

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OWLEYE: ZERO-SHOT LEARNER FOR CROSS-DOMAIN GRAPH DATA ANOMALY DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph data is informative to represent complex relationships such as transactions between accounts, communications between devices, and dependencies among machines or processes. Correspondingly, graph anomaly detection (GAD) plays a critical role in identifying anomalies across various domains, including finance, cybersecurity, manufacturing, etc. Facing the large-volume and multi-domain graph data, nascent efforts attempt to develop foundational generalist models capable of detecting anomalies in unseen graphs without retraining. To the best of our knowledge, the different feature semantics and dimensions of cross-domain graph data heavily hinder the development of the graph foundation model, leaving further in-depth continual learning and inference capabilities a quite open problem. Hence, we propose **OWLEYE**, a novel zero-shot GAD framework that learns transferable patterns of normal behavior from multiple graphs, with a threefold contribution. First, OWLEYE proposes a **cross-domain feature alignment** module to harmonize feature distributions, which preserves domain-specific semantics during alignment. Second, with aligned features, to enable continuous learning capabilities, OWLEYE designs the **multi-domain multi-pattern dictionary learning** to encode shared structural and attribute-based patterns. Third, for achieving the in-context learning ability, OWLEYE develops a **truncated attention-based reconstruction** module to robustly detect anomalies without requiring labeled data for unseen graph-structured data. Extensive experiments on real-world datasets demonstrate that OWLEYE achieves superior performance and generalizability compared to state-of-the-art baselines, establishing a strong foundation for scalable and label-efficient anomaly detection.

1 INTRODUCTION

Graph anomaly detection (GAD) has been extensively studied over the past decades due to its wide-ranging applications that naturally involve graph-structured data, such as transaction networks in financial fraud detection (Slipenchuk & Epishkina, 2019; Ramakrishnan et al., 2019), communication and access networks in cybersecurity intrusion detection (Brdiczka et al., 2012; Duan et al., 2023), and user-user interaction graphs in fake news detection on social networks (Shu et al., 2017; 2019). Driven by the growing demand for accurate and scalable anomaly detection, recent research increasingly leverages graph neural networks (GNNs) to model node-level irregularities in complex graph-structured data. Broadly, existing approaches to GAD can be categorized into two research directions. The first adopts a “*one model for one dataset*” paradigm (Qiao & Pang, 2023; Zheng et al., 2025; Liu et al., 2022; Huang et al., 2022; Qiao et al., 2025), where one single model is trained for each graph individually to detect anomalies within that specific context. While this strategy can be effective, it is often computationally expensive and suffers from limited generalizability to unseen graphs. In contrast, a new research direction aims to build “*one for all*” generalist frameworks (Niu et al., 2024; Liu et al., 2024) that are trained on multiple graphs and capable of detecting anomalies in entirely new, unseen graphs without retraining. These models offer advantages in terms of scalability and cross-domain adaptability. For example, ARC (Liu et al., 2024) introduces a generalist framework based on in-context learning, which encodes high-order affinity and heterophily into anomaly-aware embeddings transferable across datasets. UNPrompt (Niu et al., 2024) proposes generalized neighborhood prompts that leverage latent node attribute predictability as an anomaly score, enabling effective anomaly detection in previously unseen graphs.

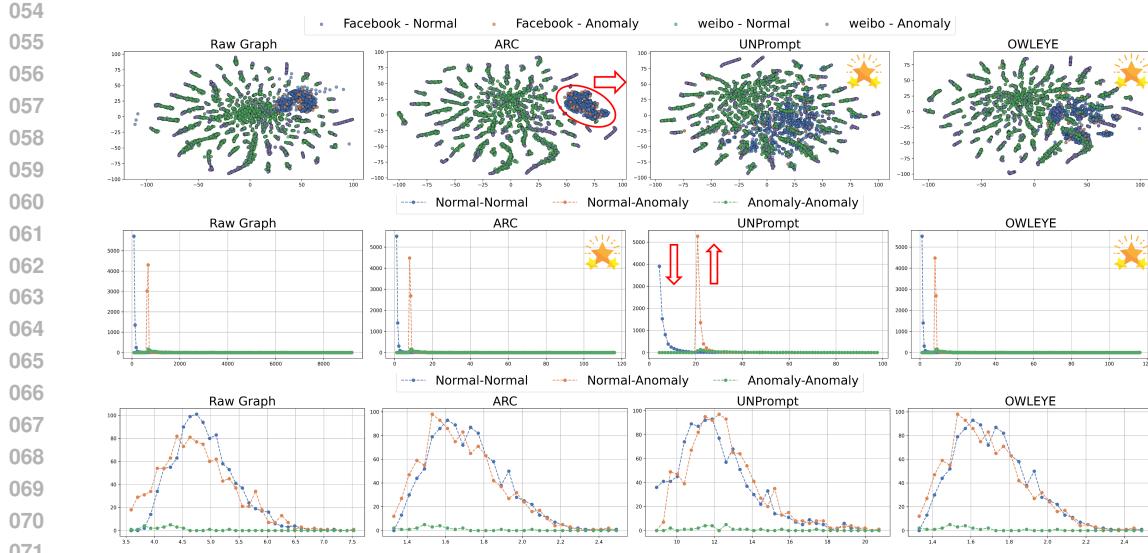


Figure 1: **Performance Visualization of SOTA GAD methods**, denotes best. *Top row*: TSNE embeddings of Facebook and Weibo graph data for (a) original features, (b) ARC, (c) UNPrompt, and (d) OWLEYE (ours). ARC pushes the two graphs apart rather than aligning them. *Middle and bottom rows*: pairwise Euclidean distances for **Normal-Normal**, **Normal-Anomaly**, and **Anomaly-Anomaly** node pairs on Weibo and Facebook dataset, respectively. In the original graph (middle row, (a)), **Normal-Normal** pairs are denser than **Normal-Anomaly** pairs on Weibo dataset—an important pattern reversed by UNPrompt (middle row, (c)). The existing data preprocessing methods fail to either align the graphs into the share space or preserve important patterns after normalization.

However, several critical limitations still hinder the full potential of these generalist models. **First**, graphs from different domains often have inherently different feature spaces and semantic interpretations. Existing methods (Niu et al., 2024; Liu et al., 2024; Qiao et al., 2025) typically use dimensionality reduction techniques such as principal component analysis (PCA) (Maćkiewicz & Ratajczak, 1993) or singular value decomposition (SVD) (Hoecker & Kartvelishvili, 1996), along with basic normalization strategies, to enforce a shared input space with the same dimensionality. However, these heuristics frequently fail to align heterogeneous feature distributions and preserve the important structural patterns effectively. In Figure 1, we visualize TSNE embeddings of Facebook and Weibo graphs before and after preprocessing with three methods (top row), along with pairwise Euclidean distances among three types of node pairs: Normal-Normal, Normal-Anomaly, and Anomaly-Anomaly for both datasets (middle and bottom rows). Notably, the TSNE plots show that ARC (Liu et al., 2024) tends to separate the two graphs rather than align them, while UNPrompt (Niu et al., 2024) disrupts critical structural patterns, for instance, it reverses the density relationship between Normal-Normal and Normal-Anomaly pairs observed in the original graph (compare subfigures in the middle row columns (a) and (c)). **Second**, current approaches lack mechanisms for continual capabilities as they do not support seamless integration of new graphs and the incremental update of normal and abnormal patterns without retraining from scratch. **Third**, many existing models assume the availability of a few labeled nodes in the target graph to facilitate few-shot learning. In practice, however, labeling anomalies can be costly and requires domain expertise, making this assumption unrealistic. This raises an important question: *how can we enable zero-shot anomaly detection without relying on any labeled data from the test graph?*

To address these limitations, we propose **OWLEYE**, a novel generalist for zero-shot graph anomaly detection across multiple domains. In brief, the core idea of OWLEYE is to learn and store representative patterns of normal behavior from multiple source graphs in a structured dictionary that acts as a knowledge base. When applied to an unseen graph, OWLEYE can effectively detect anomalies by leveraging the representative patterns stored in the dictionary. Our approach is built on three key components. **First**, we introduce a cross-domain feature alignment module, which normalizes and aligns node features across graphs using pairwise distance statistics, ensuring that graphs from different domains can be embedded into a shared input feature space. **Second**, we develop a multi-domain pattern module that extracts both attribute-level and structure-level patterns from training

graphs and stores them in a pattern dictionary. This dictionary enables the model to generalize to unseen graphs together with the cross-domain feature alignment module. **Third**, we design a truncated attention-based cross-domain reconstruction module that samples a subset of nodes and reconstructs them using the stored patterns, effectively identifying anomalies while minimizing the influence of abnormal nodes during the reconstruction process.

2 OWLEYE: ZERO-SHOT CROSS-DOMAIN GRAPH ANOMALY DETECTOR

In this section, we present OWLEYE and illustrate cross-domain feature alignment, multi-domain pattern learning, and truncated attention-based reconstruction. Throughout this paper, we use regular letters to denote scalars (e.g., α), boldface lowercase letters to denote vectors (e.g., \mathbf{x}), and boldface uppercase letters to denote matrices (e.g., \mathbf{A}). Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ be an undirected graph, where \mathcal{V}, \mathcal{E} , \mathbf{X} are the set of nodes, set of edges and the node attribute matrix, respectively. Let $\mathcal{T}_{train} = \{\mathcal{D}_{train}^1, \mathcal{D}_{train}^2, \dots, \mathcal{D}_{train}^m\}$ be a set of training datasets with m graphs and each $\mathcal{D}_{train}^i = (\mathcal{G}_{train}^i, \mathbf{y}_{train}^i)$ is a labeled dataset, where \mathbf{y}_{train}^i is a label vector denoting the abnormality of each node in the graph \mathcal{G}_{train}^i . Our objective is to train a GAD model on \mathcal{T}_{train} to identify anomalous nodes in the graph \mathcal{T}_{test}^j from the test datasets $\mathcal{T}_{test} = \{\mathcal{D}_{test}^1, \mathcal{D}_{test}^2, \dots, \mathcal{D}_{test}^{m'}$, where m' represents the number of graphs in the test datasets.

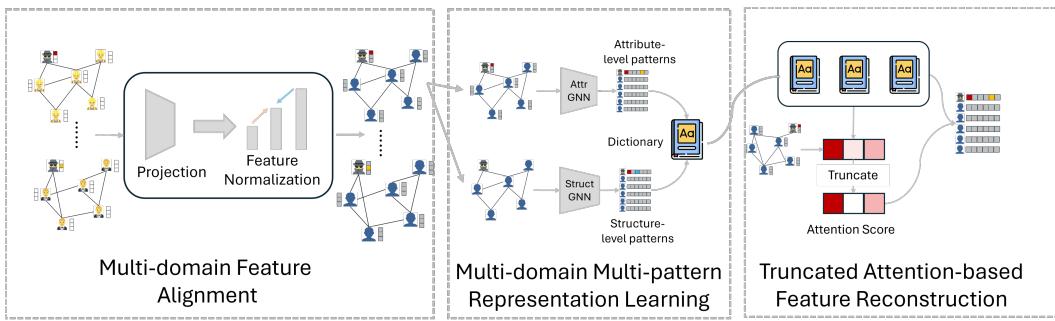


Figure 2: Overview of OWLEYE.

2.1 PRESERVING DOMAIN-SPECIFIC SEMANTICS IN CROSS-DOMAIN FEATURE ALIGNMENT

Graph data from different domains often exhibit heterogeneous features that vary in both dimensionality and semantic meaning. For example, nodes in a citation network may be described by textual content and paper metadata, whereas nodes in a social network might be characterized by user profile attributes. This heterogeneity poses a significant challenge for generalist GAD models, which require a consistent input representation across domains. Therefore, how can we effectively unify and align heterogeneous features from diverse graph domains without compromising their semantic integrity? To address this issue, we first propose to project these features into a common feature space to achieve the consistent feature dimension and then employ the cross-domain feature alignment to align the features from different graphs into a shared input space without compromising their semantic integrity.

Feature Projection. To achieve the consistent attribute dimension across different graphs, we employ the principal component analysis (PCA) technique on the raw features of each graph $\mathcal{G}^i \in \mathcal{T}_{train} \cup \mathcal{T}_{test}$. Specifically, given the attribute matrix $\mathbf{X}^i \in \mathbb{R}^{n^i \times d^i}$ from the graph \mathcal{G}^i with n^i nodes, we aim to transform it to $\tilde{\mathbf{X}}^i \in \mathbb{R}^{n^i \times d}$ with the common dimensionality of d by:

$$\tilde{\mathbf{X}}^i = \text{Proj}(\mathbf{X}^i) \quad (1)$$

where $\text{Proj}(\cdot)$ is PCA.

Cross-domain Feature Normalization. Although PCA enables consistent dimensionality across graphs, the semantic meaning of each projected feature across different datasets remains distinct. As shown in Figure 1, the TSNE plots show that ARC (Liu et al., 2024) tends to separate the two graphs rather than align them, while UNPrompt (Niu et al., 2024) distorts the input space by reversing the density relationship between Normal-Normal and Normal-Anomaly pairs observed in the original

graph (compare subfigures (a) and (c) in the second row). To align attributes from different graphs into a shared input space, we propose a cross-domain feature Normalization to align the semantics and unify the distributions across graphs. Specifically, we first compute the average normalization of node features in the i -th graph \mathcal{G}^i by $N^i = \frac{1}{n^i} \sum_{j \in \mathcal{V}_i} \sqrt{\sum_{k=1}^{d_i} (\tilde{x}_{jk}^i)^2}$.

In the second row of Figure 1, we observe that a large distance gap between a Normal-Normal pair and a Normal-Anomaly pair on the Weibo dataset can be a crucial pattern for a GAD model to find a proper decision boundary to separate normal and anomalous nodes. This observation inspires us to leverage the pairwise node distance for Normal-Normal pairs, Normal-Anomaly pairs and Anomaly-Anomaly pairs. However, the lack of label information for a graph from the test set prevents us from fully benefiting from this observation. To relax the constraint of the unavailable label information, we propose to measure the pairwise distance as an important indicator for preserving the structural pattern in the latent space regardless of its label information. Specifically, we measure the pairwise node distance for the original graph and the normalized graph as follows:

$$\text{dist}^i = \frac{1}{(n^i)^2} \sum_{v_j, v_k \in \mathcal{V}_i} \sqrt{(\tilde{x}_{v_j}^i - \tilde{x}_{v_k}^i)^2}, \quad \text{dist}_N^i = \frac{1}{(n^i)^2} \sum_{v_j, v_k \in \mathcal{V}_i} \sqrt{\left(\frac{\tilde{x}_{v_j}^i}{N^i} - \frac{\tilde{x}_{v_k}^i}{N^i}\right)^2} \quad (2)$$

where dist^i and dist_N^i measure the distance between the pairwise node distance for the original graph \mathcal{G}^i and the normalized graph, respectively. To utilize the pairwise distance for the graphs from the training set, we take the median over all available graphs.

$$\text{dist}^{\text{med}} = \text{median}([\text{dist}^1, \text{dist}^2, \dots, \text{dist}^m]), \quad \text{dist}_N^{\text{med}} = \text{median}([\text{dist}_N^1, \text{dist}_N^2, \dots, \text{dist}_N^m]) \quad (3)$$

The reason why we choose not to use the average operation is to avoid a situation where a graph with too large average pairwise distance dominates the datasets. Finally, we normalize the node attributes in the i -th graph as follows:

$$\tilde{X}^i \leftarrow \frac{\tilde{X}^i}{N^i} \cdot \max(f, \tau) \quad (4)$$

where $f = \sqrt{\frac{\text{dist}^{\text{med}} \cdot \text{dist}_N^i}{\text{dist}^i \cdot \text{dist}_N^{\text{med}}}}$ is a scaling factor to control the magnitude of the pairwise distance cross different graphs, and τ is the constant positive temperature, which is set to 1 in the experiments.

2.2 MULTI-DOMAIN MULTI-PATTERN DICTIONARY LEARNING

One major limitation of existing generalist GAD models is their inability to support the seamless integration of knowledge extracted from new graphs, as well as the incremental updating of normal and abnormal patterns without retraining from scratch. To this end, can we design a generalist GAD framework that enables continual learning by efficiently accumulating and updating knowledge across diverse graph domains? Hence, we propose to learn and extract both attribute-level and structure-level patterns and store them in a *dynamic dictionary*.

