DL based approaches For each PD-DL method, VS-QP [2,[75] 29} 30, [76] was unrolled to
solve Eq. (3), transforming it into 2 sub-problems:

2 = argmin |[x0Y — 2|2 + R(2), (10a)

x() = argmin |yq — Eox|3 + ulx — 2|3, (10b)

where Eq. (I0d) is the proximal operator for the regularization, implicitly solved using neural
networks, while Eq. accounts for data fidelity and has a closed form solution:

x) = (EHEq + 1) (Bl yq + uz), (11)

which was solved using a conjugate-gradient (CG) method [2] with 15 iterations. Unrolled network
for each method comprised 10 unrolls, while the regularizer was implemented as a CNN-based
ResNet architecture [[67] that had 15 residual blocks. Each layer within these blocks had 3x3
kernels and 64 channels, totaling 592,129 trainable parameters. The unrolled network was trained
in an end-to-end fashion for 100 epochs. For supervised PD-DL [38] 2]], the normalized ¢;-¢5 loss
function was used between the reconstructed and ground truth raw k-space data [48],28]]. For SSDU,
p = |A]/IQ] = 0.4 was used as proposed in [73]. For EI [20], we modified the loss function in
PD-DL networks to:

minE[£ (yo,%0)] + 8 ) _ L (TyXa, f (BaTs%o, Ea;0)), (12)

geG

where X = f (yq, Eq; 0) is the PD-DL network output. First term in Eq. enforces consistency
with acquired raw data, while the second term imposes equivariance relative to a group of transfor-
mations, {7, }4ec. Here, |G| is the cardinality of {7,},cc and S is the equivariance weight. We
followed the authors’ publicly available CT reconstruction code for EI [20], and employed 3 rotations
along with 2 flips. For CUPID, dual-tree complex wavelet transform (DTCWT), which provides
an over-complete representation [64), 24]], was selected as the sparsifying transform (W) in Eq. (6).
Furthermore, x(*) in Eq. (6], i.e. the initial estimate prior to any reweighting, was calculated using
a CS approach as mentioned in Section[3] This was implemented using Eq. (I3) with 10 iterations,
with 10 CG steps for data fidelity and 0.01 - [|[Wxp;|| as the soft thresholding parameter.

Compressed sensing We solved the regularized ¢; minimization problem given below:

argmin [lyq — Eox|l2 + 7| Wx]|1, (13)

using VS-QP [32]]. Similar to the unrolled network, data fidelity was solved using CG, and soft
thresholding was implemented on the DTCWT coefficients.

DDS We followed the original code and pre-trained score network provided by [22] in their
corresponding public repository. We used 50-150 DDIM sampling steps depending on the SNR and
noise level, and tuned the number of CG iterations for the best performance.

ScoreMRI For ScoreMRI implementation, we followed the original code and pre-trained network
provided by [23]] in their corresponding public repository and used 2000 predictor-corrector (PC)
sampling.

Each method (including CUPID) was implemented using a single NVIDIA A100-SXM4-80GB GPU
that has a total memory of 80 GB.

B Computational Efficiency and Runtime Analysis

As noted in Section.2]and Appendix[A] all PD-DL comparison methods share the same unrolled
network architecture. Consequently, they exhibit identical inference times of under one second per
slice once they are trained on a database. Diffusion-based methods, such as ScoreMRI and DDS,
require substantially longer training and sampling times due to their iterative denoising processes and
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Table 2: Training and inference/run-time of comparison methods under database and zero-shot
settings using a single NVIDIA A100-SXM4-80GB GPU. N/A indicates methods without dataset-
level training or zero-shot configuration.

Method Database setting Zero-shot setting
Train [GPU hours] | Inference | Runtime |
Supervised [38] ~3.5 hours < 1 seconds -
SSDU [73]] ~3.5 hours < 1 seconds -
EI ~3.5 hours < 1 seconds -
ScoreMRI [23]] ~168 hours ~350 seconds -
DDS (150 NFEs) ~168 hours ~10 seconds -
ZS-SSDU [IEI] - - ~ KZS—SSDU X 15 seconds
CUPID (ours) ~ (Kcupip + 1)x3.5hours < 1seconds ~ (Kcupmp + 1)x63 seconds

large model complexity. These methods often involve hundreds to thousands of sampling steps during
inference, resulting in inference times that are orders of magnitude higher than PD-DL approaches.

