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ABSTRACT

Graph data is informative to represent complex relationships such as transactions
between accounts, communications between devices, and dependencies among
machines or processes. Correspondingly, graph anomaly detection (GAD) plays a
critical role in identifying anomalies across various domains, including finance,
cybersecurity, manufacturing, etc. Facing the large-volume and multi-domain
graph data, nascent efforts attempt to develop foundational generalist models ca-
pable of detecting anomalies in unseen graphs without retraining. To the best of
our knowledge, the different feature semantics and dimensions of cross-domain
graph data heavily hinder the development of the graph foundation model, leaving
further in-depth continual learning and inference capabilities a quite open prob-
lem. Hence, we propose OWLEYE, a novel zero-shot GAD framework that learns
transferable patterns of normal behavior from multiple graphs, with a threefold
contribution. First, OWLEYE proposes a cross-domain feature alignment mod-
ule to harmonize feature distributions , which preserves domain-specific semantics
during alignment. Second, with aligned features, to enable continuous learning ca-
pabilities, OWLEYE designs the multi-domain multi-pattern dictionary learn-
ing to encode shared structural and attribute-based patterns. Third, for achiev-
ing the in-context learning ability, OWLEYE develops a truncated attention-
based reconstruction module to robustly detect anomalies without requiring la-
beled data for unseen graph-structured data. Extensive experiments on real-world
datasets demonstrate that OWLEYE achieves superior performance and generaliz-
ability compared to state-of-the-art baselines, establishing a strong foundation for
scalable and label-efficient anomaly detection.

1 INTRODUCTION

Graph anomaly detection (GAD) has been extensively studied over the past decades due to its wide-
ranging applications that naturally involve graph-structured data, such as transaction networks in
financial fraud detection (Slipenchuk & Epishkinal 2019; Ramakrishnan et al., [2019), communica-
tion and access networks in cybersecurity intrusion detection (Brdiczka et al., 2012} |Duan et al.,
2023)), and user-user interaction graphs in fake news detection on social networks (Shu et al., 2017;
2019). Driven by the growing demand for accurate and scalable anomaly detection, recent research
increasingly leverages graph neural networks (GNNs) to model node-level irregularities in complex
graph-structured data. Broadly, existing approaches to GAD can be categorized into two research di-
rections. The first adopts a “one model for one dataset” paradigm (Qiao & Pang}, 2023} Zheng et al.|
2025} [Liu et al.| 20225 Huang et al.| 2022} |Qiao et al.| |2025)), where one single model is trained for
each graph individually to detect anomalies within that specific context. While this strategy can be
effective, it is often computationally expensive and suffers from limited generalizability to unseen
graphs. In contrast, a new research direction aims to build “one for all” generalist frameworks (Niu
et al., 2024; |L1u et al.} 2024) that are trained on multiple graphs and capable of detecting anoma-
lies in entirely new, unseen graphs without retraining. These models offer advantages in terms of
scalability and cross-domain adaptability. For example, ARC (Liu et al., [2024) introduces a gen-
eralist framework based on in-context learning, which encodes high-order affinity and heterophily
into anomaly-aware embeddings transferable across datasets. UNPrompt (Niu et al.|[2024) proposes
generalized neighborhood prompts that leverage latent node attribute predictability as an anomaly
score, enabling effective anomaly detection in previously unseen graphs.
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Figure 1: Performance Visualization of SOTA GAD methods, * denotes best. Top row: TSNE
embeddings of Facebook and Weibo graph data for (a) original features, (b) ARC, (c) UNPrompt,
and (d) OWLEYE (ours). ARC pushes the two graphs apart rather than aligning them. Middle and
bottom rows: pairwise Euclidean distances for Normal-Normal, , and Anomaly-
Anomaly node pairs on Weibo and Facebook dataset, respectively. In the original graph (middle row,
(a)), Normal-Normal pairs are denser than pairs on Weibo dataset—an important
pattern reversed by UNPrompt (middle row, (c)). The existing data preprocessing methods fail to
either align the graphs into the share space or preserve important patterns after normalization.

However, several critical limitations still hinder the full potential of these generalist models. First,
graphs from different domains often have inherently different feature spaces and semantic inter-
pretations. Existing methods (Niu et al} 2024} [Liu et all, 2024} [Qiao et all, 2025) typically use
dimensionality reduction techniques such as principal component analysis (PCA) (Mackiewicz &
or singular value decomposition (SVD) (Hoecker & Kartvelishvili, |1996), along
with basic normalization strategies, to enforce a shared input space with the same dimensionality.
However, these heuristics frequently fail to align heterogeneous feature distributions and preserve
the important structural patterns effectively. In Figure [T} we visualize TSNE embeddings of Face-
book and Weibo graphs before and after preprocessing with three methods (top row), along with
pairwise Euclidean distances among three types of node pairs: Normal-Normal, Normal-Anomaly,
and Anomaly-Anomaly for both datasets (middle and bottom rows). Notably, the TSNE plots show
that ARC (Liu et al, [2024) tends to separate the two graphs rather than align them, while UN-
Prompt (Niu et al., 2024) disrupts critical structural patterns, for instance, it reverses the density
relationship between Normal-Normal and Normal-Anomaly pairs observed in the original graph
(compare subfigures in the middle row columns (a) and (c)). Second, current approaches lack mech-
anisms for continual capabilities as they do not support seamless integration of new graphs and the
incremental update of normal and abnormal patterns without retraining from scratch. Third, many
existing models assume the availability of a few labeled nodes in the target graph to facilitate few-
shot learning. In practice, however, labeling anomalies can be costly and requires domain expertise,
making this assumption unrealistic. This raises an important question: how can we enable zero-shot
anomaly detection without relying on any labeled data from the test graph?

To address these limitations, we propose OWLEYE, a novel generalist for zero-shot graph anomaly
detection across multiple domains. In brief, the core idea of OWLEYE is to learn and store represen-
tative patterns of normal behavior from multiple source graphs in a structured dictionary that acts
as a knowledge base. When applied to an unseen graph, OWLEYE can effectively detect anomalies
by leveraging the representative patterns stored in the dictionary. Our approach is built on three
key components. First, we introduce a cross-domain feature alignment module, which normalizes
and aligns node features across graphs using pairwise distance statistics, ensuring that graphs from
different domains can be embedded into a shared input feature space. Second, we develop a multi-
domain pattern module that extracts both attribute-level and structure-level patterns from training
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graphs and stores them in a pattern dictionary. This dictionary enables the model to generalize
to unseen graphs together with the cross-domain feature alignment module. Third, we design a
truncated attention-based cross-domain reconstruction module that samples a subset of nodes and
reconstructs them using the stored patterns, effectively identifying anomalies while minimizing the
influence of abnormal nodes during the reconstruction process.

2 OWLEYE: ZERO-SHOT CROSS-DOMAIN GRAPH ANOMALY DETECTOR

In this section, we present OWLEYE and illustrate cross-domain feature alignment, multi-domain
pattern learning, and truncated attention-based reconstruction. Throughout this paper, we use reg-
ular letters to denote scalars (e.g., a), boldface lowercase letters to denote vectors (e.g., ), and
boldface uppercase letters to denote matrices (e.g., A). Let G = (V,&,X) be an undirected
graph, where V, £, X are the set of nodes, set of edges and the node attribute matrix, respectively.
Let Tirain = {Dirgins Divains - Dirain} be a set of training datasets with m graphs and each
D.rvin = (Gt rain> Ytrain) 18 @ labeled dataset, where y!,. ..., is a label vector denoting the abnormal-
ity of each node in the graph G, ... Our objective is to train a GAD model on Ty, 4iy, to identify

anomalous nodes in the graph 7,2, from the test datasets Tiest = {Diosi> Divsty -y DZ’;{;t}, where

m/ represents the number of graphs in the test datasets.
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Figure 2: Overview of OWLEYE.

2.1 PRESERVING DOMAIN-SPECIFIC SEMANTICS IN CROSS-DOMAIN FEATURE ALIGNMENT

Graph data from different domains often exhibit heterogeneous features that vary in both dimension-
ality and semantic meaning. For example, nodes in a citation network may be described by textual
content and paper metadata, whereas nodes in a social network might be characterized by user pro-
file attributes. This heterogeneity poses a significant challenge for generalist GAD models, which
require a consistent input representation across domains. Therefore, how can we effectively unify
and align heterogeneous features from diverse graph domains without compromising their semantic
integrity? To address this issue, we first propose to project these features into a common feature
space to achieve the consistent feature dimension and then employ the cross-domain feature align-
ment to align the features from different graphs into a shared input space without compromising
their semantic integrity.

Feature Projection. To achieve the consistent attribute dimension across different graphs, we
employ the principal component analysis (PCA) technique on the raw features of each graph
G' € Tirain U Trest- Specifically, given the attribute matrix X i ¢ R* %4 from the graph G°
with n’ nodes, we aim to transform it to X* € R™ *¢ with the common dimensionality of d by:

X' = Proj(X?) (1)
where Proj(-) is PCA.
Cross-domain Feature Normalization. Although PCA enables consistent dimensionality across
graphs, the semantic meaning of each projected feature across different datasets remains distinct. As
shown in Figure[I] the TSNE plots show that ARC (Liu et al.l 2024) tends to separate the two graphs

rather than align them, while UNPrompt (Niu et al., [2024) distorts the input space by reversing the
density relationship between Normal-Normal and Normal-Anomaly pairs observed in the original
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graph (compare subfigures (a) and (c) in the second row). To align attributes from different graphs
into a shared input space, we propose a cross-domain feature Normalization to align the semantics
and unify the distributions across graphs. Specifically, we first compute the average normalization

of node features in the i-th graph G’ by N* = - 37, S (25),)2.