Attribute-level Representation Learning. Following the existing generalist GAD methods (Niu et al., 2024; Liu et al., 2024; Qiao et al., 2025), we aim to learn and extract the generalized attribute-level $\mathbf{H}_{\text{attr}}^{i,l+1}$ representations across graphs:

$$\mathbf{H}_{\text{attr}}^{i,l+1} = \sigma(\mathbf{A}^i \mathbf{H}_{\text{attr}}^{i,l} \mathbf{W}_{\text{attr}}^l) \quad (5)$$

where $\mathbf{A}^i \in \mathbb{R}^{n^i \times n^i}$ is the adjacency matrix of graph, $\mathbf{W}_{\text{attr}}^l \in \mathbb{R}^{d \times d}$ is the learnable weight matrix of the l -th layer graph neural network (Kipf & Welling, 2017) to learn the attribute representations, $\mathbf{H}_{\text{attr}}^{i,l} \in \mathbb{R}^{n^i \times d}$ denotes the attribute-level embedding of the graph \mathcal{G}^i and $\mathbf{H}_{\text{attr}}^{i,0} = \tilde{X}^i$. To fully capture the high-order neighborhood information, we concatenate the multi-hop information with the residual network (He et al., 2016):

$$\mathbf{H}^i = [\mathbf{H}_{\text{attr}}^{i,2} - \mathbf{H}_{\text{attr}}^{i,1}, \dots, \mathbf{H}_{\text{attr}}^{i,l+1} - \mathbf{H}_{\text{attr}}^{i,1}] \quad (6)$$

where $\mathbf{H}^i \in \mathbb{R}^{n^i \times ld}$.

Structure-level Representation Learning. The attribute-level representation \mathbf{H}^i captures node-specific information (e.g., a user’s interests in a social network), while it fails to capture relationships

216 and interactions (e.g., who connects to whom and how densely). For example, in social networks,
 217 two users may have similar attributes but vastly different roles based on their connectivity (e.g.,
 218 normal users vs. anomalous users). Thus, a natural question arises: can we learn the structural
 219 representations without the intervention of the node attributes? Inspired by this, we propose to first
 220 replace the raw node attributes with a d -dimension all-one vector and learn structural representations
 221 $\mathbf{R}_{\text{struc}}^{i,l+1}$ as follows:

$$\mathbf{R}_{\text{struc}}^{i,l+1} = \sigma(\mathbf{A}^i \mathbf{R}_{\text{struc}}^{i,l} \mathbf{W}_{\text{struc}}^l) \quad (7)$$

222 where $\mathbf{W}_s^l \in \mathbb{R}^{d \times d}$ is the learnable weight matrix of the l -th layer graph neural network to learn
 223 the structural representations, $\mathbf{R}_{\text{struc}}^{i,l} \in \mathbb{R}^{n^i \times d}$ denotes the structural embedding of the graph \mathcal{G}^i and
 224 $\mathbf{R}_{\text{struc}}^{i,0} = \mathbf{1} \in \mathbb{R}^{n^i \times d}$ is the all-one matrix. Similarly, we concatenate the multi-hop information with
 225 the residual network to fully capture the high-order neighborhood information \mathbf{R}^i :

$$\mathbf{R}^i = [\mathbf{R}_{\text{struc}}^{i,2} - \mathbf{R}_{\text{struc}}^{i,1}, \dots, \mathbf{R}_{\text{struc}}^{i,l} - \mathbf{R}_{\text{struc}}^{i,1}] \quad (8)$$

226 **Cross-domain Pattern Extraction.** After learning both attribute-level representation \mathbf{H} and struc-
 227 ture-level representation \mathbf{R} for even available graph, we randomly extract n_{sup} patterns in total from
 228 each graph \mathcal{G}^j and store them in two dictionaries by:

$$\text{Dict}_{\mathbf{H}}^j = \mathbf{H}^j[\text{idx}^j], \text{Dict}_{\mathbf{R}}^j = \mathbf{R}^j[\text{idx}^j] \quad (9)$$

229 where idx^j is a set of the node index randomly sampled from the graph \mathcal{G}^j . Due to the fact that
 230 the patterns extracted from different graphs contribute differently for detecting anomalies in these
 231 graphs, we propose to measure the similarity of nodes between graph \mathcal{G}^i and the patterns $\text{Dict}_{\mathbf{R}}^j$
 232 extracted from graph \mathcal{G}^j only based on the structure-level representation as follows:

$$\text{sim}(\mathcal{G}^i, \text{Dict}_{\mathbf{R}}^j) = \max(\text{softmax}(\mathbf{R}^i \mathbf{W}_1 (\mathbf{R}^j[\text{idx}])^T)) \quad (10)$$

233 where $\text{sim}(\mathcal{G}^i, \text{Dict}_{\mathbf{R}}^j) \in \mathbb{R}^{n^i}$ measures the maximal node similarity between graph \mathcal{G}^i and the pat-
 234 terns stored in $\text{Dict}_{\mathbf{R}}^j$, and $\mathbf{W}_1 \in \mathbb{R}^{ld \times ld}$ is a weight matrix. Here, we expand $\text{sim}(\mathcal{G}^i, \text{Dict}_{\mathbf{R}}^j) \in \mathbb{R}^{n^i}$
 235 to be $\mathbb{R}^{n^i \times ld}$. The reason why we only use structure-level representation for similarity measurement
 236 is that leveraging attribute-level representation may fail to distinguish the camouflaged anomalous
 237 nodes with the attributes similar to its normal neighbors. Notice that the advantages of extracting
 238 and storing the patterns in a dictionary include that these representative patterns could be lever-
 239 aged for anomaly detection in the unseen graphs and that the dictionary could be easily updated
 240 by adding more patterns, thus enabling the continual evolving capabilities of OWLEYE. Similarly,
 241 $\text{sim}(\mathcal{G}^i, \text{Dict}_{\mathbf{H}}^j)$ can be computed via Eq.10 by replacing the structure-level representation \mathbf{R} with
 242 attribute-level representation \mathbf{H} . Three case studies in Section 3.3 verify that OWLEYE has excel-
 243 lent continual evolving capabilities and achieves better performance on test graphs on average by
 244 directly adding more patterns extracted from other new graphs to the dictionary without retraining
 245 or finetuning the model.

256 2.3 TRUNCATED ATTENTION-BASED FEATURE RECONSTRUCTION FOR IN-CONTEXT 257 LEARNING AND INFERENCE

258 Many existing models (Niu et al., 2024; Liu et al., 2024; Qiao et al., 2025) usually assume the avail-
 259 ability of a few labeled nodes in the test graph to facilitate few-shot learning. However, labeling
 260 anomalies can be costly and requires domain expertise in practice, making this assumption unre-
 261 alistic. When labels are hardly available, how can we enable zero-shot anomaly detection without
 262 relying on any labeled data from the test graph? A naive solution is to randomly sample pseudo-
 263 support nodes from a test graph as normal nodes due to the fact that the vast majority of the nodes
 264 are normal.

265 However, it inevitably leads to an issue that abnormal nodes might be misleadingly labeled as the
 266 pseudo-support nodes, thus resulting in performance degradation. To address this issue, we propose
 267 a truncated attention-based reconstruction method to filter out the potential abnormal nodes and only
 268 select the most representative nodes to reconstruct both attribute-level representation and structure-
 269 level representation. Specifically, we propose to measure the truncated attention score for the query

270 node from the graph \mathcal{G}^i and the normal attribute-level patterns \mathbf{H}^j from $\text{Dict}_H^j, j \in \{1, \dots, m\}$ by:
 271

$$\begin{aligned} 272 \quad \alpha(\mathcal{G}^i, \text{Dict}_H^j) &= \sqrt{\frac{(\mathbf{W}^Q \mathbf{H}^i)(\mathbf{W}^K(\mathbf{H}^j)^T)}{\sqrt{ld}}} \\ 273 \quad \alpha(\mathcal{G}^i, \text{Dict}_H^j)[\text{idx}_\alpha] &= -\infty, \text{ where } \text{idx}_\alpha = \text{Top}(-\alpha(\mathcal{G}^i, \text{Dict}_H^j), k) \\ 274 \quad \alpha_H^{ij} &= \text{softmax}(\alpha(\mathcal{G}^i, \text{Dict}_H^j)/\tau_a) \end{aligned} \quad (11)$$

277 where $\mathbf{W}^Q \in \mathbb{R}^{ld \times ld}$, $\mathbf{W}^K \in \mathbb{R}^{ld \times ld}$ are two weight matrices shared across all i and j pairs,
 278 $\text{Top}(\cdot, k)$ selects the top k node indices to be truncated, and τ_a is the temperature magnifying the sig-
 279 nificance of the selected patterns. Notice that $\alpha(\mathcal{G}^i, \text{Dict}_H^j)[\text{idx}_\alpha] = -\infty$ truncates the less repres-
 280 entative nodes for the attribute-level representation reconstruction after softmax operation. Similarly,
 281 we can compute the attention α_R^{ij} for structure-level patterns \mathbf{R}^j from Dict_R^j following Equation 11.
 282

283 Then, we reconstruct both the attribute-level and structure-level representation in the graph \mathcal{G}^i with
 284 the normal patterns from m training graphs by:

$$\begin{aligned} 285 \quad \hat{\mathbf{H}}^i &= \frac{1}{m} \sum_{j=1}^m \text{sim}(\mathcal{G}^i, \text{Dict}_H^j) \odot (\alpha_H^{ij} \text{Dict}_H^j) \\ 286 \quad \hat{\mathbf{R}}^i &= \frac{1}{m} \sum_{j=1}^m \text{sim}(\mathcal{G}^i, \text{Dict}_R^j) \odot (\alpha_R^{ij} \text{Dict}_R^j) \end{aligned} \quad (12)$$

290 where \odot denotes the Hadamard product. The intuition is that we aim to use the normal patterns
 291 extracted from each training graph to reconstruct the node embedding in the graph \mathcal{G}^i .
 292

293 **Training.** To optimize OWLEYE on training sets \mathcal{T}_{train} , we aim to minimize the following objective
 294 function:

$$\begin{aligned} 295 \quad \mathcal{L}_{\text{recon}} &= \sum_{i=1}^m \sum_{v_k \in \mathcal{A}^i} \frac{\mathbf{H}_{v_k}^i (\hat{\mathbf{H}}_{v_k}^i)^T}{|\mathbf{H}_{v_k}^i| |\hat{\mathbf{H}}_{v_k}^i|} - \sum_{v_j \in \mathcal{N}^i} \frac{\mathbf{H}_{v_j}^i (\hat{\mathbf{H}}_{v_j}^i)^T}{|\mathbf{H}_{v_j}^i| |\hat{\mathbf{H}}_{v_j}^i|} \\ 296 \quad \mathcal{L}_{\text{triplet}} &= \sum_{i=1}^m \sum_{v_j \in \mathcal{A}^i, v_k \in \mathcal{N}^i} [\max(||\hat{\mathbf{H}}_{v_j}^i - \mathbf{H}_{v_j}^i||^2 - ||\hat{\mathbf{H}}_{v_j}^i - \hat{\mathbf{H}}_{v_k}^i||^2 + \lambda, 0) \\ 297 \quad &\quad + \beta \max(||\hat{\mathbf{R}}_{v_j}^i - \mathbf{R}_{v_j}^i||^2 - ||\hat{\mathbf{R}}_{v_j}^i - \hat{\mathbf{R}}_{v_k}^i||^2 + \lambda, 0)] \\ 300 \quad \mathcal{L} &= \mathcal{L}_{\text{triplet}} + \mathcal{L}_{\text{recon}} \end{aligned} \quad (13)$$

303 Where $\mathcal{N}^i = \{v_j | y_j = 0\}$ denotes the set of normal nodes, $\mathcal{A}^i = \{v_k | y_k = 1\}$ is the set of
 304 anomalous nodes and λ is the margin of the triplet loss. In $\mathcal{L}_{\text{recon}}$, we minimize the instance-wise
 305 difference (maximize the similarity) between the attribute-level representation $\mathbf{H}_{v_j}^i$ and the recon-
 306 structed attribute-level representation $\hat{\mathbf{H}}_{v_j}^i$ for $v_j \in \mathcal{N}$ but maximize the difference (minimize the
 307 similarity) between the attribute-level representation $\mathbf{H}_{v_j}^i$ and the reconstructed attribute-level rep-
 308 resentation $\hat{\mathbf{H}}_{v_k}^i$ for $v_j \in \mathcal{N}$ and $v_k \in \mathcal{A}$. Compared with $\mathcal{L}_{\text{recon}}$, minimizing $\mathcal{L}_{\text{triplet}}$ allows more
 309 pairwise contrasting (e.g., $||\hat{\mathbf{H}}_{v_j}^i - \hat{\mathbf{H}}_{v_k}^i||^2$) for robust representation learning.
 310

311 **Inference.** At the inference stage, we first extract n_{sup} normal patterns stored in the dictionaries
 312 Dict_H and Dict_R for each graph from the training set \mathcal{T}_{train} . Given a graph \mathcal{G}^i from the test
 313 set \mathcal{T}_{test} , we extract and store n_{sup} normal patterns from \mathcal{G}^i in the dictionaries Dict_H and Dict_R
 314 for representation reconstruction by Equation (12). The anomaly score of node v_j is computed as
 315 follows:
 316

$$\mathcal{S}_{v_j} = ||\hat{\mathbf{H}}_{v_j}^i - \mathbf{H}_{v_j}^i||^2 + \beta ||\hat{\mathbf{R}}_{v_j}^i - \mathbf{R}_{v_j}^i||^2 \quad (14)$$

319 3 EXPERIMENTS

320 3.1 EXPERIMENTAL SETUP

321 **Datasets.** In the experiments, we train OWLEYE and the baseline methods on a group of graph
 322 datasets and test on another group of datasets. Following (Liu et al., 2024), the training graphs

span across a variety of domains, including social networks, citation networks, and e-commerce co-review networks, each of them with either injected anomalies or real anomalies. Therefore, we select one graph from each domain and randomly select one more dataset in the training set (e.g., CiteSeer). Specifically, the training datasets \mathcal{T}_{train} consist of PubMed, CiteSeer, Questions, and YelpChi, while the testing datasets \mathcal{T}_{test} consist of Cora, Flickr, ACM, BlogCatalog, Facebook, Weibo, Reddit, and Amazon. We also include the experimental results for different train-test split in Appendix A.2.

Baselines. We compare our proposed method with supervised methods, unsupervised methods and one-for-all methods. Supervised methods include two state-of-the-art GNNs specifically designed for GAD, i.e., BWGNN (Tang et al., 2022), and GHRN (Gao et al., 2023). Unsupervised methods include four representative approaches with distinct designs, including the generative method DOMINANT (Ding et al., 2019), the contrastive method SLGAD (Zheng et al., 2021), two affinity-based methods (e.g., TAM (Qiao & Pang, 2023) and CARE (Zheng et al., 2025)), one-for-all methods include ARC (Liu et al., 2024) and UNPrompt (Niu et al., 2024).

Implementation Details. Following (Liu et al., 2024; Qiao & Pang, 2023; Zheng et al., 2025; Liu et al., 2022), we evaluate the performance of OWLEYE and baseline methods with respect to AUROC and AUPRC as evaluation metrics for GAD. We report the average AUROC/AUPRC with standard deviations across 5 trials. We train ARC on all the datasets in \mathcal{T}_{train} jointly, and evaluate the model on each dataset in \mathcal{T}_{test} in a zero shot setting. In the experiment, we set $\tau = 1$, $\tau_a = 0.001$, $n_{sup} = 2000$, $\lambda = 0.2$, and $\beta = 0.01$.

Table 1: Anomaly detection performance w.r.t AUPRC. We highlighted the results ranked **first** and **second**. “Average” indicates the average AUPRC over 8 datasets.

