Under review as a conference paper at ICLR 2025

TABM: ADVANCING TABULAR DEEP LEARNING
WITH PARAMETER-EFFICIENT ENSEMBLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning architectures for supervised learning on tabular data range from
simple multilayer perceptrons (MLP) to sophisticated Transformers and retrieval-
augmented methods. This study highlights a major, yet so far overlooked op-
portunity for substantially improving tabular MLPs; namely, parameter-efficient
ensembling — a paradigm for imitating an ensemble of models with just one model.
We start by describing TabM — a simple model based on MLP and BatchEnsem-
ble (an existing technique), improved with our custom modifications. Then, we
perform a large scale evaluation of tabular DL architectures on public benchmarks
in terms of both task performance and efficiency, which renders the landscape of
tabular DL in a new light. In particular, we find that TabM outperforms prior tabular
DL models, while the complexity of attention- and retrieval-based methods does
not pay off. Lastly, we conduct a detailed empirical analysis, that sheds some light
on the high performance of TabM. For example, we show that parameter-efficient
ensembling is a highly effective way to reduce overfitting and improve optimization
dynamics of tabular MLPs. Overall, our work brings an impactful technique to tab-
ular DL, analyses its behaviour, and advances the performance-efficiency tradeoff
with TabM - a simple and powerful baseline for researchers and practitioners.

1 INTRODUCTION

Supervised learning on tabular data is a popular practical ML scenario in a wide range of industrial
applications. Among classic non-deep-learning methods, the state-of-the-art solution for such tasks is
gradient-boosted decision trees (GBDT) (Prokhorenkova et al., 2018; Chen & Guestrin, 2016; Ke
et al., 2017). Deep learning (DL) models for tabular data, in turn, are reportedly improving, and
the most recent works claim to perform on par or even outperform GBDT on academic benchmarks
(Hollmann et al., 2023; Chen et al., 2023b;a; Gorishniy et al., 2024).

However, from the practical perspective, it is unclear if tabular DL offers any obvious go-to baselines
beyond simple architectures in the spirit of a multilayer perceptron (MLP). First, the scale and
consistency of performance improvements of new methods w.r.t. simple MLP-like baselines are not
always explicitly analyzed in the literature. Thus, one has to infer those statistics from numerous
per-dataset performance scores, which makes it hard to reason about the progress. At the same
time, due to the extreme diversity of tabular datasets, consistency is an especially valuable and
hard-to-achieve property for a hypothetical go-to baseline. Second, efficiency-related properties,
such as training time, and especially inference throughput, sometimes receive less attention. While
methods are usually equally affordable on small-to-medium datasets (e.g. <100K objects), their
applicability to larger datasets remains uncertain. In this work, we revisit existing tabular DL. methods,
and find that non-MLP models do not yet offer a convincing replacement for MLP-like models.

At the same time, we identify a previously overlooked path towards more powerful, reliable and
reasonably efficient tabular DL models. Our story starts with an observation that BatchEnsemble
(Wen et al., 2020) — a technique that allows one model to efficiently imitate an ensemble of models —
is a highly effective modification for tabular MLPs. Then, we analyze and improve BatchEnsemble-
based MLPs, which results in our model TabM. Drawing an informal parallel with GBDT, TabM
can also be viewed as a simple base model (MLP) combined with an ensembling-like technique,
providing high performance, simple implementation and ease of use, all at once.

Under review as a conference paper at ICLR 2025

Given the massive positive impact of a long-existing method (BatchEnsemble) on a long-existing
baseline (MLP), we suggest that the lack of a powerful ensemble-like tabular architecture has been a
prominent gap in tabular DL for too long time. Our work closes this gap and offers a new powerful
and practical baseline to practitioners and researchers.

Main contributions. We summarize our main contributions as follows:

1. We present TabM — a simple deep learning architecture for supervised learning on tabular data.
TabM is a combination of MLP, BatchEnsemble and custom modifications (e.g. an improved
initialization strategy). TabM easily competes with GBDT models and outperforms prior tabular
DL models, while being more efficient than attention- and retrieval-based DL models.

2. We provide a fresh perspective on tabular DL. models in a large scale evaluation along four
dimensions: task performance, performance consistency, training time and inference throughput.
One of our findings is that MLP-like models, including TabM, hit an appealing performance-
efficiency tradeoff, which is rather not the case for attention- and retrieval-based models.

3. We conduct a detailed empirical analysis that gives an intuition on the effectiveness of TabM
compared to plain MLPs. In particular, we observe that TabM exhibits significantly improved
training dynamics, including reduced overfitting and smaller variance of the stochastic gradients.

2 RELATED WORK

Decision-tree-based models. Gradient-boosted decision trees (GBDT) (Prokhorenkova et al., 2018;
Chen & Guestrin, 2016; Ke et al., 2017) is a powerful baseline for tabular tasks. GBDT is a classic
machine learning model, while our model TabM is a deep learning model.

Tabular deep learning architectures. A large number of deep learning architectures for tabular
data has been proposed over the recent years. That includes attention-based architectures (Song
et al., 2019; Gorishniy et al., 2021; Somepalli et al., 2021; Kossen et al., 2021; Yan et al., 2023),
retrieval-augmented architectures (Somepalli et al., 2021; Kossen et al., 2021; Gorishniy et al., 2024;
Ye et al., 2024), MLP-like models (Gorishniy et al., 2021; Klambauer et al., 2017; Wang et al., 2020)
and others (Arik & Pfister, 2020; Popov et al., 2020; Chen et al., 2023b; Marton et al., 2024; Hollmann
et al., 2023). Compared to prior work, the key difference of our model TabM is its computation
flow, where one TabM imitates an ensemble of MLPs by producing multiple independently trained
predictions. Prior attempts to bring ensemble-like elements to tabular DL (Badirli et al., 2020; Popov
et al., 2020) were not found promising (Gorishniy et al., 2021).

Also, being a simple feed-forward MLP-based model, TabM is significantly more efficient than
some of the prior work. For example, compared to attention-based models, TabM does not suffer
from quadratic computational complexity w.r.t. the dataset dimensions. Compared to retrieval-based
models, TabM is easily applicable to large datasets.

Improving tabular MLP-like models. Multiple recent studies achieved competitive performance
with MLP-like architectures on tabular tasks by applying architectural modifications (Gorishniy
et al., 2022), regularizations (Kadra et al., 2021; Jeffares et al., 2023a; Holzmiiller et al., 2024),
pretraining (Bahri et al., 2021; Rubachev et al., 2022). Thus, it seems that tabular MLPs have good
potential, but one has to deal with overfitting and optimization issues to reveal that potential. In
line with prior studies, our work also renders MLP as a capable tabular backbone and effectively
addresses the aforementioned issues by applying the parameter-efficient “ensembling” method
BatchEnsemble (Wen et al., 2020). Our approach is orthogonal to (and compatible with) training
techniques like regularization or pretraining, and with any architectural advancements in MLPs and
feature embeddings (Gorishniy et al., 2022).

Deep ensembles. In this paper, by a deep ensemble, we imply multiple DL models of the same
architecture trained independently (Jeffares et al., 2023b) for the same task under different random
seeds (i.e. with different initializations, training batch sequences, etc.). The prediction of a deep
ensemble is the average prediction of its members. Deep ensembles often significantly outperform
single DL models of the same architecture (Fort et al., 2020), and can excel in other tasks like
uncertainty estimation or out-of-distribution detection (Lakshminarayanan et al., 2017). It was
observed that individual members of deep ensembles can learn to extract diverse information from the
input, and the power of deep ensembles depends on this diversity (Allen-Zhu & Li, 2023). The main
drawback of deep ensembles is the cost and inconvenience of training and using multiple models.

Under review as a conference paper at ICLR 2025

Parameter-efficient deep “ensembles”. To achieve the performance of deep ensembles at a lower
cost, multiple studies proposed architectures that imitate ensembles by producing multiple indepen-
dently trained predictions (Lee et al., 2015; Zhang et al., 2020; Wen et al., 2020; Havasi et al., 2021;
Turkoglu et al., 2022) (there are also non-architectural approaches to efficient ensembling, e.g. FGE
(Garipov et al., 2018), but they are less relevant to our work). Despite being single architectures,
such approaches are sometimes informally called “(parameter-efficient) ensembles”. Usually, in
such ensemble-like models, each of the predictions relies on a large amount of weights shared for
all predictions, and a small amount of prediction-specific weights. In our work, by applying and
customizing BatchEnsemble (Wen et al., 2020), we highlight parameter-efficient ensembling as an
impactful paradigm for tabular DL, and perform the original analysis on its influence on tabular
MLPs (section 5).

3 TaBM

In this section, we present TabM — a Tabular model that makes Multiple predictions.

3.1 PRELIMINARIES

Notation. We consider classification and regression tasks on tabular data. 2 and y denote the features
and a label, respectively, of one object from a given dataset. A machine learning model takes x as
input and produces g as a prediction of y. NV € N and d € N respectively denote the “depth” (e.g. the
number of blocks) and “width” (e.g. the size of the latent representation) of a given neural network.
d, € Nis the output representation size (e.g. d,, = 1 for regression tasks, and d,, equals the number
of classes for classification tasks). £ is the loss function used for training a neural network.

Datasets. Our benchmark consists of 50 publicly available datasets used in prior work, including
Grinsztajn et al. (2022); Gorishniy et al. (2024); Rubachev et al. (2024). The main properties of our
benchmark are summarized in Table 1, and more details are provided in Appendix C.

Table 1: The overview of our benchmark. The “Split type” property is explained in the text.

#Datasets Train Size #Features Task type Split type
Min. Q50 Mean Max. Min. Q50 Mean Max. #Regr. #Classif. Random Domain-aware
50 1787 10K 71K 723K 3 17 100 986 32 18 41 9

In particular, we pay extra attention to datasets with what we call “domain-aware” splits, including
the eight datasets from Rubachev et al. (2024) and the Microsoft dataset (Qin & Liu, 2013). For these
datasets, their original real world splits are available, for example, time-aware splits as in Rubachev
et al. (2024). Such datasets were shown to be challenging for some methods, because they naturally
exhibit a certain degree of distribution shift between training and test parts (Rubachev et al., 2024).
The random splits of the remaining 41 datasets are inherited from prior work.

Experiment setup. We use the experiment setup from Gorishniy et al. (2024) and describe it in detail
in subsection E.2. In a nutshell, for each model on each dataset, the pipeline is as follows. First, the
model undergoes hyperparameter tuning on the validation set. Then, the tuned model is trained from
scratch under multiple random seeds. The final score of the model on the dataset is defined as the fest
metric averaged over the random seeds.

Metrics. We use RMSE (the root mean square error) for regression tasks, and accuracy or ROC-
AUC for classification tasks depending on the dataset source. Additional details are provided in
subsection E.3.

Also, throughout the paper, we often use the relative performance of models w.r.t. MLP as the key
metric. This metric gives a unified perspective on all tasks and allows reasoning about the scale and
consistency of improvements w.r.t. to a simple baseline (MLP). Formally, on a given dataset, the
metric is defined as (bjgglrlie — 1) -100%, where “score” is the metric of a given model, and “baseline”
is the metric of MLP. In this computation, for regression tasks, we convert the raw metrics from

RMSE to R? to better align the scales of classification and regression metrics.

Under review as a conference paper at ICLR 2025

3.2 A QUICK INTRODUCTION TO BATCHENSEMBLE

BatchEnsemble (Wen et al., 2020) plays an important role in our story, so we quickly describe it in
this section.

Let’s consider a linear layer Linear(z) = Wz + b, where z € R%, W € R¥*? and b € R? (we
keep the input and output dimensions equal for simplicity, but they can be different). In a traditional
deep ensemble, each ensemble member has an independent weight matrix W; for this linear layer. By
contrast, in BatchEnsemble, the weight matrix W, of each member is obtained with the elementwise
product of a shared full-rank matrix and a non-shared rank-one matrix: W; = W © Tq;SZT, where W
is shared between all ensemble members, and 7, s; € R are not shared. r; and s; are randomly
initialized with +1 to ensure diversity of the & linear layers. This weight sharing strategy can be
applied to one or more linear layers of the original neural network f. All other layers, including the
remaining linear layers, are fully shared between all ensemble members.

The described parametrization allows to pack all ensemble members in one model that simultaneously
applies all (now implicit) submodels in parallel, without explicitly instantiating the W; matrices of
individual members. This can be achieved by replacing one or more linear layers of the original neural
network f with their BatchEnsemble versions (e.g. see the lower left part of Figure 1). Formally:

Linearge(X) = (X © R)W)® S+ B (1)

where X € R**? represents k representations of the same input object (one per submodel), and
R,S,B e R? represent the non-shared weights (r;, s;, b;) of the submodels.

Terminology. In this paper, we call r;, s;, b;, R, S and B adapters.

Overhead to the model size. Adding a new ensemble member means only adding one row to each
of R, S and B of each Lineargg, which gives 3d new parameters per layer. For typical values of d,
this is a negligible overhead to the original layer size d* + d.

Overhead to the runtime. Thanks to the modern hardware and the parallel execution of the k
forward passes, the runtime overhead of BatchEnsemble can be (significantly) lower than xk (Wen
et al., 2020). In short, if the original workload underutilizes the hardware, there are more chances to
pay less than xk overhead. This property is crucial for the efficiency of our model TabM.

3.3 TABM & TABMyni: BETTER MLPS WITH CUSTOMIZED BATCHENSEMBLE

In this section, we describe our models TabM and TabM,,;,;. In short, the models are based on a
multilayer perceptron (MLP) and BatchEnsemble (Wen et al., 2020), with certain technical tweaks. In
subsection A.1, we explain that (1) we choose specifically BatchEnsemble as the efficient ensembling
method because of its performance and ease of use, while (2) using MLP as the backbone is crucial
because of its excellent efficiency.

TabM,,aive. We start by naively applying BatchEnsemble (Wen et al., 2020) to all linear layers of
a vanilla MLP, with a minor difference that we use fully non-shared prediction heads. This gives
us TabM,ive— the preliminary suboptimal version of TabM. In fact, the architecture (but not the
initialization) of TabM,,ive 1s already the same as in TabM, so the lower left part of Figure 1 describes
TabMaive as well. Throughout the paper, we always use £ = 32, and then analyse this hyperparameter
in subsection 5.3. The performance of TabM,.ye is reported in Figure 2, and it immediately shows
the great potential of BatchEnsemble. For example, TabM,,ive is clearly superior to FT-Transformer
(Gorishniy et al., 2021) — a popular attention-based baseline. This motivates further exploration.

TabMp,ini. By construction, the just described TabM,,ive has 3N submodel-specific adapters (R,
S and B in each of the linear layers, see Figure 1). A simple experiment reveals that, among the
3N adapters, exactly one of them plays a special role, namely, the first adapter (R) of the very first
linear layer. To illustrate that, we first remove only this one adapter from TabM,;ve and keep the
remaining 3/NV — 1 adapters untouched, which gives us TabMy,g with worse performance, as shown in
Figure 2. Then, we do the opposite: we remove the 3N — 1 adapters and keep the very first one, which
essentially means having one adapter followed by MLP fully shared between all submodels. This
gives us TabM iy — the minimal version of TabM, illustrated in Figure 1, where we call the described
approach “MiniEnsemble”. Perhaps, surprisingly, but Figure 2 shows that TabM,y;,; performs better
than TabM,aive, despite the 3N — 1 pruned adapters.

Under review as a conference paper at ICLR 2025

Backbones

D Shared

O Not shared

1xd

on)
xN
BatchEnsemble with better init. MiniEnsemble

Figure 1: (Upper left) A template for implementing an ensemble of £ MLPs. The remaining parts of
the figure are three different parametrizations of the k¥ MLP backbones. In all cases, each of the k
MLP backbones independently processes its own copy of the input object. (Upper right) MLP*¥ is a
traditional deep ensemble of £ fully independent MLPs. (Lower left) TabM is obtained by injecting
three non-shared adapters R, S, B in each of the N linear layers of one MLP. (Lower right) TabMyin;
is obtained by keeping only the very first adapter R of TabM and removing the remaining 3N — 1
adapters. Thus, TabMy,iy; applies the same shared MLP to k object representations, with only two
non-shared elements ensuring diversity of predictions: the randomly initialized multiplicative adapter
R and the k prediction heads. (Details) Input transformations such as one-hot-encoding, feature
embeddings (Gorishniy et al., 2022) and others are omitted for simplicity. In practice, they are applied
(and the result is flattened) before the C1one module. Drop denotes dropout.

3 8%

= [Attention N
§ 6% 3 GBDTP ©
3 [MLP (Ours)

=

g]

< 4%

5}

4

S 99

£

A

=

< —2%

T = T T T T T T T T T
MLP FT-T XGBoost TabM,ve TabMyp.q TabM TabM TabM! Tabl\'ﬂnini TabM
0.0 £0.0% 0.33+1.53% 1.99 + 4.89% 1.494+2.48% 091 +1.95% 1.84 4+ 3.4% 2.04 £ 3.57% 231+ 3.28% 272 + 3.99% 2.72 + 3.98%

Figure 2: The performance on the 50 datasets from Table 1. For a given model, one dot on a jitter plot
describes the performance score on one dataset. The numbers under the model names are the mean
and standard deviations over the corresponding jitter plots. The box plots describe the percentiles of
the jitter plot: boxes describe the 25th, 50th and 75th percentiles, and whiskers describe the 10th and
90th percentiles. Outliers are clipped. For each model, hyperparameters are tuned.

TabM. The just obtained results motivate the next simple experiment: we restore all 3N — 1
pruned adapters for TabM i, but in an “incremental” way. Namely, we initialize all multiplicative
adapters (R and S), except for the very first one, deterministically with 1 (instead of random +1 as
recommended in the original BatchEnsemble). This gives us TabM, illustrated in Figure 1. As such,
at initialization, TabM is equivalent to TabM,y;,;, but the deterministically initialized adapters are free
to add more expressivity during training. Figure 2 shows that TabM is the best variation so far.

TabM,,ini’ & TabM'. Non-linear feature embeddings (Gorishniy et al., 2022) are known to boost
the performance of many tabular models, especially of MLPs. We denote TabM i, and TabM with
non-linear feature embeddings as TabM,,i,;' and TabM", respectively. By default, we recommend
using specifically the piecewise-linear embeddings (Gorishniy et al., 2022). In subsection A.5, we
clarify additional implementation details, such as slightly different initialization. Figure 2 shows that,
TabM,,ini " is competitive with TabMT, so we will be using TabM,iy; " by default for simplicity.

Under review as a conference paper at ICLR 2025

Intuition. To give additional intuition on TabM, we make the following observations:

 Setting £ = 1 makes TabM identical to one plain MLP.

¢ Increasing k by one adds a negligible number of new parameters to TabM.

* For Transformer-like or Mixer-like (Tolstikhin et al., 2021) models, the shape of the latent
representation is m x d, where m is the number of features and d is the models’ width; the m
embeddings are repeatedly mixed with each other through attention or mixing layers. For TabM,
the shape is only k£ x d, and the k embeddings are never mixed.

¢ The story behind TabM,,;,; shows that it is critical to create the k different object representations
before the tabular features are mixed with each other in the first linear layer.

Hyperparameters. Compared to MLP, the only new hyperparameter of TabM is k — the number of
implicit submodels. We heuristically set £ = 32 and do not tune this value. We analyze the influence
of k in subsection 5.3.