In the second row of Figure[I] we observe that a large distance gap between a Normal-Normal pair
and a Normal-Anomaly pair on the Weibo dataset can be a crucial pattern for a GAD model to find a
proper decision boundary to separate normal and anomalous nodes. This observation inspires us to
leverage the pairwise node distance for Normal-Normal pairs, Normal-Anomaly pairs and Anomaly-
Anomaly pairs. However, the lack of label information for a graph from the test set prevents us from
fully benefiting from this observation. To relax the constraint of the unavailable label information,
we propose to measure the pairwise distance as an important indicator for preserving the structural
pattern in the latent space regardless of its label information. Specifically, we measure the pairwise
node distance for the original graph and the normalized graph as follows:

. g 1 . . 1
dist’ = )2 Z (@}, —x,)?, disty = Co Z

5,0 EV; v,V €V

where dist’ and distﬁv measure the distance between the pairwise node distance for the original graph
G" and the normalized graph, respectively. To utilize the pairwise distance for the graphs from the
training set, we take the median over all available graphs.

dist™? = median([dist", dist?, ..., dist™]), dist%® = median([dist}, dist%, ..., distn])  (3)

The reason why we choose not to use the average operation is to avoid a situation where a graph with
too large average pairwise distance dominates the datasets. Finally, we normalize the node attributes
in the i-th graph as follows:
_. Xt
X'« g -max(f,T) 4

sogmed it
dist ‘ -dist Z(\i]

Tott . i tme
dist? -distyy

different graphs, and 7 is the constant positive temperature, which is set to 1 in the experiments.

where [ = is a scaling factor to control the magnitude of the pairwise distance cross

2.2 MULTI-DOMAIN MULTI-PATTERN DICTIONARY LEARNING

One major limitation of existing generalist GAD models is their inability to support the seamless
integration of knowledge extracted from new graphs, as well as the incremental updating of nor-
mal and abnormal patterns without retraining from scratch. To this end, can we design a generalist
GAD framework that enables continual learning by efficiently accumulating and updating knowl-
edge across diverse graph domains? Hence, we propose to learn and extract both attribute-level and
structure-level patterns and store them in a dynamic dictionary.

Attribute-level Representation Learning. Following the existing generalist GAD methods (Niu
et al.}[2024;|Liu et al.,|2024; Qiao et al.,[2025), we aim to learn and extract the generalized attribute-
level H, ;{ffl representations across graphs:
i+1 i pyind

Hallr+ =o(A H;ltrWalttr) o)
L € R4*4 s the learnable weight matrix
of the [-th layer graph neural network (Kipf & Welling, 2017) to learn the attribute representations,
H;l e R"" %4 denotes the attribute-level embedding of the graph G¢ and H!® = X', To fully cap-

ture the high-order neighborhood information, we concatenate the multi-hop information with the
residual network (He et al., [2016)):

where A" € R" %' s the adjacency matrix of graph, W}

i i,2 i,1 il+1 i,1
H' = [Hattr - Hattr LRI Hattr - Hattr] (6)
where H € R x!d,

Structure-level Representation Learning. The attribute-level representation H' captures node-
specific information (e.g., a user’s interests in a social network), while it fails to capture relationships
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and interactions (e.g., who connects to whom and how densely). For example, in social networks,
two users may have similar attributes but vastly different roles based on their connectivity (e.g.,
normal users vs. anomalous users). Thus, a natural question arises: can we learn the structural
representations without the intervention of the node attributes? Inspired by this, we propose to first
replace the raw node attributes with a d-dimension all-one vector and learn structural representations

R as follows:

Rige' = 0(A' R Wiine) @)
where W! € R?*4 is the learnable weight matrix of the I-th layer graph neural network to learn

the structural representations, RstrluC € R™ %4 denotes the structural embedding of the graph G’ and

RZ;&C = 1 € R" % is the all-one matrix. Similarly, we concatenate the multi-hop information with
the residual network to fully capture the high-order neighborhood information R’

3 0,2 i,1 a0 2,1
R = [Rstruc - Rs ottt Rslruc - Rstruc] (8)

Cross-domain Pattern Extraction. After learning both attribute-level representation H and struc-
ture-level representation R for even available graph, we randomly extract n4,,, patterns in total from
each graph G’ and store them in two dictionaries by:

Dict), = H7[idx’], Dict}y, = R [idx’] ©)

where idx’ is a set of the node index randomly sampled from the graph G/. Due to the fact that
the patterns extracted from different graphs contribute differently for detecting anomalies in these

graphs, we propose to measure the similarity of nodes between graph G and the patterns Dict},
extracted from graph G’ only based on the structure-level representation as follows:

) (10)

where sim(G?, Dictg%) € R™' measures the maximal node similarity between graph G* and the pat-

sim (G, Dict),) = max(softmax (R W, (R?[idx])”

terns stored in Dict%, and W, € Rldxld jgq weight matrix. Here, we expand sim(gi, Dict%) S R

to be R™ *!?_ The reason why we only use structure-level representation for similarity measurement
is that leveraging attribute-level representation may fail to distinguish the camouflaged anomalous
nodes with the attributes similar to its normal neighbors. Notice that the advantages of extracting
and storing the patterns in a dictionary include that these representative patterns could be lever-
aged for anomaly detection in the unseen graphs and that the dictionary could be easily updated
by adding more patterns, thus enabling the continual evolving capabilities of OWLEYE. Similarly,

sim (G, Dict;) can be computed via Eq by replacing the structure-level representation I with
attribute-level representation H'. Three case studies in Section verify that OWLEYE has excel-
lent continual evolving capabilities and achieves better performance on test graphs on average by
directly adding more patterns extracted from other new graphs to the dictionary without retraining
or finetuning the model.

2.3 TRUNCATED ATTENTION-BASED FEATURE RECONSTRUCTION FOR IN-CONTEXT
LEARNING AND INFERENCE

Many existing models (N1u et al., 2024} Liu et al.||2024;|Q1ao et al.,|2025)) usually assume the avail-
ability of a few labeled nodes in the test graph to facilitate few-shot learning. However, labeling
anomalies can be costly and requires domain expertise in practice, making this assumption unre-
alistic. When labels are hardly available, how can we enable zero-shot anomaly detection without
relying on any labeled data from the test graph? A naive solution is to randomly sample pseudo-
support nodes from a test graph as normal nodes due to the fact that the vast majority of the nodes
are normal.

However, it inevitably leads to an issue that abnormal nodes might be misleadingly labeled as the
pseudo-support nodes, thus resulting in performance degradation. To address this issue, we propose
a truncated attention-based reconstruction method to filter out the potential abnormal nodes and only
select the most representative nodes to reconstruct both attribute-level representation and structure-
level representation. Specifically, we propose to measure the truncated attention score for the query
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node from the graph G’ and the normal attribute-level patterns H7 from Dictgp j€A{l,...,m} by:

oG, Dictly) = \/(WQHixWK(Hj)T)
Vid
a(G?, Dict),)[idx,] = —oo, where idx,, = Top(—a(G’, Dict},), k)
o) = softmax(a (G, Dict);) /7a)
where W@ ¢ Rldxld WK ¢ RI4Xld are two weight matrices shared across all i and j pairs,

Top(-, k) selects the top k node indices to be truncated, and 7, is the temperature magnifying the sig-

nificance of the selected patterns. Notice that al(G?, Dict), )[idx,] = —oo truncates the less represen-
tative nodes for the attribute-level representation reconstruction after softmax operation. Similaﬁ,

we can compute the attention ag for structure-level patterns R’ from Dict% following Equation

(1)

Then, we reconstruct both the attribute-level and structure-level representation in the graph G* with
the normal patterns from m training graphs by:

PR (i , . y .
H' = po- Z sim(G*, Dict};) ® (o Dict};)
o (12)
1 , . o
R = po. Z sim(G', Dict);) © (aDict})

Jj=1
where © denotes the Hadamard product. The intuition is that we aim to use the normal patterns
extracted from each training graph to reconstruct the node embedding in the graph G*.

Training. To optimize OWLEYE on training sets T¢,4ipn, We aim to minimize the following objective

function:
E o i Z Hf)k (Hil)k)T _ Z Hf’] (H:’J)T
recon — . A, . A .
=1 UkEAi' H’ink||H171)k| UjeNi H’ZI)JHH’ZI)J'
Lope =y, > [max(||H}, — H || — || H}, — H,, || +,0) (13)

=1 v;e A% v eN?
+pmax(||R,, - R, [I* ~ ||R,, — R, ||+ ,0)]
L= ‘Clriplet + Erecon

Where N* = {v;|y; = 0} denotes the set of normal nodes, A° = {vj|yy = 1} is the set of
anomalous nodes and X is the margin of the triplet loss. In Liecon, We minimize the instance-wise
difference (maximize the similarity) between the attribute-level representation H, - and the recon-

structed attribute-level representation H f,j for v; € N but maximize the difference (minimize the
similarity) between the attribute-level representation H. f)j and the reconstructed attribute-level rep-
resentation I;[f)k for v; € N and v, € A. Compared with L econ, minimizing Lyipier allows more
pairwise contrasting (e.g., ||Hf,] — H ||?) for robust representation learning.