Method	Cora	Flickr	ACM	BlogCatalog	Facebook	Weibo	Reddit	Amazon	Average
Supervised (10-shot)									
BWGNN	9.57±2.40	12.39±2.68	13.37±6.03	12.97±3.15	5.81±1.17	9.55±2.12	3.21±2.32	12.40±1.86	9.80±2.91
GHRN	14.04±0.73	16.45±2.59	16.29±1.41	13.58±2.19	6.24±1.12	17.51±1.52	4.44±1.15	13.84±2.63	12.80±1.67
Unsupervised (zero-shot)									
DOMINANT	31.77±0.34	28.76±1.52	32.49±4.97	29.51±3.44	3.42±0.86	29.63±0.86	3.28±0.37	36.80±8.37	24.46±3.11
SLGAD	18.27±1.01	16.93±8.20	1.33±0.23	9.47±3.00	0.93±0.23	35.80±1.41	4.00±2.27	5.33±2.20	11.51±2.38
TAM	9.43±0.27	23.34±1.42	40.68±2.58	25.59±4.76	12.18±3.14	23.01±15.14	4.22±0.22	45.26±4.34	22.96±3.96
CARE	35.12±0.23	25.64±0.16	37.76±0.35	25.06±0.10	5.52±0.34	40.70±0.74	3.17±0.17	56.76±1.44	28.72±0.44
ARC	45.20±1.08	35.13±0.20	39.02±0.08	33.43±0.15	4.25±0.47	64.18±0.68	4.20±0.25	20.48±6.89	30.74±1.23
UNPrompt	9.84±2.90	25.21±1.84	11.18±1.67	18.24±13.05	4.32±0.55	20.58±5.62	3.77±0.32	9.41±2.69	12.82±3.58
OWLEYE	43.94±0.46	37.69±0.25	39.75±0.13	34.99±0.31	5.62±1.17	60.90±0.21	4.25±0.11	62.20±3.18	36.17±0.73

Table 2: Anomaly detection performance in 10-shot setting w.r.t AUPRC. We highlighted the results ranked **first** and **second**. “Average” indicates the average AUPRC over 8 datasets.

Method	Cora	Flickr	ACM	BlogCatalog	Facebook	Weibo	Reddit	Amazon	Average
Supervised (10-shot)									
BWGNN	9.57±2.40	12.39±2.68	13.37±6.03	12.97±3.15	5.81±1.17	9.55±2.12	3.21±2.32	12.40±1.86	9.80±2.91
GHRN	14.04±0.73	16.45±2.59	16.29±1.41	13.58±2.19	6.24±1.12	17.51±1.52	4.44±1.15	13.84±2.63	12.80±1.67
Unsupervised & Finetune (10-shot)									
DOMINANT	22.35±0.81	30.42±1.35	24.76±0.84	34.82±0.78	4.12±0.23	78.63±1.28	4.18±0.64	8.86±0.69	26.02±0.83
SLGAD	19.38±1.46	17.46±5.62	5.33±1.39	11.67±2.22	3.81±0.23	36.23±1.41	4.32±2.13	7.69±2.82	13.24±2.16
TAM	14.27±0.65	27.68±1.45	57.32±5.26	27.49±1.09	11.73±2.34	26.78±0.28	3.67±0.16	52.62±3.17	27.70±1.80
CARE	39.52±2.90	27.19±0.24	38.12±0.43	27.75±0.66	5.86±0.69	44.37±0.96	3.62±0.15	59.51±1.28	30.74±0.91
ARC	48.02±0.83	37.15±0.24	39.13±0.15	34.20±0.27	4.92±0.75	63.83±2.55	4.32±0.16	21.90±6.32	31.68±1.41
UNPrompt	11.40±0.55	22.65±0.30	14.80±0.70	18.01±12.88	4.04±1.07	22.23±4.83	3.85±0.21	11.08±0.46	13.51±2.62
OWLEYE	44.40±1.58	38.32±0.15	39.16±0.10	35.00±0.34	6.83±1.38	64.14±1.25	4.96±0.10	63.02±5.71	36.73±1.33

3.2 EXPERIMENTAL RESULTS

Effectiveness Analysis. In the experiment, we evaluate our method in the zero-shot and 10-shot setting on the graph from the test set \mathcal{T}_{test} . For the supervised learning methods (e.g., BWGNN and GHRN), we evaluate these two methods in the 10-shot setting, where we randomly sample 5 normal nodes and 5 anomalies as the support nodes. Table 1 and Table 2 show the performance of OWLEYE and the baseline methods with respect to AUPRC in the zero-shot and 10-shot setting, respectively. The evaluation with respect to AUROC can be found in Tables 6 and 7 Appendix A.1. Based on the results, we have the following observations: (1). OWLEYE demonstrates strong anomaly detection capability in the generalist GAD scenario, without any finetuning. The average AUPRC is 5% higher than the best competitor (i.e., ARC). (2). Even if two supervised methods (e.g., BWGNN and GHRN) are provided with 10-shot label information, our proposed method OWLEYE can still

378 outperform these two methods on 6 out of 8 datasets with respect to both AUPRC and AURPC.
 379 (3). If all methods are provided with 10-shot label information, OWLEYE achieves state-of-the-art
 380 performance on 4 out of 8 in terms of AURPC and outperform the best competitor by more than 5%.
 381

382 **Ablation Study.** We assess the ef-
 383 fectiveness of three key components
 384 in OWLEYE (e.g., cross-domain fea-
 385 ture normalization, structural pattern
 386 learning, and the truncated at-
 387 tention module) by comparing it with
 388 three variants: OWLEYE-N (with-
 389 out feature normalization), OWL-
 390 EYE-S (without structural patterns),
 391 and OWLEYE-T (with standard at-
 392 tention instead of truncated attention). All methods are trained on the same set \mathcal{T}_{train} and evaluated on
 393 the test set $\mathcal{T}_{test} = \{\text{Cora, Flickr, ACM, BlogCatalog, Facebook, Weibo, Reddit, Amazon}\}$. Figure 3
 394 (Left) shows the average AUPRC across these eight datasets. OWLEYE consistently outperforms all
 395 variants, highlighting the importance of each component in achieving robust cross-domain graph
 396 anomalous detection.

397 **Efficiency Analysis.** To evaluate the runtime efficiency of OWLEYE, we compare the finetuning
 398 time of different methods on the ACM dataset. As shown in Figure 3 (Right), OWLEYE achieves
 399 comparable finetuning time to other generalist GAD models, while significantly outperforming both
 400 unsupervised and supervised baselines (e.g., TAM, CARE, BWGNN, GHRN) in terms of efficiency.

401 3.3 CASE STUDIES: ANALYSIS OF OWLEYE’S CONTINUAL LEARNING CAPABILITIES.

402 In this subsection, we present three case studies to evaluate how our proposed multi-domain
 403 pattern learning enhances OWLEYE’s continual learning capability. Specifically, we con-
 404 sider the training set $\mathcal{T}_{train} = \{\text{PubMed, Cora, Questions, YelpChi}\}$ and the testing set
 405 $\mathcal{T}_{test} = \{\text{Facebook, Weibo, Reddit, Amazon}\}$. Additionally, a set of auxiliary graphs $\mathcal{T}_{aux} =$
 406 $\{\text{Flickr, CiteSeer, BlogCatalog}\}$ is used for model enhancement through either pattern extraction
 407 or finetuning.

408 **Case Study 1: Pattern Augmen-
 409 tation without Finetuning.** In this
 410 setting, we assess whether OWLEYE
 411 can improve performance by simply
 412 extracting patterns from new graphs
 413 without fine-tuning the model. We
 414 extract attribute- and structure-level
 415 patterns from graphs in \mathcal{T}_{aux} and in-
 416 incorporate them into the dictionaries.
 417 The results are shown in Table 3, where $|\mathcal{T}_{aux}| = n$ indicates that n additional graphs are used
 418 for pattern extraction and when $|\mathcal{T}_{aux}| = 0$, no new patterns are added. We observe a consistent
 419 performance improvement as more patterns are incorporated, validating OWLEYE’s ability to incre-
 420 mentally learn from new data sources in a plug-and-play fashion.

421 **Case Study 2: Pattern Augmen-
 422 tation with Finetuning.** Next, we in-
 423 vestigate OWLEYE’s continual learn-
 424 ing performance when finetuning is
 425 permitted using the graphs in \mathcal{T}_{aux} .
 426 Table 4 presents the results under
 427 varying the number of graphs in
 428 \mathcal{T}_{aux} . We find that OWLEYE
 429 achieves its highest average perfor-
 430 mance when finetuned on two graphs from \mathcal{T}_{aux} . However, a comparison with the results from
 431 Case Study 1 reveals a notable insight: OWLEYE performs better without any fine-tuning simply
 by leveraging the added patterns. This highlights the effectiveness and practicality of our pattern-

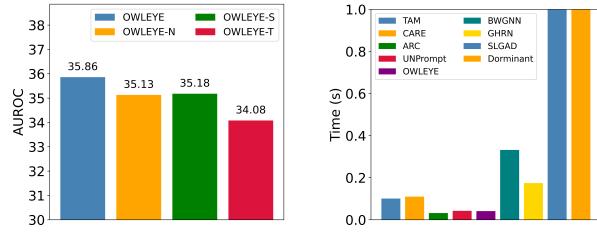


Figure 3: **Left:** Ablation Study. **Right:** Efficiency Analysis.

401 3.3 CASE STUDIES: ANALYSIS OF OWLEYE’S CONTINUAL LEARNING CAPABILITIES.

402 In this subsection, we present three case studies to evaluate how our proposed multi-domain
 403 pattern learning enhances OWLEYE’s continual learning capability. Specifically, we con-
 404 sider the training set $\mathcal{T}_{train} = \{\text{PubMed, Cora, Questions, YelpChi}\}$ and the testing set
 405 $\mathcal{T}_{test} = \{\text{Facebook, Weibo, Reddit, Amazon}\}$. Additionally, a set of auxiliary graphs $\mathcal{T}_{aux} =$
 406 $\{\text{Flickr, CiteSeer, BlogCatalog}\}$ is used for model enhancement through either pattern extraction
 407 or finetuning.

408 **Table 3: Case Study 1: Exploration of OWLEYE’s continuous learning capability without finetuning.** $|\mathcal{T}_{aux}| = n$ indicates that patterns from n graphs are added to the dictionaries.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.78 ± 3.29	31.46 ± 1.31
$ \mathcal{T}_{aux} = 2$	6.52 ± 1.47	59.82 ± 1.10	4.05 ± 0.12	56.73 ± 2.62	31.78 ± 1.32
$ \mathcal{T}_{aux} = 3$	7.04 ± 1.51	60.06 ± 0.96	3.98 ± 0.06	58.01 ± 3.42	32.27 ± 1.49

408 **Table 3: Case Study 1: Exploration of OWLEYE’s continuous learning capability without finetuning.** $|\mathcal{T}_{aux}| = n$ indicates that patterns from n graphs are added to the dictionaries.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.06 ± 2.86	31.30 ± 1.28
$ \mathcal{T}_{aux} = 2$	6.93 ± 1.89	59.35 ± 0.55	3.93 ± 0.13	55.74 ± 3.61	31.48 ± 1.54
$ \mathcal{T}_{aux} = 3$	6.69 ± 1.42	58.12 ± 1.42	4.01 ± 0.07	56.53 ± 5.34	31.33 ± 2.06

408 **Table 4: Case Study 2: Investigation of OWLEYE’s continual learning performance when finetuning is permitted** using n graphs in \mathcal{T}_{aux} . $|\mathcal{T}_{aux}| = 0$ means that we do not finetune the model.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.06 ± 2.86	31.30 ± 1.28
$ \mathcal{T}_{aux} = 2$	6.93 ± 1.89	59.35 ± 0.55	3.93 ± 0.13	55.74 ± 3.61	31.48 ± 1.54
$ \mathcal{T}_{aux} = 3$	6.69 ± 1.42	58.12 ± 1.42	4.01 ± 0.07	56.53 ± 5.34	31.33 ± 2.06

408 **Table 4: Case Study 2: Investigation of OWLEYE’s continual learning performance when finetuning is permitted** using n graphs in \mathcal{T}_{aux} . $|\mathcal{T}_{aux}| = 0$ means that we do not finetune the model.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.06 ± 2.86	31.30 ± 1.28
$ \mathcal{T}_{aux} = 2$	6.93 ± 1.89	59.35 ± 0.55	3.93 ± 0.13	55.74 ± 3.61	31.48 ± 1.54
$ \mathcal{T}_{aux} = 3$	6.69 ± 1.42	58.12 ± 1.42	4.01 ± 0.07	56.53 ± 5.34	31.33 ± 2.06

408 **Table 4: Case Study 2: Investigation of OWLEYE’s continual learning performance when finetuning is permitted** using n graphs in \mathcal{T}_{aux} . $|\mathcal{T}_{aux}| = 0$ means that we do not finetune the model.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.06 ± 2.86	31.30 ± 1.28
$ \mathcal{T}_{aux} = 2$	6.93 ± 1.89	59.35 ± 0.55	3.93 ± 0.13	55.74 ± 3.61	31.48 ± 1.54
$ \mathcal{T}_{aux} = 3$	6.69 ± 1.42	58.12 ± 1.42	4.01 ± 0.07	56.53 ± 5.34	31.33 ± 2.06

408 **Table 4: Case Study 2: Investigation of OWLEYE’s continual learning performance when finetuning is permitted** using n graphs in \mathcal{T}_{aux} . $|\mathcal{T}_{aux}| = 0$ means that we do not finetune the model.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.06 ± 2.86	31.30 ± 1.28
$ \mathcal{T}_{aux} = 2$	6.93 ± 1.89	59.35 ± 0.55	3.93 ± 0.13	55.74 ± 3.61	31.48 ± 1.54
$ \mathcal{T}_{aux} = 3$	6.69 ± 1.42	58.12 ± 1.42	4.01 ± 0.07	56.53 ± 5.34	31.33 ± 2.06

408 **Table 4: Case Study 2: Investigation of OWLEYE’s continual learning performance when finetuning is permitted** using n graphs in \mathcal{T}_{aux} . $|\mathcal{T}_{aux}| = 0$ means that we do not finetune the model.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.06 ± 2.86	31.30 ± 1.28
$ \mathcal{T}_{aux} = 2$	6.93 ± 1.89	59.35 ± 0.55	3.93 ± 0.13	55.74 ± 3.61	31.48 ± 1.54
$ \mathcal{T}_{aux} = 3$	6.69 ± 1.42	58.12 ± 1.42	4.01 ± 0.07	56.53 ± 5.34	31.33 ± 2.06

408 **Table 4: Case Study 2: Investigation of OWLEYE’s continual learning performance when finetuning is permitted** using n graphs in \mathcal{T}_{aux} . $|\mathcal{T}_{aux}| = 0$ means that we do not finetune the model.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.06 ± 2.86	31.30 ± 1.28
$ \mathcal{T}_{aux} = 2$	6.93 ± 1.89	59.35 ± 0.55	3.93 ± 0.13	55.74 ± 3.61	31.48 ± 1.54
$ \mathcal{T}_{aux} = 3$	6.69 ± 1.42	58.12 ± 1.42	4.01 ± 0.07	56.53 ± 5.34	31.33 ± 2.06

408 **Table 4: Case Study 2: Investigation of OWLEYE’s continual learning performance when finetuning is permitted** using n graphs in \mathcal{T}_{aux} . $|\mathcal{T}_{aux}| = 0$ means that we do not finetune the model.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	31.29 ± 1.76
$ \mathcal{T}_{aux} = 1$	6.32 ± 1.25	59.79 ± 0.86	3.96 ± 0.13	55.06 ± 2.86	31.30 ± 1.28
$ \mathcal{T}_{aux} = 2$	6.93 ± 1.89	59.35 ± 0.55	3.93 ± 0.13	55.74 ± 3.61	31.48 ± 1.54
$ \mathcal{T}_{aux} = 3$	6.69 ± 1.42	58.12 ± 1.42	4.01 ± 0.07	56.53 ± 5.34	31.33 ± 2.06

408 **Table 4: Case Study 2: Investigation of OWLEYE’s continual learning performance when finetuning is permitted** using n graphs in \mathcal{T}_{aux} . $|\mathcal{T}_{aux}| = 0$ means that we do not finetune the model.

Size of \mathcal{T}_{aux}	Facebook	Weibo	Reddit	Amazon	Average
$ \mathcal{T}_{aux} = 0$	6.72 ± 1.63	59.63 ± 0.96	3.93 ± 0.08	54.88 ± 4.37	$31.29 \pm$

432 centric design for continual learning. We conjecture that the reason that finetuning the model fail
 433 to achieve better performance is that the model is hard to train on too many graphs and thus hard
 434 to converge. The visualization of the training loss vs epoch in two cases (e.g., $|\mathcal{T}_{aux}| = 0$ and
 435 $|\mathcal{T}_{aux}| = 3$) in Appendix A.8.2 shows that it's hard for the model to converge when $|\mathcal{T}_{aux}| = 3$.