Limitations and practical considerations are commented in subsection A.6.

Next steps. The performance of TabM in Figure 2 renders it as a highly promising model. This
motivates a full-fledged empirical comparison against prior tabular models (section 4) and detailed
analysis of TabM’s behaviour (section 5).

4 EVALUATING TABULAR DEEP LEARNING ARCHITECTURES

In this section, we perform a large scale empirical comparison of tabular models, including TabM
introduced in section 3.

4.1 BASELINES

In the main text, we use the most established and/or competitive methods, including: MLP (the classic
multilayer perceptron), FT-Transformer denoted as “FT-T” (the attention-based model from Gorishniy
et al. (2021)), SAINT (the attention- and retrieval- based model from Somepalli et al. (2021)), T2G-
Former denoted as “T2G” (the attention-based model from Yan et al. (2023)), ExcelFormer denoted
as “Excel” (the attention-based model from Chen et al. (2023a)), TabR (the retrieval-based model
from Gorishniy et al. (2024)), ModernNCA denoted as “MNCA” (the retrieval-based model from
Ye et al. (2024)) and three GBDT implementations: XGBoost (Chen & Guestrin, 2016), Light GBM
(Ke et al., 2017) and CatBoost (Prokhorenkova et al., 2018). MLP', TabR" and MNCAT denote the
corresponding models with non-linear feature embeddings (Gorishniy et al., 2022). In fact, some other
baselines, such as Excel (Chen et al., 2023a)), already use custom non-linear feature embeddings.

We present results for more baselines in Appendix F. In Appendix E, we provide implementation
details for all methods.

4.2 TASK PERFORMANCE

We evaluate all models following the protocol announced in subsection 3.1, and report the results in
Figure 3 (see also the critical difference diagram in Figure 10). We make the following observations:

1. The performance ranks render TabM as the top-tier model along with GBDT models. Among
other methods, only the most expensive variations of TabR and ModernNCA show some promise.

2. The middle and right parts of Figure 3 provide a fresh perspective on performance scores. TabM
continues showing itself as a solid state-of-the-art model. At the same time, the task performance
of some methods turns out to be no better or even worse than that of MLP on a non-negligible
number of datasets, especially in the case of domain-aware splits (right). As such, given their
complexity, it may be hard to position them as reliable go-to baselines.

3. One important characteristic of a model is the weakest part of its performance profile (e.g.
the 10th or 25th percentiles in the middle plot), since it shows how reliable the model is on
“inconvenient” datasets. From that perspective, MLP' seems to be a decent practical option
between the plain MLP and TabM, especially given its simplicity and efficiency compared to
retrieval-based alternatives, such as TabR and ModernNCA.

Under review as a conference paper at ICLR 2025

Performance ranks with std. dev.

Performance scores

Performance scores

On all datasets On 41 datasets with random split On 9 datasets with domai re split
Sorted by the mean rank Sorted by the mean score S(n‘t(‘:l by the mean score
MLP | e Excel —s=fdocds « TabR}) o o Q_Moan
Fxcel] 19%27) MLP § SAINT} o S o
SAINT | FT-T +pfles TabR'{ 00 o o
FT-T{ 43%35] SAINT 4ot &« Excel{ o ¢ Qoo
ToC e TabR} &< bed MNCA{ ¢ (o0
TabR{ 87%27] T2GH ¢ MLPA ¢
MLP! e MLP! ® o MLPT{ o o &» o
MNCA {0 8723] MNCA 4 FT-T{ o © (@% o
XGBoost 1. 80£19] TabR! MNCAT{ o offw® o
LightGBM {__ 30£17] LightGBM ! T2GY o o P o
MNCAt{ 29+21] XGBoost ¢ CatBoost 1 o@° o o
CatBoost {28 £10] &= MLP GBOT TabM ¢ TabM { oo oo
TabM {28%20] E el CatBoost § ¢ LightGBM{ o bdo o o
TabR{__ 27+20] MNCAT XGBoost © b o) °
TabM! JLIEL2 TabM], ; C TabM Cojom) o !
1 2 3 4 5 —2% 0% 2% 4% 6% 8% —5% 0% 5% 10%
Rank (|) Relative improvement over MLP (1) Relative improvement over MLP (1)

Figure 3: The task performance of tabular models on the datasets from Table 1. (left) The average
performance ranks over all datasets summarize the head-to-head comparison between models on all
datasets. (middle, right) The relative performance w.r.t. the plain multilayer perceptron (MLP) allows
reasoning about the scale and consistency of performance improvements over this simple baseline.
The meaning of the jitter plots and box plots is the same as in Figure 2. Outliers are clipped. The
separation in random and domain-aware dataset splits is explained in subsection 3.1.

The main takeaway: TabM confidently demonstrates the best performance among tabular DL
models and can serve as a reliable go-to DL baseline. The same cannot be said about attention- and
retrieval- based models. MLP-like models remain simple and consistent tabular DL baselines.

4.3 EFFICIENCY

Training time on datasets with > 100K objects
Device: GPU NVIDIA A100

Inference throughput with batch size 1
Device: CPU Intel i7-7800X, single thread

MLP ° °@o) © MLP o ©00 o o ® O oogge ®
MLP' 4 o °® o % XGBoost{ o ®®@® ¢ © © (o ° o0
XGBoost q % 00()@o MLP'{ e ® @ooo o o o °
TabM! ;.1 ® o 0% © TabM| @ @ ©0% 000 % o
TabM A e e S S OB B TabM! | @G o0 o
TabR A o0 0 @oo) o O TabR {& @Po® o
MNCA A 0 o®o e () ®o FT-T {60 €) oax
MNCAT o000 & o o T2G {apo
TabR' =3 Ouws oo o @ TabR' @ @0
1261 e o o oeedoo o MNCA o
FT-Tq == GBDT, MLP oo o oo MNCAT{@o
SAINTH ¢ Mean oo o ®0o ® SAINT @
e o e ST 0 1000 2000 3000 4000 5000 6000
Time (1) Objects per second (1)

Figure 4: (left) Training times of the models from Figure 3 averaged over five random seeds. (right)
Inference throughput of the models from Figure 3.

Now, we evaluate tabular models in terms of training and inference efficiency, which becomes
a serious reality check for some of the methods. We benchmark exactly those hyperparameter
configurations of models that are presented in Figure 3 (see subsection B.2 for the motivation).

Training time. We focus on training times on larger datasets, because on small datasets, all methods
effectively become almost equally affordable regardless of the formal relative difference between
methods. Nevertheless, in Figure 11, we provide measurements on small datasets as well. The left

Under review as a conference paper at ICLR 2025

side of Figure 4 reveals that TabM offers practical training times. By contrast, the long training time
of attention- and retrieval-based models becomes one more limitation of these methods.

Inference throughput. The right side of Figure 4 tells basically the same story as the left side.

Parameter count. Most tabular networks are overall compact. This, in particular, applies to TabM,
since it adds a litte number of parameters compared to MLP. We report model sizes in Table 4.

The main takeaway. Simple MLPs and XGBoost are the fastest models, with TabM being the runner-
up with still practical characteristics. The picture is significantly less positive for other methods,
because their complexity actually converts to serious performance overhead.

4.4 APPLYING TABULAR MODELS TO LARGE DATASETS

In this section, we quickly assess the applicability of several tabular DL to large datasets, without
a strong focus on the task performance. Among the baselines, we use one attention-based model
(FT-Transformer, (Gorishniy et al., 2021)), and one retrieval-based model (TabR (Gorishniy et al.,
2024)). The results are reported in Table 2. As expected, attention- and retrieval-based models
struggle on large datasets, yielding extremely long training times, or being simply inapplicable
without additional effort. Implementation details are provided in subsection E.4.

5 ANALYSIS

9}
—

PRACTICAL PROPERTIES OF TABM

= GBDT ,
6% E= MLP (Ours)

Relative improvement over MLP

‘ MLP XGBoost TabMg_39 MLP*32 XGBoost*® Tak)l\{]ff,w TabM[BH] TabM[GH]
0.0£0.0% 1.99 + 4.80% 2.04 £ 3.57% 0.95 % 1.54% 2.24£4.91% 9344 3.85% —0.92+4.62% 1.86+3.26%

Figure 5: The performance on the 50 datasets from Table 1. The notation is the same as in Figure 2.
The Model*® denotes an ensemble of & models.

Here, we conduct experiments directly motivated by the architectural nature of TabM.

Ensembles. The first natural question to ask is how TabM compares to the traditional deep ensemble
of MLPs. The results reported in Figure 5 are intriguing: TabMj—35 — one model imitating an
ensemble of 32 MLPs — performs better than the full-fledged ensemble of 32 MLPs. We analyze this
phenomenon in subsection A.2. The figure also shows that TabM, treated as one model, can itself
benefit from traditional ensembling.

Diversity of the £ predictions. The diversity-related properties of efficient ensembles are well-
studied in original papers. For that reason, we only perform a minimal experiment to check if the &k
predictions of TabM are diverse. To that end, after the training, we choose the best prediction head
(out of the k heads) on the validation set, and report its test performance in Figure 5 under the name
TabM[BH] (“best head”). Interestingly, the best prediction head of TabM performs no better than the
plain MLP. Thus, the k predictions of TabM must exhibit non-negligible diversity to compensate for
poor individual performance.

Selecting submodels after training. The design of TabM allows selecting only a subset of sub-
models after training according to any criteria, simply by removing extra prediction heads and the
corresponding rows of the adapter matrices. To showcase these mechanics, using the validation
set, we greedily construct the best subset of submodels of TabM after the training, and evaluate its

Under review as a conference paper at ICLR 2025

test performance (see subsection E.5 for details). On average, this procedure results in 7.1 & 5.6
submodels out of the initial £ = 32, which can result in faster inference. The performance reported
in Figure 5 under the name TabM[GH] (“greedy heads”) illustrates the competitive performance of
the “pruned” TabM.

5.2 OPTIMIZATION PROPERTIES OF TABM

. Churn House , Otto Microsoft
train k=1 train k=32~ | 00 12
test k=1 test k=32 10
=Lo 0.4 ’
2 1 0.8
=205 0.2 0.6
0.4
0 0.0 0
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Epoch Epoch Epoch Epoch
0 2.0
— k=1 12
= k=32 1
%10 ’ ’
S 0.4
—
- . Lo 1.0
7z Faining
=05
05
0.1 0.8
06 04 0.2 00 06 04 02 00 08 06 04 02 00 08 06 04
Train Loss Train Loss Train Loss Train Loss
1.
k=1 3.5
20
k=32
1.5
95
=7 10
1.5 1.2
0 100 200 3000 0 100 200 300 0 100 200 300 0 100 200 300
Epoch Epoch Epoch Epoch

Figure 6: Training TabM,;,; with & = 32 and k£ = 1 (MLP) for 300 epochs with all regularizations
turned off as explained in subsection 5.2. (First row) The training curves. (Second row) Same as the
first row, but in the train-test coordinates: each dot corresponds to some epoch from the first row, and
generally, the training progress happens from left to right. This allows reasoning about overfitting by
comparing test loss values for a given train loss value. (Third row) The coefficient of variance, also
recorded during the same run as the training curves.

Now, we aim to develop a better intuition on TabM’s behaviour and its strong performance from the
perspective of optimization. For simplicity, we analyze TabM,,;. Recall that TabM i, with k = 1
essentially equals one plain MLP of the same depth and width, and there is a large performance gap
between MLP and TabM,,i,; with & = 32. Then, the question is what exactly changes during the
transition from k& = 1 (MLP) to k£ = 32 (TabM,n;).

Experiment setup. Given the goal of this section and the posed question, we intentionally simplify
the experiment setup to exclude side-effects coming from other places than from the transition
between k£ = 1 and k£ = 32. We use the same depth 3 and width 512 for TabM,i,; and MLP. We
turn off all regularizations (dropout, weight decay, gradient clipping), and, on each dataset, we tune
the learning rate on the validation split separately for TabMy,,; and MLP. We consider four diverse
datasets from our benchmarks (two classification and two regression tasks of different sizes). We
turn off early stopping, train TabMpin; and MLP for 300 epochs, record various optimization-related
metrics and report them in Figure 6. Based on that, we make the following observations.

TabM,,in; exhibits reduced overfitting, as indicated by the second row of Figure 6.

TabM,,ini has lower variance of the stochastic gradients, as indicated by the third row of Figure 6
(lower coefficient of variation corresponds to relatively lower variance). In a nutshell, it means that
the stochastic optimization process of TabM,y;y; is more “stable”, in the sense that randomly sampled
training batches induce more accurate estimates of the full gradient (the gradient averaged over all
training objects) for TabM,y;,; than for MLP. See details in subsection E.6.

The latter result may help in understanding the intriguing superiority of TabMy_32 over the ensemble
of £ = 32 MLPs observed in Figure 5. Recall that, for TabM,y;ni, the gradient induced by one
training object is the average of k gradients coming from the k predictions. Perhaps, this “gradient

Under review as a conference paper at ICLR 2025

ensembling” results in so good and stable gradients that their optimization power cannot be recovered
with traditional ensemble of any size. At the same time, we are not aware of similar results for
BatchEnsemble (Wen et al., 2020). Then, there is a chance that our result is specific for tabular MLPs,
for example, because of poor optimization properties of simple MLPs and generally challenging
optimization on real world tabular data.

5.3 HOW DOES THE PERFORMANCE OF TABM DEPEND ON k?

Table 2: The performance and training
time of multiple models on two large regres-
sion datasets from Rubachev et al. (2024):
Weather (13M objects and 103 features) and
Maps-Routing (6.5M objects and 986 features).
Sorted by the average training time.

TabM performance for different &

1.8%
1.5% A
1.2%
1.0%

0.8% 1

0.5% 1 Weather Maps Routing

Realtive improvement over MLP

02%1 ¢ RMSE | Time RMSE | Time
S R XGBoost 1.423 10m 0.1601 28m
MLP 1.484 30m 0.1592 10m

Figure 7: The average performance of TabM TabMiﬂini 1.410 1.5h 0.1583 3h
and TabM,,,;,; over 9 datasets from Table 5 with FT-T 1.444 4.3h 0.1594 29h
different values of the hyperparameter k. TabR OOM N/A OOM N/A

Here, we explore the dependency of TabM on the number of implicit submodels k. We use TabM with
the number of layers 3 and the width 512, tune the learning rate for each k, and report the performance
in Figure 7. The figure indicates that £ = 32 used throughout the paper was slightly suboptimal,
though we consider it as a reasonable default value with a good balance between performance and
efficiency. Also, too large values of k can be detrimental, as can be observed for TabM,;. Perhaps,
this happens because a larger number of submodels may require a larger model width to accommodate
all submodels. At the same time, this effect is less pronounced for TabM. Perhaps, the larger number
of submodel adapters in TabM compared to TabM,y;,; allows fitting more submodels in one backbone.
The implementation details are available in subsection E.7.

6 CONCLUSION & FUTURE WORK

In this work, we have demonstrated that tabular multilayer perceptrons (MLPs) greatly benefit from
BatchEnsemble — a parameter-efficient ensembling method. Based on this insight, we have designed
TabM — a simple MLP-based model with state-of-the-art performance. In a large scale comparison
with many tabular DL models, we have demonstrated that TabM is ready to serve as a new powerful
and efficient tabular DL baseline. Finally, we have analyzed the key properties of TabM and provided
intuition on its high performance.

One potential direction for future work is to use the multiple predictions of TabM for uncertainty
estimation and out-of-distribution (OOD) detection on tabular data. This is motivated by the strong
performance of (efficient) deep ensembles on those tasks in other domains (Lakshminarayanan et al.,
2017). Another idea, directly inspired by our study (and in particular by subsection 5.2), is to bring
the power of (parameter-)efficient ensembles to other (non-tabular) domains with optimization-related
challenges and, ideally, lightweight models that will remain efficient even with a large number of
implicit ensemble members.

Reproducibility statement. We provide all details about implementation and experiment setup in
Appendix E. The proposed model is thoroughly described in section 3. Also, the source code is
shared as supplementary material in a ZIP-archive. The exp/ directory in the source code contains
configuration files (. toml files) and report files (. json files) that, together, contain all information
about experiments (hyperparameters, metrics, hardware, training time, etc.).

10

Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. In KDD, 2019. 20

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. In /CLR, 2023. 2

Sercan O. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. arXiv,
1908.07442v5, 2020. 2

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, Khoa Doan, and Sathiya S.
Keerthi. Gradient boosting neural networks: Grownet. arXiv, 2002.07971v2, 2020. 2

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. Scarf: Self-supervised contrastive learning
using random feature corruption. In /CLR, 2021. 2

Jintai Chen, Jiahuan Yan, Danny Ziyi Chen, and Jian Wu. Excelformer: A neural network surpassing
gbdts on tabular data. arXiv, 2301.02819v1, 2023a. 1, 6, 20, 24, 25

Kuan-Yu Chen, Ping-Han Chiang, Hsin-Rung Chou, Ting-Wei Chen, and Tien-Hao Chang. Trompt:
Towards a better deep neural network for tabular data. In ICML, 2023b. 1, 2, 20

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In SIGKDD, 2016. 1, 2,
6,20

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspec-
tive. arXiv, 1912.02757v2, 2020. 2

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, and Andrew Gordon Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. In NeurIPS, 2018. 3

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In NeurIPS, 2021. 2, 4, 6, 8, 19, 20, 23, 26

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. In NeurlIPS, 2022. 2, 5, 6, 14, 20, 22, 23, 26

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
Babenko. Tabr: Tabular deep learning meets nearest neighbors. In ICLR, 2024. 1, 2, 3, 6, 8, 18,
19, 20, 21, 23, 24, 26

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In NeurIPS, the ”Datasets and Benchmarks” track, 2022. 3,
18, 19,24

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshmi-
narayanan, Andrew Mingbo Dai, and Dustin Tran. Training independent subnetworks for robust
prediction. In ICLR, 2021. 3, 14

Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. In ICLR, 2023. 1, 2, 20

David Holzmiiller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps and
boosted trees on tabular data. arXiv, 2407.04491v1, 2024. 2

Alan Jeffares, Tennison Liu, Jonathan Crabbé, Fergus Imrie, and Mihaela van der Schaar. Tangos:
Regularizing tabular neural networks through gradient orthogonalization and specialization. In
ICLR, 2023a. 2

Alan Jeffares, Tennison Liu, Jonathan Crabbé, and Mihaela van der Schaar. Joint training of deep
ensembles fails due to learner collusion. In NeurIPS, 2023b. 2

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. In NeurIPS, 2021. 2

11

Under review as a conference paper at ICLR 2025

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30:3146-3154, 2017. 1, 2, 6, 20

Myung Jun Kim, Léo Grinsztajn, and Gaél Varoquaux. Carte: pretraining and transfer for tabular
learning. arXiv, abs/2402.16785v1, 2024. 17

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In NIPS, 2017. 2, 20

Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Tom Rainforth, and Yarin Gal. Self-attention
between datapoints: Going beyond individual input-output pairs in deep learning. In NeurlIPS,
2021. 2

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NeurIPS, 2017. 2, 10, 14

Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei
Bursuc, and Gianni Franchi. Packed ensembles for efficient uncertainty estimation. In ICLR, 2023.
15

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and Dhruv Batra. Why M
heads are better than one: Training a diverse ensemble of deep networks. arXiv, abs/1511.06314,
2015. 3, 14,29