Inference. At the inference stage, we first extract ng,, normal patterns stored in the dictionar-
ies Dicty and Dictp, for each graph from the training set 7;rq;n. Given a graph G* from the test
set Tiest, We extract and store n,, normal patterns from G* in the dictionaries Dicty and Dictp

for representation reconstruction by Equation (I2). The anomaly score of node v; is computed as
follows:

S., = ||\Hi, - Hj |P + 8| R;, — R, |” (1
3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. In the experiments, we train OWLEYE and the baseline methods on a group of graph
datasets and test on another group of datasets. Following (Liu et al., 2024), the training graphs
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span across a variety of domains, including social networks, citation networks, and e-commerce
co-review networks, each of them with either injected anomalies or real anomalies. Therefore, we
select one graph from each domain and randomly select one more dataset in the training set (e.g.,
CiteSeer). Specifically, the training datasets 7y, consist of PubMed, CiteSeer, Questions, and
YelpChi, while the testing datasets T;.s; consist of Cora, Flickr, ACM, BlogCatalog, Facebook,
Weibo, Reddit, and Amazon. We also include the experimental results for different train-test split in
Appendix [A.7]

Baselines. We compare our proposed method with supervised methods, unsupervised methods and
one-for-all methods. Supervised methods include two state-of-the-art GNNs specifically designed
for GAD, i.e., BWGNN (Tang et al.,[2022), and GHRN (Gao et al., 2023)). Unsupervised methods
include four representative approaches with distinct designs, including the generative method DOM-
INANT (Ding et al.| [2019)), the contrastive method SLGAD (Zheng et al.| 2021]), two affinity-based
methods (e.g., TAM (Qiao & Pang| 2023) and CARE (Zheng et al, [2025)), one-for-all methods
include ARC (Liu et al.}|2024) and UNPrompt (Niu et al., 2024).

Implementation Details. Following (Liu et al.| 2024} |Qiao & Pang| 2023} Zheng et al.| 2025
Liu et al} 2022), we evaluate the performance of OWLEYE and baseline methods with respect to
AUROC and AUPRC as evaluation metrics for GAD. We report the average AUROC/AUPRC with
standard deviations across 5 trials. We train ARC on all the datasets in 7Ty;.q4, jointly, and evaluate
the model on each dataset in 7;.; in a zero shot setting. In the experiment, we set 7 = 1, 7, = 0.001,
Ngup = 2000, A = 0.2, and 3 = 0.01.

Table 1: Anomaly detection performance w.r.t AUPRC. We highlighted the results ranked first and
second. “Average” indicates the average AUPRC over 8 datasets.

Method Cora Flickr ACM BlogCatalog ~ Facebook Weibo Reddit Amazon | Average

Supervised (10-shot)
BWGNN 9.57+2.40  12.39+2.68 13.37+6.03 12.97+3.15 5.81+1.17 9.554+2.12 3214232 12.40+1.86 | 9.80+2.91
GHRN 14.04+0.73  16.454+2.59 16.29+1.41 13.58+2.19 6.24+1.12 17.51 £1.52  4.44+1.15 13.84+2.63 | 12.80£1.67

Unsupervised (zero-shot)
DOMINANT  31.77+0.34 28.76+1.52 32494497 29.514+3.44 3424086  29.63+0.86 3.28+0.37 36.80+8.37 | 24.46+3.11
SLGAD 18.27+1.01  16.93+8.20 1.334+0.23 9.47+3.00 0.934+0.23 35.80+1.41  4.00+2.27 5334220 | 11.51+2.38

TAM 9.434+0.27 23344142 40.68+2.58  25.59+4.76  12.18+3.14 23.01+15.14 4.22+0.22 45.26+4.34 | 22.96+3.96
CARE 35.12+£0.23  25.644+0.16 37.76+£0.35  25.06+0.10  5.52+0.34  40.70+£0.74  3.17+0.17 56.76+1.44 | 28.72+0.44
ARC 45.20+1.08 35.13+£020 39.024+0.08  33.43+0.15  4.254047  64.18+0.68 4.20+0.25 20.48+6.89 | 30.74+1.23

UNPrompt 9.84+290 25.21+1.84 11.18+1.67 18.24+13.05 4.32+0.55 20.58+5.62  3.77+0.32  9.41+2.69 | 12.82+3.58
OWLEYE 43.94+0.46 37.69+0.25 39.75+0.13  34.99+0.31 5.62+1.17 60.90+0.21  4.25+0.11  62.20+3.18 | 36.17+0.73

Table 2: Anomaly detection performance in 10-shot setting w.r.t AUPRC. We highlighted the results
ranked first and second. “Average” indicates the average AUPRC over 8 datasets.

Method Cora Flickr ACM BlogCatalog ~ Facebook Weibo Reddit Amazon [ Average
Supervised (10-shot)
BWGNN 9.57+2.40  12.39+2.68 13.37+6.03 12.97+3.15 5.81+1.17 9.554+2.12  3.21+232 12.40+1.86 | 9.80+2.91
GHRN 14.04+0.73  16.45+2.59 16.29+1.41 13.58+2.19 6.24+1.12 17.51+1.52  4.44+1.15 13.84+2.63 | 12.80+1.67
Unsupervised & Finetune (10-shot)
DOMINANT  22.35+0.81 30.424+1.35 24.76+0.84 34.82+0.78  4.12+0.23  78.63+1.28 4.184+0.64  8.86+0.69 | 26.02+0.83
SLGAD 19.38+1.46 17.464+5.62  5.334+1.39  11.67+222  3.81+0.23  36.23+1.41 4.3242.13  7.69+2.82 | 13.24+2.16

TAM 14.27+£0.65 27.68+1.45 57.324526 27.49+1.09  11.734+2.34 26.78+0.28 3.67+0.16 52.624+3.17 | 27.70+1.80
CARE 39.5242.90 27.19+0.24 38.12+043  27.75+0.66 5.86+0.69  44.3740.96 3.62+0.15 59.51+1.28 | 30.74+0.91
ARC 48.02+0.83  37.15+£0.24 39.134+0.15  34.20+0.27 4.92+0.75  63.83+2.55 4.32+0.16 21.90+£6.32 | 31.68+1.41
UNPrompt 11.40+0.55 22.65+£0.30 14.80+0.70 18.01+12.88  4.04+1.07 22.23+4.83 3.854+0.21 11.084+0.46 | 13.51+2.62
OWLEYE 44.40+1.58 38.32+0.15  39.1640.10  35.00+0.34 6.83+1.38  64.144+1.25 4.96+0.10 63.02+5.71 | 36.73+1.33

3.2 EXPERIMENTAL RESULTS

Effectiveness Analysis. In the experiment, we evaluate our method in the zero-shot and 10-shot
setting on the graph from the test set 7;.s;. For the supervised learning methods (e.g., BWGNN and
GHRN), we evaluate these two methods in the 10-shot setting, where we randomly sample 5 normal
nodes and 5 anomalies as the support nodes. Table[T)and Table[2]show the performance of OWLEYE
and the baseline methods with respect to AUPRC in the zero-shot and 10-shot setting, respectively.
The evaluation with respect to AUROC can be found in Tables [ and[7] Appendix [A.T] Based on the
results, we have the following observations: (1). OWLEYE demonstrates strong anomaly detection
capability in the generalist GAD scenario, without any finetuning. The average AUPRC is 5%
higher than the best competitor (i.e., ARC). (2). Even if two supervised methods (e.g., BWGNN
and GHRN) are provided with 10-shot label information, our proposed method OWLEYE can still
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outperform these two methods on 6 out of 8 datasets with respect to both AUPRC and AURPC.
(3). If all methods are provided with 10-shot label information, OWLEYE achieves state-ofthe-art
performance on 4 out of 8 in terms of AURPC and outperform the best competitor by more than 5%.

Ablation Study. We assess the ef-
fectiveness of three key components
in OWLEYE (e.g., cross-domain fea-
ture normalization, structural pattern
learning, and the truncated atten-
tion module) by comparing it with
three variants: OWLEYE-N (with-
out feature normalization), OWL- i
EYE-S (without structural patterns), . . . )
and OWLEYE-T (with standard atten- Figure 3: Left: Ablation Study. Right: Efficiency Analysis.
tion instead of truncated attention). All methods are trained on the same set 74,4, and evaluated on
the test set T.s; = {Cora, Flickr, ACM, BlogCatalog, Facebook, Weibo, Reddit, Amazon}. Figure
(Left) shows the average AUPRC across these eight datasets. OWLEYE consistently outperforms all
variants, highlighting the importance of each component in achieving robust cross-domain graph
anomaly detection.
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194
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2
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Efficiency Analysis. To evaluate the runtime efficiency of OWLEYE, we compare the finetuning
time of different methods on the ACM dataset. As shown in Figure [3] (Right), OWLEYE achieves
comparable finetuning time to other generalist GAD models, while significantly outperforming both
unsupervised and supervised baselines (e.g., TAM, CARE, BWGNN, GHRN) in terms of efficiency.

3.3 CASE STUDIES: ANALYSIS OF OWLEYE’S CONTINUAL LEARNING CAPABILITIES.

In this subsection, we present three case studies to evaluate how our proposed multi-domain
pattern learning enhances OWLEYE’s continual learning capability.  Specifically, we con-
sider the training set Tirqin {PubMed, Cora, Questions, YelpChi} and the testing set
Tiest = {Facebook, Weibo, Reddit, Amazon}. Additionally, a set of auxiliary graphs 7., =
{Flickr, CiteSeer, BlogCatalog} is used for model enhancement through either pattern extraction
or finetuning.

Case Study 1: Pattern Augmen- Table 3: Case Study 1: Exploration of OWLEYE’s contin-

tation without Finetuning. In this uous learning capability without finetuning. |7,..| = n
setting, we assess whether OWLEYE indicates that patterns from n graphs are added to the dic-
can improve performance by simply tionaries.
extracting patterns from new graphs
without ﬁne-tuning the model. We Size of T,ue  Facebook Weibo Reddit Amazon [ Average
b d : level Tous] =0 672163 59.6310.96 3.93:0.08 54.88+4.37 | 31.29+1.76
extract attribute- and structure-leve | =1 6.32£125 59794086 3.96+0.13 55.78+329 | 31.46+131
patterns from graphs in 7., and in- Touz| =2 6.524£147 59.82+1.10 4.05+0.12  56.73+2.62 | 31.78+1.32
Corporate them into the dictionaries. Touwz| =3  7.04£1.51  60.06+:0.96 3.9840.06 58.01+£3.42 | 32.274+1.49
The results are shown in Table [3} where |74..| = n indicates that n additional graphs are used
for pattern extraction and when |75,.| = 0, no new patterns are added. We observe a consistent

performance improvement as more patterns are incorporated, validating OWLEYE’s ability to incre-
mentally learn from new data sources in a plug-and-play fashion.