In the zero-shot setting, ZS-SSDU serves as a useful baseline that, like CUPID, adapts to individual
scans without dataset-level retraining. However, ZS-SSDU relies on access to raw k-space data and
employs Kzg_sspu = 25 k-space masks in its public implementation. In contrast, CUPID operates
entirely on reconstructed DICOM images and eliminates the need for raw data while maintaining
comparable zero-shot reconstruction performance.

Although zero-shot optimization intro-
duces additional computation, such run-
times are generally acceptable in clinical
workflows where reconstructions can be
completed offline, for instance when image
readings occur on the following day [13].
Furthermore, CUPID introduces a control-
lable trade-off between reconstruction qual-
ity and computational cost, determined by
the number of perturbation patterns used
during optimization (denoted as Kcypip
in Tab. . In our experiments, we set
Kcupip = 6, resulting in a runtime of
approximately 7-8 minutes per slice, de-
pending on the network depth. Both factors
can be adjusted to balance reconstruction
fidelity against run-time.

) 3%27/0.883

} ()
9

Figure 8: Representative zero-shot fine-tuning result
for CUPID with varying perturbation counts (KX) on
coronal PD knee MRI (R = 4). (a) Fully-sampled,
C.1 Choice (b) CG-SENSE, (c-f) CUPID with K = 1,3,6, 10.
for number of perturbation patterns Fewer perturbations (K < 6) yield artifacts due to poor
expectation estimates; quality improves with K, but
The empirical expectation that approxi- gains become negligible beyond K = 6.
mates the one in Eq. (7) is expected to con-
verge to the true expectation as we introduce more perturbation patterns and randomness over the
choice of p. Fig. [8shows the zero-shot fine-tuning results of CUPID with K € {1, 3,6, 10}, while
Fig.|9al and Fig. Ob|illustrates the corresponding PSNR and SSIM curves throughout the training
epochs, respectively. As expected, using a single pattern does not capture the true mean and exhibits
artifacts. As we introduce more perturbations, we reduce the artifacts and noise amplification. At
a certain point, increasing the number of perturbations becomes counterproductive, yielding only
marginal gains while significantly increasing the computation time. Thus, we opted to use 6 distinct
Pk patterns throughout our study as it offers the optimal trade-off.

C Perturbation Strategies
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(a) PSNR curves for each K value. (b) SSIM curves for each K value.

Figure 9: PSNR and SSIM curves confirm the visual observations with respect to the number of
perturbations, K. Lower K values tend to perform worse and increasing K becomes redundant after
a certain point.

Figure 10: Added perturbations may consist of: (a) precisely positioned letters that have the same
intensity in within each shape, (b) randomly positioned letters or (c) circles that have different
intensities, or (d) randomly rotated card suits. Furthermore, when accelerated by R = 4, even without
ACS data, whose corresponding zerofilled image is shown in (e), these perturbations can be resolved
via parallel imaging methods such as CG-SENSE: (f) 20 iterations, (g) 40 iterations, (h) 80 iterations.

C.2 Design alternatives for perturbations

As stated in Section (3] added perturbations may consist of several different structures. Fig.
provides some of these perturbation examples, an illustration of how the perturbation looks with
undersampling, and how they are recovered perfectly through conventional parallel imaging methods.

We note that there was no task-specific perturbation that we used, meaning that the perturbations
selected from the same set were applied to all datasets given that the created perturbations do not
create fold-overs at R-fold which result in artifacts. Note the latter condition means they should
be recoverable through parallel imaging reconstruction. Finally, we note that when calculating the
sample mean estimate for Eq. (7), intensity of the perturbations was empirically found to be more
important than their shapes/orientations. Specifically, we observed that varying it randomly within
the perturbation, as in Fig.[I0p-d, leads to improved reconstruction outcomes.

23



Reference GRAPPA CUPID

Figure 11: Representative reconstructions for CUPID with xp; reconstructed using GRAPPA on
coronal PD knee MRI using R = 4 uniform undersampling. GRAPPA exhibits aliasing and noise
artifacts at this high acceleration rate. PD-DL network trained with a CUPID implementation that only
has access to this GRAPPA reconstruction improves on it, reducing these artifacts. This highlights
the compatibility of CUPID with different parallel imaging reconstructions.

D Compatibility with Various Parallel Imaging Reconstructions

Vendor reconstructions typically use different parallel imaging techniques. For our retrospective
studies, we used CG-SENSE (or equivalently SENSE) [61] because it naturally fits with the DF
units in the unrolled network, and it is commonly used in clinical settings, alongside GRAPPA [34]].
However, we emphasize that our method does not make assumptions about the specific reconstruction
method used by the vendor; instead, it assumes that parallel imaging can resolve the perturbations,
which is ensured by designing them in a manner that prevents fold-over aliasing artifacts from
overlapping.