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In /CLR, 2019. 20

Sascha Marton, Stefan Liidtke, Christian Bartelt, and Heiner Stuckenschmidt. Grande: Gradient-based
decision tree ensembles for tabular data. In ICLR, 2024. 2

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011. 20

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep
learning on tabular data. In ICLR, 2020. 2

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. In NeurlIPS, 2018. 1, 2, 6, 20

Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. arXiv, 1306.2597v1, 2013. 3

Ivan Rubachev, Artem Alekberov, Yury Gorishniy, and Artem Babenko. Revisiting pretraining
objectives for tabular deep learning. arXiv, 2207.03208v1, 2022. 2

Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. Tabred: A benchmark of
tabular machine learning in-the-wild. arXiv preprint arXiv:2406.19380, 2024. 3, 10, 18, 19, 20,
21,23, 25,26

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Goldstein.
SAINT: improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv, 2106.01342v1, 2021. 2, 6, 20, 25

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In CIKM, 2019.
2,20, 26

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In NeurIPS, 2021. 6, 20

Mehmet Ozgur Turkoglu, Alexander Becker, Hiiseyin Anil Giindiiz, Mina Rezaei, Bernd Bischl,
Rodrigo Caye Daudt, Stefano D’ Aronco, Jan D. Wegner, and Konrad Schindler. Film-ensemble:
Probabilistic deep learning via feature-wise linear modulation. In NeurIPS 2022, 2022. 3, 14

12

Under review as a conference paper at ICLR 2025

Ruoxi Wang, Rakesh Shivanna, Derek Z. Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed H.
Chi. Dcn v2: Improved deep & cross network and practical lessons for web-scale learning to rank
systems. arXiv, 2008.13535v2, 2020. 2, 20

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. In /CLR, 2020. 1, 2, 3, 4, 10, 14, 16

Jiahuan Yan, Jintai Chen, Yixuan Wu, Danny Z. Chen, and Jian Wu. T2G-FORMER: organizing
tabular features into relation graphs promotes heterogeneous feature interaction. In AAAI, 2023. 2,
6, 20, 24

Han-Jia Ye, Huai-Hong Yin, and De-Chuan Zhan. Modern neighborhood components analysis: A
deep tabular baseline two decades later. arXiv, 2407.03257v1, 2024. 2, 6, 20, 23

Shaofeng Zhang, Meng Liu, and Junchi Yan. The diversified ensemble neural network. In NeurIPS,
2020. 3

13

Under review as a conference paper at ICLR 2025

A ADDITIONAL ANALYSIS AND DISCUSSION ON TABM

A.1 MOTIVATION

Why BatchEnsemble? Among relatively ease-to-use “efficient ensembling” methods, beyond
BatchEnsemble, there are examples such as dropout ensembles (Lakshminarayanan et al., 2017),
naive multi-head architectures, TreeNet (Lee et al., 2015). However, in the literature, they were
consistently outperformed by more advanced methods, including BatchEnsemble (Wen et al., 2020),
MIMO (Havasi et al., 2021), FILM-Ensemble (Turkoglu et al., 2022).

Among advanced methods, in turn, BatchEnsemble is arguably one of the simplest and most flexible
methods. For example, FILM-Ensemble (Turkoglu et al., 2022) requires normalization layers to
be presented in the original architecture, which is not always the case for tabular MLPs. MIMO
(Havasi et al., 2021), in turn, imposes additional limitations compared to BatchEnsemble. First, it
requires concatenating (not stacking, as with BatchEnsemble) all k£ input representations, which
increases the input size of the first linear layer. With the relatively high number of submodels & = 32
used in our paper, this can be an issue on datasets with a large number of features, and especially
when feature embeddings (Gorishniy et al., 2022) are used. For example, for £ = 32, the number
of features m = 1000 and the feature embedding size [= 32, the input size approaches one million
resulting in an extremely large first linear layer of MLP. Second, with BatchEnsemble, it is easy to
explicitly materialize, analyze and prune individual submodels. By contrast, in MIMO, all submodels
are implicitly entangled within one MLP, and there is no easy way to access individual submodels.

Why MLPs? Indeed, despite the applicability of BatchEnsemble (Wen et al., 2020) to almost
any architecture, we focus specifically on MLPs. The key reason is efficiency. First, to achieve
high performance, throughout the paper, we use the relatively large number of submodels k = 32.
However, the desired less-than- x k runtime overhead of BatchEnsemble typically happens only when
the original model underutilizes the power of parallel computations of a given hardware. This will
not be the case for attention-based models on datasets with a large number of features, as well
as for retrieval-based models on datasets with a large number of objects. Second, as we show in
subsection 4.3, attention- and retrieval-based models are already slow as-is. By contrast, MLPs are
exceptionally efficient, to the extent that slowing them down even by an order of magnitude will still
result in practical models.

A.2 WHY TABM OUTPERFORMS A FULL-FLEDGED DEEP ENSEMBLE?

As shown in subsection 5.1, TabM is superior to MLP** (the traditional deep ensemble of k& MLPs).
In fact, the same is true for other variations of TabM, including TabM,i,; and even TabM,,ive. This
is intriguing, because TabM is simply an efficient parametrization of MLP**. In this section, we
analyze the potential reasons behind the difference in performance. In particular, we show that weight
sharing between the implicit submodels is a major source of TabM’s power. subsection A.3 provides
more insights on the regularization power of the weight sharing.

For simplicity, we consider TabM ;. To understand why TabMy; is superior to MLP** we start
from MLP** and gradually modify it until we get TabM i, measuring the performance after each
modification. We report the results in Table 3 and explain it in detail below.

Table 3: Comparing four implementations of the ensemble of £ MLPs across all 50 datasets, with
separate hyperparameter tuning for each implementation. See the text after the table for a detailed
explanation of the models.

Ensemble-aware Weight- Relative improvement #Parameters overhead
Model training Adapter sharing | Ranks (J) over MLP (1) over MLP (J)
MLP*32 X X X]2.02+1.09 0.96% +1.55% x32+0
MLP*32[EA v X X |187+£0.72 1.10% +1.84% xT1 £ 197
TabML*32EA v v X |1.80+£0.72 1.19% + 2.08% x41 + 81
TabMyini v 4 v |1.26+£0.53 1.87% £ 3.45% x4+5

Table 3 tells the following story:

14

Under review as a conference paper at ICLR 2025

1. MLP*¥. We start from the vanilla deep ensemble MLP** consisting of k = 32 MLPs trained
independently under different random seeds. Hyperparameter tuning is performed to maximize
individual performance of MLP, not of the final ensemble.

2. MLP**IEA The first thing we add is the Ensemble-Aware training. In fact, this is how TabM
is trained out-of-the-box. Namely, now, the training (1) is parallel, i.e. each training step
happens simultaneously for all £ MLPs; (2) uses ensemble-based early stopping, i.e. the early
stopping (and, as a consequence, the hyperparameter tuning) now optimizes the collective mean
prediction of the MLPs; (3) is performed on the same batches for all models. Technically,
the whole ensemble is efficiently implemented as one model following Packed-Ensembles
(Laurent et al., 2023), which gives significantly better training efficiency compared to the
sequential training in MLP**_ The results show that the new training protocol tend to improve

the performance to some extent.

3. TabM"f;il XkIEA Second, we remove the architectural difference and augment each MLP with
a multiplicative adapter in the beginning. In other words, the base model changes from MLP to
TabM"=!. The changes in performance seem to be less significant than from the previous step.
Interestingly, the most affected metric is the model size.

4. TabMyy- Finally, we share all weights except for the adapters and prediction heads, which
gives us TabMyini. The results indicate the high importance of weight sharing. Since the weight
sharing limits the flexibility of an ensemble, one potential interpretations is that the weight

sharing is a regularization. subsection A.3 provides more insights on the weight sharing.

A.3 DIVERSITY OF THE k GRADIENTS

Recall that TabM receives k gradients per object on each training step, due to the k independently
trained predictions. Due to the weight sharing between the submodels of TabM, these k gradients are
mostly applied to the same weights (the exceptions are only the non-shared weights, i.e. the adapters
and the predition heads). In this section, we show that these k gradients are “diverse” in a sense that,
on average, they barely agree with each other on the optimal direction in the weight space. Intuitively,
this can be viewed as a regularization, which is line with the story in subsection A.2.

We consider TabM,,; in the simplified experiment setup as in subsection 5.2. The green line in
Figure 8 shows that the mean pairwise cosine similarity between the k individual gradients remains
close to zero during training. This may explain the higher training loss of TabM[]fjl‘?2 compared to
TabM’;;i1 observed in the first row in Figure 6: perhaps, the weight sharing combined with the diverse
gradients prevents TabMi,i from (over)optimizing for the training task, and thus serves as a form of
a regularization.

Churn House Otto Microsoft

75 0.75 75
075 RMSE | | Accuradyes 0751 | Ruise 4
0.50{ 30T g 501 0.50{
3.106 0.803 075

2025 2 [1; same init.] 0.855 0.25 — 3072 |02 0.821 025 — 0745
< —— k=32 [head same init.] 0.861 [
=000 T M~

0

sine sim.

— 0.826 — 0.745

£ 0.50q

0f

n ¢

0.001 0.004 0.001
100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Epoch Epoch Epoch Epoch

Figure 8: The mean pairwise cosine similarity between the k individual gradients of TabMI’f;f’2

with the default initialization (green) and two suboptimal initializations described in subsection A.3.
Formally: m > Lij(i<j) COS (gé, gé»), where gf is the gradient of the i-th submodel induced by
the [-th of the n = 1000 training objects (the objects are selected randomly once before the training;
the prediction heads are excluded when computing the cosine similarity). The legends report the test
scores if early stopping was used.

In the same Figure 8, we also run an ablation study on the two sources of submodel diversity in
TabMyini: the random initializations in the adapter R and in the k prediction heads. When all rows
of R (i.e. r; in terms of Figure 1) receive the same initialization, while the k prediction heads are
initialized completely randomly (the orange line), the submodel gradients are correlated, and the task
performance is poor. By contrast, the issue is less pronounced when the & prediction heads receive
the same initialization, and the initialization of R is completely random (the blue line), though it also

15

Under review as a conference paper at ICLR 2025

can hurt the performance. Thus, the first adapter seems to be a more impactful source of gradient
diversity. Overall, we see the gradient diversity as an experimental metric requiring more exploration.

A.4 THE OVERHEAD OF BATCHENSEMBLE

This section aims to give some intuition on the actual efficiency overhead w.r.t. one model caused
by applying BatchEnsemble (Wen et al., 2020) to this model. The section relies on the notation and
story in subsection 3.2 and Figure 1.

Overhead to the model size. The whole overhead is concentrated in the R, S, B € R¥*¢ matrices in
the modified linear layers, because all other layers are fully shared between the implicit ensemble
members. As can be observed in Figure 1, there are only 3d additional trainable parameters per
member compared to the original linear layer. This is negligible compared to d? + d parameters per
member in full-fledged deep ensembles. For example, for BatchEnsemble with £ = 32 and d = 512,
the overhead is less than x2 w.r.t. the size of the original linear layer.

Runtime overhead. One could rightfully ask how BatchEnsemble is more runtime-efficient than
deep ensemble, if there are still k full-fledged forward passes happening under the hood during
the one forward pass of fgg. The answer is “because of the modern hardware”: it turns out that,
depending on the original architecture f and the batch size, the actual runtime overhead of fpp w.r.t.
f can be significantly lower than x k. The more underutilized a GPU, the less the overhead. For
example, here are some numbers obtained for the overhead of Lineargg compared to Linear on one
NVIDIA A100:

» For k = 32, d = 256 and batch size 256, the overhead to the inference throughput is x2.6.
e For k = 32, d = 512 and batch size 512, the overhead to the inference throughput is x6.8.
e For k = 32, d = 1024 and batch size 1, the overhead to the inference throughput is x1.3.

A.5 TABM WITH FEATURE EMBEDDINGS

Here, we provide additional implementation details for TabM,,;ni T and TabM" introduced in subsec-
tion 3.3.

We note that feature embeddings are applied, and the result is flattened, before the Repeat module
in terms of Figure 1. In other words, there are no changes in usage compared to plain MLPs. For
TabMpini " and TabMT, we initialize the first multiplicative adapter R of the first linear layer from the
standard normal distribution A (0, 1).

The remaining details are insignificant and are best understood from the source code.

A.6 LIMITATIONS AND PRACTICAL CONSIDERATIONS

TabM does introduce any new limitations compared to BatchEnsemble (Wen et al., 2020). Neverthe-
less, we note the following:

* Arguably the key limitation is that BatchEnsemble-like techniques are not “local”, but instead
affect the whole model starting from the first modified layer. Namely, when the computation flow
hits the first modified layer, the k& prediction branches are created, and the rest of the network
will have to make & times more computations. This can be easily affordable for small models,
but may be less affordable for heavy base models.

» For ensemble-like models, such as TabM, the notion of “the final object embedding* changes:
now, it is not a single vector, but a set of k vectors. This can be important for scenarios when
TabM is used for solving more than one task, in particular, when it is pretrained as a generic
feature extractor and then reused for other tasks. The main practical guideline is that the k
prediction branches should never interact with each other (e.g. through attention, pooling, etc.)
and should always be trained separately.

16

Under review as a conference paper at ICLR 2025

Performance ranks with std. dev.
On 41 datasets with random split

Performance scores
On 41 datasets with random split

Performance sc

'eS

On 9 datasets with domain-aware split

Sorted by the mean rank Sorted by the mean score Sorted by the mean score
DCNv2 [RET:RY| DCNv2 s Trompt | | 0 Mo
SNN 1 60£34] Trompt A TabR7) @@ o
Trompt 55E34 SNN 1 ce SAINT7 o @ o
MLP s 53 010| Excel | DCNv27 o (eb
Excelq 5IE3T AutoINT + SNN 1 X
AutoINT 5.0£33 MLPA AutoINT &1
SAINT L 4533] FT-T MLP-Mixer 3
MLP-Mixer {—______45=29] SAINT 1 TabRi{ 0o @ o
FT-TH 11328 TabR4 +=fx % Excel{ © o (Hwo
T2G) T2G+ © o9 MNCA{ @ (o o
TabR{____36=29] MLP-Mixer MLP{ 6
JYT0 I — MLP' MLP{ o o @m o
MNCA {——__34£24] MLP[PLE] { FT-T{ o o o °
MLP[PLE] { 33ET MNCA 1 MNCAT{ o ocfup °
XGBoost {__33%27] TabR' T2G{ o © pée o
Light GBM {_32E20] — 1o aopr LightGBMH ¢ CatBoost 1 b@o o °
TabM {__29E£22 — Attention XGBoost 1 MLP[PLE]4 oo 5‘3@ °
CatBoost {28 =21 i TabM A ¢ TabM A 00 oo
MNCAT {2Z5E2z0] B MLP (Quss) CatBoost 1 ¢ LightGBM{ e oo o o
TabR' {21220 MNCAT{ ¢ XGBoost{ © o o) °
Tabl\lfmm s+ T‘ahl\llum’ € Tahl\llmn’ oo 06"’0 ° !
2 1 6 2% 0% 2% 4% 6% 8% —5% 0% 5% 10%
Rank (1) Relative improvement over MLP (1) Relative improvement over MLP (1)

Figure 9: An extended comparison of tabular models as in Figure 3. Note that here ranks (leff) are
computed on 41 datasets (not on 50) since some models have not been evaluated on 8 datasets from
Table 6.

1 6 8 10 12
1 1 1

TabM/ ;.- J LI\[I,P
Tab). Excel
CatBoost: SAINT
MNCA® FT-T
TabR" TabR
XGBoost T2G
Light GBM: MNCA
MLP

Figure 10: Critical difference diagram (CDD). The computation method is taken from the Kim et al.
(2024).

B EXTENDED RESULTS

B.1 EVALUATION

B.2 EFFICIENCY

This section completes subsection 4.3.

Motivation for the benchmark setup. Benchmarking efficiency properly is hard, and comparing
models under all possible kinds of budget (task performance, the number of parameters, training
time, etc.) on all possible hardware (GPU, CPU, etc.) with all possible batch sizes is rather infeasible.
As such, we set a narrow goal of providing a high-level intuition on the efficiency under trasparent
setting. Thus, benchmarking the transparently obtained tuned hyperparameter configurations works
well for our goal. Yet, this choice also has a limitation: the hyperparameter tuning process is not
aware of efficiency budget, so it can prefer much heavier confugirations even if they lead to tiny
performance improvements, which will negatively affect efficiency without a good reason.

Motivation for the two setups for measuring inference throughput.

* The setup in the right side of Figure 4 simulates the online per-object predictions.
* The setup in the right side of Figure 11 simulates the offline batched computations.

Additional results.

Figure 11 completes Figure 4.

17

Under review as a conference paper at ICLR 2025

Training time on datasets with < 100K objects Inference throughput with maximum batch size
Device: GPU NVIDIA A100 Device: GPU NVIDIA 2080Ti
XGBoost 18 0@RBx(po@ee o = Ours MLP 1 ecogB@poo o
MLP{ cGRSH)®e® oo | MLP' ™ol ®o B &0
MLPT{ SOEEES © [GBDT, MLP XGBoost | 0% © 0 © Qo o ©
MNCA 4 @ RETP Y00 6 D0 QO Mean TabM @ 6 0o @00
TabM A 0 WRBAIYD © o MNCA A coo @oen)8 & ©
MNCAT o ORuEBE oA ° MNCA' o @O P o P
TaerTmni’ oPeefPo Yo o © FT-T{ oo ©Oc0 @ o0& a8 o
TabR 4 ° 470 o @ © © TabM! ;1 o o o NP o°
FT-T 0 6 EXTWYS® 0 oo B oD TabR A 0@ 9o o
TabR 4 WRBQOY O © TabR 4 oo (p 00
T2G 4 0T GBS © T2G 000 08 ofp %©°
SAINT 4 FPFVGDHE O Do SAINT A
lbs ~ "Zm ~ f5711 ~ ‘lh ~ é}l 10° 164 165 lbﬁ 167 168
Time (}) Objects per second (1)

Figure 11: (Left) Training time on datasets with less than 100K objects. (Right) Inference throughput
on GPU with maximum batch size.

Performance ranks with std. dev. Performance scores Performance scores
On all datasets On 41 datasets with random split On 9 datasets with domain-aware split
Sorted by the mean rank Sorted by the mean score Sorted by the mean score
O Mean
MLP{ 5.2+29] Excel TabRP o o® o
Excel 51426 MLP SAINT} o ¥ o
SAINTH 47%23 FT-T+ TabRi{ ©o & o
FT-T 14426 TabR Excel| ©o (oo
T2G 40+24 SAINT MNCA{ ® (Foo
TabR 1 40+2.] T2G MLP)
MNCA { 3923 MLPf MLPT{ o o & o
MLP' 384232 MNCA ¢ FT-T{ o © °
XGBoost] 32520 TabR' ¢ MNCAT{ o oéfm o
LightGBM 32£20 LightGBM ‘ T2G{ o © b °
MNCAT 30£21 XGBoost CatBoost @ © °
CatBoost | 29E20] T R GBOT TabM TabM ojed oo
TabR'+ 2.9+2.0 Hetrieval CatBoost ¢ LightGBM+{ © B o o
[0 MLP (Ours)
TabM{ 29+21 MNCAT ‘ XGBoost{ © p b 8
TabM{, L9=13 TabM] ;. O TabMl %joa) o !
1 2 3 4 5 2% 0% 2% 4% 6% 8% —5% 0% 5% 10%
Rank (1) Relative improvement over MLP (1) Relative improvement over MLP (1)

Figure 12: Same as Figure 3, but ROC-AUC is used as the metric for all classification datasets.