Table 4: Case Study 2: Investigation of OWLEYE’s con-
tinual learning performance when finetuning is permitted
using n graphs in 7oy |Tauz| = 0 means that we do not
finetune the model.

Case Study 2: Pattern Augmenta-
tion with Finetuning. Next, we in-
vestigate OWLEYE’s continual learn-
ing performance when finetuning is
permitted using the graphs in 7.

Table E presents the results un- Size of T,ur  Facebook Weibo Reddit Amazon Average
der varying the number of graphs Touz]| =0 6.72%1.63 59.63+0.96 3.9310.08 54.88+4.37 | 31.29+1.76
. oue] =1 6.82£125 59.39+078 3.91+0.14 55.06+2.86 | 31.30+1.28
in Tquz. We find that OWLEYE us| =2 6931189 5935+0.55 3.93+£0.13 55.74+3.61 | 31.48+1.54
achieves its highest average perfor- Touz| =3 6.69+142  58.124142  4.01:+0.07  56.53+5.34 | 31.33+2.06

mance when finetuned on two graphs from 7,,,. However, a comparison with the results from
Case Study 1 reveals a notable insight: OWLEYE performs better without any fine-tuning simply
by leveraging the added patterns. This highlights the effectiveness and practicality of our pattern-
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centric design for continual learning. We conjecture that the reason that finetuning the model fail
to achieve better performance is that the model is hard to train on too many graphs and thus hard
to converge. The visualization of the training loss vs epoch in two cases (e.g., |Tous| = 0 and
| Tauz| = 3) in Appendix [A.8.2]shows that it’s hard for the model to converge when | Tgq| = 3.

Case Study 3: Impact of Dictionary Size. Finally, we analyze how the number
of stored patterns (denoted as ng,p) affects performance. In the experiment, we use
Tirain = {PubMed, CiteSeer, Questions, YelpChi} for training, and let the test set be Trest =
{Cora, Flickr, ACM, BlogCatalog, Facebook, Weibo, Reddit, Amazon}. Table reports the results.
We observe that: (1) Increasing the number of patterns from 10 to 200 leads to a 0.55% performance
gain; and (2) Beyond 200, the improvement becomes marginal and the performance becomes stable
even if we keep increasing the dictionary size. These findings demonstrate that OWLEYE benefits
from a larger pattern dictionary up to a saturation point, beyond which rewards diminish.

Table 5: Case Study 3: AUPRC (%) under different dictionary sizes (i.e., nsyp)-

Nsup Cora Flickr ACM BlogCatalog Facebook Weibo Reddit Amazon \ Average

10 44554048 37.86+0.26 39.574+0.08  34.84+0.33 5.63+£0.73 61.30+044 4.03+£0.12 55.89+2.16 | 35.46+0.58
100 43.5240.78 37.454+0.23 39.87+£0.06  34.76+038  5.43+134 61.13+0.67 4.03+0.08 60.49+2.82 | 35.84+0.79
200  43.2440.50 37.65+0.29 39.92+0.12 34724035  5.32+1.40 60.70+0.53 4.024+0.08 62.51+1.45 | 36.01+0.59
500  43.284£092 37.96+0.39 39.86+0.13  34.794+035  5.43+132 61.00+£0.47 4.04+0.11 62.77+1.36 | 36.14+0.63
1000 43.88+0.73 37.994+0.33 39.82+0.08  34.924039  5.33+129 60.52+0.79 4.03+0.12 61.764+2.50 | 36.03+0.78
2000 43.94+046 37.69+0.25 39.75+0.13 34.99+0.31 5.62+1.17  60.90+0.21 4.25+0.11 62.20+3.18 | 36.17+0.73

4 RELATED WORK

Graph anomaly detection (GAD) is widely used in many applications (Grubbs, 1969;|Ma et al., 2021}
Pourhabibi et al.| 2020) that naturally involve graph-structured data, such as transaction networks
in financial fraud detection(Slipenchuk & Epishkinal 2019; Ramakrishnan et al., 2019)), communi-
cation and access networks in cybersecurity intrusion detection (Brdiczka et al., 2012; |Duan et al.
2023)), and user-user interaction graphs in fake news detection on social networks (Shu et al., 2017;
2019). In recent years, the success of deep learning has spurred growing interest in developing deep
learning-based GAD methods (Ma et al.,|2023)). In the unsupervised setting, graph contrastive learn-
ing methods (Zheng et al., 2021} [Liu et al., 2022; (Chen et al.| 2022; Jin et al., [2021} | Xu et al., [2022)
aim to learn effective node or graph-level representations by pulling similar instances together in the
embedding space without any label information. Alternatively, reconstruction-based methods (Ding
et al., 2019; |[Huang et al., 2023} |Li et al., 2019; [Luo et al., 2022; Peng et al., [2023) focus on learn-
ing low-dimensional embeddings capable of reconstructing input graph attributes or structures, with
anomalies identified as instances exhibiting high reconstruction errors. In the supervised setting,
generative GNN-based methods leverage label information to augment training data by synthesizing
high-quality graph signals. Representative works include GraphSMOTE (Zhao et al.| [2021)), Graph-
Mixup (Wu et al., [2022)), and GraphENS (Park et al., 2022), which enhance model generalization
and robustness. Cross-domain graph anomaly detection has recently drawn growing interest as mod-
els trained on one graph often degrade when deployed on graphs with different structures or feature
distributions (Ding et al., 2021; Wang et al., 2023} Pirhayatifard & Silva). More recently, the advent
of large language models (LLMs) has sparked a paradigm shift in Al research due to their strong
generalization capabilities. Motivated by this, researchers are exploring “one-for-all” generalist
frameworks (Niu et al.| [2024; |Liu et al.| 2024])) capable of adapting to diverse, unseen graph domains
with minimal task-specific tuning. This paper also aims to develop such a generalist framework for
GAD, while addressing several open challenges in existing approaches, including inadequate graph
alignment across domains, lack of continual learning capabilities, and poor performance in zero-shot
anomaly detection scenarios.

5 CONCLUSION

In this work, we presented OWLEYE, a novel generalist framework for zero-shot graph anomaly
detection across multiple domains. To address the limitations of existing methods, such as poor
feature alignment, lack of continual evolving capabilities, and reliance on labeled target data, OWL-
EYE introduces a structured and interpretable solution. By storing representative normal patterns
in a reusable dictionary, OWLEYE enables scalable and effective anomaly detection on entirely un-
seen graphs without retraining or target supervision. Extensive experiments on real-world datasets
validate the superior performance and transferability of OWLEYE over existing state-of-the-art ap-
proaches.
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6 REPRODUCIBILITY STATEMENT

We include the source code and the datasets in the Supplementary Material for experiment repro-
ducibility. The README file includes the required packages and the command to reproduce the
results.
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 ADDITIONAL EFFECTIVENESS ANALYSIS

In the experiment, we evaluate our method in the zero-shot and 10-shot setting on the graph from the
test set Tes¢. For the supervised learning methods (e.g., BWGNN and GHRN), we evaluate these
two methods in the 10-shot setting, where we randomly sample 5 normal nodes and 5 anomalies as
the support nodes. Table[6]and Table[7|show the performance of OWLEYE and the baseline methods
with respect to AUROC in the zero-shot and 10-shot setting, respectively. OWLEYE demonstrates
strong anomaly detection capability in the generalist GAD scenario, without any finetuning. The
average AUPRC is better than the best competitor (i.e., GHRN).

Table 6: Anomaly detection performance in zero-shot setting w.r.t AUROC. We highlighted the
results ranked first and second. “Average” indicates the average AUROC over 8 datasets.

Method Cora Flickr ACM BlogCatalog Facebook ‘Weibo Reddit Amazon | Average

Supervised (10-shot)
BWGNN 60.53+7.76  69.40+9.22 70.37+13.29 68.74+6.80 67.74+11.28 61.284+2.58  63.68+8.21 69.75+5.81 | 66.44+£7.49
GHRN 76.59+3.55 71.96+4.19  76.83+4.35  72.773+4.72  75.98+2.99  82.79+4.15  069.76+5.52  74.35+4.49 | 75.12+4.25

Unsupervised (zero-shot)
DOMINANT  85.75+143 73.43+3.12  73.62+1.26 70.274+2.37 52314139 85.42+12.64 53.49+294 64.73+2.73 | 69.88+3.49
SLGAD 72.73+£0.70  63.07+1.58  50.88+2.03 60.3642.19 45.57+2.51 60.16+2.50  50.28+4.48  54.63+1.25 | 57.2142.15

TAM 57.85+£0.95 62.39+1.54 75.16+2.68  62.3943.52  63.30+0.12  71.33+0.07  52.374+0.21 76.04+3.62 | 22.96+3.96
CARE 66.92+0.62  67.90+£0.70  70.95+0.75 45414059  79.18+1.69  86.34+0.14  52.51+0.28 83.09+0.65 | 69.26+0.65
ARC 84.92+0.58  72.3440.16  77.54+0.13  73.654+0.55  65.03+£0.79  88.43+0.62  58.464+2.20 71.93+3.84 | 74.04+1.11

UNPrompt ~ 63.55+£3.09 69.67+047 71.98+1.38  67.83+2.73 63.87+7.37  47.44+2.77  55.01+1.20 56.77+6.73 | 62.01+3.22
OWLEYE 79.52+0.43 74.81+£0.97  78.20+0.12 74.8340.26 64.85+0.37 87.66+0.14  58.03+0.68  85.43+0.79 | 75.42+0.47

Table 7: Anomaly detection performance in 10-shot setting w.r.t AUROC. We highlighted the results
ranked first and second. “Average” indicates the average AUROC over 8 datasets.