To further validate this, we include representative CUPID reconstruction results in Fig. |'1;1'| where
xpy is generated via GRAPPA [34], demonstrating that CUPID is compatible with different types
of parallel imaging reconstructions as input. We further note that the prospective study also used
GRAPPA reconstruction as input, as this is the reconstruction provided by the vendor used in our
institution.

E Effect of the Trade-off Parameter

We explored the effect of A parameter in CUPID by training 5 distinct PD-DL networks using
A € {0,50,100, 200, co}. We note that using A = 0 corresponds to using only the compressibility
term (Leomp in Eq. (), whereas using A — oo translates to using solely the parallel imaging
fidelity term (L in Eq. (7). Fig. |'1:Z| shows the corresponding reconstruction results for each case.
As outlined in SectionEI, only using Leomp leads to overly-smooth reconstructions due to network
forcing the wavelet coefficients towards zero without maintaining consistency with the data. On the
other hand, solely using Ly results in DIP-like reconstructions [[70], where the network overfits the
data without any regularization, resulting in noise amplification. CUPID with A € {50, 100,200}
combines both loss terms to attain high-fidelity reconstructions. Thus, we conclude that CUPID

DICOM Generated
Reference via CG-SENSE (xp) A-0 A=50 =100 A=200 A- o

32.54[0.870 22.86/0.814

Figure 12: Using only the compressibility term (A = 0) in the loss leads to overly-smoothed images,
whereas using only the parallel imaging fidelity term (A — oc0) causes noise amplification (red arrows).
Using both terms with a mid-range A value as a trade-off provides high-quality reconstructions that
are clear from noise and artifacts.
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demonstrates robust performance across a wide range of A values, provided that X is chosen within a
reasonable range.

F Experiments on Sampling Pattern Variations and High Acceleration Rates

We further evaluated the robustness of CUPID to variations in acceleration rate and sampling pattern
using the fastMRI knee and brain datasets [49] [78]]. Representative zero-shot reconstruction results
for these settings are shown in Fig.[T3]

Specifically, we tested:

* Random uniform undersampling at an acceleration rate of R = 4 (in contrast to the
equidistant pattern used in the main text),

* Equidistant undersampling at higher acceleration rates of R = 6 and R = 8.

For random uniform undersampling at R = 4, the results were comparable to those obtained with
equidistant sampling, exhibiting similarly clean reconstructions with effective noise suppression and
minimal artifacts. At R = 6, CUPID continued to produce high-quality reconstructions, preserving
image sharpness and structure with only minor residual artifacts.

At R = 8, CUPID still achieved
effective noise suppression but

exhibited visible residual arti-
facts in some regions, indicat-
ing that this acceleration fac-
tor likely represents the practi-
cal limit with the current coil :
configurations and SNRs on
the fastMRI datasets. The ob-
served degradations arise pri-
marily from the increasing loss
of quality for the parallel imag-
ing reconstruction at high accel-
eration, which weakens the ini-
tialization, and from the general
limitations of DL-based meth-
ods in highly underdetermined
regimes. Previous studies have

shown that supervised PD-DL

methods yield visible blurring Figure 13: Representative reconstructions from the fastMRI dataset
and reduced diagnostic quality for different acceleration rates and sampling patterns, illustrating
at R = 8 [59], while self- robustness up to I = 6. Artifact emerge at R = 8, as expected.
supervised approaches trained

with raw k-space data also exhibit residual aliasing at this rate [[75 [8]. Since CUPID operates
without any access to raw k-space measurements, similar or slightly greater degradation at extreme
acceleration rates is expected. Overall, these results demonstrate that CUPID generalizes effectively
across sampling patterns and maintains strong reconstruction performance up to moderate accelera-
tion factors, with performance degradation at very high acceleration factors consistent with known
challenges in highly accelerated MRI reconstruction.