Table 4: Average number of parameters with std. dev. for 7 different tuned models across all 50
datasets.

TabM MLP FI-T T2G TabR ModernNCA SAINT
1.4M £13M 1.0M £1.0M 12M £1.2M 21M £1.6M 858K +1.4M 1.0M £1.1M 175.4M =+ 565.4M

C DATASETS

We use some datasets from Gorishniy et al. (2024) with minor differences commented below and 8
datasets from (Rubachev et al., 2024). In total, we use 50 datasets: 32 datasets from Grinsztajn et al.
(2022) (also used in Gorishniy et al. (2024)), 10 dataset from Gorishniy et al. (2024), 8 datasets from
Rubachev et al. (2024). There are 9 dataset with domain-aware split in total: 8 from Rubachev et al.
(2024) and Microsoft from Table 5.

Originally, (Gorishniy et al., 2024) uses 47 distinct datasets across all experiments (including datasets
from Table 5). We use 42 datasets out of these 47 datasets. We did not include the following 5
datasets:

18

Under review as a conference paper at ICLR 2025

Table 5: Properties of those datasets (10 datasets out of 50 datasets used in our study) that are not
part of Grinsztajn et al. (2022) or Rubachev et al. (2024) benchmarks. “# Num”, “# Bin”, and “# Cat”
denote the number of numerical, binary, and categorical features, respectively. The table is taken
from (Gorishniy et al., 2024).

Name # Train # Validation # Test # Num # Bin # Cat Task type Batch size
Churn Modelling 6400 1600 2000 10 3 1 Binclass 128
California Housing 13209 3303 4128 8 0 0 Regression 256
House 16H 14581 3646 4557 16 0 0 Regression 256
Adult 26048 6513 16281 6 1 8 Binclass 256
Diamond 34521 8631 10788 6 0 3 Regression 512
Otto Group Products 39601 9901 12376 93 0 0 Multiclass 512
Higgs Small 62751 15688 19610 28 0 0 Binclass 512
Black Friday 106764 26692 33365 4 1 4 Regression 512
Covertype 371847 92962 116203 54 44 0 Multiclass 1024
Microsoft 723412 235259 241521 131 5 0 Regression 1024

Table 6: Properties of 8 datasets from TabReD (Rubachev et al., 2024) benchmark. “# Num”, “#
Bin”, and “# Cat” denote the number of numerical, binary, and categorical features, respectively.

Name # Train # Validation # Test # Num # Bin # Cat Task type Batch size
Sberbank Housing 18847 4827 4647 365 17 10 Regression 256

Ecom Offers 109341 24261 26455 113 6 0 Binclass 1024
Maps Routing 160019 59975 59951 984 0 2 Regression 1024

Homesite Insurance 224320 20138 16295 253 23 23 Binclass 1024
Cooking Time 227087 51251 41648 186 3 3 Regression 1024
Homecredit Default 267645 58018 56001 612 2 82 Binclass 1024
Delivery ETA 279415 34174 36927 221 1 1 Regression 1024
Weather 106764 42359 40840 100 3 0 Regression 1024

* electricity from (Grinsztajn et al., 2022). The dataset is a time series forecasting problem
transformed to a regression task (each window of a certain size is treated as a tabular object with
the label being the next measurement after the window). However, the windows are shuffled and
split randomly into train, validation and test, which means that algorithms are partly trained on
future data, which is an unrealistic setup.

* yprop-4_1 from (Grinsztajn et al., 2022). This dataset is not informative for our purposes: in our
experiments, all algorithms show the same performance regardless of the type of the algorithm
and hyperparameter tuning, which is in line with the results from Gorishniy et al. (2024) (see
their Appendix.E in Gorishniy et al. (2024)).

¢ 1] from (Grinsztajn et al., 2022). On this dataset, we observed abnormal results, and since this is
an anonymous dataset, we removed it to avoid confusion.

» compass from (Grinsztajn et al., 2022). There is a leak in this dataset. The rows of the dataset
are the results of the different assessments, plus some features related to the person who took the
assessments. But it is possible that a person completed more than one assessment (on the same
day) which results in more than one row for that person. Due to the random split one person can
be included in both train and test splits. The correct way would be to split data by person id.
Importantly, this does not affect any conclusions.

» The weather forecasting dataset. This dataset was split without taking time into account, which
means that algorithms are partly trained on future data, which is an unrealistic setup for weather
prediction. There is a Weather dataset from Rubachev et al. (2024) that we use.

D BASELINES

D.1 MAIN BASELINES

In section 4, we used the following models as baselines:

* MLP (Gorishniy et al., 2021)

19

Under review as a conference paper at ICLR 2025

FT-Transformer (Gorishniy et al., 2021)

Excelformer (Chen et al., 2023a)

T2G-Former (Yan et al., 2023)

SAINT (Somepalli et al., 2021)

MLPT (with periodic embeddings from Gorishniy et al. (2022))
CatBoost (Prokhorenkova et al., 2018)

XGBoost (Chen & Guestrin, 2016)

LightGBM (Ke et al., 2017)

TabR (Gorishniy et al., 2024)

TabRT (with numerical embeddings Gorishniy et al. (2024))
ModernNCA (Ye et al., 2024)

ModernNCAT (Ye et al., 2024) (with numerical embeddings Gorishniy et al. (2024))

D.2 ADDITIONAL BASELINES

In fact, we evaluated even more baselines and their results are available in Appendix F.

¢ SNN (Klambauer et al., 2017)

DCNv2 (Wang et al., 2020)

MLP[PLE] (with piecewise-linear embeddings from Gorishniy et al. (2022))

Autolnt (Song et al., 2019)

TabPFN (Hollmann et al., 2023) (not applicable to regressions)

Trompt (Chen et al., 2023b) (our reimplementation, since there is no official implementation)
* MLP-Mixer (our heuristic adaptation of Tolstikhin et al. (2021) for tabular data)

L] L] L] L] L]

For SNN and DCNvV2, our observations were in line with prior studies (Gorishniy et al., 2021), and
they did not affect our story. For Trompt, we did not manage to get competitive results. TabPFN
specializes on small datasets, and indeed, it was not competitive on our benchmark.

E IMPLEMENTATION DETAILS

E.1 HARDWARE

Most of the experiments were conducted on a single NVIDIA A100 GPU. In rare exceptions, we used
a machine with a single NVIDIA 2080 Ti GPU and Intel(R) Core(TM) 17-7800X CPU @ 3.50GHz.

E.2 EXPERIMENT SETUP

We mostly follow the experiment setup from Gorishniy et al. (2024). As such, some of the text below
is copied from (Gorishniy et al., 2024).

Data preprocessing. For each dataset, for all DL-based solutions, the same preprocessing was used
for fair comparison. For numerical features, by default, we used a slightly modified version of the
quantile normalization from the Scikit-learn package (Pedregosa et al., 2011) (see the source code),
with rare exceptions when it turned out to be detrimental (for such datasets, we used the standard
normalization or no normalization). For categorical features, we used one-hot encoding. Binary
features (i.e. the ones that take only two distinct values) are mapped to {0, 1} without any further
preprocessing. We completely follow Rubachev et al. (2024) on Table 6 datasets.

Training neural networks. For DL-based algorithms, we minimize cross-entropy for classification
problems and mean squared error for regression problems. We use the AdamW optimizer (Loshchilov
& Hutter, 2019). We do not apply learning rate schedules. We do not use data augmentations. We
apply global gradient clipping to 1.0. For each dataset, we used a predefined dataset-specific batch
size. We continue training until there are pat ience consecutive epochs without improvements on
the validation set; we set pat ience = 16 for the DL models.

Hyperparameter tuning. In most cases, hyperparameter tuning is performed with the TPE sampler
(typically, 50-100 iterations) from the Optuna package (Akiba et al., 2019). Hyperparameter tuning
spaces for most models are provided in individual sections below (example for TabM: subsection E.8).
We follow Rubacheyv et al. (2024) and use 25 iterations on some datasets from Table 6.

20

Under review as a conference paper at ICLR 2025

Evaluation. On a given dataset, for a given model, the tuned hyperparameters are evaluated under
multiple (in most cases, 15) random seeds. The mean test metric and its standard deviation over these
random seeds are then used to compare algorithms as described in subsection E.3.

E.3 METRICS

We use Root Mean Squared Error for regression tasks, ROC-AUC for classification datasets from
Table 6 (following Rubachev et al. (2024)), and accuracy for the rest of datasets (following Gorishniy
et al. (2024)). We also tried computing ROC-AUC for all classification datasets, but did not observe
any significant changes (see Figure 12), so we stuck to prior work. By default, the mean score and its
standard deviation are obtained by training a given model with tuned hyperparameters from scratch
on a given dataset under 15 different random seeds. We use the test splits to compare the performance
of different models.

How we compute relative improvements. We compute performance improvement of model
relative to baseline as follows: (mean_.model_score/mean baseline_score —1)-100%.
mean_score is R2-score for regressions and Accuracy (ROC-AUC for Table 6) for classifications.
Note, that here we use R2-score for regression tasks, so the regression and classification metrics
become more comparable.

How we compute ranks. Our method of computing ranks used in Figure 3 does not count small
improvements as wins, hence the reduced range of ranks compared to other studies. Intuitively, our
ranks can be considered as “tiers”.

Recall that, on a given dataset, a given model A has its mean score Apean and the standard deviation if
its score Ay (obtained after the evaluation under multiple random seeds on the dataset). Assuming the
higher score the better, we define that the model A is better than the model B if: Apean — Asta > Bmean-
In other words, a model is considered better if it has a better mean score and the margin is larger than
the standard deviation.

On a given dataset, when there are many models, we sort them in descending score order. Starting
from the best model (with rank equal to 1) we iterate over models and assign first rank to all models
that are no worse than the best model according to the above rule. The first model in descending
order that is worse than the best model is assigned rank 2 and becomes a new reference model. We
continue the process until all models are ranked. Ranks are computed independently for each dataset.

E.4 IMPLEMENTATION DETAILS OF SUBSECTION 4.4

In this section, we used a full train split of Weather and Maps Routing datasets from Rubachev
et al. (2024) while validation and test splits remained the same size as in Table 6. So, the results
are comparable with the results from Appendix F. We took tuned configurations of the models
from section 4 and trained these models on large datasets (1 seed was used for FT-T and 3 seeds
for the other models). DL models were trained using Automatic Mixed Precision for the speed of
experiments.

E.5 IMPLEMENTATION DETAILS OF SUBSECTION 5.1

TabM[GH]. Here, we clarify implementation details for TabM[GH] announced in subsection 5.1.
TabM|GH] is obtained from a trained TabM by greedily selecting submodels from TabM starting
from the best one and stopping when two conditions are simultaneously true for the first time: (1)
adding any new submodel does not improve the validation metrics; (2) the current validation metric
is already better than that of the model with all heads. To clarify, during the greedy selection, the
i-th submodel is considered to be better than the j-th submodel if adding the i-th submodel to the
aggregated prediction leads to better validation metrics (i.e. it is not the same as adding the submodel
in the order of their individual validation metrics).

E.6 IMPLEMENTATION DETAILS OF SUBSECTION 5.2

Coefficient of variation. Let p be the number of model parameters, n is the size of train set and
gi € RP is the model gradient induced by training sampling i ~ U[1,n].

21

Under review as a conference paper at ICLR 2025

The coefficient of variation is calculated as follows:

T i Eiupnlllgil?] — | Eicup nygill?
conpe o VICH)) _ VEruia I~ [Evouiia]

Eivuin [llg:l] Eivuitm [llg:ll]

Essentially, we mostly interested in the standard deviation of a gradient (numerator), but the division
by the mean norm makes results for different architectures (k = 32 and k = 1) comparable. On
each epoch, we used the same 5000 objects from train set in order to estimate the coefficient (these
5000 objects were randomly selected before the training). Also, a script that calculates coefficient of
variation during training is included in the source code (bin/model_analysis.py).

E.7 IMPLEMENTATION DETAILS OF SUBSECTION 5.3
Figure 7 shows mean percentage improvement (see subsection E.3) over MLP across 9 datasets from
Table 5 (without Covertype). We have used a TabMi,; with 3 hidden layers of the width d = 512,

the dropout rate 0.1 and tuned learning rate for different k. The score on each dataset is averaged
over b seeds.

E.8 TaBM
Here we provide hyperparameter tuning spaces for TabM and TabM y;p; .

Table 7: The hyperparameter tuning space for TabM. Here, (B) = {Covertype, Microsoft, Table 6}
and (A) contains all other datasets.

Parameter Distribution or Value

k 32

layers UniformInt[1, 5]

Width (hidden size) UniformInt[64, 1024]
Dropout rate {0.0, Uniform[0.0, 0.5]}
Learning rate LogUniform[le-4, 5e-3|
Weight decay {0, LogUniform[le-4, le-1]}

Tuning iterations (A) 100 (B) 50

Table 8: The hyperparameter tuning space for TabM,y;y; that uses PiecewiseLinearEncoding embed-
dings from Gorishniy et al. (2022). Here, (B) = {Covertype, Microsoft, Table 6} and (A) contains all
other datasets.

Parameter Distribution or Value

k 32

layers UniformInt[1, 4]

Width (hidden size) UniformInt[64, 1024]
Dropout rate {0.0, Uniform[0.0, 0.5]}

PLE bins UniformInt[8, 32]

Learning rate LogUniform[5e-5, 3e-3]
Weight decay {0, LogUniform[le-4, le-1]}

Tuning iterations (A) 100 (B) 50

22

Under review as a conference paper at ICLR 2025

E.9 TaBR

Since we completely follow training and evaluation protocols from Gorishniy et al. (2024) and TabR
was proposed in Gorishniy et al. (2024), we simply reuse results for TabR. More details can be found
in Appendix.D from Gorishniy et al. (2024). For TabR' on Table 6 we have used 25 tuning iterations
and the same tuning space as for TabR from Rubachev et al. (2024), we also followed Gorishniy et al.
(2024) and used periodic embeddings on small datasets (Sberbank Housing and Ecom Offers) and
Linear embeddings for the other datasets.

E.10 FT-TRANSFORMER

We used the implementation from the "rtdl_revisiting.models” Python package (version
0.0.2). The results on datasets from Table 6 were copied from Rubachev et al. (2024).

Table 9: The hyperparameter tuning space for FT-Transformer Gorishniy et al. (2021). Here, (B) =
{Covertype, Microsoft} and (A) contains all other datasets (except Table 6).

Parameter Distribution or Value

blocks UniformInt[1, 4]

dioken UniformInt[16, 384]
Attention dropout rate Uniform[0.0, 0.5]

FFN hidden dimension expansion rate ~ Uniform|2/3, 8/3]

FEN dropout rate Uniform][0.0, 0.5]

Residual dropout rate {0.0, Uniform|0.0, 0.2]}
Learning rate LogUniform|[3e-5, 1e-3]
Weight decay {0, LogUniform|[le-4, le-1]}
Tuning iterations (A) 100 (B) 50

E.11 MODERNNCA

We adapted an official implementation of Ye et al. (2024). We have used periodic embeddings
Gorishniy et al. (2022) for ModernNCA and no embeddings for ModernNCA.

Table 10: The hyperparameter tuning space for ModernNCA. Here, (C) = {Table 6}, (B) = {Covertype,
Microsoft} and (A) contains all other datasets.

Parameter Distribution

blocks UniformInt[0, 2]

dpiock UniformInt[64, 1024]

dim UniformInt[64, 1024]
Dropout rate Uniform[0.0, 0.5]

Sample rate Uniform[0.05, 0.6]

Learning rate LogUniform[le-5, le-1]
Weight decay {0, LogUniform[1le-6, 1e-3]}

Tuning iterations (A) 100 (B, C) 50

23

Under review as a conference paper at ICLR 2025

Table 11: The hyperparameter tuning space for ModernNCAT. Here, (C) = {Table 6}, (B) =
{Covertype, Microsoft} and (A) contains all other datasets.

Parameter Distribution

blocks UniformInt[0, 2]

dplock UniformInt[64, 1024]

dim UniformInt[64, 1024]
Dropout rate Uniform][0.0, 0.5]

Sample rate Uniform[0.05, 0.6]

Learning rate LogUniform(le-5, le-1]
Weight decay {0, LogUniform|le-6, le-3]}
n_frequencies UniformInt[16, 96]
d_embedding UniformInt[16, 32]

frequency_init_scale LogUniform|[0.01, 10]
Tuning iterations (A) 100 (B, C) 50

E.12 T2G-FORMER
We adapted the implementation and hyperparameters of Yan et al. (2023) from the official repository'.
Table 12: The hyperparameter tuning space for T2G-Former Yan et al. (2023). Here, (C) = {all from

Table 6}, (B) = {Covertype, Microsoft} and (A) contains all other datasets. Also, we used 50 tuning
iterations for some datasets from Grinsztajn et al. (2022).

Parameter Distribution or Value
blocks (A) UniformInt[3, 4] (B, C) UniformInt[1, 3]
dtoken Uniformlnt[64, 512]
Attention dropout rate Uniform[0.0, 0.5]
FFN hidden dimension expansion rate (A, B) Uniform[2/3,8/3] (C) 4/3
FEN dropout rate Uniform[0.0, 0.5]
Residual dropout rate {0.0, Uniform[0.0, 0.2]}
Learning rate LogUniform[3e-5, 1e-3]
Col. Learning rate LogUniform[5e-3, 5e-2]
Weight decay {0, LogUniform[1e-6, le-1]}
Tuning iterations (A) 100 (B) 50 (C) 25
E.13 SAINT

We completely adapted hyperparameters and protocol from Gorishniy et al. (2024) to evaluate SAINT
on Grinsztajn et al. (2022) benchmark. Results on datasets from Table 5 were directly taken from
Gorishniy et al. (2024). Additional details can be found in Appendix.D from Gorishniy et al. (2024).
We have used a default configuration on big datasets due to very high cost of tuning (see Table 13).

E.14 EXCELFORMER

We adapted the implementation and hyperparameters of Chen et al. (2023a) from the official reposi-
tory”. Importantly, we did not use MixUp technique from the paper in our expirements.

"https://github.com/jyansir/t2g-former
*https://github.com/What AShot/ExcelFormer

24

Under review as a conference paper at ICLR 2025

Table 13: The default hyperparameters for SAINT (Somepalli et al., 2021) on datasets from Rubachev
et al. (2024).

Parameter Value
depth 2
dtoken 32
Nheads 4
dhead 3
Attention dropout rate 0.1
FFN hidden dimension expansion rate 1
FFN dropout rate 0.8
Learning rate le-4
Weight decay le-2

Table 14: The hyperparameter tuning space for Excelformer Chen et al. (2023a). Here, (D) =
{Homecredit, Maps Routing}, (C) = {Table 6 w/o (D)}, (B) = {Covertype, Microsoft} and (A)
contains all other datasets.