436 **Case Study 3: Impact of Dictionary Size.** Finally, we analyze how the number
 437 of stored patterns (denoted as n_{sup}) affects performance. In the experiment, we use
 438 $\mathcal{T}_{train} = \{\text{PubMed, CiteSeer, Questions, YelpChi}\}$ for training, and let the test set be $\mathcal{T}_{test} =$
 439 $\{\text{Cora, Flickr, ACM, BlogCatalog, Facebook, Weibo, Reddit, Amazon}\}$. Table 5 reports the results.
 440 We observe that: (1) Increasing the number of patterns from 10 to 200 leads to a 0.55% performance
 441 gain; and (2) Beyond 200, the improvement becomes marginal and the performance becomes stable
 442 even if we keep increasing the dictionary size. These findings demonstrate that OWLEYE benefits
 443 from a larger pattern dictionary up to a saturation point, beyond which rewards diminish.

444 Table 5: Case Study 3: AUPRC (%) under different dictionary sizes (i.e., n_{sup}).

n_{sup}	Cora	Flickr	ACM	BlogCatalog	Facebook	Weibo	Reddit	Amazon	Average
10	44.55 \pm 0.48	37.86 \pm 0.26	39.57 \pm 0.08	34.84 \pm 0.33	5.63 \pm 0.73	61.30 \pm 0.44	4.03 \pm 0.12	55.89 \pm 2.16	35.46 \pm 0.58
100	43.52 \pm 0.78	37.45 \pm 0.23	39.87 \pm 0.06	34.76 \pm 0.38	5.43 \pm 1.34	61.13 \pm 0.67	4.03 \pm 0.08	60.49 \pm 2.82	35.84 \pm 0.79
200	43.24 \pm 0.50	37.65 \pm 0.29	39.92 \pm 0.12	34.72 \pm 0.35	5.32 \pm 1.40	60.70 \pm 0.53	4.02 \pm 0.08	62.51 \pm 1.45	36.01 \pm 0.59
500	43.28 \pm 0.92	37.96 \pm 0.39	39.86 \pm 0.13	34.79 \pm 0.35	5.43 \pm 1.32	61.00 \pm 0.47	4.04 \pm 0.11	62.77 \pm 1.36	36.14 \pm 0.63
1000	43.88 \pm 0.73	37.99 \pm 0.33	39.82 \pm 0.08	34.92 \pm 0.39	5.33 \pm 1.29	60.52 \pm 0.79	4.03 \pm 0.12	61.76 \pm 2.50	36.03 \pm 0.78
2000	43.94 \pm 0.46	37.69 \pm 0.25	39.75 \pm 0.13	34.99 \pm 0.31	5.62 \pm 1.17	60.90 \pm 0.21	4.25 \pm 0.11	62.20 \pm 3.18	36.17\pm0.73

451 4 RELATED WORK

452 Graph anomaly detection (GAD) is widely used in many applications (Grubbs, 1969; Ma et al., 2021;
 453 Pourhabibi et al., 2020) that naturally involve graph-structured data, such as transaction networks
 454 in financial fraud detection(Slipenchuk & Epishkina, 2019; Ramakrishnan et al., 2019), communication
 455 and access networks in cybersecurity intrusion detection (Brdiczka et al., 2012; Duan et al.,
 456 2023), and user-user interaction graphs in fake news detection on social networks (Shu et al., 2017;
 457 2019). In recent years, the success of deep learning has spurred growing interest in developing deep
 458 learning-based GAD methods (Ma et al., 2023). In the unsupervised setting, graph contrastive learning
 459 methods (Zheng et al., 2021; Liu et al., 2022; Chen et al., 2022; Jin et al., 2021; Xu et al., 2022)
 460 aim to learn effective node or graph-level representations by pulling similar instances together in the
 461 embedding space without any label information. Alternatively, reconstruction-based methods (Ding
 462 et al., 2019; Huang et al., 2023; Li et al., 2019; Luo et al., 2022; Peng et al., 2023) focus on learning
 463 low-dimensional embeddings capable of reconstructing input graph attributes or structures, with
 464 anomalies identified as instances exhibiting high reconstruction errors. In the supervised setting,
 465 generative GNN-based methods leverage label information to augment training data by synthesizing
 466 high-quality graph signals. Representative works include GraphSMOTE (Zhao et al., 2021), Graph-
 467 Mixup (Wu et al., 2022), and GraphENS (Park et al., 2022), which enhance model generalization
 468 and robustness. Cross-domain graph anomaly detection has recently drawn growing interest as mod-
 469 els trained on one graph often degrade when deployed on graphs with different structures or feature
 470 distributions (Ding et al., 2021; Wang et al., 2023; Pirhayatifard & Silva). More recently, the advent
 471 of large language models (LLMs) has sparked a paradigm shift in AI research due to their strong
 472 generalization capabilities. Motivated by this, researchers are exploring "one-for-all" generalist
 473 frameworks (Niu et al., 2024; Liu et al., 2024) capable of adapting to diverse, unseen graph domains
 474 with minimal task-specific tuning. This paper also aims to develop such a generalist framework for
 475 GAD, while addressing several open challenges in existing approaches, including inadequate graph
 476 alignment across domains, lack of continual learning capabilities, and poor performance in zero-shot
 477 anomaly detection scenarios.

478 5 CONCLUSION

479 In this work, we presented OWLEYE, a novel generalist framework for zero-shot graph anomaly
 480 detection across multiple domains. To address the limitations of existing methods, such as poor
 481 feature alignment, lack of continual evolving capabilities, and reliance on labeled target data, OWL-
 482 EYE introduces a structured and interpretable solution. By storing representative normal patterns
 483 in a reusable dictionary, OWLEYE enables scalable and effective anomaly detection on entirely un-
 484 seen graphs without retraining or target supervision. Extensive experiments on real-world datasets
 485 validate the superior performance and transferability of OWLEYE over existing state-of-the-art ap-
 486 proaches.

486

6 REPRODUCIBILITY STATEMENT

488 We include the source code and the datasets in the Supplementary Material for experiment repro-
489 ducibility. The README file includes the required packages and the command to reproduce the
490 results.
491492

REFERENCES

- 494 Oliver Brdiczka, Juan Liu, Bob Price, Jianqiang Shen, Akshay Patil, Richard Chow, Eugene Bart,
495 and Nicolas Ducheneaut. Proactive insider threat detection through graph learning and psycho-
496 logical context. In *2012 IEEE Symposium on Security and Privacy Workshops, San Francisco,
497 CA, USA, May 24-25, 2012*, pp. 142–149. IEEE Computer Society, 2012.
- 498 Bo Chen, Jing Zhang, Xiaokang Zhang, Yuxiao Dong, Jian Song, Peng Zhang, Kaibo Xu, Evgeny
499 Kharlamov, and Jie Tang. Gccad: Graph contrastive coding for anomaly detection. *IEEE Trans-
500 actions on Knowledge and Data Engineering*, 35(8):8037–8051, 2022.
501
- 502 Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed
503 networks. In Tanya Y. Berger-Wolf and Nitesh V. Chawla (eds.), *Proceedings of the 2019 SIAM
504 International Conference on Data Mining, SDM 2019, Calgary, Alberta, Canada, May 2-4, 2019*,
505 pp. 594–602. SIAM, 2019. doi: 10.1137/1.9781611975673.67. URL <https://doi.org/10.1137/1.9781611975673.67>.
506
- 507 Kaize Ding, Kai Shu, Xuan Shan, Jundong Li, and Huan Liu. Cross-domain graph anomaly detec-
508 tion. *IEEE Transactions on Neural Networks and Learning Systems*, 33(6):2406–2415, 2021.
509
- 510 Jingcan Duan, Siwei Wang, Pei Zhang, En Zhu, Jingtiao Hu, Hu Jin, Yue Liu, and Zhibin Dong.
511 Graph anomaly detection via multi-scale contrastive learning networks with augmented view.
512 In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), *Thirty-Seventh AAAI Conference on
513 Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial
514 Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence,
515 EAAI 2023, Washington, DC, USA, February 7-14, 2023*, pp. 7459–7467. AAAI Press, 2023.
516
- 516 Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang. Ad-
517 dressing heterophily in graph anomaly detection: A perspective of graph spectrum. In Ying
518 Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben (eds.),
519 *Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023
- 4 May 2023*, pp. 1528–1538. ACM, 2023. doi: 10.1145/3543507.3583268. URL <https://doi.org/10.1145/3543507.3583268>.
520
- 522 Frank E Grubbs. Procedures for detecting outlying observations in samples. *Technometrics*, 11(1):
523 1–21, 1969.
524
- 525 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
526 recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
527 2016, Las Vegas, NV, USA, June 27-30, 2016*, pp. 770–778. IEEE Computer Society, 2016. doi:
528 10.1109/CVPR.2016.90. URL <https://doi.org/10.1109/CVPR.2016.90>.
529
- 529 Andreas Hoecker and Vakhtang Kartvelishvili. Svd approach to data unfolding. *Nuclear Instru-
530 ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
531 Associated Equipment*, 372(3):469–481, 1996.
532
- 533 Ling Huang, Ye Zhu, Yuefang Gao, Tuo Liu, Chao Chang, Caixing Liu, Yong Tang, and Chang-
534 Dong Wang. Hybrid-order anomaly detection on attributed networks. *IEEE Trans. Knowl. Data
535 Eng.*, 35(12):12249–12263, 2023. doi: 10.1109/TKDE.2021.3117842. URL <https://doi.org/10.1109/TKDE.2021.3117842>.
536
- 537 Tianjin Huang, Yulong Pei, Vlado Menkovski, and Mykola Pechenizkiy. Hop-count based self-
538 supervised anomaly detection on attributed networks. In Massih-Reza Amini, Stéphane Canu,
539 Asja Fischer, Tias Guns, Petra Kralj Novak, and Grigoris Tsoumakas (eds.), *Machine Learning
and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble,*

- 540 France, September 19-23, 2022, Proceedings, Part I, volume 13713 of *Lecture Notes in Computer*
 541 *Science*, pp. 225–241. Springer, 2022. doi: 10.1007/978-3-031-26387-3_14. URL https://doi.org/10.1007/978-3-031-26387-3_14.
- 542
- 543 Ming Jin, Yixin Liu, Yu Zheng, Lianhua Chi, Yuan-Fang Li, and Shirui Pan. ANEMONE: graph
 544 anomaly detection with multi-scale contrastive learning. In Gianluca Demartini, Guido Zuccon,
 545 J. Shane Culpepper, Zi Huang, and Hanghang Tong (eds.), *CIKM '21: The 30th ACM Inter-*
 546 *national Conference on Information and Knowledge Management, Virtual Event, Queensland,*
 547 *Australia, November 1 - 5, 2021*, pp. 3122–3126. ACM, 2021. doi: 10.1145/3459637.3482057.
 548 URL <https://doi.org/10.1145/3459637.3482057>.
- 549
- 550 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 551 works. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,*
 552 *France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.
- 553
- 554 Jianbo Li, Lecheng Zheng, Yada Zhu, and Jingrui He. Outlier impact characterization for time
 555 series data. In *Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event,*
 556 *February 2-9, 2021*, pp. 11595–11603. AAAI Press, 2021.
- 557
- 558 Yuening Li, Xiao Huang, Jundong Li, Mengnan Du, and Na Zou. Specae: Spectral autoencoder for
 559 anomaly detection in attributed networks. In Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui,
 560 Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (eds.), *Proceedings of the 28th*
 561 *ACM International Conference on Information and Knowledge Management, CIKM 2019, Bei-*
 562 *jing, China, November 3-7, 2019*, pp. 2233–2236. ACM, 2019. doi: 10.1145/3357384.3358074.
 563 URL <https://doi.org/10.1145/3357384.3358074>.
- 564
- 565 Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection
 566 on attributed networks via contrastive self-supervised learning. *IEEE Trans. Neural Networks*
 567 *Learn. Syst.*, 33(6):2378–2392, 2022.
- 568
- 569 Yixin Liu, Shiyuan Li, Yu Zheng, Qingfeng Chen, Chengqi Zhang, and Shirui Pan. ARC: A general-
 570 ist graph anomaly detector with in-context learning. In *Advances in Neural Information Process-
 571 ing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS*
 572 *2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024.
- 573
- 574 Xuexiong Luo, Jia Wu, Amin Beheshti, Jian Yang, Xiankun Zhang, Yuan Wang, and Shan Xue.
 575 Comga: Community-aware attributed graph anomaly detection. In K. Selcuk Candan, Huan
 576 Liu, Leman Akoglu, Xin Luna Dong, and Jiliang Tang (eds.), *WSDM '22: The Fifteenth ACM*
 577 *International Conference on Web Search and Data Mining, Virtual Event / Tempe, AZ, USA,*
 578 *February 21 - 25, 2022*, pp. 657–665. ACM, 2022. doi: 10.1145/3488560.3498389. URL
 579 <https://doi.org/10.1145/3488560.3498389>.
- 580
- 581 Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui Xiong, and Leman
 582 Akoglu. A comprehensive survey on graph anomaly detection with deep learning. *IEEE Trans-*
 583 *actions on Knowledge and Data Engineering*, 2021.
- 584
- 585 Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui Xiong, and Le-
 586 man Akoglu. A comprehensive survey on graph anomaly detection with deep learning. *IEEE*
 587 *Trans. Knowl. Data Eng.*, 35(12):12012–12038, 2023. doi: 10.1109/TKDE.2021.3118815. URL
 588 <https://doi.org/10.1109/TKDE.2021.3118815>.
- 589
- 590 Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). *Computers &*
 591 *Geosciences*, 19(3):303–342, 1993.
- 592
- 593 Chaoxi Niu, Hezhe Qiao, Changlu Chen, Ling Chen, and Guansong Pang. Zero-shot generalist
 594 graph anomaly detection with unified neighborhood prompts. *CoRR*, abs/2410.14886, 2024.
- 595
- 596 Joonhyung Park, Jaeyun Song, and Eunho Yang. Graphens: Neighbor-aware ego network synthesis
 597 for class-imbalanced node classification. In *The Tenth International Conference on Learning*
 598 *Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL
 599 <https://openreview.net/forum?id=MXE17i-iru>.