Reference DICOM (xp;) CUPID
32.78/0.765 36.07/0.870

R=4
(Uniform Random)

Coronal PD-FS, Knee MRI

=6

R
Coronal PD, Knee MRI

R=8

25.20/0,548==
End

Axial T2, Brain MRI

G Limitations

We note some practical aspects for the translation of CUPID. While our method aims to improve
equitable access to fast MRI in low-resource settings, we acknowledge hardware limitations for
fine-tuning PD-DL models; however, since CUPID only requires anonymized DICOM images, data
can be securely transferred to off-site locations with greater computational resources. In addition,
when a reference calibration scan is unavailable, as in most DICOM databases, coil sensitivities
must be estimated during reconstruction. This is addressed in standard PD-DL with raw k-space
access [44, [12]], but outside the scope of this study.
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MR scans may also include filtering operations applied by some vendors that affect the assumption
Xpr = (Eg Eq)~ 1 Eg yq. This was discussed extensively in [65]], in the context of using retrospective
undersampling of DICOM images to train DL reconstruction, especially highlighting the use of
zero-padding, which improves the display resolution compared to the acquisition resolution. It was
shown that training of models from retrospective undersampling of DICOM image databases for
PD-DL training using zero-padding may lead to biases and inaccuracies. Conversely, our approach
is physics-driven in nature, and the sampling pattern {2 naturally accounts for the zero-padding
operation. However, our method is not immune to other types of filtering/processing, such as implicit
intensity correction [40] or deidentification methods [71], in which case the filtered xp; would need
to be treated as the parallel imaging solution corresponding to a filtered version of y.

H Additional Quantitative Analysis with Standart Deviation

To provide a more comprehensive comparison, Tab. [B|reports the mean and standard deviation for all
quantitative metrics across four datasets. This supplements Tab. [T by quantifying the consistency of
each method.

Table 3: Quantitative results with standard deviations for all comparison methods on Coronal PD,
Coronal PD-FS, Ax FLAIR, and Ax T2 datasets using equispaced R = 4 undersampling. Mean +
std values are shown. Categories and highlight conventions follow Tab. |I|in the main text.

Method Cor PD, Knee MRI Cor PD-FS, Knee MRI Ax FLAIR, Brain MRI Ax T2, Brain MRI

PSNRT SSIM: PSNRT SSIM PSNRT SSIMT PSNRY SSIM

Supervised [38] 40.44 4+ 327 0964 + 0.018 3572 +249  0.893 + 0.058  37.91 + 1.81 0.967 + 0.008  36.77 4325  0.933 + 0.062

SSDU [75] 39.64 + 326 0.957 4 0.021 0.892 + 0.060  37.55 4 1.76  0.964 £ 0.009  36.59 + 3.11 0.931 + 0.060
EI [20] 38.07 +3.79  0.938 4 0.033 0.849 + 0.075  36.40 + 1.70  0.953 £ 0.010  34.58 +2.88  0.909 + 0.066
ScoreMRI [23]  37.85 4 3.66  0.928 £ 0.031 3501 +2.46  0.883 4+ 0.058 3526+ 1.84 0934 +0.013 33.83£270  0.899 =+ 0.065
DDS [22] 38.64 342  0.950 4+ 0.026  34.89 £2.50 0.875+0.064 3618 +195 0.950 £ 0.012 3516+ 3.13 0914 + 0.076
PI [60)134] 3551 414 0909 4 0.047 2948 +£343 0735+ 0.112 3197 199 0906 + 0.018  31.02+249 0833 + 0.075
CS [33] 36.92 4372 0922 4+ 0.035 3331 +£271 0.841 +0.079  33.17 £ 1.79  0.929 £ 0.013  33.61 4 2.61 0.897 + 0.071

CUPID (ours)  38.82 +3.23  0.952 + 0.024  35.04 + 245 0.880 + 0.059 3649 + 1.72  0.957 + 0.009 3531+ 3.09 0921 + 0.073

I More Results from the Retrospective Study

We provide additional qualitative reconstruction results for various methods, showcasing representa-
tive reconstructions from each dataset, as illustrated in Fig.[T4]
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DICOM Generated Compressed
Reference via CG-SENSE (xp;) Sensing Supervised PD-DL SsSbu El DDS CUPID

Coronal PD, Knee MRI

Coronal PD-FS, Knee MRI

33.51/0.996,

Axial T2, Brain MRI

Axial FLAIR, Brain MRI

Figure 14: Illustrative slices reconstructed at R = 4 using equidistant undersampling from coronal
PD and coronal PD-FS knee MRI, as well as axial T2 and FLAIR brain MRI. CG-SENSE, CS, EI and
DDS exhibit artifacts. On the other hand, CUPID surpasses them with high-fidelity reconstructions,
closely matching supervised and self-supervised PD-DL methods that require raw k-space data during
training.
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