Parameter Distribution or Value

blocks (A, B) UniformInt[2, 5] (C) UniformInt[2, 4] (D) UniformInt[1, 3]
diokon (A, B) {32,64, 128,256} (C) {16, 32, 64} (D) {4,8, 16,32}

Nheads (AB) {4,8,16,32} (C) {4,8,16} (D) 4

Attention dropout rate 0.3

FFN dropout rate 0.0

Residual dropout rate ~ Uniform|[0.0, 0.5]

Learning rate LogUniform|3e-5, 1e-3]

Weight decay {0, LogUniform[le-4, le-1]}

Tuning iterations (A) 100 (B) 50 (C, D) 25

E.15 MLP

We used the implementation from the "rtdl_revisiting.models” Python package (version
0.0.2) and rtdl _num_embeddings” Python package (version 0.0.10).

Table 15: The hyperparameter tuning space for MLP.

Parameter Distribution

layers UniformInt[1, 6]

Width (hidden size) UniformInt[64, 1024]
Dropout rate {0.0, Uniform[0.0, 0.5]}
Learning rate LogUniform|3e-5, 1e-3]
Weight decay {0, LogUniform[le-4, le-1]}

Tuning iterations 100

25

Under review as a conference paper at ICLR 2025

Table 16: The hyperparameter tuning space for MLP' that uses periodic embeddings from
Gorishniy et al. (2022) (more precisely, the lite version of the PLR embeddings from the
“rtdl_num_embeddings” package).

Parameter Distribution

layers UniformInt[1, 6]

Width (hidden size) ~ UniformInt[64, 1024]
Dropout rate {0.0, Uniform][0.0, 0.5]}
Learning rate LogUniform|[3e-5, 1e-3]
Weight decay {0, LogUniform|[le-4, le-1]}
n_frequencies UniformInt[16, 96]
d_embedding UniformInt[16, 64

frequency_init_scale LogUniform[0.01, 100]

Tuning iterations 100

E.16 CATBOOST, XGBOOST AND LIGHTGBM

We found the hyperparameter tuning protocol in Gorishniy et al. (2024) to give strong and repre-
sentative results for GBDT models. Since our setup is directly taken from Gorishniy et al. (2024),
we simply reused their results for GBDTs. Importantly, in a series of preliminary experiments, we
confirmed that those results are reproducible in our instance of their setup. The details can be found
in Appendix.D from Gorishniy et al. (2024). Results on datasets from Table 6 were copied from the
paper (Rubachev et al., 2024).

E.17 AUTOINT
We used an implementation from Gorishniy et al. (2021) which is an adapted official implementation®.

Table 17: The hyperparameter tuning space for Autolnt (Song et al., 2019). Here, (B) = { Covertype,
Microsoft} and (A) contains all other datasets.

Parameter Distribution

blocks UniformInt[1, 6]
dioken UniformInt[8, 64]
Nheads 2

Attention dropout rate {0, Uniform[0.0, 0.5]}
Embedding dropout rate {0, Uniform|[0.0, 0.5]}

Learning rate LogUniform|3e-5, 1e-3]
Weight decay {0, LogUniform[le-4, le-1]}
Tuning iterations (A) 100 (B) 50

E.17.1 TABPFN

Since TabPFN accepts only less than 10K training samples we use different subsamples of size 10K
for different random seeds. Also, TabPFN is not applicable to regressions and datasets with more
than 100 features.

3https://github.com/shichence/Autolnt

26

Under review as a conference paper at ICLR 2025

F PER-DATASET RESULTS WITH STANDARD DEVIATIONS

Table 18: Extended results for the datasets from Table 5. Results are grouped by datasets.

churn 7 california |

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.8567 4+ 0.0020 0.8570 £ 0.0017 DCNv2 0.4971 +£0.0122 0.4779 4+ 0.0022
SNN 0.8506 4+ 0.0051 0.8533 + 0.0033 SNN 0.5033 4+ 0.0075 0.4933 + 0.0035
MLP 0.8553 4+ 0.0029 0.8582 + 0.0008 MLP 0.4948 4+ 0.0058 0.4880 + 0.0022
Trompt 0.8557 + 0.0077 — Trompt 0.4650 4+ 0.0072 —
TabPFN 0.8624 4+ 0.0008 — TabPFN - -
Excel 0.8614 4+ 0.0025 0.8653 + 0.0037 Excel 0.4553 4+ 0.0043 0.4348 + 0.0009
AutoINT 0.8607 4+ 0.0047 0.8622 + 0.0003 AutoINT 0.4682 4 0.0063 0.4490 + 0.0028
SAINT 0.8603 4+ 0.0029 0.8628 + 0.0008 SAINT 0.4680 4+ 0.0048 0.4575 + 0.0014
FT-T 0.8593 4+ 0.0028 0.8598 + 0.0025 FT-T 0.4635 4+ 0.0048 0.4515 4+ 0.0016
MLP-Mixer 0.8592 4+ 0.0036 0.8630 + 0.0005 MLP-Mixer 0.4746 £ 0.0056 0.4509 £ 0.0029
T2G 0.8610 +0.0018 0.8613 + 0.0013 T2G 0.4616 4+ 0.0070 0.4439 + 0.0026
TabR 0.8599 4+ 0.0025 0.8620 + 0.0023 TabR 0.4030 4 0.0023 0.3964 + 0.0013
MNCA 0.8595 4+ 0.0028 0.8615 + 0.0013 MNCA 0.4239 4+ 0.0012 0.4231 + 0.0005
MLPf 0.8624 4+ 0.0010 0.8638 + 0.0012 MLP! 0.4652 4+ 0.0045 0.4549 + 0.0006
MLP[PLE] 0.8580 £ 0.0028 0.8605 £ 0.0018 MLP[PLE] 0.4530 £ 0.0029 0.4491 £ 0.0010
XGBoost 0.8605 4+ 0.0022 0.8608 £ 0.0013 XGBoost 0.4327 +0.0016 0.4316 = 0.0007
LightGBM 0.8600 4 0.0008 0.8600 =+ 0.0000 LightGBM 0.4352 4+ 0.0019 0.4339 + 0.0008
CatBoost 0.8582 4+ 0.0017 0.8588 4+ 0.0008 CatBoost 0.4294 4+ 0.0012 0.4265 + 0.0003
MNCAT 0.8606 4+ 0.0032 0.8607 + 0.0008 MNCAT 0.4142 4+ 0.0031 0.4071 + 0.0029
TabM 0.8613 4+ 0.0025 0.8615 + 0.0005 TabM 0.4509 4+ 0.0032 0.4490 + 0.0018
TabR 0.8625 4+ 0.0021 0.8645 + 0.0013 TabR' 0.3998 4+ 0.0033 0.3914 + 0.0020
TabMiﬂini 0.8608 +0.0019 0.8592 + 0.0003 TaubMIﬂini 0.4314 4+ 0.0036 0.4261 + 0.0019

house | adult T

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 3.3327 +0.0878 3.1303 + 0.0410 DCNv2 0.8582 4+ 0.0011 0.8593 + 0.0002
SNN 3.2176 £ 0.0376 3.1320 £ 0.0155 SNN 0.8582 4+ 0.0009 0.8603 % 0.0012
MLP 3.1117 4+ 0.0294 3.0706 4+ 0.0140 MLP 0.8540 4+ 0.0018 0.8559 + 0.0011
Trompt 3.2215 £ 0.0629 — Trompt 0.8566 £ 0.0020 —
TabPFN - - TabPFN - -
Excel 3.2432 4+ 0.0511 3.1053 4+ 0.0160 Excel 0.8623 4+ 0.0028 0.8645 + 0.0004
AutoINT 3.2157 +0.0436 3.1261 + 0.0095 AutoINT 0.8592 4+ 0.0016 0.8612 + 0.0004
SAINT 3.2424 4+ 0.0595 3.1067 + 0.0253 SAINT 0.8601 4+ 0.0019 0.8618 + 0.0001
FT-T 3.1823 +0.0460 3.0974 + 0.0334 FT-T 0.8588 4+ 0.0015 0.8608 + 0.0011
MLP-Mixer 3.1871+ 0.0519 3.0184 + 0.0086 MLP-Mixer 0.8598 + 0.0013 0.8617 + 0.0002
T2G 3.1524 +0.0291 3.0918 + 0.0073 T2G 0.8603 4+ 0.0011 0.8621 + 0.0001
TabR 3.0667 4+ 0.0403 2.9958 4+ 0.0270 TabR 0.8646 4+ 0.0022 0.8680 + 0.0019
MNCA 3.0884 4+ 0.0286 3.0538 £ 0.0072 MNCA 0.8677 +0.0018 0.8696 + 0.0003
MLP? 3.0633 +0.0248 3.0170 + 0.0070 MLP' 0.8693 4+ 0.0007 0.8702 + 0.0006
MLP[PLE] 3.0999 + 0.0351 3.0401 + 0.0071 MLP[PLE] 0.8603 + 0.0009 0.8616 =+ 0.0006
XGBoost 3.1773 £ 0.0102 3.1644 + 0.0068 XGBoost 0.8720 4+ 0.0006 0.8723 + 0.0002
LightGBM 3.1774 + 0.0087 3.1672 =+ 0.0050 LightGBM 0.8713 £ 0.0007 0.8721 4+ 0.0004
CatBoost 3.1172 4 0.0125 3.1058 + 0.0022 CatBoost 0.8714 4+ 0.0012 0.8723 + 0.0007
MNCAT 3.0704 4+ 0.0388 3.0149 + 0.0308 MNCAT 0.8717 4+ 0.0008 0.8742 + 0.0006
TabM 3.0002 4+ 0.0182 2.9796 + 0.0024 TabM 0.8582 4+ 0.0011 0.8588 + 0.0003
TabR' 3.1048 4+ 0.0410 3.0246 + 0.0101 TabR' 0.8699 4+ 0.0011 0.8722 % 0.0005
TabM' 2.9902 4+ 0.0271 2.9648 4+ 0.0035 TabM! 0.8679 4+ 0.0017 0.8690 + 0.0005

mini

mini

27

Under review as a conference paper at ICLR 2025

diamond | otto T

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.1420 4 0.0032 0.1374 4 0.0020 DCNv2 0.8064 4 0.0021 0.8208 4+ 0.0023
SNN 0.1473 4+ 0.0057 0.1424 4 0.0008 SNN 0.8087 4 0.0020 0.8156 4= 0.0013
MLP 0.1404 4+ 0.0012 0.1362 4 0.0003 MLP 0.8175 4+ 0.0022 0.8222 4+ 0.0007
Trompt 0.1394 4+ 0.0014 — Trompt 0.7875 4+ 0.0087 —
TabPFN - - TabPFN 0.7408 4+ 0.0028 —
Excel 0.1765 4+ 0.0024 0.1713 £ 0.0003 Excel 0.8101 4+ 0.0033 0.8225 % 0.0004
AutoINT 0.1392 4+ 0.0014 0.1361 % 0.0004 AutoINT 0.8050 £+ 0.0034 0.8111 4+ 0.0020
SAINT 0.1369 4+ 0.0019 0.1343 £+ 0.0011 SAINT 0.8119 4+ 0.0018 0.8193 4+ 0.0024
FT-T 0.1376 4+ 0.0013 0.1360 % 0.0002 FT-T 0.8133 4+ 0.0033 0.8221 4+ 0.0013
MLP-Mixer 0.1400 4 0.0025 0.1378 £ 0.0008 MLP-Mixer 0.8092 4+ 0.0040 0.8136 + 0.0010
T2G 0.1375 4+ 0.0011 0.1349 4+ 0.0007 T2G 0.8161 4+ 0.0026 0.8268 4 0.0024
TabR 0.1327 4+ 0.0010 0.1311 4 0.0005 TabR 0.8179 4+ 0.0022 0.8236 4 0.0009
MNCA 0.1370 4+ 0.0018 0.1348 4= 0.0005 MNCA 0.8275 4+ 0.0012 0.8313 4 0.0006
MLPT 0.1342 4+ 0.0008 0.1325 4 0.0004 MLPT 0.8190 £ 0.0021 0.8271 4+ 0.0015

MLP[PLE] 0.1323 +0.0010 0.1301 =+ 0.0005 MLP[PLE] 0.8205 # 0.0021 0.8290 + 0.0006
XGBoost 0.1368 +0.0004 0.1363 £ 0.0001 XGBoost 0.8297 +0.0011 0.8316 £ 0.0008
LightGBM 0.1359 £ 0.0002 0.1358 = 0.0001 LightGBM 0.8302 4 0.0009 0.8316 £ 0.0013
CatBoost 0.1335 £ 0.0006 0.1327 £ 0.0004 CatBoost 0.8250 + 0.0013 0.8268 £ 0.0002

MNCAT 0.1327 £ 0.0012 0.1315 + 0.0006 MNCA' 0.8265 £+ 0.0015 0.8304 £ 0.0006
TabM 0.1342 £ 0.0017 0.1327 4+ 0.0004 TabM 0.8268 £+ 0.0014 0.8300 % 0.0007
TabR ' 0.1333 +0.0013 0.1312 4 0.0005 TabR' 0.8246 4+ 0.0018 0.8309 4+ 0.0014
TabM!, . 0.132040.0010 0.1307 4 0.0005 TabM!, . 0.834240.0014 0.8365 % 0.0005
higgs-small 1 black-friday |

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.7164 4+ 0.0030 0.7237 £ 0.0011 DCNv2 0.6968 4+ 0.0013 0.6936 + 0.0007
SNN 0.7142 4+ 0.0024 0.7171 4+ 0.0020 SNN 0.6996 4 0.0013 0.6978 4+ 0.0004
MLP 0.7180 4 0.0027 0.7192 4 0.0005 MLP 0.6955 4 0.0004 0.6942 4 0.0002
Trompt 0.7223 £ 0.0035 — Trompt 0.6988 4+ 0.0010 —
TabPFN 0.6727 £ 0.0034 — TabPFN - -
Excel 0.7262 4+ 0.0022 0.7324 4+ 0.0005 Excel 0.6948 4+ 0.0010 0.6901 4 0.0006
AutoINT 0.7240 4+ 0.0028 0.7287 4+ 0.0008 AutoINT 0.6994 4+ 0.0082 0.6927 + 0.0021
SAINT 0.7236 +0.0019 0.7295 + 0.0011 SAINT 0.6934 4+ 0.0009 0.6879 % 0.0006
FT-T 0.7281 +0.0016 0.7334 £ 0.0013 FT-T 0.6987 4+ 0.0192 0.6879 % 0.0023
MLP-Mixer 0.7248 + 0.0023 0.7334 £ 0.0007 MLP-Mixer 0.6905+ 0.0021 0.6851 4 0.0011
T2G 0.7340 4+ 0.0029 0.7381 + 0.0017 T2G 0.6904 £ 0.0086 0.6843 4+ 0.0018
TabR 0.7223 4+ 0.0010 0.7257 4+ 0.0008 TabR 0.6899 4 0.0004 0.6883 4 0.0002
MNCA 0.7263 4+ 0.0023 0.7292 4 0.0006 MNCA 0.6893 4 0.0004 0.6883 4 0.0000
MLPf 0.7260 = 0.0017 0.7304 £ 0.0008 MLPT 0.6849 4 0.0006 0.6824 % 0.0002

MLP[PLE] 0.7210 £ 0.0016 0.7252 =+ 0.0005 MLP[PLE] 0.6836 + 0.0006 0.6812 =+ 0.0002
XGBoost 0.7246 £+ 0.0015 0.7264 £+ 0.0013 XGBoost 0.6806 4= 0.0001 0.6805 = 0.0000
LightGBM 0.7256 £+ 0.0009 0.7263 £ 0.0007 LightGBM 0.6799 £ 0.0003 0.6795 &+ 0.0001
CatBoost 0.7260 £ 0.0011 0.7273 £ 0.0010 CatBoost 0.6822 4 0.0003 0.6813 £ 0.0002

MNCA'T 0.7300 £ 0.0020 0.7348 £ 0.0008 MNCAT 0.6885 + 0.0007 0.6863 £ 0.0003
TabM 0.7383 £ 0.0028 0.7409 £ 0.0010 TabM 0.6875 + 0.0015 0.6866 £ 0.0003
TabR' 0.7294 £ 0.0014 0.7326 £ 0.0005 TabR/' 0.6761 & 0.0009 0.6735 £ 0.0006
TabM! 0.7348 £ 0.0017 0.7379 £ 0.0006 TabM! 0.6807 £ 0.0013 0.6783 £ 0.0009

mini mini

28

Under review as a conference paper at ICLR 2025

covtype 1 microsoft |

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.9622 4+ 0.0019 0.9673 £ 0.0011 DCNv2 0.7499 4+ 0.0003 0.7477 + 0.0001
SNN 0.9636 4+ 0.0010 0.9677 £ 0.0002 SNN 0.7488 4+ 0.0004 0.7470 + 0.0001
MLP 0.9630 4+ 0.0012 0.9664 + 0.0004 MLP 0.7475 4+ 0.0003 0.7460 = 0.0003
Trompt - - Trompt 0.7551 4+ 0.0007 —
TabPFN - - TabPFN - -
Excel 0.9606 4+ 0.0018 0.9670 £ nan Excel 0.7477 £ 0.0006 0.7438 £ 0.0004
AutoINT - - AutoINT 0.7482 4+ 0.0005 0.7455 =+ 0.0002
SAINT 0.9669 + 0.0010 — SAINT 0.7625 £ 0.0066 —
FT-T 0.9698 £ 0.0008 0.9731 + 0.0006 FT-T 0.7460 £+ 0.0007 0.7422 +£ 0.0004
MLP-Mixer — - MLP-Mixer 0.7482 4 0.0008 0.7436 £ 0.0001
T2G 0.9666 4+ 0.0009 0.9706 + 0.0005 T2G 0.7461 4+ 0.0006 0.7429 + 0.0003
TabR 0.9737 £ 0.0005 0.9745 + 0.0006 TabR 0.7503 £ 0.0006 0.7485 + 0.0002
MNCA 0.9724 4+ 0.0003 0.9729 + 0.0001 MNCA 0.7458 4+ 0.0003 0.7448 £+ 0.0002
MLPT 0.9690 £+ 0.0008 0.9721 =+ 0.0006 MLPT 0.7446 + 0.0002 0.7434 +£ 0.0002
MLP[PLE] 0.9697 £ 0.0008 0.9721 + 0.0005 MLP[PLE] 0.7465 + 0.0005 0.7448 + 0.0001
XGBoost 0.9710 £+ 0.0002 0.9713 + 0.0000 XGBoost 0.7413 £ 0.0001 0.7410 % 0.0000
LightGBM - - LightGBM 0.7417 + 0.0001 0.7413 £ 0.0000
CatBoost 0.9671 4+ 0.0003 — CatBoost 0.7412 4+ 0.0001 0.7406 + 0.0000
MNCAT 0.9747 £ 0.0002 0.9747 £ 0.0002 MNCA'T 0.7460 £ 0.0008 0.7435 + 0.0004
TabM 0.9712 4+ 0.0008 0.9729 + 0.0003 TabM 0.7434 4+ 0.0003 0.7424 + 0.0001
TabR 0.9752 4+ 0.0003 0.9759 + 0.0003 TabR' 0.7501 4+ 0.0005 —
TabM! 0.9740 £+ 0.0006 0.9754 + 0.0001 TabM! 0.7427 +0.0002 0.7416 £ 0.0002

mini

mini

Table 19: Extended results for the datasets from Lee et al. (2015). Results are grouped by datasets.