- 594 Zhen Peng, Minnan Luo, Jundong Li, Luguo Xue, and Qinghua Zheng. A deep multi-view frame-
 595 work for anomaly detection on attributed networks (extended abstract). In *39th IEEE Interna-
 596 tional Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023*, pp.
 597 3799–3800. IEEE, 2023. doi: 10.1109/ICDE55515.2023.00326. URL <https://doi.org/10.1109/ICDE55515.2023.00326>.
- 599 Delaram Pirhayatifard and Arlei Silva. Cross-domain graph anomaly detection via test-time training
 600 with homophily-guided self-supervision. *Transactions on Machine Learning Research*.
- 601
- 602 Tahereh Pourhabibi, Kok-Leong Ong, Booi H Kam, and Yee Ling Boo. Fraud detection: A sys-
 603 tematic literature review of graph-based anomaly detection approaches. *Decision Support Systems*,
 604 133:113303, 2020.
- 605 Hezhe Qiao and Guansong Pang. Truncated affinity maximization: One-class homophily modeling
 606 for graph anomaly detection. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
 607 Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems
 608 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
 609 Orleans, LA, USA, December 10 - 16, 2023*, 2023.
- 610 Hezhe Qiao, Hanghang Tong, Bo An, Irwin King, Charu Aggarwal, and Guansong Pang. Deep graph
 611 anomaly detection: A survey and new perspectives. *arXiv preprint arXiv:2409.09957*, 2024.
- 612
- 613 Hezhe Qiao, Chaoxi Niu, Ling Chen, and Guansong Pang. Anomalygfm: Graph foundation model
 614 for zero/few-shot anomaly detection. *arXiv preprint arXiv:2502.09254*, 2025.
- 615 Jagdish Ramakrishnan, Elham Shaabani, Chao Li, and Mátyás A. Sustik. Anomaly detection for
 616 an e-commerce pricing system. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales,
 617 Eviatar Terzi, and George Karypis (eds.), *Proceedings of the 25th ACM SIGKDD Interna-
 618 tional Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
 619 4-8, 2019*, pp. 1917–1926. ACM, 2019.
- 620 Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake news detection on social
 621 media: A data mining perspective. *SIGKDD Explor.*, 19(1):22–36, 2017. doi: 10.1145/3137597.
 622 3137600. URL <https://doi.org/10.1145/3137597.3137600>.
- 623
- 624 Kai Shu, Suhang Wang, and Huan Liu. Beyond news contents: The role of social context for
 625 fake news detection. In J. Shane Culpepper, Alistair Moffat, Paul N. Bennett, and Kristina Ler-
 626 man (eds.), *Proceedings of the Twelfth ACM International Conference on Web Search and Data
 627 Mining, WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019*, pp. 312–320. ACM,
 628 2019. doi: 10.1145/3289600.3290994. URL [https://doi.org/10.1145/3289600.
 629 3290994](https://doi.org/10.1145/3289600.3290994).
- 630 Pavel Slipenchuk and Anna Epishkina. Practical user and entity behavior analytics methods for fraud
 631 detection systems in online banking: A survey. In Alexei V. Samsonovich (ed.), *Biologically
 632 Inspired Cognitive Architectures 2019 - Proceedings of the 10th Annual Meeting of the BICA
 633 Society, BICA 2019, Seattle, WA, USA, August 15-18, 2019*, volume 948 of *Advances in Intelligent
 634 Systems and Computing*, pp. 83–93. Springer, 2019.
- 635 Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
 636 detection. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu,
 637 and Sivan Sabato (eds.), *International Conference on Machine Learning, ICML 2022, 17-23
 638 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning
 639 Research*, pp. 21076–21089. PMLR, 2022. URL <https://proceedings.mlr.press/v162/tang22b.html>.
- 641 Qizhou Wang, Guansong Pang, Mahsa Salehi, Wray Buntine, and Christopher Leckie. Cross-
 642 domain graph anomaly detection via anomaly-aware contrastive alignment. In *Proceedings of
 643 the AAAI Conference on Artificial Intelligence*, volume 37, pp. 4676–4684, 2023.
- 644
- 645 Lirong Wu, Jun Xia, Zhangyang Gao, Haitao Lin, Cheng Tan, and Stan Z. Li. Graphmixup:
 646 Improving class-imbalanced node classification by reinforcement mixup and self-supervised
 647 context prediction. In Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Pe-
 tra Kralj Novak, and Grigoris Tsoumakas (eds.), *Machine Learning and Knowledge Discovery*

- 648 *in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23,*
649 *2022, Proceedings, Part IV*, volume 13716 of *Lecture Notes in Computer Science*, pp. 519–535.
650 Springer, 2022. doi: 10.1007/978-3-031-26412-2_32. URL https://doi.org/10.1007/978-3-031-26412-2_32.
- 652 Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed net-
653 work anomaly detection with data augmentation. In João Gama, Tianrui Li, Yang Yu, Enhong
654 Chen, Yu Zheng, and Fei Teng (eds.), *Advances in Knowledge Discovery and Data Mining - 26th*
655 *Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16-19, 2022, Proceedings, Part II*,
656 volume 13281 of *Lecture Notes in Computer Science*, pp. 444–457. Springer, 2022. doi: 10.1007/978-3-031-05936-0_35. URL https://doi.org/10.1007/978-3-031-05936-0_35.
- 657 Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification on
658 graphs with graph neural networks. In Liane Lewin-Eytan, David Carmel, Elad Yom-Tov, Eu-
659 gene Agichtein, and Evgeniy Gabrilovich (eds.), *WSDM '21, The Fourteenth ACM International*
660 *Conference on Web Search and Data Mining, Virtual Event, Israel, March 8-12, 2021*, pp. 833–
661 841. ACM, 2021. doi: 10.1145/3437963.3441720. URL <https://doi.org/10.1145/3437963.3441720>.
- 662 Lecheng Zheng, John R. Birge, Haiyue Wu, Yifang Zhang, and Jingrui He. Cluster aware graph
663 anomaly detection. In Guodong Long, Michale Blumestein, Yi Chang, Liane Lewin-Eytan, Zi He-
664 len Huang, and Elad Yom-Tov (eds.), *Proceedings of the ACM on Web Conference 2025, WWW*
665 *2025, Sydney, NSW, Australia, 28 April 2025- 2 May 2025*, pp. 1771–1782. ACM, 2025.
- 666 Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T Phan, and Yi-Ping Phoebe Chen. Genera-
667 tive and contrastive self-supervised learning for graph anomaly detection. *IEEE Transactions on*
668 *Knowledge and Data Engineering*, 35(12):12220–12233, 2021.
- 669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A ADDITIONAL EXPERIMENTAL RESULTS

704 A.1 ADDITIONAL EFFECTIVENESS ANALYSIS

706 In the experiment, we evaluate our method in the zero-shot and 10-shot setting on the graph from the
 707 test set \mathcal{T}_{test} . For the supervised learning methods (e.g., BWGNN and GHRN), we evaluate these
 708 two methods in the 10-shot setting, where we randomly sample 5 normal nodes and 5 anomalies as
 709 the support nodes. Table 6 and Table 7 show the performance of OWLEYE and the baseline methods
 710 with respect to AUROC in the zero-shot and 10-shot setting, respectively. OWLEYE demonstrates
 711 strong anomaly detection capability in the generalist GAD scenario, without any finetuning. The
 712 average AUPRC is better than the best competitor (i.e., GHRN).

713 Table 6: Anomaly detection performance in zero-shot setting w.r.t AUROC. We highlighted the
 714 results ranked **first** and **second**. “Average” indicates the average AUROC over 8 datasets.

716 Method	Cora	Flickr	ACM	BlogCatalog	Facebook	Weibo	Reddit	Amazon	Average
Supervised (10-shot)									
BWGNN	60.53 \pm 7.76	69.40 \pm 9.22	70.37 \pm 13.29	68.74 \pm 6.80	67.74 \pm 11.28	61.28 \pm 2.58	63.68\pm8.21	69.75 \pm 5.81	66.44 \pm 7.49
GHRN	76.59 \pm 3.55	71.96 \pm 4.19	76.83 \pm 4.35	72.73 \pm 4.72	75.98\pm2.99	82.79 \pm 4.15	69.76\pm5.52	74.35 \pm 4.49	75.12\pm4.25
Unsupervised (zero-shot)									
DOMINANT	85.75\pm1.43	73.43\pm3.12	73.62 \pm 1.26	70.27 \pm 2.37	52.31 \pm 1.39	85.42 \pm 12.64	53.49 \pm 2.94	64.73 \pm 2.73	69.88 \pm 3.49
SLGAD	72.73 \pm 0.70	63.07 \pm 1.58	50.88 \pm 2.03	60.36 \pm 2.19	45.57 \pm 2.51	60.16 \pm 2.50	50.28 \pm 4.48	54.63 \pm 1.25	57.21 \pm 2.15
TAM	57.85 \pm 0.95	62.39 \pm 1.54	75.16 \pm 2.68	62.39 \pm 3.52	63.30 \pm 0.12	71.33 \pm 0.07	52.37 \pm 0.21	76.04 \pm 3.62	22.96 \pm 3.96
CARE	66.92 \pm 0.62	67.90 \pm 0.70	70.95 \pm 0.75	45.41 \pm 0.59	79.18\pm1.69	86.34 \pm 0.14	52.51 \pm 0.28	83.09\pm0.65	69.26 \pm 0.65
ARC	84.92\pm0.58	72.34 \pm 0.16	77.54\pm0.13	73.65\pm0.55	65.03 \pm 0.79	88.43\pm0.62	58.46 \pm 2.20	71.93 \pm 3.84	74.04 \pm 1.11
UNPrompt	63.55 \pm 3.09	69.67 \pm 0.47	71.98 \pm 1.38	67.83 \pm 2.73	63.87 \pm 7.37	47.44 \pm 2.77	55.01 \pm 1.20	56.77 \pm 6.73	62.01 \pm 3.22
OWLEYE	79.52 \pm 0.43	74.81\pm0.97	78.20\pm0.12	74.83\pm0.26	64.85 \pm 0.37	87.66\pm0.14	58.03 \pm 0.68	85.43\pm0.79	75.42\pm0.47

724 Table 7: Anomaly detection performance in 10-shot setting w.r.t AUROC. We highlighted the results
 725 ranked **first** and **second**. “Average” indicates the average AUROC over 8 datasets.

727 Method	Cora	Flickr	ACM	BlogCatalog	Facebook	Weibo	Reddit	Amazon	Average
Supervised (10-shot)									
BWGNN	60.53 \pm 7.76	69.40 \pm 9.22	70.37 \pm 13.29	68.74 \pm 6.80	67.74 \pm 11.28	61.28 \pm 2.58	63.68\pm8.21	69.75 \pm 5.81	66.44 \pm 7.49
GHRN	76.59 \pm 3.55	71.96 \pm 4.19	76.83 \pm 4.35	72.73 \pm 4.72	75.98\pm2.99	82.79 \pm 4.15	69.76\pm5.52	74.35 \pm 4.49	75.12\pm4.25
Unsupervised & Finetune (10-shot)									
DOMINANT	73.52 \pm 0.47	73.84 \pm 2.76	73.82 \pm 0.19	74.39\pm0.10	51.22 \pm 0.85	91.66 \pm 0.27	53.48 \pm 4.87	60.39 \pm 2.80	69.04 \pm 1.54
SLGAD	73.39 \pm 0.84	64.15 \pm 1.33	53.55 \pm 1.82	62.67 \pm 1.84	51.40 \pm 2.51	61.64 \pm 1.91	53.17 \pm 3.95	55.23 \pm 1.36	59.40 \pm 1.94
TAM	62.56 \pm 2.10	65.19 \pm 1.86	86.29\pm1.57	63.69 \pm 0.88	76.26 \pm 3.70	71.73 \pm 0.16	56.62 \pm 0.49	77.13 \pm 4.62	69.93 \pm 1.92
CARE	67.27 \pm 2.44	68.81 \pm 0.76	71.53 \pm 0.71	53.95 \pm 1.99	79.94\pm10.28	87.65\pm3.08	55.32 \pm 0.48	83.80\pm3.54	71.03 \pm 2.91
ARC	85.28\pm0.38	74.62\pm0.28	77.84 \pm 0.17	73.58 \pm 0.33	67.28 \pm 1.18	87.04 \pm 1.36	60.06 \pm 1.21	73.79 \pm 3.16	74.94 \pm 1.01
UNPrompt	65.06 \pm 0.41	69.16 \pm 0.47	73.24 \pm 0.45	68.95 \pm 0.25	67.13 \pm 4.01	53.21 \pm 2.16	55.69 \pm 0.96	62.14 \pm 0.97	64.32 \pm 1.21
OWLEYE	79.71\pm0.72	75.77\pm1.36	78.06\pm0.34	74.42\pm0.33	66.94 \pm 0.50	88.61\pm0.36	57.82 \pm 0.75	84.93\pm2.82	75.78\pm0.90

736 A.2 PERFORMANCE EVALUATION WITH DIFFERENT DATASET SPLIT

738 In the experiments, we evaluate OWLEYE and the baseline methods on different training and test
 739 set split. Specifically, the training datasets \mathcal{T}_{train} consist of Reddit, BlogCatalog, Questions, and
 740 Cora, while the testing datasets \mathcal{T}_{test} consist of Flickr, CiteSeer, PubMed, ACM, Facebook, Weibo,
 741 YelpChi, and Amazon. The experimental results are shown in Table 8 and Table 9. OWLEYE
 742 demonstrates strong anomaly detection capability in the generalist GAD scenario, without any fine-
 743 tuning. Specifically, OWLEYE achieves state-of-the-art performance on 4 out of 8 datasets in terms
 744 of AUROC and 3 out of 8 in terms of AURPC and demonstrates competitive performance on the
 745 remainder.

746 Table 8: Anomaly detection performance in zero-shot setting w.r.t AUPRC. We highlighted the
 747 results ranked **first** and **second**. “Average” indicates the average AUPRC over 8 datasets.

749 Method	Flickr	CiteSeer	PubMed	ACM	Weibo	Facebook	YelpChi	Amazon	Average
Supervised (10-shot)									
BWGNN	12.39 \pm 2.68	10.31 \pm 1.99	11.63 \pm 2.87	13.37 \pm 6.03	9.55 \pm 2.12	5.81\pm1.17	2.45 \pm 3.76	12.40 \pm 1.86	9.74 \pm 2.81
GHRN	16.45 \pm 2.59	14.04 \pm 0.73	16.45 \pm 2.59	16.29 \pm 1.41	17.51 \pm 1.52	6.24\pm1.12	6.29 \pm 1.41	13.84 \pm 2.63	13.39 \pm 1.75
Unsupervised (zero-shot)									
DOMINANT	28.76 \pm 1.52	18.74 \pm 2.71	14.32 \pm 1.66	32.49 \pm 4.97	29.63 \pm 4.98	3.42 \pm 0.86	4.73 \pm 0.65	36.80 \pm 8.37	21.11 \pm 3.21
SLGAD	16.93 \pm 8.20	3.87 \pm 0.83	11.07 \pm 2.05	1.33 \pm 0.23	35.80 \pm 1.41	0.93 \pm 0.23	5.60 \pm 1.44	5.33 \pm 2.20	10.11 \pm 2.08
TAM	23.34 \pm 1.42	8.80 \pm 0.88	23.71 \pm 1.22	40.68\pm2.58	23.01 \pm 15.14	4.18 \pm 1.42	6.19 \pm 0.71	45.26 \pm 4.34	22.02 \pm 3.47
CARE	35.64 \pm 0.16	12.47 \pm 0.72	21.62 \pm 1.29	37.76 \pm 0.35	40.70 \pm 0.74	5.52 \pm 0.34	6.51 \pm 0.66	56.76\pm1.44	26.00 \pm 0.71
ARC	36.72\pm0.14	45.94\pm0.39	28.61\pm0.15	39.26 \pm 0.20	63.05\pm0.75	5.39 \pm 0.45	5.26 \pm 0.13	27.47 \pm 9.59	31.46\pm1.47
UNPrompt	24.35 \pm 0.41	5.81 \pm 0.55	10.14 \pm 0.45	14.89 \pm 0.67	33.43 \pm 6.55	3.31 \pm 1.16	7.99\pm2.25	9.74 \pm 0.57	13.71 \pm 1.58
OWLEYE	37.69\pm0.15	43.14\pm1.23	29.72\pm0.43	39.83\pm0.19	59.30\pm1.88	5.45 \pm 0.59	6.58\pm0.17	60.46\pm6.47	35.27\pm1.39

756 Table 9: Anomaly detection performance in zero-shot setting w.r.t AUROC. We highlighted the
 757 results ranked **first** and **second**. “Average” indicates the average AUROC over 8 datasets.

Method	Flickr	CiteSeer	PubMed	ACM	Weibo	Facebook	YelpChi	Amazon	Average
Supervised (10-shots)									
BWGNN	69.40 \pm 9.22	63.05 \pm 3.63	64.16 \pm 5.49	70.37 \pm 13.29	61.28 \pm 2.58	67.74 \pm 11.28	54.22 \pm 3.41	69.75 \pm 5.81	65.00 \pm 6.84
GHRN	71.96 \pm 4.19	77.59 \pm 3.55	76.96 \pm 4.19	76.83 \pm 4.35	82.79 \pm 4.15	75.98\pm2.99	53.83 \pm 4.35	74.35 \pm 4.49	73.79 \pm 3.78
Unsupervised (zero-shot)									
DOMINANT	73.43 \pm 3.12	74.96 \pm 2.87	75.13 \pm 1.23	73.62 \pm 1.26	85.42 \pm 12.64	52.31 \pm 1.39	53.22 \pm 0.98	64.73 \pm 2.73	69.13 \pm 3.28
SLGAD	63.07 \pm 1.58	55.12 \pm 2.44	56.51 \pm 1.02	50.88 \pm 2.03	60.16 \pm 0.25	45.57 \pm 2.51	47.56 \pm 1.06	54.63 \pm 1.25	54.81 \pm 1.80
TAM	62.39 \pm 1.54	67.29 \pm 1.38	77.84 \pm 0.98	75.16 \pm 2.68	71.33 \pm 0.07	63.30 \pm 0.09	52.40 \pm 0.52	76.04 \pm 3.62	68.22 \pm 1.35
CARE	67.90 \pm 0.70	69.43 \pm 0.87	66.55 \pm 0.97	70.95 \pm 0.75	86.34 \pm 0.14	79.18\pm1.69	53.89 \pm 0.82	83.09\pm0.42	72.42 \pm 0.80
ARC	74.12\pm0.65	89.58\pm0.30	82.25\pm0.18	78.28\pm0.32	87.15\pm0.66	66.39 \pm 1.61	54.13 \pm 0.26	72.54 \pm 6.78	75.80\pm1.34
UNPrompt	69.15 \pm 0.25	57.70 \pm 0.52	71.47 \pm 1.49	72.68 \pm 0.33	66.94 \pm 5.02	55.05 \pm 2.11	60.49\pm5.54	66.84 \pm 2.06	65.04 \pm 2.16
OwLEYE	75.30\pm0.98	84.47\pm0.58	77.98\pm0.25	78.57\pm0.11	87.49\pm0.57	66.25 \pm 0.72	54.73\pm0.63	85.56\pm2.32	76.29\pm0.77

A.3 PARAMETER SENSITIVITY ANALYSIS

In this section, we conduct a comprehensive sensitivity analysis of the key hyperparameters on eight datasets, with the results summarized in Table 10. We focus on four hyperparameters: (1) the constant positive temperature $\tau \in \{1, 2, 3, 4\}$, which controls the degree of feature normalization; (2) the truncated attention scaling factor $\tau_a \in \{0.1, 0.01, 0.001, 0.0001\}$, which magnifies the significance of the selected patterns; (3) the triplet loss margin $\lambda \in \{0.1, 0.2, 0.5, 1\}$, which determines the separation strength between positive and negative pairs; and (4) the balance coefficient $\beta \in \{1, 0.1, 0.01, 0.001\}$, which controls the relative importance between graph structural features and graph attribute features.