Method Cora Flickr ACM BlogCatalog Facebook Weibo Reddit Amazon | Average

Supervised (10-shot)
BWGNN 60.53+£7.76  69.40+9.22  70.37+£1329  68.74+6.80 67.74+11.28 61.28+2.58 63.68+8.21 69.75+5.81 | 66.44+7.49
GHRN 76.59+3.55 71.96+4.19  76.83£435  7273+4.72 75984299 82.79+4.15 69.76+5.52 74.35+4.49 | 75.12+4.25

Unsupervised & Finetune (10-shot)
DOMINANT  73.524+0.47 73.84+2.76  73.82+0.19  74.39+0.10  51.224+0.85 91.66+0.27 53.48+4.87 60.39+2.80 | 69.04+1.54
SLGAD 73.394+0.84 64.15+1.33  53.55+1.82  62.67+1.84  51.40+251 61.64+£191 53.17+£3.95 55.23+1.36 | 59.40+1.94

TAM 62.56+2.10 65.19+1.86 86.29+1.57  63.69+0.88  76.26+3.70  71.73+£0.16 56.62+0.49 77.13+4.62 | 69.93+1.92
CARE 67.27+2.44 68.81+0.76  71.53+0.71 53.95+1.99  79.94+10.28 87.654+3.08 55.32+0.48 83.80+3.54 | 71.03+£2.91
ARC 85.28+0.38  74.62+0.28  77.84+0.17  73.58+0.33  67.28+1.18  87.04+1.36 60.06+1.21 73.79+3.16 | 74.94+1.01

UNPrompt 65.06+£0.41  69.16+0.47  73.244+045  68.95+0.25  67.13+4.01  53.214+2.16 55.69+£0.96 62.14+0.97 | 64.32+1.21
OWLEYE 79.71+£0.72  75.77+1.36  78.06+0.34  74.42+033  66.94+0.50 88.61+0.36 57.82+0.75 84.93+2.82 | 75.78+0.90

A.2 PERFORMANCE EVALUATION WITH DIFFERENT DATASET SPLIT

In the experiments, we evaluate OWLEYE and the baseline methods on different training and test
set split. Specifically, the training datasets 7,4 consist of Reddit, BlogCatalog, Questions, and
Cora, while the testing datasets 7;.s; consist of Flickr, CiteSeer, PubMed, ACM, Facebook, Weibo,
YelpChi, and Amazon. The experimental results are shown in Table [§] and Table f] OWLEYE
demonstrates strong anomaly detection capability in the generalist GAD scenario, without any fine-
tuning. Specifically, OWLEYE achieves state-ofthe-art performance on 4 out of 8 datasets in terms
of AUROC and 3 out of 8 in terms of AURPC and demonstrates competitive performance on the
remainder.

Table 8: Anomaly detection performance in zero-shot setting w.r.t AUPRC. We highlighted the
results ranked first and second. “Average” indicates the average AUPRC over 8 datasets.

Method Flickr CiteSeer PubMed ACM Weibo Facebook  YelpChi Amazon | Average
Supervised (10-shot)
BWGNN 12.39+2.68 10.31£1.99 11.63+2.87 13.37+6.03 9.55+2.12 5.81+1.17 2454376 12.40+1.86 | 9.74+2.81
GHRN 16.45+259 14.04+0.73 16454259 16.29+141 17.51+1.52  6.2441.12  6.29+1.41 13.84+2.63 | 13.39+1.75
Unsupervised (zero-shot)
DOMINANT 28.76+1.52 18.74+2.71 14.32+1.66 32.49+4.97 29.63+4.98 3.424+0.86 4.73+0.65 36.80+8.37 | 21.11+3.21
SLGAD 16.93+8.20  3.87+0.83  11.07+£2.05 1.33+023  35.80+1.41 0.93+0.23 5.60+144 5.33+220 | 10.11+2.08

TAM 23.34+142  8.80+£0.88 23.71+1.22 40.68+2.58 23.01+15.14 4.18+£142 6.19+0.71 45.26+4.34 | 22.02+3.47
CARE 35.64+0.16 12.47+0.72 21.62+1.29 37.76+£0.35 40.70+0.74  5.524+0.34 6.514+0.66 56.76+1.44 | 26.00+0.71
ARC 36.724+0.14  45.94+0.39 28.61+0.15 39.26£0.20  63.05+0.75  5.39+£0.45 5.264+0.13 27.474+9.59 | 31.46+1.47

UNPrompt 24.35+£0.41  5.81+0.55  10.14+045 14.89+0.67 33.43+6.55 3.31=£1.16 7.9942.25 9.74+0.57 | 13.71+1.58
OWLEYE 37.69+0.15 43.14+1.23 29.72+043 39.83+0.19  59.30+1.88  5.45+0.59 6.58+0.17 60.46+6.47 | 35.27+1.39
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Table 9: Anomaly detection performance in zero-shot setting w.r.t AUROC. We highlighted the
results ranked first and second. “Average” indicates the average AUROC over 8 datasets.

Method Flickr CiteSeer PubMed ACM Weibo Facebook YelpChi Amazon | Average

Supervised (10-shots)
BWGNN 69.40+9.22  63.05+3.63 64.16+5.49 70.37+1329  61.28+2.58  67.74+11.28 54.2243.41 69.7545.81 | 65.00+£6.84
GHRN 71.96+4.19  77.5943.55 76.96+4.19 76.83+435  82.79+4.15  75.98+299 53.83+4.35 74.3544.49 | 73.79+3.78

Unsupervised (zero-shot)
DOMINANT 73.43+3.12  74.96+2.87 75.13+£123 73.62+1.26  85.42+12.64 52.31+1.39  53.224+0.98 64.73+2.73 | 69.13+3.28
SLGAD 63.07+£1.58 55.12+2.44 56.51+1.02 50.88+£2.03  60.16+£0.25  45.57+251 47.56+1.06 54.63+1.25 | 54.81+1.80

TAM 62.39+1.54 67.29+£1.38 77.84£098  75.16+2.68  71.33+0.07  63.30+£0.09 52.40+0.52 76.04+3.62 | 68.22+1.35
CARE 67.90+£0.70  69.43+0.87 66.554+0.97  70.95+0.75 86.34+0.14  79.18+1.69  53.89+0.82 83.09+0.42 | 72.42+0.80
ARC 74.12+0.65  89.58+0.30 82.25+0.18  78.28+0.32  87.15+0.66  66.39+1.61  54.13+£0.26 72.54+6.78 | 75.80+1.34
UNPrompt ~ 69.15+0.25 57.70+£0.52 71.47+1.49 72.68+033  66.94+5.02  55.05+£2.11  60.49+554 66.84+2.06 | 65.04+2.16
OWLEYE 75.30+0.98  84.47+0.58 77.98+0.25  78.57+0.11 87.49+0.57  66.25+0.72  54.73+0.63 85.56+2.32 | 76.29+0.77

A.3 PARAMETER SENSITIVITY ANALYSIS

In this section, we conduct a comprehensive sensitivity analysis of the key hyperparameters on
eight datasets, with the results summarized in Table [I0] We focus on four hyperparameters: (1)
the constant positive temperature 7 € {1, 2, 3,4}, which controls the degree of feature normaliza-
tion; (2) the truncated attention scaling factor 7, € {0.1,0.01,0.001,0.0001}, which magnifies the
significance of the selected patterns; (3) the triplet loss margin A € {0.1,0.2,0.5, 1}, which deter-
mines the separation strength between positive and negative pairs; and (4) the balance coefficient
B € {1,0.1,0.01,0.001}, which controls the relative importance between graph structural features
and graph attribute features.

The experimental results show that our method is highly robust to 7, 7,, and A. Specifically, across
all tested values of these parameters, the performance only varies slightly within the range of 0.7502
to 0.7552. This indicates that the model remains stable under different choices of normalization
temperature, attention scaling, and triplet loss margin. In contrast, the parameter 8 has a more pro-
nounced impact. When 5 = 1, the performance drops to 0.7069, suggesting that overemphasizing
one type of feature (structural feature) may degrade the model’s ability to capture complementary
information. As 3 decreases to 0.1, the performance improves significantly to 0.7556, and remains
consistently around 0.7550 for smaller values. This demonstrates that a balanced contribution from
both graph structural and attributed features is crucial for achieving optimal performance.

Overall, these results highlight two important findings: (i) our method exhibits strong robustness
with respect to most hyperparameters, making it reliable in practical applications without heavy
parameter tuning, and (ii) careful adjustment of the balance coefficient S is particularly beneficial
for enhancing performance by effectively leveraging the complementary strengths of structural and
attributed graph information.