wine T phoneme 7

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.7492 4+ 0.0147 0.7764 £ 0.0095 DCNv2 0.8342 £ 0.0151 0.8543 +0.0118
SNN 0.7818 £ 0.0143 0.7994 £+ 0.0097 SNN 0.8596 £ 0.0124 0.8687 + 0.0080
MLP 0.7778 £ 0.0153 0.7907 + 0.0117 MLP 0.8525 £ 0.0126 0.8635 + 0.0099
Trompt 0.7665 + 0.0117 — Trompt 0.8528 £ 0.0150 —
TabPFN 0.7908 £+ 0.0063 — TabPFN 0.8684 £+ 0.0050 —
Excel 0.7619 4+ 0.0144 0.7731 4+ 0.0106 Excel 0.8537 £ 0.0118 0.8685 + 0.0074
AutoINT 0.7745 4+ 0.0144 0.7909 + 0.0160 AutoINT 0.8623 +0.0138 0.8754 + 0.0095
SAINT 0.7684 4+ 0.0144 0.7821 4+ 0.0105 SAINT 0.8657 +0.0130 0.8799 4+ 0.0080
FT-T 0.7755 £ 0.0133 0.7894 + 0.0083 FT-T 0.8667 4+ 0.0127 0.8795 % 0.0093
MLP-Mixer 0.7769 £ 0.0149 0.7950 £ 0.0087 MLP-Mixer 0.8629 + 0.0123 0.8757 £ 0.0095
T2G 0.7738 £ 0.0126 0.7894 + 0.0149 T2G 0.8630 +0.0146 0.8736 £ 0.0119
TabR 0.7936 + 0.0114 0.8055 + 0.0057 TabR 0.8781 £ 0.0096 0.8840 + 0.0054
MNCA 0.7911 +0.0135 0.8005 £ 0.0121 MNCA 0.8835 £ 0.0079 0.8861 + 0.0057
MLP' 0.7803 4+ 0.0157 0.7964 4+ 0.0146 MLP! 0.8742 4+ 0.0120 0.8861 + 0.0071
MLP[PLE] 0.7814 £ 0.0132 0.7919 £ 0.0098 MLP[PLE] 0.8647 + 0.0098 0.8761 + 0.0076
XGBoost 0.7949 4+ 0.0178 0.8010 £ 0.0186 XGBoost 0.8682 4+ 0.0174 0.8771 £ 0.0156
LightGBM 0.7890 4+ 0.0160 0.7929 + 0.0106 LightGBM 0.8702 4+ 0.0129 0.8733 + 0.0126
CatBoost 0.7994 4+ 0.0131 0.8057 £ 0.0098 CatBoost 0.8827 £ 0.0117 0.8897 + 0.0055
MNCAT 0.7867 +0.0113 0.7953 £ 0.0114 MNCAT 0.8828 4 0.0082 0.8925 % 0.0056
TabM 0.7961 4+ 0.0136 0.8011 + 0.0084 TabM 0.8701 £ 0.0167 0.8766 + 0.0128
TabR' 0.7804 £ 0.0148 0.7945 + 0.0118 TabR| 0.8772 £ 0.0087 0.8849 + 0.0073
TabM! 0.7886 + 0.0167 0.7963 £ 0.0113 TabM! 0.8790 £ 0.0098 0.8885 + 0.0056

mini

mini

29

Under review as a conference paper at ICLR 2025

analcatdata_supreme |

KDDCup09_upselling 1

Method

Single model

Ensemble

Method

Single model

Ensemble

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLPT
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabRf
TabM!

mini

Tuned Hyperparameters

0.0811 £ 0.0137
0.0826 + 0.0096
0.0782 £+ 0.0081
0.0770 + 0.0086
0.0791 £ 0.0091
0.0783 +0.0078
0.0773 £ 0.0078
0.0787 = 0.0086
0.0770 £ 0.0082
0.0778 £ 0.0077
0.0803 £+ 0.0066
0.0809 + 0.0072
0.0798 £+ 0.0088
0.0774 £+ 0.0064
0.0801 £ 0.0126
0.0778 £ 0.0115
0.0780 £+ 0.0067
0.0825 £ 0.0090
0.0777 £ 0.0099
0.0807 £ 0.0088

0.0790 £ 0.0079

0.0759 £+ 0.0086
0.0779 £ 0.0098
0.0766 + 0.0090

0.0773 £ 0.0090
0.0768 + 0.0083
0.0759 + 0.0076
0.0775 £+ 0.0091
0.0759 £+ 0.0081
0.0766 + 0.0077
0.0759 £+ 0.0046
0.0784 + 0.0062
0.0769 £ 0.0092
0.0759 £+ 0.0063
0.0774 £ 0.0107
0.0767 £ 0.0110
0.0734 £ 0.0022
0.0793 £ 0.0072
0.0769 = 0.0105
0.0754 + 0.0046

0.0770 £ 0.0086

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCA'T
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.7850 £ 0.0161
0.7884 + 0.0122
0.7759 £ 0.0137
0.7812 + 0.0144
0.7929 + 0.0085
0.8004 £+ 0.0075
0.7942 +0.0112
0.7957 £ 0.0127
0.7979 + 0.0105
0.7988 + 0.0107
0.7838 + 0.0136
0.7939 + 0.0097
0.7962 £ 0.0093
0.7925 + 0.0123
0.7930 £ 0.0108
0.7932 £ 0.0119
0.7992 £+ 0.0117
0.7960 = 0.0131
0.8002 £+ 0.0103
0.7908 + 0.0123

0.8031 £ 0.0133

0.7884 £ 0.0135
0.7940 £ 0.0116
0.7806 + 0.0125

0.7991 £ 0.0108
0.8037 4 0.0063
0.7993 £ 0.0081
0.7960 + 0.0139
0.8010 £ 0.0094
0.8015 £ 0.0083
0.7859 £ 0.0167
0.7989 £ 0.0115
0.7995 £+ 0.0105
0.7963 = 0.0089
0.7950 + 0.0102
0.7969 + 0.0115
0.8010 £ 0.0121
0.8008 = 0.0110
0.8021 4 0.0074
0.8028 £+ 0.0084

0.8039 £+ 0.0114

kdd_ipums_la_97-small 1

wine_quality |

Method

Single model

Ensemble

Method

Single model

Ensemble

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCA'T
TabM
TabRf
TabM!

mini

Tuned Hyperparameters

0.8770 £ 0.0072
0.8722 + 0.0093
0.8828 + 0.0061
0.8798 £ 0.0111
0.8578 + 0.0046
0.8814 £+ 0.0061
0.8808 + 0.0083
0.8837 £ 0.0055
0.8795 £ 0.0077
0.8762 + 0.0100
0.8842 + 0.0056
0.8798 + 0.0081
0.8819 + 0.0054
0.8765 + 0.0108
0.8757 £ 0.0101
0.8825 £ 0.0089
0.8792 + 0.0075
0.8793 + 0.0088
0.8837 £ 0.0062
0.8845 + 0.0063
0.8831 £+ 0.0050
0.8775 + 0.0094

0.8824 £+ 0.0068
0.8733 £ 0.0083
0.8845 £+ 0.0055

0.8822 £+ 0.0052
0.8830 £+ 0.0081
0.8839 £ 0.0049
0.8792 £ 0.0062
0.8770 = 0.0088
0.8847 + 0.0057
0.8819 + 0.0078
0.8832 + 0.0048
0.8765 + 0.0108
0.8756 £ 0.0104
0.8835 £ 0.0085
0.8802 £+ 0.0067
0.8803 + 0.0100
0.8860 + 0.0059
0.8848 + 0.0070
0.8839 + 0.0052
0.8780 £ 0.0099

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.7010 £ 0.0171
0.6604 = 0.0174
0.6707 £ 0.0178
0.6871 £ 0.0104

0.6877 £ 0.0160
0.6840 + 0.0126
0.6797 £ 0.0161
0.6787 £ 0.0149
0.6672 1 0.0263
0.6802 4+ 0.0162
0.6315 £+ 0.0097
0.6154 = 0.0083
0.6569 + 0.0167
0.6721 £ 0.0180
0.6039 4 0.0134
0.6135 +0.0138
0.6088 +0.0132
0.6099 + 0.0144
0.6169 + 0.0123
0.6412 + 0.0105
0.6255 + 0.0146

0.6699 + 0.0139
0.6245 + 0.0140
0.6530 + 0.0152

0.6656 + 0.0142
0.6478 + 0.0146
0.6604 + 0.0307
0.6564 + 0.0250
0.6294 £+ 0.0200
0.6592 £ 0.0222
0.6197 £+ 0.0096
0.6058 +0.0149
0.6328 +0.0155
0.6463 £ 0.0262
0.6025 4 0.0139
0.6122 4 0.0144
0.6060 + 0.0137
0.6028 + 0.0157
0.6131 + 0.0126
0.6202 £+ 0.0066
0.6194 + 0.0150

30

Under review as a conference paper at ICLR 2025

isolet | cpu.act |

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 2.2449 4+ 0.1579 2.0176 4+ 0.0770 DCNv2 2.7868 +0.1999 2.4884 + 0.0327
SNN 2.4269 4+ 0.2382 2.1142 + 0.1262 SNN 2.5811 4+ 0.1480 2.3863 4+ 0.0324
MLP 2.2744 +0.2203 2.0018 £ 0.1111 MLP 2.6814 +0.2291 2.4953 + 0.1150
Trompt 2.7814 4+ 0.0885 — Trompt 2.3872 +0.2610 —
TabPFN - - TabPFN - -
Excel 2.8877 £ 0.1027 2.6073 £ 0.0731 Excel 2.3507 4+ 0.2540 2.2001 + 0.1574
AutoINT 2.6130 4+ 0.1658 2.3308 + 0.1088 AutoINT 2.2537 £ 0.0536 2.1708 4+ 0.0349
SAINT - - SAINT 2.2781 £ 0.0630 2.2032 4+ 0.0310
FT-T 2.4879 4+ 0.2524 2.1501 + 0.1506 FT-T 2.2394 4+ 0.0508 2.1494 + 0.0268
MLP-Mixer 2.3344 + 0.2073 2.0915 £+ 0.1159 MLP-Mixer 2.3079 4+ 0.0829 2.1831 + 0.0470
T2G 2.2700 4+ 0.2384 1.9258 4= 0.1408 T2G 2.2100 4 0.0404 2.1280 4 0.0300
TabR 1.9760 £ 0.1738 1.7627 £ 0.1520 TabR 2.2980 4 0.0529 2.2228 4+ 0.0501
MNCA 1.7905 £ 0.1594 1.6205 £ 0.1676 MNCA 2.2603 £ 0.0479 2.2339 % 0.0508
MLPT 2.2719 +0.1006 2.1026 + 0.1088 MLPT 2.2730 £ 0.0457 2.1899 £+ 0.0419
MLP[PLE] 2.0979 £0.1779 1.9283 + 0.1334 MLP[PLE] 2.3309 £+ 0.0719 2.2516 + 0.0574
XGBoost 2.7567 £ 0.0470 2.7294 + 0.0366 XGBoost 2.5237 £ 0.3530 2.4723 + 0.3789
LightGBM 2.7005 + 0.0296 2.6903 + 0.0290 Light GBM 2.2223 +0.0894 2.2067 4+ 0.0916
CatBoost 2.8852 4+ 0.0225 2.8480 + 0.0020 CatBoost 2.1239 4+ 0.0489 2.1092 + 0.0499
MNCAT 1.8912 £ 0.1851 1.7147 £0.1348 MNCA' 2.2105 4+ 0.0483 2.1396 + 0.0474
TabM 1.8831 £ 0.1194 1.8578 £ 0.1088 TabM 2.1940 £ 0.0523 2.1677 + 0.0487
TabR ' 1.9919 £ 0.1813 1.7483 £0.1434 TabR' 2.1278 £ 0.0783 2.0631 % 0.0502
Tauijnini 1.8378 £ 0.0803 1.8126 £ 0.0692 Tabenini 2.1572 £ 0.0376 2.1222 + 0.0358

visualizing_soil | sulfur |
Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.3547 +0.2726 0.2549 + 0.1517 DCNv2 0.0247 £ 0.0050 0.0208 + 0.0050
SNN 0.3642 4+ 0.2350 0.1599 4 0.0406 SNN 0.0209 £+ 0.0034 0.0194 + 0.0038
MLP 0.1461 4+ 0.0152 0.1338 + 0.0073 MLP 0.0217 4+ 0.0024 0.0204 4 0.0028
Trompt 0.1289 4+ 0.0023 — Trompt 0.0252 4+ 0.0048 —
TabPFN - — TabPFN — -
Excel 0.1528 +0.0200 0.1276 £ 0.0044 Excel 0.0259 £+ 0.0053 0.0251 + 0.0051
AutoINT 0.1598 +0.0724 0.1357 £ 0.0655 AutoINT 0.0206 4+ 0.0035 0.0192 + 0.0034
SAINT 0.1368 4+ 0.0155 0.1235 % 0.0051 SAINT 0.0199 £+ 0.0028 0.0178 & 0.0022
FT-T 0.1443 +0.0235 0.1250 £ 0.0104 FT-T 0.0215 4+ 0.0042 0.0201 = 0.0037
MLP-Mixer 0.1431+ 0.0472 0.1323 £ 0.0420 MLP-Mixer 0.0199 + 0.0034 0.0184 £ 0.0032
T2G 0.2878 +0.2651 0.2706 % 0.2550 T2G 0.0218 £ 0.0031 0.0200 + 0.0025
TabR 0.3979 £ 0.3523 0.3869 + 0.3746 TabR 0.0222 4+ 0.0022 0.0208 % 0.0021
MNCA 0.3642 4 0.3482 0.3626 4 0.3660 MNCA 0.0198 £+ 0.0030 0.0189 + 0.0020
MLPT 0.1601 4+ 0.0785 0.1396 + 0.0630 MLPT 0.0192 4+ 0.0032 0.0181 % 0.0028
MLP[PLE] 0.1063 £ 0.0239 0.0973 £ 0.0180 MLP[PLE] 0.0197 £ 0.0026 0.0187 £ 0.0029
XGBoost 0.1765 4+ 0.0707 0.1539 + 0.0539 XGBoost 0.0202 £ 0.0019 0.0200 £ 0.0017
LightGBM 0.0616 + 0.0159 0.0616 £ 0.0167 LightGBM 0.0203 4 0.0020 0.0200 =+ 0.0015
CatBoost 0.0554 4+ 0.0063 0.0468 %+ 0.0059 CatBoost 0.0189 4+ 0.0022 0.0185 4 0.0022
MNCAT 0.2367 = 0.3529 0.2290 £ 0.2782 MNCA' 0.0198 4+ 0.0029 0.0185 % 0.0032
TabM 0.1242 +0.0188 0.1171 £ 0.0118 TabM 0.0192 4+ 0.0035 0.0184 % 0.0030
TabR' 0.2268 4+ 0.2641 0.2021 4 0.1468 TabR' 0.0217 4+ 0.0031 0.0201 4 0.0028
TabM' 0.1060 4 0.0243 0.1043 £ 0.0234 TabM! 0.0197 4+ 0.0042 0.0192 % 0.0045

mini

mini

31

Under review as a conference paper at ICLR 2025

bank-marketing 1 Brazilian_houses |
Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.7859 4+ 0.0068 0.7917 4+ 0.0078 DCNv2 0.0477 +0.0172 0.0427 4+ 0.0207
SNN 0.7836 4= 0.0074 0.7882 % 0.0054 SNN 0.0630 4 0.0162 0.0556 + 0.0175
MLP 0.7860 4 0.0057 0.7887 + 0.0052 MLP 0.0473 £ 0.0179 0.0440 4+ 0.0207
Trompt 0.7922 +0.0114 — Trompt 0.0428 4+ 0.0295 —
TabPFN 0.7894 4+ 0.0091 — TabPFN — -
Excel 0.7957 4+ 0.0092 0.7998 4+ 0.0088 Excel 0.0457 +0.0167 0.0424 4+ 0.0186
AutoINT 0.7917 4 0.0071 0.7956 4+ 0.0058 AutoINT 0.0470 4+ 0.0192 0.0437 4+ 0.0217
SAINT 0.7953 4+ 0.0058 0.7974 4+ 0.0050 SAINT 0.0479 4+ 0.0205 0.0426 4+ 0.0236
FT-T 0.7918 4+ 0.0076 0.7951 + 0.0071 FT-T 0.0438 +0.0181 0.0412 4+ 0.0204
MLP-Mixer 0.7954 4+ 0.0059 0.8001 + 0.0048 MLP-Mixer 0.0513 4+0.0234 0.0484 + 0.0262
T2G 0.7930 4 0.0064 0.7957 &+ 0.0037 T2G 0.0465 4 0.0167 0.0432 4+ 0.0188
TabR 0.7995 4 0.0054 0.8015 % 0.0037 TabR 0.0490 4 0.0152 0.0454 4+ 0.0170
MNCA 0.7961 4 0.0065 0.8003 % 0.0077 MNCA 0.0527 4+ 0.0157 0.0509 4 0.0180
MLPf 0.7947 + 0.0101 0.7977 + 0.0117 MLP' 0.0426 4+ 0.0180 0.0397 4+ 0.0206

MLP[PLE] 0.7981 + 0.0065 0.8008 £ 0.0057 MLP[PLE] 0.0421 + 0.0209 0.0409 + 0.0226
XGBoost 0.8013 £ 0.0081 0.8030 £ 0.0076 XGBoost 0.0541 +0.0270 0.0535 £ 0.0287
LightGBM 0.8006 £ 0.0078 0.8013 £ 0.0072 LightGBM 0.0603 £ 0.0249 0.0589 £ 0.0271
CatBoost 0.8026 + 0.0068 0.8056 £ 0.0082 CatBoost 0.0468 +0.0312 0.0456 £ 0.0332

MNCAT 0.7977 £ 0.0081 0.8010 &£ 0.0084 MNCA' 0.0553 £ 0.0192 0.0511 £ 0.0191
TabM 0.7908 £ 0.0068 0.7915 % 0.0068 TabM 0.0443 £+ 0.0213 0.0431 4+ 0.0233
TabR 0.8023 4+ 0.0088 0.8037 &+ 0.0096 TabR' 0.0451 £ 0.0163 0.0413 £ 0.0174
Tauijnini 0.8003 4+ 0.0087 0.8017 £ 0.0087 TaleLnini 0.0460 4 0.0206 0.0439 + 0.0228

MagicTelescope 1 Ailerons |
Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.8432 4+ 0.0074 0.8490 % 0.0046 DCNv2 0.0002 £ 0.0000 0.0002 + 0.0000
SNN 0.8536 + 0.0052 0.8567 £ 0.0047 SNN 0.0002 £ 0.0000 0.0002 + 0.0000
MLP 0.8539 £+ 0.0060 0.8566 + 0.0061 MLP 0.0002 £ 0.0000 0.0002 + 0.0000
Trompt 0.8484 4+ 0.0058 — Trompt 0.0002 £ 0.0000 —
TabPFN 0.8579 4+ 0.0064 — TabPFN - —
Excel 0.8498 4+ 0.0078 0.8571 % 0.0057 Excel 0.0002 £ 0.0000 0.0002 % 0.0000
AutoINT 0.8522 4+ 0.0056 0.8560 =+ 0.0034 AutoINT 0.0002 £ 0.0000 0.0002 % 0.0000
SAINT 0.8595 4+ 0.0060 0.8632 + 0.0061 SAINT 0.0002 £ 0.0000 0.0002 = 0.0000
FT-T 0.8588 4+ 0.0046 0.8643 £ 0.0037 FT-T 0.0002 £ 0.0000 0.0002 = 0.0000
MLP-Mixer 0.8571 + 0.0080 0.8624 £ 0.0044 MLP-Mixer 0.0002 4 0.0000 0.0002 =+ 0.0000
T2G 0.8563 £ 0.0054 0.8617 + 0.0037 T2G 0.0002 £ 0.0000 0.0002 + 0.0000
TabR 0.8682 £ 0.0058 0.8729 + 0.0038 TabR 0.0002 £ 0.0000 0.0002 + 0.0000
MNCA 0.8602 4+ 0.0061 0.8628 + 0.0041 MNCA 0.0002 £ 0.0000 0.0002 + 0.0000
MLPT 0.8591 4+ 0.0061 0.8626 + 0.0044 MLPT 0.0002 £ 0.0000 0.0002 % 0.0000