The experimental results show that our method is highly robust to τ , τ_a , and λ . Specifically, across all tested values of these parameters, the performance only varies slightly within the range of 0.7502 to 0.7552. This indicates that the model remains stable under different choices of normalization temperature, attention scaling, and triplet loss margin. In contrast, the parameter β has a more pronounced impact. When $\beta = 1$, the performance drops to 0.7069, suggesting that overemphasizing one type of feature (structural feature) may degrade the model’s ability to capture complementary information. As β decreases to 0.1, the performance improves significantly to 0.7556, and remains consistently around 0.7550 for smaller values. This demonstrates that a balanced contribution from both graph structural and attributed features is crucial for achieving optimal performance.

Overall, these results highlight two important findings: (i) our method exhibits strong robustness with respect to most hyperparameters, making it reliable in practical applications without heavy parameter tuning, and (ii) careful adjustment of the balance coefficient β is particularly beneficial for enhancing performance by effectively leveraging the complementary strengths of structural and attributed graph information.

Table 10: Parameter Analysis on τ , τ_a , λ , and β

Parameter	Cora	Flickr	ACM	BlogCatalog	Facebook	Weibo	Reddit	Amazon	Average
$\tau = 1$	76.97 \pm 0.73	73.65 \pm 0.25	77.94 \pm 0.21	74.04 \pm 0.25	65.12 \pm 0.81	87.12 \pm 0.21	59.37 \pm 0.25	86.22 \pm 0.44	75.05 \pm 0.39
$\tau = 2$	80.31 \pm 1.71	75.12 \pm 1.38	78.20 \pm 0.78	75.45 \pm 1.44	64.03 \pm 1.65	87.46 \pm 0.49	57.73 \pm 1.76	83.37 \pm 0.89	75.26 \pm 1.26
$\tau = 3$	80.15 \pm 1.09	75.94 \pm 3.37	78.54 \pm 0.63	75.18 \pm 1.09	65.26 \pm 2.78	87.40 \pm 0.84	57.86 \pm 0.99	81.31 \pm 2.89	75.21 \pm 1.71
$\tau = 4$	80.30 \pm 1.35	76.02 \pm 3.46	78.67 \pm 0.80	75.19 \pm 1.12	64.99 \pm 2.79	87.28 \pm 0.70	57.88 \pm 0.94	81.48 \pm 5.89	75.23 \pm 2.13
$\tau_a = 0.1$	79.06 \pm 0.26	75.19 \pm 1.40	77.95 \pm 0.15	74.77 \pm 0.12	62.86 \pm 0.52	87.43 \pm 0.16	57.83 \pm 0.36	85.33 \pm 0.84	75.05 \pm 0.48
$\tau_a = 0.01$	79.32 \pm 0.54	74.47 \pm 0.29	78.17 \pm 0.25	74.77 \pm 0.13	63.46 \pm 0.46	87.53 \pm 0.16	57.88 \pm 0.61	84.60 \pm 0.83	75.02 \pm 0.41
$\tau_a = 0.001$	76.97 \pm 0.73	73.65 \pm 0.25	77.94 \pm 0.21	74.04 \pm 0.25	65.12 \pm 0.81	87.12 \pm 0.21	59.37 \pm 0.25	86.22 \pm 0.44	75.05 \pm 0.39
$\tau_a = 0.0001$	79.95 \pm 0.56	75.07 \pm 1.06	78.55 \pm 0.61	75.11 \pm 0.80	65.19 \pm 0.73	87.57 \pm 0.13	57.87 \pm 1.61	84.85 \pm 1.19	75.52 \pm 0.84
$\lambda = 0.1$	79.61 \pm 0.60	75.59 \pm 1.75	78.15 \pm 0.07	74.84 \pm 0.21	64.63 \pm 0.38	87.74 \pm 0.20	58.43 \pm 0.41	85.14 \pm 0.89	75.52 \pm 0.56
$\lambda = 0.2$	76.97 \pm 0.73	73.65 \pm 0.25	77.94 \pm 0.21	74.04 \pm 0.25	65.12 \pm 0.81	87.12 \pm 0.21	59.37 \pm 0.25	86.22 \pm 0.44	75.05 \pm 0.39
$\lambda = 0.5$	79.50 \pm 0.52	75.14 \pm 1.18	78.13 \pm 0.14	74.78 \pm 0.48	65.45 \pm 0.56	87.66 \pm 0.16	57.02 \pm 0.68	85.35 \pm 0.48	75.38 \pm 0.53
$\lambda = 1$	79.28 \pm 0.33	74.77 \pm 0.85	78.08 \pm 0.16	74.47 \pm 0.43	66.92 \pm 0.73	87.44 \pm 0.09	55.40 \pm 0.73	85.34 \pm 0.45	75.21 \pm 0.45
$\beta = 1$	81.54 \pm 1.42	84.10 \pm 0.18	85.14 \pm 1.55	79.17 \pm 0.09	33.60 \pm 2.24	83.28 \pm 2.38	52.68 \pm 0.58	66.03 \pm 2.59	70.69 \pm 1.38
$\beta = 0.1$	83.06 \pm 1.56	79.87 \pm 2.91	79.96 \pm 0.53	76.99 \pm 1.12	57.90 \pm 0.75	87.49 \pm 0.73	55.43 \pm 1.39	83.78 \pm 2.55	75.56 \pm 2.07
$\beta = 0.01$	79.61 \pm 0.60	75.59 \pm 1.75	78.15 \pm 0.07	74.84 \pm 0.21	64.63 \pm 0.38	87.74 \pm 0.20	58.43 \pm 0.41	85.14 \pm 0.89	75.52 \pm 0.56
$\beta = 0.001$	79.52 \pm 0.42	74.81 \pm 0.97	78.20 \pm 0.12	74.83 \pm 0.26	64.85 \pm 0.337	87.67 \pm 0.14	58.02 \pm 0.66	85.40 \pm 0.81	75.41 \pm 0.47

A.4 CAN CROSS-DOMAIN FEATURE ALIGNMENT BENEFIT OTHER METHOD?

In this subsection, we want to answer the following question: *Can cross-domain feature alignment benefit other method?* We conducted experiments by replacing ARC’s feature preprocessing with our proposed cross-domain feature alignment method. The results are shown in Table 11. The results demonstrate improved performance across 6 out of 8 datasets, achieving an average increase of 0.57

810 in AUCROC and 1.01 in AUPRC. This validates the effectiveness of our proposed cross domain
 811 feature alignment.

813
814 Table 11: Effectiveness of Cross-domain Feature Alignment (FA)

815 Method	816 Cora	817 Flickr	818 ACM	819 BlogCatalog	820 Facebook	821 Weibo	822 Reddit	823 Amazon	824 Average
AUROC									
825 ARC	84.92 \pm 0.58	72.34 \pm 0.16	77.54 \pm 0.13	74.65 \pm 0.55	65.03 \pm 0.79	88.43 \pm 0.62	58.46 \pm 2.20	71.93 \pm 3.84	74.04 \pm 1.11
826 ARC + FA	84.06 \pm 0.31	73.37 \pm 0.21	77.84 \pm 0.23	74.92 \pm 0.21	64.93 \pm 0.55	88.81 \pm 0.75	59.17 \pm 0.72	74.74 \pm 4.51	74.61 \pm 0.94
827 Improvement	-0.86	1.03	0.30	0.27	-0.10	0.38	0.71	2.81	0.57
AUPRC									
828 ARC	45.20 \pm 1.08	35.13 \pm 0.20	39.02 \pm 0.08	33.43 \pm 0.15	4.25 \pm 0.47	64.18 \pm 0.68	4.20 \pm 0.25	20.48 \pm 6.89	30.74 \pm 1.23
829 ARC + FA	46.71 \pm 0.72	37.15 \pm 0.18	39.84 \pm 0.22	34.74 \pm 0.28	4.62 \pm 0.52	61.79 \pm 0.37	4.05 \pm 0.37	25.05 \pm 6.95	31.74 \pm 1.20
830 Improvement	1.51	2.02	0.82	1.31	0.37	-2.39	-0.15	4.57	1.01

821
822
823 A.5 EXPERIMENTS ON HIGH ANOMALY RATE DATASET
824

825 In this subsection, we control Facebook data with synthetic anomaly rate. The raw anomaly rate of
 826 Facebook is 2.31% and we manually inject 10% and 20% more anomalies. The results are shown
 827 in Table 12. The results (AUPRC) show that our method consistently outperforms two baseline
 828 methods when the anomalies rate increases.

830 Table 12: Performance of OWLEYE w.r.t AUPRC with different anomaly rates
831

832 Anomaly Rate	833 2.31% + 0%	834 2.31% + 10%	835 2.31% + 20%
836 UNPrompt	837 4.32 \pm 0.55	838 53.38 \pm 0.56	839 70.09 \pm 0.28
840 ARC	841 4.25 \pm 0.47	842 54.02 \pm 0.41	843 71.92 \pm 0.84
844 OWLEYE	845 4.86 \pm 0.33	846 54.47 \pm 0.82	847 72.47 \pm 0.48

837
838 A.6 EXPERIMENT RESULTS ABOUT SIGNIFICANT DOMAIN SHIFT
839

840 In this subsection, we evaluate our method under a heavy domain shift setting. To simulate a scenario
 841 where the e-commerce co-review domain is entirely unseen during training, we remove the YelpChi
 842 graph from the training set. This creates a substantial distribution mismatch, as no graph from the
 843 e-commerce co-review domain is available during model learning. In the test phase, we examine
 844 the effect of removing YelpChi graph on Amazon graph as both of them are from the same domain
 845 (e-commerce co-review domain), while the rest 10 graphs from other domains.

846 In Table 13, the results reveal that, under this heavy domain shift, the performance on the Amazon
 847 graph decreases by 4.6% in AUPRC, while its AUROC remains largely unchanged. This behavior
 848 is expected: with an entire domain missing during training, domain-specific patterns become harder
 849 to recover. Nevertheless, the performance drop remains moderate, demonstrating that the patterns
 850 extracted from other training graphs still help support robust anomaly detection on the Amazon
 851 dataset. Interestingly, for graphs from other domains, we observe slight improvements in AUROC
 852 and AUPRC when YelpChi is removed. For example, Cora’s AUROC increases from 0.7952 to
 853 0.7989 and AUPRC from 0.4394 to 0.4476, while Flickr’s AUROC rises from 0.7481 to 0.7636.
 854 This trend is consistent across several other non-e-commerce graphs, suggesting that removing one
 855 domain might slightly reduce its influence during training, thereby allowing the model to better cap-
 856 ture patterns from other domains. Overall, these findings indicate that while heavy domain shift does
 857 lead to reasonable performance degradation for the affected domain, the cross-domain structural and
 858 attribute patterns captured by our model continue to provide meaningful generalization.

859
860 A.7 IMPLEMENTATION DETAILS
861

862 The neural network structure of the proposed framework is 3-layer GCN. In the experiments, we
 863 set the initial learning rate to be 3e-5, the hidden feature dimension to be 512 and use Adam as the
 864 optimizer. The experiments are performed on a Windows machine with a 24GB RTX 4090 GPU.

864
865
866
867 Table 13: Domain Shift Experiment Results (in %), testing on the Amazon graph. We remove the
868 YelpChi graph from the e-commerce co-review domain to simulate significant domain shifts.
869
870
871
872
873
874
875
876
877

Dataset	With YelpChi		Without YelpChi	
	AUROC (%)	AUPRC (%)	AUROC (%)	AUPRC (%)
Cora	79.52 \pm 0.43	43.94 \pm 0.46	79.89 \pm 0.27	44.76 \pm 0.51
Flickr	74.81 \pm 0.97	37.69 \pm 0.25	76.36 \pm 2.55	37.91 \pm 0.38
ACM	78.20 \pm 0.12	39.75 \pm 0.13	78.93 \pm 0.87	39.72 \pm 0.15
BlogCatalog	74.83 \pm 0.26	34.99 \pm 0.31	75.63 \pm 1.46	35.04 \pm 0.36
Facebook	64.85 \pm 0.37	5.62 \pm 1.17	66.27 \pm 0.97	6.19 \pm 1.37
Weibo	87.65 \pm 0.14	60.90 \pm 0.21	88.10 \pm 0.22	61.18 \pm 1.04
Reddit	58.02 \pm 0.68	4.25 \pm 0.11	57.79 \pm 0.22	3.97 \pm 0.06
Amazon	85.43 \pm 0.79	62.20 \pm 3.18	85.15 \pm 0.80	57.64 \pm 3.75

878
879 **A.8 VISUALIZATION**
880

881 **A.8.1 GRAPH SIMILARITY MEASUREMENT**

882 We visualize the heat map for graph similarity measurement (defined in Equation (10)) in Figure 4. Specifically, we measure the graph similarity between a test graph (e.g., Amazon, Reddit,
883 Weibo, BlogCatalog, Facebook, ACM, Flickr, Cora) and a training graph (e.g., Pubmed, CiteSeer,
884 Questions, YelpChi), where target_graph denotes the test graph where we extract and store pat-
885 terns in Dict_R^j . For instance, for Amazon graph, we measure the similarity between Amazon with
886 four graphs in the training set \mathcal{T}_{train} and the patterns sampled from Amazon graph, denoted as
887 target_graph. We observe that all graphs from the test sets heavily rely on the patterns extracted
888 from its own graph, while some graphs, such as Weibo, may also leverages the information from
889 other graphs (e.g., questions) to detect the anomalies.
890

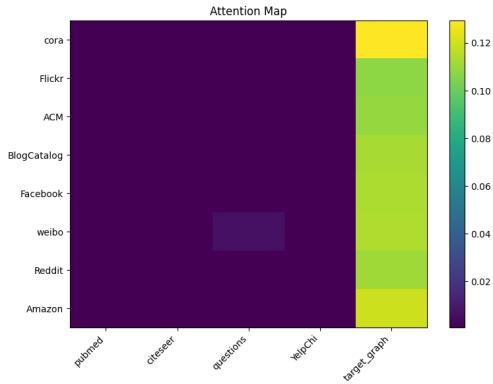


Figure 4: Visualization of Graph Similarity Measurement for Different Graphs.