Table 10: Parameter Analysis on 7, 7,, A, and

Parameter Cora Flickr ACM BlogCatalog Facebook Weibo Reddit Amazon Average
T=1 7697 +£0.73 73.65+025 77.94+£021 7404+025 6512+081 87.12+0.21 59.37+£025 86.22+0.44 | 75.05+0.39
T= 80314+ 1.71 75.12+138 7820+0.78 7545+ 144 6403+1.65 8746+049 57.73+1.76 83.37+0.89 | 75.26 +1.26
T=3 80.15+1.09 7594 £337 7854+0.63 7518+1.09 6526+2.78 87.40+0.84 57.86+0099 81.31+2.89 | 7521+1.71
T=4 8030 £1.35 76.02+346 78.67+080 7519+1.12 6499+279 87.28+0.70 57.884+0.94 81.48+589 | 7523 +2.13

7o = 0.1 79.06 £026 7519+ 140 7795+£0.15 7477+0.12 6286+052 8743+0.16 57.83+£036 85.33+£0.84 [ 75.05 £ 0.48

7, = 0.01 79.32 +0.54 7447 £029 78.17+0.25 7477 +0.13 63.46+046 87.53+0.16 57.88+0.61 84.60+0.83 | 75.02 £ 0.41

T =0.001 7697+073 73654025 77.94+£021 7404+025 65124+0.81 87.12+0.21 5937025 86.22+0.44 | 75.05+0.39

7, =0.0001 79.95+0.56 75.07+1.06 7855+0.61 75.11+080 65.19+0.73 87.57+0.13 57.87+1.61 84.85+1.19 | 75.52+0.84
A=0.1 79.61 £0.60 7559 +1.75 78.15+£0.07 7484+021 64.63+£038 87.74+0.20 5843 +£041 85.14+0.89 | 75.52+0.56
A=0.2 7697 +£0.73 73.654+0.25 77.94+021 7404+025 6512+0.81 87.12+0.21 59.37+025 86.22+0.44 | 75.05+0.39
A=05 79.50 £0.52 7514+ 1.18 78.13+£0.14 7478 +048 6545+0.56 87.66+0.16 57.02+0.68 85.35+0.48 | 7538 +0.53

=1 7928 033 74774085 78.08+£0.16 7447043 6692+0.73 87.44+009 5540+073 8534 +045 | 75.21 +0.45

I 8154 £ 142 B8410L0.18 85014155 79.17 £009 33.60 £ 224 8328 L238 5268058 6603L259 | 70.69 L 138
B=01  83.06+1.56 79.87+£291 79.96+0.53 7699+ 1.12 57.90+575 87.49+£073 5543 +1.39 8378 +2.55 | 75.56 &+ 2.07
=001  79.61 £0.60 7559+ 1.75 78.15+0.07 74.84+021 64.63+038 8774020 5843 +041 85.14+0.89 | 75.52 + 0.56
=0.001 79524042 7481+£097 7820+0.12 74834026 64.85+0337 87.67+0.14 58.02+0.66 85404081 | 7541 4047

A.4 CAN CROSS-DOMAIN FEATURE ALIGNMENT BENEFIT OTHER METHOD?

In this subsection, we want to answer the following question: Can cross-domain feature alignment
benefit other method? We conducted experiments by replacing ARC’s feature preprocessing with
our proposed cross-domain feature alignment method. The results are shown in Table[TT] The results
demonstrate improved performance across 6 out of 8 datasets, achieving an average increase of 0.57
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in AUCROC and 1.01 in AUPRC. This validates the effectiveness of our proposed cross domain
feature alignment.

Table 11: Effectiveness of Cross-domain Feature Alignment (FA)

Method Cora Flickr ACM BlogCatalog Facebook ‘Weibo Reddit Amazon \ Average
AUROC
ARC 84.924+0.58 7234+0.16 77.54+£0.13 74.65+0.55 65.03+£0.79 8843+0.62 58464220 71.93£384 | 7404+ 1.11
ARC+FA  84.06+0.31 73.37+£021 77844023 74924021 64.93+£0.55 888140.75 59.17+£0.72 7474 +4.51 | 74.61 £0.94
Improvement -0.86 1.03 0.30 0.27 -0.10 0.38 0.71 2.81 0.57
AUPRC
ARC 4520 +£1.08 35.134+0.20 39.02+0.08 3343+£0.15 4.25+£047 64.18£0.68 420+025 2048+6.89 | 30.74 £1.23
ARC+FA 4671 4+0.72 37.15+£0.18 39844022 3474+028 4624052 61.794+0.37 4.054+037 25054+6.95 | 31.74£1.20
Improvement 1.51 2.02 0.82 1.31 0.37 -2.39 -0.15 4.57 1.01

A.5 EXPERIMENTS ON HIGH ANOMALY RATE DATASET

In this subsection, we control Facebook data with synthetic anomaly rate. The raw anomaly rate of
Facebook is 2.31% and we manually inject 10% and 20% more anomalies. The results are shown
in Table The results (AUPRC) show that our method consistently outperforms two baseline
methods when the anomalies rate increases.

Table 12: Performance of OWLEYE w.r.t AUPRC with different anomaly rates

Anomaly Rate  2.31% +0% 2.31% +10% [ 2.31% +20%
UNPrompt 4.32£0.55 53.38+0.56 70.09£0.28
ARC 425 £0.47  54.02 £0.41 71.92 £0.84
OWLEYE 4.86 £0.33  54.47 +0.82 | 72.47+0.48

A.6 EXPERIMENT RESULTS ABOUT SIGNIFICANT DOMAIN SHIFT

In this subsection, we evaluate our method under a heavy domain shift setting. To simulate a scenario
where the e-commerce co-review domain is entirely unseen during training, we remove the YelpChi
graph from the training set. This creates a substantial distribution mismatch, as no graph from the
e-commerce co-review domain is available during model learning. In the test phase, we examine
the effect of removing YelpChi graph on Amazon graph as both of them are from the same domain
(e-commerce co-review domain), while the rest 10 graphs from other domains.

In Table @ the results reveal that, under this heavy domain shift, the performance on the Amazon
graph decreases by 4.6% in AUPRC, while its AUROC remains largely unchanged. This behavior
is expected: with an entire domain missing during training, domain-specific patterns become harder
to recover. Nevertheless, the performance drop remains moderate, demonstrating that the patterns
extracted from other training graphs still help support robust anomaly detection on the Amazon
dataset. Interestingly, for graphs from other domains, we observe slight improvements in AUROC
and AUPRC when YelpChi is removed. For example, Cora’s AUROC increases from 0.7952 to
0.7989 and AUPRC from 0.4394 to 0.4476, while Flickr’s AUROC rises from 0.7481 to 0.7636.
This trend is consistent across several other non-e-commerce graphs, suggesting that removing one
domain might slightly reduce its influence during training, thereby allowing the model to better cap-
ture patterns from other domains. Overall, these findings indicate that while heavy domain shift does
lead to reasonable performance degradation for the affected domain, the cross-domain structural and
attribute patterns captured by our model continue to provide meaningful generalization.

A.7 IMPLEMENTATION DETAILS

The neural network structure of the proposed framework is 3-layer GCN. In the experiments, we
set the initial learning rate to be 3e-5, the hidden feature dimension to be 512 and use Adam as the
optimizer. The experiments are performed on a Windows machine with a 24GB RTX 4090 GPU.
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Table 13: Domain Shift Experiment Results (in %), testing on the Amazon graph. We remove the
YelpChi graph from the e-commerce co-review domain to simulate significant domain shifts.

Dataset With YelpChi \ Without YelpChi
AUROC (%) AUPRC (%) ‘ AUROC (%) AUPRC (%)
Cora 79.52 +£0.43 43.94 + 0.46 79.89 +0.27 4476 +0.51
Flickr 74.81 +0.97 37.69 £ 0.25 76.36 +2.55 37.91 £0.38
ACM 78.20+0.12 39.75+0.13 78.93 +0.87 39.72 +£0.15
BlogCatalog  74.83 £0.26 34.99 +0.31 75.63 +1.46 35.04 £ 0.36
Facebook 64.85 +0.37 5.62+1.17 66.27 £ 0.97 6.19 +1.37
‘Weibo 87.65+0.14 60.90 +0.21 88.10+0.22 61.18+1.04
Reddit 58.02 + 0.68 4.25+0.11 57.79 £ 0.22 3.97 +0.06
Amazon 85.43 +£0.79 62.20+3.18 85.15 £ 0.80 57.64 +3.75

A.8 VISUALIZATION

A.8.1 GRAPH SIMILARITY MEASUREMENT

We visualize the heat map for graph similarity measurement (defined in Equation (10)) in Fig-
ure |4 Specifically, we measure the graph similarity between a test graph (e.g., Amazon, Reddit,
Weibo, BlogCatalog, Facebook, ACM, Flickr, Cora) and a training graph (e.g., Pubmed, CiteSeer,
Questions, YelpChi), where target_graph denotes the test graph where we extract and store pat-
terns in Dict},. For instance, for Amazon graph, we measure the similarity between Amazon with
four graphs in the training set ;.4 and the patterns sampled from Amazon graph, denoted as
target_graph. We observe that all graphs from the test sets heavily rely on the patterns extracted
from its own graph, while some graphs, such as Weibo, may also leverages the information from
other graphs (e.g., questions) to detect the anomalies.

Attention Map

Flickr

AcM

BlogCatalog

<l > "\\

& & &

& © S
&

Figure 4: Visualization of Graph Similarity Measurement for Different Graphs.

A.8.2 TRAINING LOSS VS EPOCHS

We visualize the training loss vs the number of epochs in Figure [5] as the auxiliary information
for case study 2. In this figure, we observe that when no graph from 7, is used to finetune the
model, the training loss (i.e., blue line) drops dramatically. However, when we add all three graphs
from 7, to finetune the model (i.e., the orange line), the training loss is much higher than that of
model without using any graphs for model finetuning. This verify our conjecture that the reason that
finetuning the model fail to achieve better performance is that the model is hard to train on too many
graphs and thus hard to converge.

A.9 ADDITIONAL FEATURE PREPROCESSING COMPARISON
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Figure 5: Training Loss vs Epochs
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Figure 6: Performance Visualization of SOTA GAD methods, * denotes best. Top row: TSNE
embeddings of Facebook and Weibo graph data for (a) original graph, (b) ARC, (c) UNPrompt,
and (d) OWLEYE (ours). ARC pushes the two graphs apart rather than aligning them. Middle and
bottom rows: pairwise Euclidean distances for Normal-Normal, Normal-Anomaly, and Anomaly-
Anomaly node pairs on Weibo and Cora dataset, respectively. In the original graph (middle row,
(a)), Normal-Normal pairs are denser than Normal-Anomaly pairs on Weibo dataset—an important
pattern reversed by UNPrompt (middle row, (c)). The existing data preprocessing methods fail to
either align the graphs into the share space or preserve important patterns after normalization.