MLP[PLE] 0.8593 £ 0.0054 0.8621 £ 0.0037 MLP[PLE] 0.0002 = 0.0000 0.0002 =+ 0.0000
XGBoost 0.8550 £ 0.0094 0.8589 4+ 0.0110 XGBoost 0.0002 4= 0.0000 0.0002 = 0.0000
LightGBM 0.8547 £ 0.0085 0.8556 £ 0.0086 LightGBM 0.0002 £ 0.0000 0.0002 % 0.0000
CatBoost 0.8586 + 0.0070 0.8588 £ 0.0077 CatBoost 0.0002 £ 0.0000 0.0002 = 0.0000

MNCA'T 0.8622 + 0.0085 0.8681 £ 0.0064 MNCAT 0.0002 £ 0.0000 0.0002 = 0.0000
TabM 0.8607 + 0.0058 0.8622 £ 0.0050 TabM 0.0002 £ 0.0000 0.0002 = 0.0000
TabR' 0.8641 + 0.0052 0.8680 £ 0.0020 TabR/' 0.0002 £ 0.0000 0.0002 = 0.0000
TabM! 0.8616 + 0.0080 0.8646 £ 0.0075 TabM! 0.0002 £ 0.0000 0.0002 = 0.0000

mini mini

32

Under review as a conference paper at ICLR 2025

MiamiHousing2016 | OnlineNewsPopularity |
Method Single model Ensemble Method Single model Ensemble
Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.1683 4+ 0.0099 0.1575 4 0.0047 DCNv2 0.8714 4+ 0.0013 0.8648 4 0.0004
SNN 0.1618 4+ 0.0029 0.1557 + 0.0021 SNN 0.8692 4+ 0.0015 0.8665 % 0.0005
MLP 0.1614 +0.0033 0.1574 £ 0.0043 MLP 0.8643 £+ 0.0007 0.8632 % 0.0005
Trompt 0.1536 4+ 0.0045 — Trompt 0.8671 = nan —
TabPFN - - TabPFN - -
Excel 0.1520 4+ 0.0033 0.1441 + 0.0024 Excel 0.8609 4+ 0.0018 0.8562 %+ 0.0010
AutoINT 0.1537 £ 0.0035 0.1478 £+ 0.0027 AutoINT 0.8636 £ 0.0022 0.8596 + 0.0008
SAINT 0.1507 £ 0.0022 0.1471 4+ 0.0023 SAINT 0.8600 £ 0.0007 0.8582 4 0.0003
FT-T 0.1514 4+ 0.0029 0.1462 + 0.0031 FT-T 0.8629 4+ 0.0019 0.8603 4 0.0000
MLP-Mixer 0.1527 4+ 0.0037 0.1479 £ 0.0033 MLP-Mixer 0.8615 4 0.0008 0.8598 + 0.0004
T2G 0.1511 4+ 0.0022 0.1470 £ 0.0021 T2G 0.8637 4+ 0.0015 0.8587 4+ 0.0013
TabR 0.1417 4+ 0.0025 0.1390 4= 0.0020 TabR 0.8677 £ 0.0013 0.8633 + 0.0009
MNCA 0.1503 4+ 0.0040 0.1477 4+ 0.0032 MNCA 0.8651 4= 0.0003 0.8650 % 0.0002
MLPT 0.1514 4+ 0.0025 0.1479 + 0.0017 MLPT 0.8604 £ 0.0009 0.8591 4+ 0.0004
MLP[PLE] 0.1461 + 0.0015 0.1433 + 0.0022 MLP[PLE] 0.8585+ 0.0003 0.8581 + 0.0001
XGBoost 0.1440 4 0.0029 0.1434 4+ 0.0029 XGBoost 0.8545 4 0.0002 0.8543 4+ 0.0000
LightGBM 0.1461 + 0.0025 0.1455 + 0.0030 LightGBM 0.8546 + 0.0002 0.8544 4+ 0.0000
CatBoost 0.1417 4+ 0.0021 0.1408 4 0.0026 CatBoost 0.8532 4+ 0.0003 0.8527 + 0.0001
MNCAT 0.1475 4+ 0.0031 0.1438 + 0.0024 MNCA' 0.8647 4+ 0.0010 0.8624 + 0.0006
TabM 0.1483 £+ 0.0030 0.1465 % 0.0029 TabM 0.8584 4+ 0.0003 0.8581 + 0.0001
TabR ' 0.1392 4+ 0.0023 0.1364 + 0.0021 TabR' 0.8624 4+ 0.0011 0.8589 4 0.0003
Tauijnini 0.1407 £ 0.0016 0.1387 &£ 0.0008 Taijnim 0.8560 4+ 0.0015 0.8532 % 0.0008
Bike_Sharing_Demand | credit T
Method Single model Ensemble Method Single model Ensemble
Tuned Hyperparameters Tuned Hyperparameters
DCNv2 45.2596 £+ 0.9906 43.2049 £ 0.3088 DCNv2 0.7703 4+ 0.0034 0.7746 4+ 0.0026
SNN 48.0917 4+ 1.1852 44.6840 £ 1.0755 SNN 0.7712 4 0.0045 0.7716 4+ 0.0059
MLP 45.0186 4+ 0.7700 43.2726 £ 0.5498 MLP 0.7735 4+ 0.0042 0.7729 4+ 0.0047
Trompt 44.8162 £ 0.1210 — Trompt 0.7731 £ 0.0050 —
TabPFN - — TabPFN 0.7636 4 0.0045 —
Excel 43.5201 £ 1.0363 40.9541 £0.3714 Excel 0.7726 £ 0.0043 0.7745 + 0.0054
AutoINT 43.5852 +0.7439 41.6339 £0.2132 AutoINT 0.7737 £ 0.0050 0.7765 % 0.0058
SAINT 42.7850 £ 0.4637 41.8555 + 0.4083 SAINT 0.7739 £ 0.0052 0.7749 % 0.0066
FT-T 43.2031 £ 0.4889 41.1763 £0.3443 FT-T 0.7745 4+ 0.0041 0.7767 + 0.0040
MLP-Mixer 43.1481 4+0.6971 40.8738 £0.3218 MLP-Mixer 0.7748 + 0.0038 0.7768 £ 0.0059
T2G 42.8300 £ 0.6775 41.1650 £ 0.3333 T2G 0.7747 £ 0.0047 0.7767 4+ 0.0043
TabR 43.6370 £ 0.6814 42.3390 +£ 0.4146 TabR 0.7730 4 0.0043 0.7740 4 0.0040
MNCA 44.8100 + 0.5191 44.4483 +0.4231 MNCA 0.7739 4+ 0.0032 0.7757 4+ 0.0026
MLPT 43.1846 & 1.1145 41.3309 4+ 0.2381 MLP' 0.7749 £ 0.0055 0.7767 £ 0.0075
MLP[PLE] 42.5106 £ 0.4022 41.4351 +£0.1280 MLP[PLE] 0.7758 4 0.0040 0.7772 £ 0.0055
XGBoost 42.7657 £ 0.1260 42.6060 £+ 0.0391 XGBoost 0.7698 £ 0.0027 0.7706 £+ 0.0029
LightGBM 42.5028 4+ 0.1896 42.3416 £0.1492 LightGBM 0.7686 + 0.0028 0.7726 £ 0.0034
CatBoost 40.9275 £ 0.2316 40.5515 £ 0.0898 CatBoost 0.7734 4 0.0035 0.7752 4+ 0.0038
MNCAT 42.6308 & 0.8834 41.6584 4+ 0.5771 MNCAT 0.7734 £ 0.0045 0.7754 = 0.0040
TabM 42.1081 £ 0.5016 41.3316 £0.3496 TabM 0.7751 £ 0.0042 0.7755 = 0.0049
TabR' 42.6486 + 0.9394 41.2265 + 0.6146 TabR' 0.7723 £ 0.0037 0.7750 4+ 0.0029
TabM! 41.3374 + 0.6326 40.4473 +0.5201 TabM/! 0.7748 £ 0.0026 0.7757 £ 0.0036

mini

mini

33

Under review as a conference paper at ICLR 2025

elevators |

fifa |

Method

Single model

Ensemble

Method

Single model

Ensemble

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLPT
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabRf
TabM!

mini

Tuned Hyperparameters

0.0019 £ 0.0000
0.0020 £ 0.0001
0.0020 £ 0.0001
0.0019 £ 0.0001
0.0019 £ 0.0000
0.0019 £ 0.0000
0.0018 £ 0.0000
0.0019 £ 0.0000
0.0019 £ 0.0000
0.0019 £ 0.0000
0.0049 + 0.0000
0.0019 £ 0.0000
0.0019 £ 0.0000
0.0018 £ 0.0000
0.0020 £ 0.0000
0.0020 £ 0.0000
0.0020 £ 0.0000
0.0018 £ 0.0000
0.0019 £ 0.0000
0.0019 £ 0.0001

0.0018 £ 0.0000

0.0019 £ 0.0000
0.0019 £ 0.0000
0.0019 £ 0.0000

0.0018 £ 0.0000
0.0018 £ 0.0000
0.0018 £ 0.0000
0.0018 £ 0.0000
0.0018 £ 0.0000
0.0018 £ 0.0000
0.0049 £ 0.0000
0.0019 £ 0.0000
0.0018 £ 0.0000
0.0018 £ 0.0000
0.0020 £ 0.0000
0.0020 £ 0.0000
0.0019 £ 0.0000
0.0018 £ 0.0000
0.0018 £ 0.0000
0.0018 £+ 0.0001

0.0018 £ 0.0000

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCA'T
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.8046 + 0.0135
0.8074 +0.0140
0.8038 + 0.0124
0.7920 + 0.0157
0.7915 £ 0.0119
0.7923 +0.0128
0.7901 +0.0118
0.7928 +0.0132
0.7936 = 0.0119
0.7944 + 0.0134
0.7902 + 0.0119
0.7967 £ 0.0138
0.7940 +0.0118
0.7806 + 0.0104
0.7800 £+ 0.0108
0.7806 + 0.0120
0.7835 £ 0.0116
0.7909 £+ 0.0107
0.7974 +0.0144
0.7914 £ 0.0136

0.7783 £ 0.0114

0.7993 £ 0.0129
0.8031 £ 0.0147
0.8011 £ 0.0143

0.7869 + 0.0139
0.7886 + 0.0127
0.7851 +0.0119
0.7888 +0.0130
0.7903 £ 0.0133
0.7920 £ 0.0141
0.7863 + 0.0120
0.7933 £ 0.0145
0.7898 4+ 0.0141
0.7800 + 0.0114
0.7795 £ 0.0114
0.7787 £ 0.0122
0.7817 £ 0.0114
0.7866 4+ 0.0106
0.7954 4+ 0.0160
0.7865 + 0.0159

0.7768 £ 0.0123

house_sales |

medical_charges |

Method

Single model Ensemble

Method

Single model Ensemble

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCA'T
TabM
TabRf
TabM'

mini

Tuned Hyperparameters

0.1862 4+ 0.0032 0.1778 + 0.0015
0.1800 4 0.0008 0.1770 4 0.0004
0.1790 4 0.0009 0.1763 4 0.0003

0.1716 4+ nan

0.1718 £ 0.0009
0.1700 + 0.0014
0.1713 £ 0.0015
0.1690 £ 0.0010
0.1704 £ 0.0007
0.1693 +0.0011
0.1689 £ 0.0009
0.1737 £ 0.0013
0.1699 + 0.0008
0.1687 £ 0.0004
0.1694 + 0.0003
0.1692 £ 0.0004
0.1669 £ 0.0001
0.1694 £+ 0.0007
0.1692 + 0.0011
0.1636 = 0.0009
0.1656 + 0.0005

0.1667 £ 0.0002
0.1670 + 0.0008
0.1685 £ 0.0005
0.1659 £ 0.0004
0.1690 £ 0.0005
0.1664 £+ 0.0003
0.1657 = 0.0003
0.1714 £+ 0.0005
0.1687 + 0.0007
0.1681 £ 0.0001
0.1689 £ 0.0001
0.1686 £+ 0.0001
0.1667 = 0.0000
0.1670 = 0.0003
0.1680 % 0.0005
0.1606 = 0.0002
0.1647 + 0.0002

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.0818 4= 0.0003 0.0815 £ 0.0001

0.0827 4+ 0.0006
0.0816 4 0.0001
0.0814 4+ nan

0.0817 £+ 0.0003
0.0822 £+ 0.0007
0.0814 £+ 0.0002
0.0814 + 0.0002
0.0814 4= 0.0002
0.0815 £ 0.0004
0.0815 £ 0.0002
0.0811 £ 0.0001
0.0812 £ 0.0002
0.0812 + 0.0000
0.0825 4= 0.0001
0.0820 £ 0.0000
0.0816 £ 0.0000
0.0809 £ 0.0000
0.0813 £+ 0.0001
0.0811 £ 0.0001
0.0812 £ 0.0001

0.0817 £+ 0.0001
0.0814 £ 0.0000

0.0813 £ 0.0000
0.0814 £+ 0.0001
0.0812 £ 0.0001
0.0812 % 0.0000
0.0811 £ 0.0000
0.0812 4 0.0001
0.0812 £ 0.0000
0.0810 £ 0.0000
0.0810 £ 0.0000
0.0811 % 0.0000
0.0825 4= 0.0000
0.0820 £ 0.0000
0.0815 £ 0.0000
0.0808 £ 0.0000
0.0812 £ 0.0000
0.0810 £ 0.0000
0.0812 £ 0.0000

34

Under review as a conference paper at ICLR 2025

pol | superconduct |

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 6.5374 +0.9479 5.1814 + 0.7775 DCNv2 10.8108 4+ 0.0957 10.4342 4+ 0.0179
SNN 6.1816 4+ 0.7366 5.5959 + 0.8243 SNN 10.8562 4+ 0.1300 10.3342 + 0.0509
MLP 5.5244 4+ 0.5768 4.9945 + 0.5923 MLP 10.8740 4+ 0.0868 10.4118 + 0.0429
Trompt 3.2484 4+ 0.4095 — Trompt 11.2139 = nan —
TabPFN — — TabPFN — —
Excel 3.0397 4+ 0.2359 2.5502 4+ 0.0939 Excel 11.1609 4+ 0.1977 10.4870 £ 0.0699
AutoINT 3.3295 4+ 0.3379 2.7999 + 0.1776 AutoINT 11.0019 4+ 0.1391 10.4469 + 0.0521
SAINT 2.7203 + 0.1858 2.4507 + 0.1153 SAINT 10.7807 4+ 0.1074 10.4652 + 0.0267
FT-T 2.6974 + 0.1666 2.3718 4+ 0.0724 FT-T 10.8256 4+ 0.1692 10.3391 + 0.0794
MLP-Mixer 3.2011 4 0.2921 2.8698 + 0.2577 MLP-Mixer 10.7502 + 0.0800 10.3281 + 0.0450
T2G 2.9195 4+ 0.1601 2.5973 4+ 0.0890 T2G 10.8731 + 0.1527 10.3313 + 0.0739
TabR 6.0708 4+ 0.5368 5.5578 + 0.4036 TabR 10.8842 4+ 0.1073 10.4800 + 0.0280
MNCA 5.7878 +0.4884 5.3773 + 0.5463 MNCA 10.4419 4+ 0.0640 10.2926 4+ 0.0261
MLPf 2.8239 + 0.2173 2.5266 + 0.0605 MLP' 10.5058 4+ 0.0758 10.2322 4+ 0.0463

MLP[PLE] 2.4958 +0.1292 2.3651 + 0.1223 MLP[PLE] 10.7220 £ 0.0757 10.3758 £ 0.0606
XGBoost 4.2963 £ 0.0644 4.2548 £ 0.0488 XGBoost 10.1610 £ 0.0201 10.1413 £ 0.0025
LightGBM 4.2320 £ 0.3369 4.1880 £ 0.3110 LightGBM 10.1634 + 0.0118 10.1552 4 0.0050
CatBoost 3.6320 £ 0.1006 3.5505 £ 0.0896 CatBoost 10.2422 £+ 0.0222 10.2116 £ 0.0058

MNCA'T 2.9083 £0.1364 2.6717 4+ 0.0530 MNCAT 10.5651 £ 0.0616 10.3155 £ 0.0253
TabM 3.3595 £ 0.4017 3.2130 £ 0.3979 TabM 10.3379 £ 0.0338 10.1943 £ 0.0291
TabR' 2.5770 £ 0.1689 2.3258 £ 0.0577 TabR' 10.3835 £ 0.0562 10.1366 £ 0.0232
TabM! 2.4893 £0.1620 2.4175+0.1124 TabM! 10.2083 £ 0.0591 10.0737 £ 0.0222

mini mini

jannis 1 MiniBooNE 1

Method Single model Ensemble Method Single model Ensemble

Tuned Hyperparameters Tuned Hyperparameters
DCNv2 0.7712 £ 0.0029 0.7825 + 0.0009 DCNv2 0.9433 £ 0.0011 0.9470 £ 0.0010
SNN 0.7818 +0.0025 0.7859 + 0.0011 SNN 0.9476 £+ 0.0013 0.9491 + 0.0010
MLP 0.7840 4+ 0.0018 0.7872 + 0.0007 MLP 0.9480 4 0.0007 0.9498 £ 0.0001
Trompt 0.7948 = nan — Trompt 0.9393 £ nan —
TabPFN 0.7419 +0.0018 — TabPFN 0.9266 4+ 0.0012 —
Excel 0.7965 + 0.0026 0.8034 £ 0.0014 Excel 0.9436 + 0.0017 0.9460 £ 0.0008
AutoINT 0.7933 £ 0.0018 0.7983 £ 0.0013 AutoINT 0.9447 £ 0.0014 0.9473 £ 0.0010
SAINT 0.7971 £ 0.0028 0.8033 £ 0.0008 SAINT 0.9471 £ 0.0009 0.9485 + 0.0002
FT-T 0.7940 £+ 0.0028 0.7998 +£ 0.0006 FT-T 0.9467 £ 0.0014 0.9486 £ 0.0010
MLP-Mixer 0.7927 4+ 0.0025 0.8019 £ 0.0012 MLP-Mixer 0.9446 4+ 0.0014 0.9483 + 0.0002
T2G 0.8011 £+ 0.0029 0.8057 + 0.0005 T2G 0.9474 4+ 0.0010 0.9504 =+ 0.0005
TabR 0.7983 £ 0.0022 0.8023 £ 0.0018 TabR 0.9487 4 0.0008 0.9500 = 0.0002
MNCA 0.7993 £+ 0.0019 0.8042 + 0.0013 MNCA 0.9488 £+ 0.0010 0.9505 + 0.0001
MLP? 0.7923 £ 0.0018 0.7945 £ 0.0010 MLP? 0.9466 + 0.0009 0.9478 £ 0.0004