906
907 **A.8.2 TRAINING LOSS VS EPOCHS**

908 We visualize the training loss vs the number of epochs in Figure 5 as the auxiliary information
909 for case study 2. In this figure, we observe that when no graph from \mathcal{T}_{aux} is used to finetune the
910 model, the training loss (i.e., blue line) drops dramatically. However, when we add all three graphs
911 from \mathcal{T}_{aux} to finetune the model (i.e., the orange line), the training loss is much higher than that of
912 model without using any graphs for model finetuning. This verify our conjecture that the reason that
913 finetuning the model fail to achieve better performance is that the model is hard to train on too many
914 graphs and thus hard to converge.
915

916
917 **A.9 ADDITIONAL FEATURE PREPROCESSING COMPARISON**

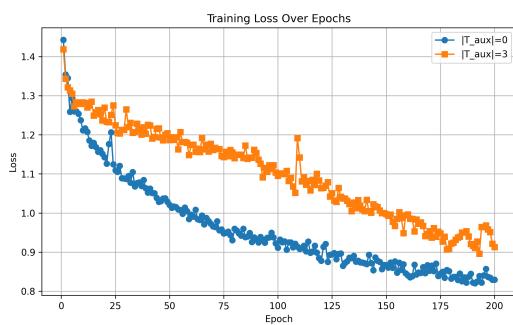


Figure 5: Training Loss vs Epochs

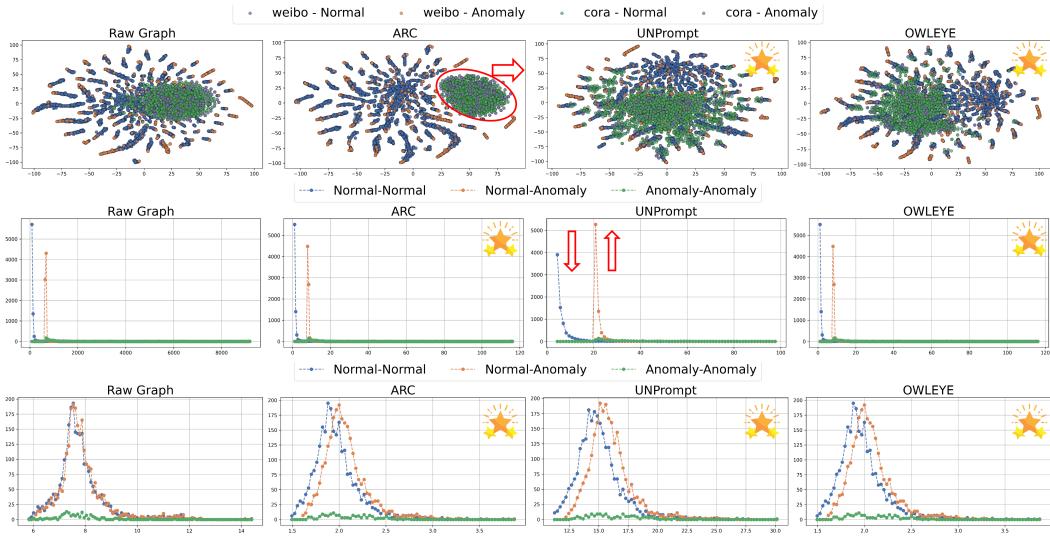


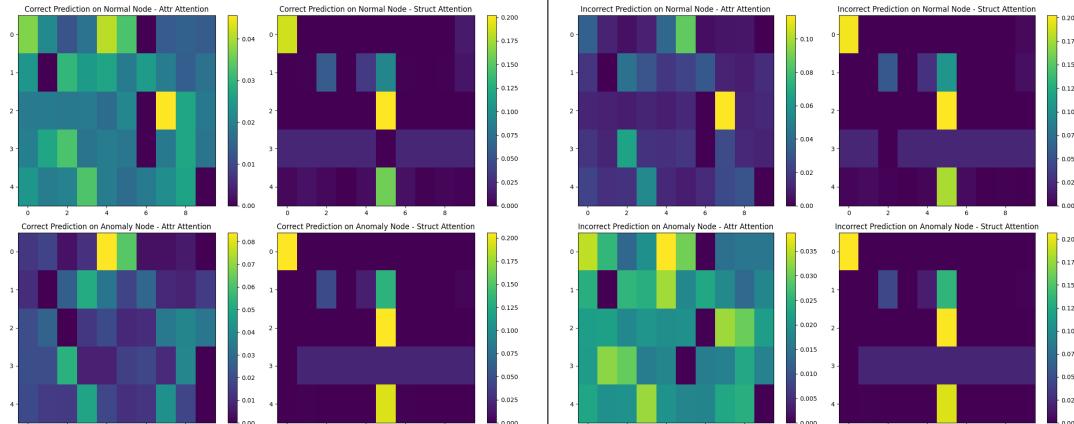
Figure 6: **Performance Visualization of SOTA GAD methods**, denotes best. *Top row*: TSNE embeddings of Facebook and Weibo graph data for (a) original graph, (b) ARC, (c) UNPrompt, and (d) OWLEYE (ours). ARC pushes the two graphs apart rather than aligning them. *Middle and bottom rows*: pairwise Euclidean distances for **Normal-Normal**, **Normal-Anomaly**, and **Anomaly-Anomaly** node pairs on Weibo and Cora dataset, respectively. In the original graph (middle row, (a)), **Normal-Normal** pairs are denser than **Normal-Anomaly** pairs on Weibo dataset—an important pattern reversed by UNPrompt (middle row, (c)). The existing data preprocessing methods fail to either align the graphs into the share space or preserve important patterns after normalization.

In this subsection, we visualize the different feature preprocessing methods on Cora and Weibo datasets, showing how well different feature preprocessing methods preserve the graph structure for the graphs from two different domains. Notice that Weibo has the largest feature norm (77.82), while the norms of other graphs are less than 3. To better visualize the different data distribution in the raw graphs across different domains, Weibo is selected. We also selected Cora, as it is a citation network, different from Weibo as a social network. Similar to Figure 1, we have the similar observation in Figure 6, where ARC pushes the two graphs apart rather than aligning them in the top row and UNPrompt reverses the different patterns of **Normal-Normal** pairs pair and **Normal-Anomaly** pairs in the middle row. In contrast, our method can fairly preserve the key graph structure even if two graphs are from different domains.

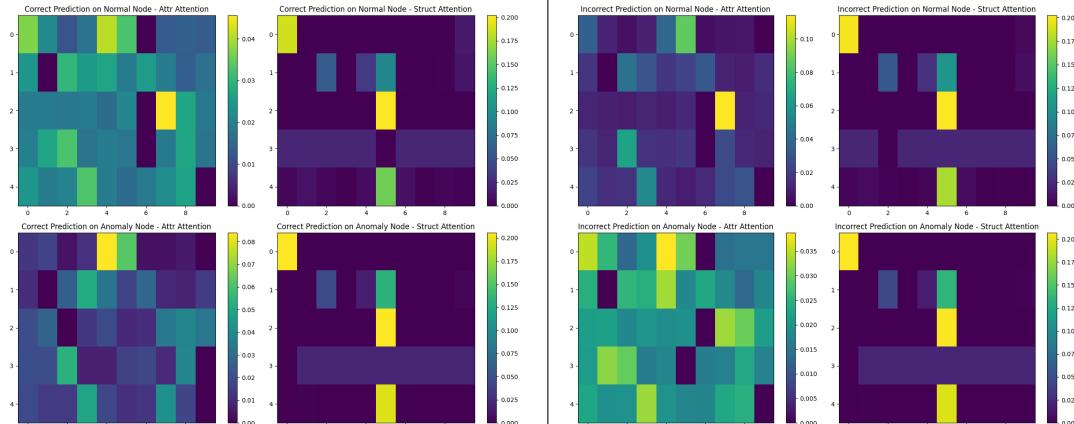
A.10 VISUALIZATION OF CROSS-ATTENTION MAP ON CORA AND AMAZON DATASETS

In this subsection, we provide a detailed visualization of the label matrices and cross-attention maps for both the Cora and Amazon datasets to better understand how our model distinguishes normal nodes from anomalous ones.

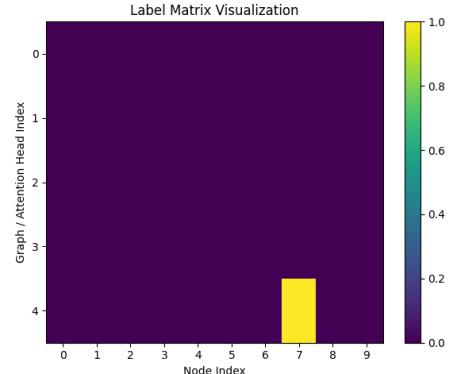
972
973
974
975
976
977
978
979
980
981
982



(a) Correct Prediction Nodes



(b) Incorrect Prediction Nodes



(c) Label Matrix

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

1012 Figure 7: Visualization of cross-attention map on the Amazon dataset. Subfigures (a) and (b) display
1013 the cross-attention scores across the graphs, where the y-axis corresponds to the graph indices (0–3
1014 indicating the four training graphs and 4 representing the test graph) and the x-axis denotes the ten
1015 extracted patterns learned for each graph. The top row shows the attribute attention and structural
1016 attention for a normal node and the bottom row shows the attribute attention and structural attention
1017 for an anomalous one. Subfigure (c) in both figures presents the ground-truth label matrices that
1018 specify whether each node is normal or abnormal.

1019
1020
1021
1022
1023
1024
1025

In Figures 7 and 8, subfigures (a) and (b) display the cross-attention scores across the graphs, where the y-axis corresponds to the graph indices (0–3 indicating the four training graphs and 4 representing the test graph) and the x-axis denotes the ten extracted patterns learned for each graph. The top row shows the attribute attention and structural attention for a normal node and the bottom row shows the attribute attention and structural attention for an anomalous one. Subfigure (a) shows the attention map when the model makes the correct prediction, while Subfigure (b) presents the attention map when the model makes the incorrect prediction. Subfigure (c) in both figures presents the ground-truth label matrices that specify whether each pattern is normal or abnormal. Across both datasets, **lighter colors such as light green and light yellow consistently indicate high similarity to the patterns associated with normal nodes**, as reflected in the label matrices in Subfigure (c).

By examining these visualizations, we observe a clear and consistent relationship between the attention intensity and the correctness of the model’s predictions: when the model correctly identifies a normal node, its attention map is dominated by light colors, suggesting a strong similarity to normal patterns stored in the dictionary; when it correctly identifies an anomalous node, the attention map becomes noticeably darker, indicating low similarity to normal behavior. Importantly, this trend reverses for misclassified nodes: normal nodes that are wrongly predicted as anomalies exhibit darker color in attention map, while misclassified anomalous nodes show lighter colors, showing the high similarity to those of normal nodes. This systematic behavior demonstrates that the attention map offers an intuitive and faithful interpretation mechanism, as the color patterns directly reflect whether the node under consideration resembles the learned normal patterns, thereby revealing both the reasoning behind correct predictions and the failure modes behind incorrect ones.

A.11 MORE EFFICIENCY ANALYSIS RESULTS

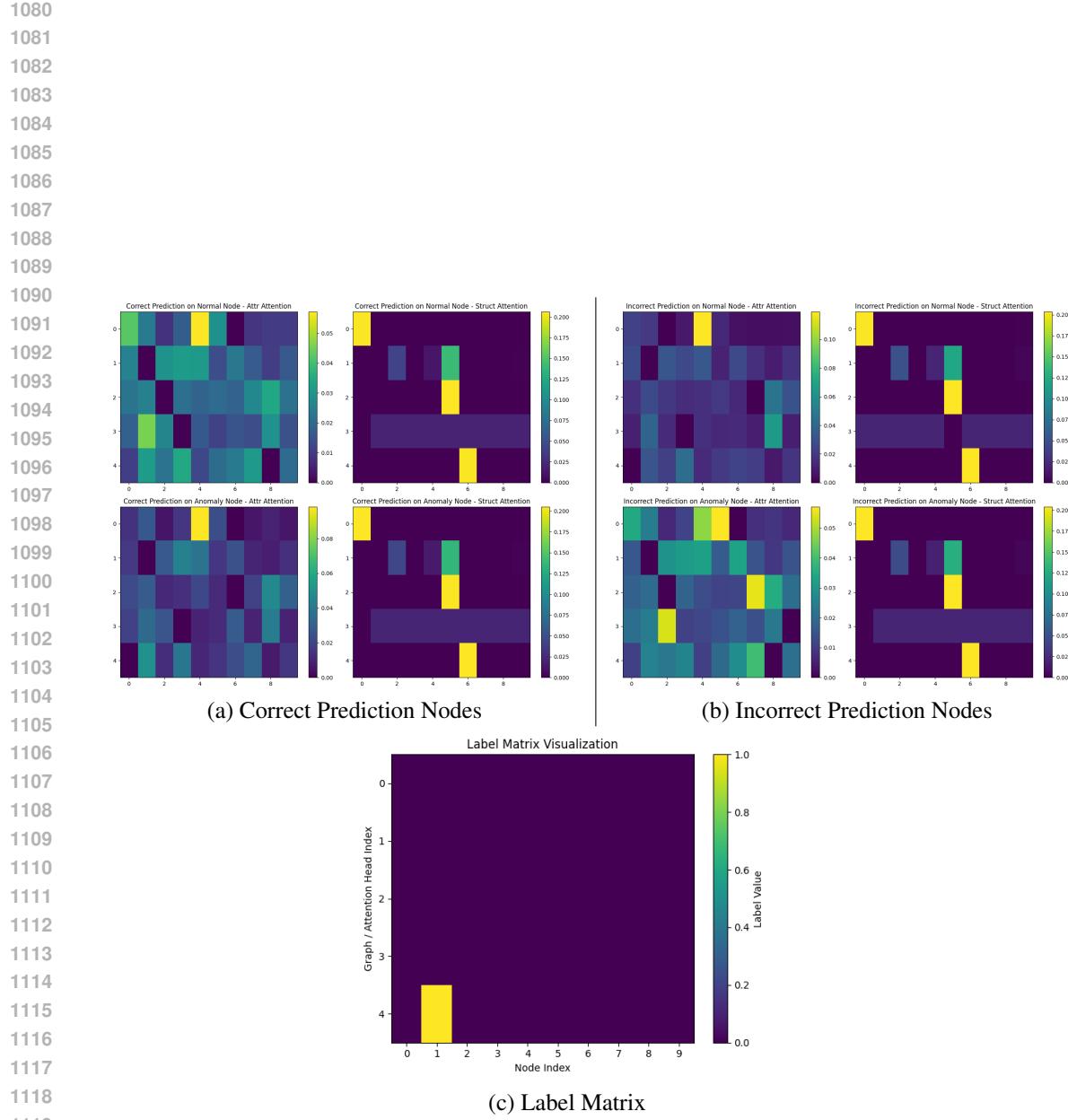
In Table 14, we report the training time on the ACM dataset for all baseline methods in the table. Following the experiment on efficiency analysis shown in Figure 3, ACM is selected in the experiment for the better comparison between training time and fine-tuning time. The results show that the training time of our method is more efficient than most of the baseline methods with overall first place performance gain reported in Tables 1 and 2.

Table 14: Training time comparison (in seconds) across different methods.

Method	Training Time (s)
BWGNN	16.6
GHRN	8.72
SLGAD	280
Dominant	470
TAM	254.71
CARE	550.23
ARC	1.89
UNPrompt	21.23
OWLEYE(ours)	3.84

A.12 EFFECTIVENESS OF STRUCTURAL REPRESENTATION

In Figure 3 (OWLEYE vs OWLEYE-S), we have validated that including both attribute-level representation and structural-level representation indeed help successfully identify more anomalies. In this subsection, we further verify the necessity of including structural representation in our model design. Table 15 shows the experimental results comparing using both structural similarity and attribute similarity (A+S) for domain similarity measurement vs only using structural similarity (S-Only) for domain similarity measurement. The experimental results show that using both structural similarity and attribute similarity (A+S) for domain similarity measurement decreases the performance. This suggests that using both structural and attribute similarity for domain similarity measurement is less stable than relying on structural similarity alone, because camouflaged anomalies may mimic normal neighbors’ attributes and cross-domain feature discrepancies make reliable measurement more challenging. Table 16 shows that including structural patterns indeed increases the performance.



1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 8: Visualization of cross-attention map on the Cora dataset. Subfigures (a) and (b) display the cross-attention scores across the graphs, where the y-axis corresponds to the graph indices (0–3 indicating the four training graphs and 4 representing the test graph) and the x-axis denotes the ten extracted patterns learned for each graph. The top row shows the attribute attention and structural attention for a normal node and the bottom row shows the attribute attention and structural attention for an anomalous one. Subfigure (c) in both figures presents the ground-truth label matrices that specify whether each node is normal or abnormal.

1134 Table 15: Comparison of using both attribute and structural similarity (A+S) vs structural similarity
 1135 only (S-Only).