In this subsection, we visualize the different feature preprocessing methods on Cora and Weibo
datasets, showing how well different feature preprocessing methods preserve the graph structure for
the graphs from two different domains. Notice that Weibo has the largest feature norm (77.82), while
the norms of other graphs are less than 3. To better visualize the different data distribution in the raw
graphs across different domains, Weibo is selected. We also selected Cora, as it is a citation network,
different from Weibo as a social network. Similar to Figure [T} we have the similar observation in
Figure [f] where ARC pushes the two graphs apart rather than aligning them in the top row and
UNPrompt reverses the different patterns of Normal-Normal pairs pair and Normal-Anomaly pairs
in the middle row. In contrast, our method can fairly preserve the key graph structure even if two
graphs are from different domains.

[ A.10 VISUALIZATION OF CROSS-ATTENTION MAP ON CORA AND AMAZON DATASETS J

In this subsection, we provide a detailed visualization of the label matrices and cross-attention maps
for both the Cora and Amazon datasets to better understand how our model distinguishes normal
nodes from anomalous ones.
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Figure 7: Visualization of cross-attention map on the Amazon dataset. Subfigures (a) and (b) display
the cross-attention scores across the graphs, where the y-axis corresponds to the graph indices (0-3
indicating the four training graphs and 4 representing the test graph) and the x-axis denotes the ten
extracted patterns learned for each graph. The top row shows the attribute attention and structural
attention for a normal node and the bottom row shows the attribute attention and structural attention
for an anomalous one. Subfigure (c) in both figures presents the ground-truth label matrices that
specify whether each node is normal or abnormal.
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In Figures[7]and[§] subfigures (a) and (b) display the cross-attention scores across the graphs, where
the y-axis corresponds to the graph indices (0-3 indicating the four training graphs and 4 represent-
ing the test graph) and the x-axis denotes the ten extracted patterns learned for each graph. The
top row shows the attribute attention and structural attention for a normal node and the bottom row
shows the attribute attention and structural attention for an anomalous one. Subfigure (a) shows the
attention map when the model makes the correct prediction, while Subfigure (b) presents the atten-
tion map when the model makes the incorrect prediction. Subfigure (c) in both figures presents the
ground-truth label matrices that specify whether each pattern is normal or abnormal. Across both
datasets, lighter colors such as light green and light yellow consistently indicate high similarity
to the patterns associated with normal nodes, as reflected in the label matrices in Subfigure (c).

By examining these visualizations, we observe a clear and consistent relationship between the at-
tention intensity and the correctness of the model’s predictions: when the model correctly identifies
a normal node, its attention map is dominated by light colors, suggesting a strong similarity to
normal patterns stored in the dictionary; when it correctly identifies an anomalous node, the atten-
tion map becomes noticeably darker, indicating low similarity to normal behavior. Importantly, this
trend reverses for misclassified nodes: normal nodes that are wrongly predicted as anomalies exhibit
darker color in attention map, while misclassified anomalous nodes show lighter colors, showing the
high similarity to those of normal nodes. This systematic behavior demonstrates that the attention
map offers an intuitive and faithful interpretation mechanism, as the color patterns directly reflect
whether the node under consideration resembles the learned normal patterns, thereby revealing both
the reasoning behind correct predictions and the failure modes behind incorrect ones.

[ A.11 MORE EFFICIENCY ANALYSIS RESULTS J

In Table [T4] we report the training time on the ACM dataset for all baseline methods in the table.
Following the experiment on efficiency analysis shown in Figure 3} ACM is selected in the exper-
iment for the better comparison between training time and fine-tuning time. The results show that
the training time of our method is more efficient than most of the baseline methods with overall first
place performance gain reported in Tables|l|and

Table 14: Training time comparison (in seconds) across different methods.

Method Training Time (s)
BWGNN 16.6
GHRN 8.72
SLGAD 280
Dominant 470

TAM 254.71
CARE 550.23
ARC 1.89
UNPrompt 21.23
OWLEYE(ours) 3.84

[ A.12 EFFECTIVENESS OF STRUCTURAL REPRESENTATION ]

In Figure [3](OWLEYE vs OWLEYE-S), we have validated that including both attribute-level rep-
resentation and structural-level representation indeed help successfully identify more anomalies. In
this subsection, we further verify the necessity of including structural representation in our model
design. Table [T5] shows the experimental results comparing using both structural similarity and
attribute similarity (A+S) for domain similarity measurement vs only using structural similarity (S-
Only) for domain similarity measurement. The experimental results show that using both structural
similarity and attribute similarity (A+S) for domain similarity measurement decreases the perfor-
mance. This suggests that using both structural and attribute similarity for domain similarity mea-
surement is less stable than relying on structural similarity alone, because camouflaged anomalies
may mimic normal neighbors’ attributes and cross-domain feature discrepancies make reliable mea-
surement more challenging. Table [T6] shows that including structural patterns indeed increases the
performance.
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Figure 8: Visualization of cross-attention map on the Cora dataset. Subfigures (a) and (b) display
the cross-attention scores across the graphs, where the y-axis corresponds to the graph indices (0-3
indicating the four training graphs and 4 representing the test graph) and the x-axis denotes the ten
extracted patterns learned for each graph. The top row shows the attribute attention and structural
attention for a normal node and the bottom row shows the attribute attention and structural attention
for an anomalous one. Subfigure (c) in both figures presents the ground-truth label matrices that
specify whether each node is normal or abnormal.
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Table 15: Comparison of using both attribute and structural similarity (A+S) vs structural similarity

only (S-Only).

Dataset A+S (%) S-Only (%) Improvement (%)
Cora 4326+ 0.54 43.94 +0.46 0.68
Flickr 37.83+0.39 37.69 +0.25 -0.14
ACM 39.84 +0.28 39.75+0.13 -0.09
BlogCatalog  34.34 £ 0.53  34.99 + 0.31 0.65
Facebook 6.11 +£1.35 5.62+1.17 -0.49
Weibo 58.61 £5.18 60.90 +£0.21 2.28
Reddit 4.05+£0.12 4.25+0.11 0.20
Amazon 48.01 £18.44 62.20+3.18 14.19
Average 3426+3.35 36.17+0.73 2.16

Table 16: Comparison of using No Structural Patterns vs OWLEYE for AUPRC.

Dataset No Structural Patterns OWLEYE  Improvement (%)
Cora 39.38 £1.32 43.94 £ 0.46 4.56
Flickr 38.06 £ 0.08 37.69 £ 0.25 -0.36
ACM 39.64 £ 0.15 39.75+£0.13 0.11
BlogCatalog 3542 +£0.26 34.99 +0.31 -0.43
Facebook 4.71 £0.27 5.62+1.17 0.90
Weibo 57.18 £1.09 60.90 £ 0.21 3.72
Reddit 4.12+0.15 425+0.11 0.13
Amazon 61.98 +1.08 62.20 £3.18 0.22
Average 35.06 £ 0.55 36.17 £0.73 1.11

A.13 EFFECTIVENESS OF DIFFERENT FEATURE REDUCTION METHODS

In this subsection, we compared different linear and nonlinear feature projection methods including
PCA, SVD, Kernel PCA, and NMF in Table The experimental results show that our method with
PCA still achieves the best performance as modeled in this paper. Comparing PCA with nonlinear
methods like Kernel PCA and NMF, we observe that using more complicated feature projection does
not necessarily improve the performance, as it might distort and misalign the original feature space,
leading to performance drop. When the feature dimension is smaller than the preset projection
dimension, we use Gaussian Random Projection to 256 following ARC and then do the feature
reduction.

Table 17: Comparison of different feature preprocessing methods (AUPRC %).

Dataset PCA SVD Kernel PCA NMF

Cora 4394 +0.46 44.13+0.81 44.05+0.68 15.06+2.28
Flickr 37.69+£0.25 38.18+0.37 37.54+046 33.09+0.70
ACM 39.75+0.13 39.18+0.22 38.75+0.15 32.28+1.13
BlogCatalog 34.99+0.31 3528 +0.31 3493+£0.24 3336+048
Facebook 5.62+1.17 5.00 +£0.27 5.63 +£1.05 743 +1.34
Weibo 60.90 +0.21 57.89+248 60.55+022 4990 +3.66
Reddit 425+0.11 3.44 +£0.24 4.10+0.15 3.42 +£0.07
Amazon 62.20+3.18 4427+345 3875+3.07 20.61+757
Average 36.17 £0.73 33.42+1.02 33.04+0.75 24.39+2.15

[ A.14 IMPACT OF DIFFERENT VALUES OF k
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In this subsection, we evaluate the impact of different values of k in truncating the small values in
truncated attention mechanism. In the experiment, % is a relative value according to the dictionary
size. We set the value of & to p% of patterns in the dictionary, where n4,, = 1000 for each graph.
We vary the percentage of it from 5% to 50% as well as two specific numbers of k (k = 5 and
k = 10) and report the overall results across eight graphs below. Table [18|shows the impact of & in
the truncated attention mechanism.

To be more specific, the range of the value of k is based on the observation that the percentage of
the anomaly is usually lower than 10%. Using the ratio of dictionary size can filter out most of
the anomalies and then reduce the uncertainty. In a situation where the percentage of anomalies is
unusually high, we can manually increase the value of k. The results show that when we set the
value of k to 10% to 30% of patterns in the dictionary, the AUPRC scores are around 36.1% and
its performance decreases if we increase the percentage to 50%. One possible explanation is that
we filter out too many patterns that might be useful for identifying anomalies. Similarly, when we
decreased the value of k to a value that could not filter out most of the anomalies, the performance
starts to decrease, as the method involves the anomalies for feature construction.