MLP[PLE] 0.7891 £ 0.0013 0.7900 =+ 0.0006 MLP[PLE] 0.9482 + 0.0008 0.9492 + 0.0001
XGBoost 0.7967 £ 0.0019 0.7998 £+ 0.0007 XGBoost 0.9436 4= 0.0006 0.9452 = 0.0003
LightGBM 0.7956 £ 0.0017 0.7968 £ 0.0005 LightGBM 0.9422 £ 0.0009 0.9427 &+ 0.0003
CatBoost 0.7985 + 0.0018 0.8009 £ 0.0012 CatBoost 0.9453 £+ 0.0008 0.9459 =+ 0.0005

MNCAT 0.8068 + 0.0021 0.8128 £ 0.0007 MNCAT 0.9493 £ 0.0012 0.9501 +£ 0.0008
TabM 0.8066 + 0.0015 0.8075 £ 0.0004 TabM 0.9500 £ 0.0005 0.9505 =+ 0.0002
TabR' 0.8051 £ 0.0023 0.8114 £ 0.0013 TabR/' 0.9475 £+ 0.0007 0.9489 £ 0.0002
TabM! 0.8059 + 0.0018 0.8085 £ 0.0006 TabM! 0.9497 £+ 0.0006 0.9508 £ 0.0003

mini mini

35

Under review as a conference paper at ICLR 2025

SGEMM_GPU kernel_performance |

nyc-taxi-green-dec-2016 |

Method Single model Ensemble

Method

Single model Ensemble

Tuned Hyperparameters

DCNv2 0.0161 + 0.0005 0.0157 £ 0.0002
SNN 0.0191 4+ 0.0008 0.0169 + 0.0001
MLP 0.0165 + 0.0003 0.0160 =+ 0.0001
Trompt 0.0165 = nan —

TabPFN - -

Excel 0.0168 + 0.0007 0.0158 £ 0.0002
AutoINT 0.0165 + 0.0004 0.0160 =+ 0.0003
SAINT 0.0158 +0.0002 0.0155 =+ 0.0001
FT-T 0.0167 + 0.0007 0.0159 =+ 0.0004
MLP-Mixer 0.0164 + 0.0004 0.0158 £ 0.0002
T2G 0.0165 + 0.0006 0.0156 £ 0.0002
TabR 0.0174 +0.0014 0.0161 £ 0.0005
MNCA 0.0147 4+ 0.0000 0.0146 £ 0.0000
MLPT 0.0160 £ 0.0003 0.0156 =+ 0.0000
MLP[PLE] 0.0156 £ 0.0000 0.0154 + 0.0000
XGBoost 0.0167 + 0.0000 0.0167 £ 0.0000
LightGBM 0.0168 4 0.0000 0.0168 £ 0.0000
CatBoost 0.0168 + 0.0000 0.0166 £ 0.0000
MNCAT 0.0146 + 0.0002 0.0145 =+ 0.0000
TabM 0.0158 +0.0004 0.0155 =+ 0.0001
TabR 0.0154 + 0.0005 0.0150 £ 0.0002
TabM! 0.0156 + 0.0003 0.0154 + 0.0001

mini

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLPT
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCA'T
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.3919 £+ 0.0009 0.3889 £ 0.0003

0.3933 4+ 0.0013
0.3951 £ 0.0009
0.4574 4+ nan

0.3968 4+ 0.0026
0.4084 4+ 0.0256
0.3905 4+ 0.0013
0.3937 4+ 0.0064
0.3914 4+ 0.0026
0.3907 4 0.0029
0.3577 4+ 0.0222
0.3728 4+ 0.0012
0.3812 4+ 0.0018
0.3680 4+ 0.0006
0.3792 4+ 0.0002
0.3688 4 0.0002
0.3647 4 0.0005
0.3536 4+ 0.0052
0.3866 4+ 0.0006

0.3899 £+ 0.0004
0.3921 £+ 0.0003

0.3894 + 0.0003
0.3967 £ 0.0059
0.3876 4+ 0.0002
0.3889 + 0.0018
0.3861 + 0.0013
0.3860 = 0.0011
0.3380 £+ 0.0027
0.3720 £ 0.0010
0.3761 + 0.0016
0.3653 = 0.0005
0.3787 £+ 0.0000
0.3684 £+ 0.0000
0.3632 £+ 0.0003
0.3407 £ 0.0009
0.3855 4 0.0003

0.3725 £ 0.0091 0.3497 £ 0.0031
0.3527 £ 0.0112 0.3478 £ 0.0009

particulate-matter-ukair-2017 |

road-safety T

Method Single model Ensemble

Method

Single model Ensemble

Tuned Hyperparameters

DCNv2 0.3759 + 0.0012 0.3738 £ 0.0004
SNN 0.3790 + 0.0007 0.3744 £ 0.0002
MLP 0.3759 + 0.0004 0.3729 £ 0.0003
Trompt 0.3724 = nan —

TabPFN - -

Excel 0.3706 + 0.0011 0.3660 £ 0.0007
AutoINT 0.3723 +0.0011 0.3692 £ 0.0010
SAINT 0.3704 £ 0.0014 0.3672 £ 0.0009
FT-T 0.3735 £ 0.0012 0.3686 £ 0.0004
MLP-Mixer 0.3741+ 0.0010 0.3698 £ 0.0004
T2G 0.3682 + 0.0021 0.3635 £ 0.0006
TabR 0.3613 = 0.0005 0.3590 =+ 0.0002
MNCA 0.3670 &+ 0.0004 0.3649 =+ 0.0002
MLPT 0.3665 = 0.0008 0.3642 + 0.0003
MLP[PLE] 0.3649 £ 0.0011 0.3637 £ 0.0008
XGBoost 0.3641 + 0.0001 0.3640 =£ 0.0000
LightGBM 0.3637 4+ 0.0001 0.3635 = 0.0000
CatBoost 0.3647 + 0.0004 0.3637 £ 0.0002
MNCAT 0.3646 + 0.0001 0.3643 £ 0.0000
TabM 0.3686 + 0.0006 0.3679 £ 0.0003
TabR' 0.3596 + 0.0004 0.3579 £ 0.0002
TabM' 0.3603 + 0.0005 0.3589 + 0.0003

mini

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.7781 4+ 0.0014
0.7847 4+ 0.0010
0.7857 4+ 0.0019
0.7823 4+ nan

0.7338 4= 0.0032
0.7861 4 0.0034
0.7826 4 0.0030
0.7584 4+ 0.0584
0.7907 4+ 0.0012
0.7878 4+ 0.0032
0.7917 4+ 0.0026
0.8403 4+ 0.0014
0.8080 4+ 0.0013
0.7867 4+ 0.0018
0.7899 4+ 0.0009
0.8101 4+ 0.0017
0.7982 4+ 0.0012
0.8012 4 0.0009
0.8232 4 0.0017
0.7946 £+ 0.0013
0.8374 4+ 0.0013
0.8015 4 0.0034

0.7823 +0.0012
0.7865 £+ 0.0002
0.7873 + 0.0004

0.7902 £ 0.0009
0.7883 + 0.0013
0.7846 + 0.0021
0.7943 £ 0.0007
0.7919 £+ 0.0015
0.7958 £+ 0.0009
0.8441 £ 0.0005
0.8121 £ 0.0006
0.7903 £ 0.0002
0.7935 £ 0.0003
0.8129 4 0.0004
0.7996 £ 0.0005
0.8022 £ 0.0002
0.8287 £+ 0.0008
0.7961 £ 0.0005
0.8430 £ 0.0002
0.8060 £ 0.0015

36

Under review as a conference paper at ICLR 2025

year |

Method Single model Ensemble

Tuned Hyperparameters
DCNv2 9.2761 4+ 0.0401 9.0640 + 0.0156
SNN 9.0054 4+ 0.0256 8.9351 + 0.0073
MLP 8.9628 4+ 0.0232 8.8931 %+ 0.0066
Trompt 9.1554 = nan —
TabPFN — -
Excel 9.0452 4+ 0.0224 8.9612 4+ 0.0129
AutoINT 9.0430 4 0.0280 8.9619 4+ 0.0092
SAINT 9.0248 4 0.0225 8.9548 4+ 0.0102
FT-T 9.0005 4 0.0215 8.9360 + 0.0013
MLP-Mixer 8.9589 4 0.0182 8.9086 4+ 0.0177
T2G 8.9762 4+ 0.0160 8.8993 + 0.0013
TabR 9.0069 4+ 0.0152 8.9132 4+ 0.0088
MNCA 8.9476 4+ 0.0152 8.8977 + 0.0037
MLP' 8.9355 4+ 0.0103 8.9063 + 0.0030
MLP[PLE] 8.9379 + 0.0206 8.8753 + 0.0038
XGBoost 9.0307 4 0.0028 9.0245 4+ 0.0015
LightGBM 9.0200 + 0.0025 9.0128 + 0.0015
CatBoost 9.0370 4+ 0.0073 9.0054 + 0.0028
MNCAT 8.8973 4+ 0.0082 8.8550 + 0.0031
TabM 8.8701 4 0.0110 8.8517 4 0.0022
TabRf 8.9721 4 0.0105 8.9172 4+ 0.0029
TabM! 8.8825 4+ 0.0087 8.8560 %+ 0.0015

mini

Table 20: Extended results for datasets from Table 6. Results are grouped by datasets.

sberbank-housing |

ecom-offers 1

Method

Single model

Ensemble

Method

Single model

Ensemble

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLPT
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.2616 4+ 0.0049 0.2506 + 0.0015
0.2671 4+ 0.0140 0.2555 + 0.0033
0.2529 4+ 0.0078 0.2474 4+ 0.0052

0.2533 + 0.0046

0.2467 + 0.0019
0.2440 + 0.0038
0.2416 £ 0.0025
0.2820 £ 0.0323
0.2593 + 0.0053
0.2528 + 0.0055
0.2383 + 0.0032
0.2419 + 0.0012
0.2468 £ 0.0009
0.2482 £+ 0.0034
0.2448 + 0.0039
0.2469 + 0.0035
0.2542 + 0.0101
0.2357 £ 0.0025

0.2485 4+ nan

0.2442 4+ nan
0.2367 4= 0.0010

0.2603 £ 0.0048
0.2520 £ 0.0032
0.2503 £ 0.0029
0.2327 + 0.0009
0.2416 + 0.0007
0.2467 £ 0.0002
0.2473 £ 0.0016
0.2404 £+ 0.0025
0.2440 £+ 0.0026
0.2448 + 0.0021
0.2333 £ 0.0007

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLPT
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabR
TabM!

mini

Tuned Hyperparameters

0.5996 + 0.0043 0.6039 £ 0.0028

0.5912 4 0.0056
0.5989 + 0.0017

0.5759 £+ 0.0066

0.5812 £+ 0.0098
0.5775 + 0.0063
0.5791 £ 0.0056
0.5943 + 0.0019
0.5765 £+ 0.0087
0.5800 £ 0.0029
0.5949 + 0.0013
0.5763 = 0.0072
0.5758 £ 0.0006
0.5596 4 0.0068
0.5758 + 0.0050
0.5948 £+ 0.0006
0.5762 4 0.0052
0.5919 + 0.0016

0.5961 £ 0.0033
0.5995 £+ 0.0011

0.5759 4+ nan

0.5834 4+ nan
0.5817 4 0.0021

0.5977 = 0.0009
0.5820 £ 0.0047
0.5819 £ 0.0011
0.5953 £+ 0.0006
0.5917 £+ 0.0035
0.5758 £ 0.0003
0.5067 4= 0.0011
0.5796 + 0.0009
0.5952 £+ 0.0004
0.5794 £ 0.0008
0.5926 £+ 0.0006

37

Under review as a conference paper at ICLR 2025

maps-routing |

homesite-insurance 7

Method

Single model

Ensemble

Method

Single model

Ensemble

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLPT
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabRf
TabM!

mini

Tuned Hyperparameters

0.1656 £ 0.0004 0.1636 4= 0.0001
0.1634 £ 0.0002 0.1625 4= 0.0000
0.1625 £ 0.0001 0.1621 4 0.0000

0.1628 4+ 0.0001
0.1634 &+ nan

0.1625 4+ 0.0003
0.1616 4 0.0001
0.1639 4 0.0003
0.1625 4 0.0001
0.1618 4+ 0.0002
0.1620 4+ 0.0002
0.1616 4+ 0.0001
0.1618 4 0.0000
0.1619 4 0.0001
0.1627 4+ 0.0002
0.1612 4 0.0001
0.1622 4 0.0002

0.1610 £ 0.0001

0.1621 & nan

0.1619 £ 0.0001

0.1622 £+ 0.0002
0.1621 £+ 0.0001
0.1613 £ 0.0000
0.1614 £ 0.0000
0.1614 £ 0.0000
0.1616 = 0.0000
0.1615 £ 0.0000
0.1623 £ 0.0001
0.1609 £ 0.0000
0.1614 £+ 0.0000
0.1607 £ 0.0001

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCA'T
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.9398 + 0.0053 0.9432 £ 0.0018

0.9473 £ 0.0013
0.9506 £ 0.0005

0.9622 4+ 0.0004
0.9613 & nan

0.9622 4+ 0.0006
0.9624 4 0.0006
0.9487 4+ 0.0014
0.9514 4 0.0038
0.9609 4+ 0.0009
0.9582 4+ 0.0014
0.9601 4+ 0.0002
0.9603 4 0.0002
0.9606 4 0.0003
0.9620 4+ 0.0006
0.9641 4+ 0.0004
0.9556 4 0.0021

0.9627 + 0.0002

0.9484 £+ 0.0007
0.9514 £+ 0.0001

0.9635 4 nan

0.9633 £ 0.0001

0.9505 £ 0.0001
0.9522 + 0.0027
0.9626 £+ 0.0003
0.9599 £ 0.0002
0.9602 £ 0.0000
0.9604 £ 0.0001
0.9609 £ 0.0001
0.9635 4= 0.0002
0.9644 £ 0.0003
0.9600 £ 0.0008
0.9630 £ 0.0001

cooking-time |

homecredit-default 1

Method

Single model

Ensemble

Method

Single model

Ensemble

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabRf
TabM'

mini

Tuned Hyperparameters

0.4834 4+ 0.0003 0.4822 £ 0.0001
0.4835 £ 0.0006 0.4818 £ 0.0002

0.4828 + 0.0002

0.4821 £+ 0.0005

0.4840 4+ nan

0.4820 4+ 0.0008
0.4809 4+ 0.0008
0.4828 4+ 0.0008
0.4825 4+ 0.0004
0.4811 4 0.0004
0.4812 4 0.0004
0.4823 4+ 0.0001
0.4826 4+ 0.0001
0.4823 4+ 0.0001
0.4818 4 0.0005
0.4803 4 0.0006
0.4818 4+ 0.0006
0.4805 4 0.0007

0.4822 £+ 0.0000

0.4808 4+ nan

0.4813 £ 0.0005

0.4814 £+ 0.0004
0.4819 £+ 0.0003
0.4805 £+ 0.0001
0.4807 £ 0.0002
0.4821 + 0.0000
0.4825 4+ 0.0001
0.4820 £ 0.0001
0.4809 £+ 0.0003
0.4797 £ 0.0003
0.4807 = 0.0000
0.4795 £+ 0.0003

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

0.8471 +0.0019 0.8549 =+ 0.0002

0.8541 + 0.0016
0.8538 +0.0014

0.8513 4 0.0024
0.8377 &+ nan

0.8571 4+ 0.0023
0.8595 4+ 0.0009
0.8501 4+ 0.0027
0.8531 4+ 0.0018
0.8598 4 0.0009
0.8568 4+ 0.0039
0.8670 4+ 0.0005
0.8664 4+ 0.0004
0.8621 4+ 0.0007
0.8544 4+ 0.0033
0.8583 £ 0.0010
0.8547 4+ 0.0021
0.8632 4 0.0017

0.8569 + 0.0010
0.8566 £ 0.0005

0.8564 4+ nan

0.8611 £ 0.0013

0.8548 = 0.0003
0.8569 £ 0.0004
0.8607 £+ 0.0003
0.8614 + 0.0014
0.8674 4= 0.0001
0.8667 £ 0.0000
0.8636 = 0.0003
0.8606 + 0.0024
0.8599 + 0.0006
0.8602 £ 0.0002
0.8656 + 0.0003

38

Under review as a conference paper at ICLR 2025

delivery-eta |

weather |

Method

Single model

Ensemble

Method

Single model

Ensemble

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLPT
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCAT
TabM
TabRf
TabM!

mini

Tuned Hyperparameters

0.5516 + 0.0014
0.5495 £+ 0.0008
0.5493 + 0.0007

0.5552 4+ 0.0030
0.5528 4+ nan

0.5542 4+ 0.0026
0.5527 4+ 0.0016
0.5514 4+ 0.0024
0.5498 4+ 0.0007
0.5521 4+ 0.0014
0.5521 4+ 0.0019
0.5468 4+ 0.0002
0.5468 4+ 0.0001
0.5465 4 0.0001
0.5507 4+ 0.0013
0.5510 4+ 0.0015
0.5520 4 0.0015

0.5508 £ 0.0013

0.5495 £+ 0.0004
0.5479 £+ 0.0001
0.5478 + 0.0006

0.5524 4+ nan

0.5523 +0.0018

0.5480 £ 0.0005
0.5488 + 0.0002
0.5512 £ 0.0005
0.5511 £+ 0.0007
0.5463 = 0.0001
0.5465 £+ 0.0000
0.5461 £ 0.0000
0.5494 £ 0.0006
0.5504 + 0.0004
0.5495 £+ 0.0009
0.5497 £ 0.0003

DCNv2
SNN

MLP
Trompt
TabPFN
Excel
AutoINT
SAINT
FT-T
MLP-Mixer
T2G

TabR
MNCA
MLP?
MLP[PLE]
XGBoost
Light GBM
CatBoost
MNCA'T
TabM
TabR'
TabM!

mini

Tuned Hyperparameters

1.5606 £ 0.0057
1.5280 £ 0.0085
1.5378 £ 0.0054

1.5131 £ 0.0022
1.5097 £ 0.0045
1.5104 £ 0.0097
1.4849 £ 0.0087
1.4666 £ 0.0039
1.5062 £ 0.0054
1.5170 £ 0.0040
1.5162 £ 0.0020
1.4671 £ 0.0006
1.4625 £ 0.0008
1.4688 £ 0.0019
1.5008 £ 0.0034
1.4786 £ 0.0039
1.4458 £ 0.0018

1.4709 £ 0.0047

1.5292 £ 0.0028
1.5013 £ 0.0034
1.5111 £ 0.0029

1.4707 £+ nan

1.4719 £ 0.0040

1.4547 £ 0.0008
1.4822 £ 0.0013
1.4953 £ 0.0023
1.5066 £ 0.0008
1.4629 £ 0.0002
1.4581 £ 0.0003
1.4782 £ 0.0011
1.4715 £ 0.0020
1.4362 £ 0.0013
1.4611 £ 0.0023

39