1136

1137	Dataset	A+S (%)	S-Only (%)	Improvement (%)
1138	Cora	43.26 ± 0.54	43.94 ± 0.46	0.68
1139	Flickr	37.83 ± 0.39	37.69 ± 0.25	-0.14
1140	ACM	39.84 ± 0.28	39.75 ± 0.13	-0.09
1141	BlogCatalog	34.34 ± 0.53	34.99 ± 0.31	0.65
1142	Facebook	6.11 ± 1.35	5.62 ± 1.17	-0.49
1143	Weibo	58.61 ± 5.18	60.90 ± 0.21	2.28
1144	Reddit	4.05 ± 0.12	4.25 ± 0.11	0.20
1145	Amazon	48.01 ± 18.44	62.20 ± 3.18	14.19
1146	Average	34.26 ± 3.35	36.17 ± 0.73	2.16

1147 Table 16: Comparison of using No Structural Patterns vs OWLEYE for AUPRC.

1148

1149	Dataset	No Structural Patterns	OWLEYE	Improvement (%)
1150	Cora	39.38 ± 1.32	43.94 ± 0.46	4.56
1151	Flickr	38.06 ± 0.08	37.69 ± 0.25	-0.36
1152	ACM	39.64 ± 0.15	39.75 ± 0.13	0.11
1153	BlogCatalog	35.42 ± 0.26	34.99 ± 0.31	-0.43
1154	Facebook	4.71 ± 0.27	5.62 ± 1.17	0.90
1155	Weibo	57.18 ± 1.09	60.90 ± 0.21	3.72
1156	Reddit	4.12 ± 0.15	4.25 ± 0.11	0.13
1157	Amazon	61.98 ± 1.08	62.20 ± 3.18	0.22
1158	Average	35.06 ± 0.55	36.17 ± 0.73	1.11

1159

1160

A.13 EFFECTIVENESS OF DIFFERENT FEATURE REDUCTION METHODS

1161

1162

In this subsection, we compared different linear and nonlinear feature projection methods including PCA, SVD, Kernel PCA, and NMF in Table 17. The experimental results show that our method with PCA still achieves the best performance as modeled in this paper. Comparing PCA with nonlinear methods like Kernel PCA and NMF, we observe that using more complicated feature projection does not necessarily improve the performance, as it might distort and misalign the original feature space, leading to performance drop. When the feature dimension is smaller than the preset projection dimension, we use Gaussian Random Projection to 256 following ARC and then do the feature reduction.

1172

1173

Table 17: Comparison of different feature preprocessing methods (AUPRC %).

1174

1175	Dataset	PCA	SVD	Kernel PCA	NMF
1176	Cora	43.94 ± 0.46	44.13 ± 0.81	44.05 ± 0.68	15.06 ± 2.28
1177	Flickr	37.69 ± 0.25	38.18 ± 0.37	37.54 ± 0.46	33.09 ± 0.70
1178	ACM	39.75 ± 0.13	39.18 ± 0.22	38.75 ± 0.15	32.28 ± 1.13
1179	BlogCatalog	34.99 ± 0.31	35.28 ± 0.31	34.93 ± 0.24	33.36 ± 0.48
1180	Facebook	5.62 ± 1.17	5.00 ± 0.27	5.63 ± 1.05	7.43 ± 1.34
1181	Weibo	60.90 ± 0.21	57.89 ± 2.48	60.55 ± 0.22	49.90 ± 3.66
1182	Reddit	4.25 ± 0.11	3.44 ± 0.24	4.10 ± 0.15	3.42 ± 0.07
1183	Amazon	62.20 ± 3.18	44.27 ± 3.45	38.75 ± 3.07	20.61 ± 7.57
1184	Average	36.17 ± 0.73	33.42 ± 1.02	33.04 ± 0.75	24.39 ± 2.15

1185

1186

1187

A.14 IMPACT OF DIFFERENT VALUES OF k

1188 In this subsection, we evaluate the impact of different values of k in truncating the small values in
 1189 truncated attention mechanism. In the experiment, k is a relative value according to the dictionary
 1190 size. We set the value of k to $p\%$ of patterns in the dictionary, where $n_{sup} = 1000$ for each graph.
 1191 We vary the percentage of it from 5% to 50% as well as two specific numbers of k ($k = 5$ and
 1192 $k = 10$) and report the overall results across eight graphs below. Table 18 shows the impact of k in
 1193 the truncated attention mechanism.

1194 To be more specific, the range of the value of k is based on the observation that the percentage of
 1195 the anomaly is usually lower than 10%. Using the ratio of dictionary size can filter out most of
 1196 the anomalies and then reduce the uncertainty. In a situation where the percentage of anomalies is
 1197 unusually high, we can manually increase the value of k . The results show that when we set the
 1198 value of k to 10% to 30% of patterns in the dictionary, the AUPRC scores are around 36.1% and
 1199 its performance decreases if we increase the percentage to 50%. One possible explanation is that
 1200 we filter out too many patterns that might be useful for identifying anomalies. Similarly, when we
 1201 decreased the value of k to a value that could not filter out most of the anomalies, the performance
 1202 starts to decrease, as the method involves the anomalies for feature construction.

1203 Table 18: AUPRC scores under different values of k for truncated attention (in %).
 1204

k	Cora	Flickr	ACM	BlogCatalog	Facebook	Weibo	Reddit	Amazon	Average
5	43.89 ± 1.53	37.52 ± 0.57	39.73 ± 0.11	34.75 ± 0.33	5.73 ± 1.15	59.73 ± 2.56	4.07 ± 0.18	61.09 ± 3.53	35.81 ± 1.25
10	44.18 ± 0.82	37.74 ± 0.38	39.73 ± 0.09	34.97 ± 0.34	5.67 ± 1.17	59.31 ± 2.80	4.05 ± 0.07	61.26 ± 3.47	35.86 ± 1.14
$0.05n_{sup}$	43.94 ± 0.67	37.62 ± 0.29	39.74 ± 0.14	35.00 ± 0.32	5.61 ± 1.16	59.52 ± 2.46	4.06 ± 0.08	61.96 ± 3.23	35.93 ± 1.04
$0.1n_{sup}$	44.08 ± 0.73	37.66 ± 0.30	39.76 ± 0.10	34.93 ± 0.28	5.53 ± 1.22	60.63 ± 2.49	4.06 ± 0.09	62.04 ± 2.34	36.09 ± 0.94
$0.2n_{sup}$	44.04 ± 1.05	37.62 ± 0.34	39.73 ± 0.14	34.91 ± 0.59	5.16 ± 1.20	60.97 ± 0.85	4.06 ± 0.10	62.20 ± 3.12	36.09 ± 0.93
$0.3n_{sup}$	43.55 ± 0.90	38.23 ± 0.26	39.14 ± 0.11	35.05 ± 0.37	5.87 ± 1.19	60.28 ± 0.68	3.92 ± 0.08	63.26 ± 2.48	36.16 ± 0.76
$0.5n_{sup}$	43.93 ± 0.47	37.69 ± 0.26	39.74 ± 0.12	34.99 ± 0.31	5.61 ± 1.17	60.94 ± 0.21	4.05 ± 0.09	61.91 ± 3.05	36.11 ± 0.71

A.15 PATTERNS FROM ONE GRAPH VS MULTIPLE GRAPHS

1214 In this subsection, we aim to investigate whether incorporating patterns from multiple graphs can
 1215 benefit anomaly detection. The results in Table 19 indicate that leveraging patterns from multiple
 1216 graphs consistently improves performance compared to using patterns from a single target graph.
 1217 Specifically, the average AUPRC across eight graphs increases by 0.32%, demonstrating that cross-
 1218 graph knowledge can provide complementary information that helps identify anomalies more effec-
 1219 tively. We observe that datasets such as Cora, Weibo, and Amazon benefit the most, with improve-
 1220 ments of 0.73%, 0.43%, and 0.48%, respectively, suggesting that in domains with diverse structures
 1221 or large graphs, shared patterns from multiple sources are particularly valuable. A few datasets,
 1222 like ACM, show minor negative change (-0.09%), which may be attributed to the already sufficient
 1223 patterns present in the target graph, highlighting that the benefit of cross-graph patterns depends
 1224 on the intrinsic complexity and variability of the graph. Overall, these results empirically validate
 1225 that maintaining a structured dictionary with patterns from multiple graphs enhances the model’s
 1226 generalization capability for detecting anomalies in unseen domains.

1226 Table 19: Comparison of using patterns from the target graph only versus patterns from multiple
 1227 graphs (AUPRC %).
 1228

Dataset	Patterns from target graph only	Patterns from multiple graphs	Improvement
Cora	43.21 ± 0.98	43.94 ± 0.46	0.73
Flickr	37.41 ± 0.16	37.69 ± 0.25	0.28
ACM	39.84 ± 0.23	39.75 ± 0.13	-0.09
BlogCatalog	34.81 ± 0.44	34.99 ± 0.31	0.17
Facebook	5.27 ± 1.34	5.62 ± 1.17	0.35
Weibo	60.47 ± 0.75	60.90 ± 0.21	0.43
Reddit	4.03 ± 0.08	4.25 ± 0.11	0.23
Amazon	61.72 ± 3.01	62.20 ± 3.18	0.48
Average	35.84 ± 0.88	36.17 ± 0.73	0.32

A.16 MEDIAN OPERATION VS MEAN OPERATION IN FEATURE NORMALIZATION

1242 Table 20: AUPRC scores comparing median vs. mean aggregation.
1243

1244 Dataset	1245 Median (AUPRC %)	1246 Mean (AUPRC %)
1247 Cora	1248 43.63 ± 1.94	1249 34.95 ± 11.96
1250 Flickr	1251 37.92 ± 0.42	1252 37.64 ± 1.15
1253 ACM	1254 39.55 ± 0.12	1255 39.05 ± 0.31
1256 BlogCatalog	1257 35.00 ± 0.20	1258 34.53 ± 0.63
1259 Facebook	1260 4.56 ± 0.71	1261 4.30 ± 1.15
1262 CiteSeer	1263 42.57 ± 1.05	1264 33.65 ± 12.64
1265 Reddit	1266 4.19 ± 0.14	1267 3.98 ± 0.16
1268 Amazon	1269 56.07 ± 2.28	1270 38.56 ± 17.31
1271 Average		1272 32.94 ± 0.86
1273		1274 28.33 ± 5.66

1256 In Table 20, we compare the use of median and mean operations in our feature preprocessing module.
1257 (Table 22 shows the norm of raw features in each graph.) The results show that replacing the median
1258 with the mean significantly reduces performance on Cora ($43.63 \rightarrow 34.95$), CiteSeer ($42.57 \rightarrow$
1259 33.65), and Amazon ($56.07 \rightarrow 38.56$), indicating that the mean is sensitive to graphs with unusually
1260 large feature norms, which can dominate the normalization process and distort the shared feature
1261 space. In contrast, median aggregation preserves the structural and semantic information across
1262 graphs, maintaining more stable performance on all datasets (e.g., Flickr: 37.92 vs 37.64 , ACM:
1263 39.55 vs 39.05). This demonstrates that using the median is more robust for heterogeneous graph
1264 domains, especially when feature distributions vary significantly across graphs.

1265 Table 21: AUPRC scores when including patterns from Weibo vs. CiteSeer.
1266

1267 Dataset	1268 With Weibo (AUPRC %)	1269 With CiteSeer (AUPRC %)
1270 Cora	1271 43.63 ± 1.94	1272 43.94 ± 0.46
1273 Flickr	1274 37.92 ± 0.42	1275 37.69 ± 0.25
1276 ACM	1277 39.55 ± 0.12	1278 39.75 ± 0.13
1279 BlogCatalog	1280 35.00 ± 0.20	1281 34.99 ± 0.31
1282 Facebook	1283 4.56 ± 0.71	1284 5.62 ± 1.17
1285 Reddit	1286 4.19 ± 0.14	1287 4.25 ± 0.11
1288 Amazon	1289 56.07 ± 2.28	1290 62.20 ± 3.18
1291 Average		1292 31.56 ± 0.83
1293		1294 32.63 ± 0.80

A.17 ATYPICAL TRAINING DOMAIN EXPERIMENT

1280 In Table 21, we examine the robustness of our method when a training domain is highly atypical by
1281 varying the training graphs. Since Weibo has the largest feature norm among all graphs shown in
1282 Table 22, we conduct two experiments with different training sets:

- 1283 • 1) With Weibo: Pubmed, Questions, Weibo, and YelpChi;
1284
- 1285 • 2) With CiteSeer: Pubmed, Questions, CiteSeer, and YelpChi.

1286 As shown in Table 21, the results indicate that most datasets maintain consistent performance across
1287 the two settings. For instance, Cora achieves 43.63% AUPRC with Weibo and 43.94% with CiteSeer,
1288 ACM scores 39.55% versus 39.75%, and BlogCatalog shows 35.00% versus 34.99%. The average
1289 performance is slightly higher when CiteSeer is included (32.63% vs. 31.56%), suggesting that our
1290 method is robust to the choice of a highly atypical domain in the training set.

B DETAILED RELATED WORK

1292 Graph anomaly detection (GAD) is widely used in many applications (Grubbs, 1969; Ma et al.,
1293 2021; Pourhabibi et al., 2020; Li et al., 2021; Duan et al., 2023) that naturally involve graph-
1294 structured data, such as transaction networks in financial fraud detection(Slipenchuk & Epishkina,

1296
1297
1298 Table 22: Feature norms of different graphs.
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

Dataset	Norm
Pubmed	0.24
Questions	0.45
Weibo	77.82
YelpChi	0.07
Cora	2.41
Flickr	0.25
ACM	0.10
BlogCatalog	0.30
Facebook	2.38
Citeseer	2.81
Reddit	0.02
Amazon	0.49

2019; Ramakrishnan et al., 2019), communication and access networks in cybersecurity intrusion detection (Brdiczka et al., 2012; Duan et al., 2023), and user-user interaction graphs in fake news detection on social networks (Shu et al., 2017; 2019). In recent years, the success of deep learning has spurred growing interest in developing deep learning-based GAD methods (Ma et al., 2023). Depending on the availability of labeled data, deep GAD approaches can be broadly categorized into supervised and unsupervised methods (Qiao et al., 2024). In the unsupervised setting, graph contrastive learning methods (Zheng et al., 2021; Liu et al., 2022; Chen et al., 2022; Jin et al., 2021; Xu et al., 2022) aim to learn effective node or graph-level representations by pulling similar instances together in the embedding space without any label information. Alternatively, reconstruction-based methods (Ding et al., 2019; Huang et al., 2023; Li et al., 2019; Luo et al., 2022; Peng et al., 2023) focus on learning low-dimensional embeddings capable of reconstructing input graph attributes or structures, with anomalies identified as instances exhibiting high reconstruction errors. In the supervised setting, generative GNN-based methods leverage label information to augment training data by synthesizing high-quality graph signals. Representative works include GraphSMOTE (Zhao et al., 2021), GraphMixup (Wu et al., 2022), and GraphENS (Park et al., 2022), which enhance model generalization and robustness. More recently, the advent of large language models (LLMs) has sparked a paradigm shift in AI research due to their strong generalization capabilities. Motivated by this, researchers are exploring "one-for-all" generalist frameworks (Niu et al., 2024; Liu et al., 2024) capable of adapting to diverse, unseen graph domains with minimal task-specific tuning. Cross-domain graph anomaly detection (CD-GAD) has recently drawn growing interest as models trained on one graph often degrade when deployed on graphs with different structures or feature distributions. Early work by (Ding et al., 2021) introduced one of the first CD-GAD frameworks by aligning latent representations across source and target graphs to mitigate distributional shifts. More recently, Wang et al. (2023) proposed an anomaly-aware contrastive alignment approach that explicitly incorporates anomaly signals into cross-domain representation learning, improving robustness under heterogeneous domains. Complementary to these alignment-based methods, Pirhayatifard & Silva advanced a test-time adaptation framework that leverages homophily-guided self-supervision to adjust model parameters on the target graph without requiring labeled anomalies. This paper also aims to develop such a generalist framework for GAD, while addressing several open challenges in existing approaches, including inadequate graph alignment across domains, lack of continual learning capabilities, and poor performance in zero-shot anomaly detection scenarios.

1344
1345 C BROADER IMPACT
1346

1347 This paper does not have significant potential negative societal impacts and it proposes a generalist
1348 anomaly detection model, which aims to detect anomalies in the unseen graphs. Our method can be
1349 applied to many applications, enhancing public safety by detecting fraud, cyberattacks, or suspicious
activities.

1350 **D LLM USAGE DISCLOSURE**
1351

1352 In this paper, the authors use LLMs to polish the paper writing, such as word choice and correcting
1353 grammar mistakes. The use of LLMs is under control.
1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403