Table 18: AUPRC scores under different values of & for truncated attention (in %).

k Cora Flickr ACM BlogCatalog ~ Facebook Weibo Reddit Amazon Average

5 43.89+1.53 37.52+0.57 39.73+£0.11 3475+033 573+£1.15 59.73+256 4.07+0.18 61.09+3.53 3581+1.25
10 44.18+0.82 37.74+0.38 39.73+0.09 3497+0.34 5.67+1.17 59.31+£2.80 4.05+0.07 61.26+347 3586+1.14
0.05n5,, 43.94+0.67 37.62+0.29 39.74+0.14 3500+0.32 5.61£1.16 59.52+£246 4.06+£0.08 61.96+323 3593+1.04
0.1n4yp 44.08 £0.73 37.66+0.30 39.76+0.10 3493+0.28 553+1.22 60.63+249 4.06+0.09 62.04+234 36.09+0.94
0215, 44.04+1.05 37.62+0.34 39.73+0.14 3491+0.59 5.16+£1.20 60.97+0.85 4.06+0.10 6220+3.12 36.09+0.93
0315,  43.55+090 3823+0.26 39.14+0.11 35.05+0.37 5.87+1.19 60.28+0.68 3.92+0.08 6326+248 36.16+0.76
0.5n5.p 43.93+047 37.69+0.26 39.74+0.12 3499+031 561+1.17 60.94+021 4.05+0.09 6191+3.05 36.11+0.71

[ A.15 PATTERNS FROM ONE GRAPH VS MULTIPLE GRAPHS ]

In this subsection, we aim to investigate whether incorporating patterns from multiple graphs can
benefit anomaly detection. The results in Table [19|indicate that leveraging patterns from multiple
graphs consistently improves performance compared to using patterns from a single target graph.
Specifically, the average AUPRC across eight graphs increases by 0.32%, demonstrating that cross-
graph knowledge can provide complementary information that helps identify anomalies more effec-
tively. We observe that datasets such as Cora, Weibo, and Amazon benefit the most, with improve-
ments of 0.73%, 0.43%, and 0.48%, respectively, suggesting that in domains with diverse structures
or large graphs, shared patterns from multiple sources are particularly valuable. A few datasets,
like ACM, show minor negative change (-0.09%), which may be attributed to the already sufficient
patterns present in the target graph, highlighting that the benefit of cross-graph patterns depends
on the intrinsic complexity and variability of the graph. Overall, these results empirically validate
that maintaining a structured dictionary with patterns from multiple graphs enhances the model’s
generalization capability for detecting anomalies in unseen domains.

Table 19: Comparison of using patterns from the target graph only versus patterns from multiple
graphs (AUPRC %).

Dataset Patterns from target graph only  Patterns from multiple graphs Improvement
Cora 43.21 +£0.98 43.94 £ 0.46 0.73
Flickr 3741 £0.16 37.69 £ 0.25 0.28
ACM 39.84 £0.23 39.75£0.13 -0.09
BlogCatalog 34.81 £0.44 34.99 £ 0.31 0.17
Facebook 527+1.34 5.62+1.17 0.35
Weibo 60.47 £0.75 60.90 £ 0.21 0.43
Reddit 4.03 +£0.08 425+0.11 0.23
Amazon 61.72 £3.01 62.20 £3.18 0.48
Average 35.84 £0.88 36.17 £ 0.73 0.32

{ A.16 MEDIAN OPERATION VS MEAN OPERATION IN FEATURE NORMALIZATION
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Table 20: AUPRC scores comparing median vs. mean aggregation.

Dataset Median (AUPRC %) Mean (AUPRC %)
Cora 43.63 +1.94 3495+ 11.96
Flickr 37.92 £0.42 37.64 £ 1.15
ACM 39.55+0.12 39.05 +£0.31
BlogCatalog 35.00 £ 0.20 34.53 £ 0.63
Facebook 4.56 £0.71 430+ 1.15
CiteSeer 42.57£1.05 33.65 + 12.64
Reddit 4.19+£0.14 398 £0.16
Amazon 56.07 £ 2.28 38.56 + 17.31
Average 32.94 +£0.86 28.33 £ 5.66

In Table[20] we compare the use of median and mean operations in our feature preprocessing module.
(Table 22| shows the norm of raw features in each graph.) The results show that replacing the median
with the mean significantly reduces performance on Cora (43.63 — 34.95), CiteSeer (42.57 —
33.65), and Amazon (56.07 — 38.56), indicating that the mean is sensitive to graphs with unusually
large feature norms, which can dominate the normalization process and distort the shared feature
space. In contrast, median aggregation preserves the structural and semantic information across
graphs, maintaining more stable performance on all datasets (e.g., Flickr: 37.92 vs 37.64, ACM:
39.55 vs 39.05). This demonstrates that using the median is more robust for heterogeneous graph
domains, especially when feature distributions vary significantly across graphs.

Table 21: AUPRC scores when including patterns from Weibo vs. CiteSeer.

Dataset With Weibo (AUPRC %) With CiteSeer (AUPRC %)
Cora 43.63 +1.94 43.94 + 0.46

Flickr 37.92+0.42 37.69 = 0.25

ACM 39.55+£0.12 39.75+0.13
BlogCatalog 35.00 £ 0.20 34.99 £0.31
Facebook 4.56 +0.71 5.62+1.17

Reddit 419+0.14 425+0.11
Amazon 56.07 £2.28 62.20 £3.18
Average 31.56 £ 0.83 32.63 £0.80

A.17 ATYPICAL TRAINING DOMAIN EXPERIMENT

In Table[2T] we examine the robustness of our method when a training domain is highly atypical by
varying the training graphs. Since Weibo has the largest feature norm among all graphs shown in
Table 22} we conduct two experiments with different training sets:

* 1) With Weibo: Pubmed, Questions, Weibo, and YelpChi;
 2) With CiteSeer: Pubmed, Questions, CiteSeer, and YelpChi.

As shown in Table |21} the results indicate that most datasets maintain consistent performance across
the two settings. For instance, Cora achieves 43.63% AUPRC with Weibo and 43.94% with CiteSeer,
ACM scores 39.55% versus 39.75%, and BlogCatalog shows 35.00% versus 34.99%. The average
performance is slightly higher when CiteSeer is included (32.63% vs. 31.56%), suggesting that our
method is robust to the choice of a highly atypical domain in the training set.

B DETAILED RELATED WORK

Graph anomaly detection (GAD) is widely used in many applications (Grubbs| [1969; Ma et al.,
2021} [Pourhabibi et al.l 20205 Li et al., 2021} [Duan et al.l [2023) that naturally involve graph-
structured data, such as transaction networks in financial fraud detection(Slipenchuk & Epishkina
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Table 22: Feature norms of different graphs.

Dataset Norm
Pubmed 0.24
Questions 0.45
Weibo 77.82
YelpChi 0.07
Cora 2.41
Flickr 0.25
ACM 0.10

BlogCatalog  0.30
Facebook 2.38

Citeseer 2.81
Reddit 0.02
Amazon 0.49

2019; [Ramakrishnan et al.l [2019), communication and access networks in cybersecurity intrusion
detection (Brdiczka et al, 2012; |Duan et al., [2023)), and user-user interaction graphs in fake news
detection on social networks (Shu et al., 2017} 2019). In recent years, the success of deep learn-
ing has spurred growing interest in developing deep learning-based GAD methods (Ma et al.| 2023).
Depending on the availability of labeled data, deep GAD approaches can be broadly categorized into
supervised and unsupervised methods (Qiao et al., [2024). In the unsupervised setting, graph con-
trastive learning methods (Zheng et al.,[2021} [Liu et al., 2022; (Chen et al.,[2022; Jin et al.} 2021} Xu
et al., [2022) aim to learn effective node or graph-level representations by pulling similar instances
together in the embedding space without any label information. Alternatively, reconstruction-based
methods (Ding et al.,[2019; Huang et al., [2023} [Li et al., 2019; [Luo et al., 2022; |Peng et al., [2023])
focus on learning low-dimensional embeddings capable of reconstructing input graph attributes or
structures, with anomalies identified as instances exhibiting high reconstruction errors. In the su-
pervised setting, generative GNN-based methods leverage label information to augment training
data by synthesizing high-quality graph signals. Representative works include GraphSMOTE (Zhao
et all 2021), GraphMixup (Wu et al.| 2022), and GraphENS (Park et al., [2022), which enhance
model generalization and robustness. More recently, the advent of large language models (LLMs)
has sparked a paradigm shift in Al research due to their strong generalization capabilities. Moti-
vated by this, researchers are exploring ’one-for-all” generalist frameworks (Niu et al.| [2024; |Liu
et al.,|2024])) capable of adapting to diverse, unseen graph domains with minimal task-specific tuning.
Cross-domain graph anomaly detection (CD-GAD) has recently drawn growing interest as models
trained on one graph often degrade when deployed on graphs with different structures or feature
distributions. Early work by (Ding et al., 2021)) introduced one of the first CD-GAD frameworks by
aligning latent representations across source and target graphs to mitigate distributional shifts. More
recently, Wang et al.| (2023)) proposed an anomaly-aware contrastive alignment approach that explic-
itly incorporates anomaly signals into cross-domain representation learning, improving robustness
under heterogeneous domains. Complementary to these alignment-based methods, |Pirhayatifard &
Silva advanced a test-time adaptation framework that leverages homophily-guided self-supervision
to adjust model parameters on the target graph without requiring labeled anomalies. This paper also
aims to develop such a generalist framework for GAD, while addressing several open challenges in
existing approaches, including inadequate graph alignment across domains, lack of continual learn-
ing capabilities, and poor performance in zero-shot anomaly detection scenarios.

C BROADER IMPACT

This paper does not have significant potential negative societal impacts and it proposes a generalist
anomaly detection model, which aims to detect anomalies in the unseen graphs. Our method can be
applied to many applications, enhancing public safety by detecting fraud, cyberattacks, or suspicious
activities.
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D LLM USAGE DISCLOSURE

In this paper, the authors use LLMs to polish the paper writing, such as word choice and correcting
grammar mistakes. The use of LLMs is under control.
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